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Abstract. The influence of multiple spatio-temporal scales
on the error growth and predictability of atmospheric flows
is analyzed throughout the paper. To this aim, we consider
the two-scale Lorenz’96 model and study the interplay of the
slow and fast variables on the error growth dynamics. It is
shown that when the coupling between slow and fast vari-
ables is weak the slow variables dominate the evolution of
fluctuations whereas in the case of strong coupling the fast
variables impose a non-trivial complex error growth pattern
on the slow variables with two different regimes, before and
after saturation of fast variables. This complex behavior is
analyzed using the recently introduced Mean-Variance Log-
arithmic (MVL) diagram.

1 Introduction

The growth of perturbations, or errors, in weather or climate
models has been discussed in the literature from different
points of view using both simplified “toy” models (Gutiérrez
et al., 2008) and real operational systems (Ferńandez et al.,
2008). A common behavior has been identified in these
cases. When plotting in a diagram the variance against the
mean of the logarithms of perturbations (the so called Mean-
Variance Logarithmic (MVL) diagram) a typical trajectory
appears as the fingerprint of the spatio-temporal dynamics of
the perturbations. These MVL trajectories usually show two
distinct regimes. The first, with increasing variance, has been
identified as a genuine infinitesimal fluctuation where the in-
creasing variance appears as a result of the collapse to the
main Liapunov vector. The second, showing a decrease of
variance, appears by nonlinear effects (hence it is a genuine
finite fluctuation) that destroy the spatial correlation and lo-
calization of the perturbations (Primo et al., 2007; Gutiérrez

Correspondence to:S. Herrera
(herreras@unican.es)

et al., 2008). Hence, this methodology allows the charac-
terization of both the temporal and spatial growth compo-
nents, and their interplay, explaining the characteristic local-
ized structure of error growth.

In all cases analyzed until now with this methodology, the
system had a single temporal scale, and so these studies did
not clearly establish the role of the multiple scales existing in
the atmosphere. Moreover, little is known about the behavior
with more temporal scales. This study is interesting from
both fundamental and applied points of view. Many basic
questions about the meaning and generation of infinitesimal
and finite perturbations in models with multiple scales still
remain open. Also, questions of practical interest such as
the way of initializing ensembles with coupled ocean atmo-
sphere models are unsolved.

This paper addresses the role of the multiple scales in
the dynamics of the perturbation growth. A new complex
growth pattern with several regimes of evolution is shown
and analyzed. In Sect.2 we describe the one- and two-scale
Lorenz’96 models comparing their behavior. In Sect.3 a
quantitative description of the growth patterns obtained in
one-scale L96 model is presented. Section4 analyzes the
growth of perturbations in the two-scale L96 model. Finally,
some conclusions are given in Sect.5.

2 The two-scale Lorenz’96 model

The Lorenz’96 system (L96) is a simple conceptual model
of atmosphere-like multi-scale dynamics (Lorenz, 1996). It
consists ofm slow variablesxi coupled tom×n fast variables
yj,i whose evolution is governed by the following nonlinear
equations modeling advection, constant forcing, and linear
damping:

dxi

dt
= xi−1(xi+1−xi−2)−xi +F −

hc

b

n∑
j=1

yj,i
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Fig. 1. Schematic illustrations of the L96 system withm=8 and
n=4, with a total ofm×n grid points in the inner circle.

dyj,i

dt
= cbyj+1,i

(
yj−1,i −yj+2,i

)
−cyj,i +

hc

b
xi, (1)

wherei = 1,...,m, j = 1,...,n; h is the coupling constant,b
andc are the scaling constants andF is a constant forcing.
Both thexi ’s and theyj,i ’s are assumed to be periodic, i.e.,
xm+1 = x1; x0 = xm andyn+1,i = y1,i+1; y0,i = yn,i−1. L96
was originally introduced to mimic multi-scale mid-latitude
weather, considering an unspecified scalar meteorological
quantity atm equidistant grid points along a latitude circle
(see Fig.1); moreover, each of these points was associated
with n fast variables providing a higher resolution descrip-
tion of the system (m×n grid points).

In this paper we considered the conventional parameter
valuesF=8 andm=40. This leads to a chaotic behavior
with a time unit corresponding approximately to five days
in an equivalent atmospheric model (Lorenz, 1996). This is
the time unit used throughout the paper. We also selected
n=4, b=10 andc=10, leading to a two-scale model where
the fast variables fluctuate 10 times faster than the slow ones,
but with a smaller amplitude. The coupling parameterh can
be varied in the range (0, 1) to obtain different degrees of
coupling between both scales. This model has been exten-
sively used in the literature to study the influence of mul-
tiple spatio-temporal scales on the predictability of atmo-
spheric flows. For instance,Wilks (2005) studied stochastic
parametrization,Lorenz and Emanuel(1998) analyzed tar-
geted observations andOrrell (2003) predictability over dif-
ferent timescales.

A simplified version of L96 has also been used to investi-
gate the dynamics of the slow variables alone. In this case,
the system is given by:

dzi

dt
= zi−1(zi+1−zi−2)−zi +F . (2)

Both systems were integrated using a fourth-order Runge-
Kutta method with dt=0.005.

Figure 2a shows trajectories obtained by integrating (2)
from a random initial conditionzi(0). After a short transient
these figures show the typical pattern of L96 model emulat-
ing atmospheric flows: waves with mean length of 5 units
travel westward in a noisy background induced by chaos
spending 7–9 time units to complete a latitude circle. Fig-
ure2b and c shows the trajectory for the two-scale model (1)
integrated from a random initial condition(xi(0),yj,i(0)) =

(zi(0),yj,i(0)) and weak coupling (h=0.3) Thezi andxi tra-
jectories are initially very close, but they diverge very soon
due to non-linear behavior and the effect of the fast variable
dynamics. Contrarily, the spatial patterns of the X and Y
trajectories are, after rescaling, very similar at all times. Fig-
ure 2f and g shows the trajectories of the two-scale model
with the same initial conditions but with a stronger coupling
(h=1). The main difference with the previous case can be
seen in the fast variable, that now exhibits a high variability
at small scales. In order to appreciate this fact we plot in
Fig. 2d and h the trajectories of a reference pointx1, y1,1 and
the coupling termS1 = c

∑n
j=1yj,1. Note that this latter term

is the true contribution, as an additive source, of the fast vari-
ables to the slow ones at a given pointi =1. Figure2d shows
that with weak coupling the dynamics of the fast variable is
conditioned by the slow variable. It is a coupling dominated
by the slow dynamics. Figure2h shows the opposite effect,
clearly the dynamics is dominated by fast variables. This ef-
fect is seen as producing high frequency spatial and temporal
structures.

In all cases the last time step of this trajectory was used as
the initial condition in the following section, in order to have
a flow-assimilated initial condition.

3 Spatio-temporal growth of perturbations in one-scale
systems

In this section we describe the growth of perturbations (e.g.,
errors in the initial conditions) in a one-scale system such
as the one generated by Eq. (2). First, we show a qualita-
tive description showing the phenomena of spatial localiza-
tion and saturation. Then, we present a more quantitative de-
scription taking logarithms of the absolute perturbations and
using the MVL diagram to obtain the characteristic curve for
the spatio-temporal error growth.

3.1 Qualitative description

Let us consider a perturbed trajectory around a control fore-
castzi(t) for the one-scale L96 model, which is computed
integrating (2) from a flow-assimilated initial conditionzi(0)

(see previous section). The perturbed trajectory corresponds
to the integration forward in time of the perturbed initial
conditionz′

i(0) = zi(0)+δzi(0), whereδzi(0) are normally-
distributed independent random perturbations (e.g. observa-
tional errors in the initial conditions) with zero mean and
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Fig. 2. Comparison of the trajectories of the simplified (Eq.2) and two-scale (Eq.1) L96 models with weak and strong coupling parameters;
all integrated forward in time from the same initial conditions. The panels show the trajectories of the one-scale model(a, e), the slow (b)
and fast (c) variables of the two-scale model with weak couplingh=0.3 and the time evolution (d) of a single point in space (i =1) in the slow
variable (black line), in one of the fast variables associated to this point (gray line) and the contribution of the fast variables to this point at
each time (dotted line). Panels(f–h) are equivalent to (b-d) but for the case of strong couplingh=1. Note that panels (a) and (e) are identical
in order to facilitate a visual comparison between patterns in each row. Notice also the different scales used to depict slow and fast variables.
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Fig. 3. Upper row: dynamics of a single realization of perturbations of the initial condition for(a, d) the simplified L96 model, and(b, c) the
slow-fast variables,δxi andδyj,i of the L96 model with weak couplingh=0.3 and(e, f) with strong couplingh=1. The initial perturbations
were randomly chosen according to a Gaussian distribution with standard deviationσ for δz andδx, and 0 forδy. Middle row: the same as
in the upper row but in logarithmic scale. Lower row: the same as in the middle row but taking away the mean at each time. In order to ease
their comparison, panelsa, g, mare respectively identical to panels(d, j, p). Notice also the different scales in each case.

a given standard deviationσ , defined as a fraction of its
stationary value,σ = 10−4σst , with σst ∼ 3.2. The spatio-
temporal evolution of the ensemble is characterized by the
non-infinitesimal fluctuationsδzi(t) ≡ z′

i(t)− zi(t) between
the perturbed member and the control trajectory. These fluc-
tuations follow an equation that can be written separating lin-
ear and non-linear terms as:

dδzi

dt
= zi−1(δzi+1−δzi−2)

+ δzi−1(zi+1−zi−2)−δzi +O
(
δz2

)
(3)

O(δz2) representing terms of second, or larger, order. When
fluctuations are small, nonlinear terms can be neglected and
the evolution can be considered as infinitesimal. As the
growth is exponential, due to the multiplicative character of

the linear Eq. (3), in a short time the nonlinear terms be-
come important and a new evolution emerges, which is not
infinitesimal (finite fluctuations). Figure3a shows an ex-
ample of the growth of perturbations in one scale systems.
This figure shows that, after some time (aroundt =5) with
this exponential growth, the perturbations reach locally the
amplitude of the system (the scale of the plot is the same
as the corresponding panel in Fig.2) and saturate. Be-
fore that time, the spatio-temporal growth of errors follows
a characteristic dynamics where temporal and spatial com-
ponents interplay leading to characteristic localized growth
patterns. In order to see these initial stages of the spatial
evolution, Fig.3g shows the same growth process, but in
logarithmic scale, that is, we represent the log-perturbations
hi = log|δzi |. In logarithmic scale the progressive growth
in time is easily observed. Moreover, to see the localization
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phenomenon graphically Fig.3m shows the deviation of the
log-perturbation to its spatial mean,hi −

1
m

∑
hi . The ini-

tially Gaussian perturbations get quickly localized in a flow-
dependent structure which is kept until saturation due to non-
linear effects.

This behavior is represented in Fig.4a–e, which shows the
histograms of the perturbationsδzi(t) at five different times:
the initial (t =0) and saturated (t =7) times (with Gaussian-
like distributions) and three intermediate stages indicated
with dashed lines in Fig.3m (with localized distributions).
To get a higher statistical significance we used 20 random
initial perturbations to build the histograms. The behavior
shown is typical of the growth of a random initial perturba-
tion in a spatio-temporal chaotic system with only one active
scale. Initially the spatial distribution is Gaussian by con-
struction (panel a). The further evolution shows a progres-
sive localization (Fig.4b, c, d) whose distributions exhibits
a non-gaussian profile. This spatial localization is an effect
of chaotic systems in their infinitesimal evolution (when per-
turbations are in the tangent manifold). It is well known that
initial perturbations in chaotic systems tend to their main Li-
apunov vector (Baker and Gollub, 1996). Roughly speaking
we can say that the initial random perturbation is going to the
chaotic attractor adopting the form of the main Liapunov vec-
tor. The localization process ends when either the Liapunov
vector is reached or the amplitude is large enough to induce
the appearance of nonlinear effects. As said above, when
nonlinear terms are important a second regime appears where
the localization gained is destroyed (Fig.4e). (seeGutiérrez
et al., 2008, for more details).

3.2 The MVL approach

Spatially localized structures follow logarithmic statisti-
cal distributions (log-normal, log-Poissonian,...) and thus
they are better analyzed in their logarithmic representa-
tion. Moreover, it is known that the logarithmic transforma-
tion of infinitesimal perturbations behave as growing rough
surfaces, which allows a precise analysis by using tech-
niques borrowed from statistical physics (López et al., 2004).
The Mean-Variance Logarithmic (MVL) diagram (Gutiérrez
et al., 2008) was introduced with these premises in mind. The
MVL diagram is based on the log-perturbations, defined as
the logarithm of the absolute value of the perturbations de-
fined above, i.e.,hi(t) = log|δzi(t)|. It is a two-dimensional
representation displaying in the abscissa the spatial average
of the log-perturbations (the M-value):

M(t) =
1

m

∑
i

hi(t) (4)

and in the ordinate the spatial variance (the V-value):

V (t) =
1

m

∑
i

(hi(t)−M(t))2 . (5)
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Fig. 4. Histograms of 20 perturbations of an initial condition for
(a)–(e) the simplified L96 model,(f)–(j) the slow variablesxi of the
L96 model with strong coupling (h=1), and(k)–(o) the fast variable
yj,i of the L96 model. For each column, the different rows from
top to bottom represent the initial, three intermediate and the final
times, corresponding to the horizontal lines depicted in Fig.3.

The evolution (growth) of the initial perturbation is given
by the parametric curve (M(t), V (t)) in the diagram. It can
be shown that the horizontal axis represents the spatially-
averaged error growth in time (related to the leading Lia-
punov exponentλ asM(t) ∼ λt), whereas the vertical evo-
lution represents the spatial dynamics given by a changing
spatial correlation length (characteristic spatial scale) of the
perturbation field. The resulting spatio-temporal growth is a
combined effect of both interplaying components (Gutiérrez
et al., 2008), and its dynamics can be characterized with the
MVL diagram.

As an example, Fig.5c represents the MVL diagram for
a perturbation growth similar to Fig.3a. The curves shown
correspond to an average of 10 different initial conditions
(flow-assimilated by integrating a random initial condition
during 10 time units and 20 random initial perturbations for
each initial condition. This figure shows two typical pat-
terns of systems with a single scale and with random Gaus-
sian initial perturbations. Note that Gaussianity imposes a
fix value ofV =1.26 at the initial time-step (Gutiérrez et al.,
2008). The temporal evolution of the M- and V-values are
displayed in Fig.5 panels a and b, respectively. It can be
shown that whereas the first magnitude grows until satura-
tion, the later grows and decays indicating a gain and decay
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of spatial structure, or localization, in the original represen-
tation. In order to see the effect of the amplitude of the ini-
tial perturbation, two different values ofσ were considered:
10−4 (as in Fig.3a) and 10−6. When the initial perturbation
is small enough (the caseσ = 10−6) V saturates due to the fi-
nite size of the system, before the action of non-linear terms.
In other words, the initial perturbation, that tends to the main
Liapunov vector, reaches this limit in an infinitesimal evolu-
tion before being perturbed by the non linear terms.

As we can see in this example, the MVL Diagram is a pow-
erful tool to analyze the dynamics of initial perturbations. Its
implementation and physical interpretation are very simple
which increases their practical value: An increase (decrease)
of variance (V-value) means an approach to (separation from)
the tangent manifold of the chaotic attractor, which can be
used as a quantifier of dynamic assimilation. Finally note
that its use is not limited to the analysis of initial perturba-
tions but, in general, it is valid for the analysis of any dynam-
ical state as those appearing in data assimilation and synchro-
nization (Szendro et al., 2009).

4 Growth of perturbations with multiple scales

The fluctuation dynamics with multiple scales is very depen-
dent of the intensity of the coupling between both scales. In
the case of weak coupling the fast and slow variables follow
a similar dynamics of fluctuations: The saturation time of
both variables is close (Fig.3h and i), and the patterns of lo-

calization are also similar (Fig.3n and o). This result is not
surprising since, as seen in Sect.2, the fast scale is deeply
conditioned by the slow scale. The spatial and temporal vari-
ations of their fluctuations are then similar.

The strong coupling case is completely different. The
growth of perturbations follows a more complex pattern.
Firstly, the saturation time of the fast variable is shorter than
that of the corresponding slow variable (Fig.3l and k). The
fast variable saturates att=1, while the slow variable keeps a
pattern similar to the simplified L96 case (Fig.3l, k, and j).
Secondly, the fast variable in the case of strong coupling
shows a finer spatial resolution (Fig.3l and r) than the corre-
sponding ones in the weak coupling case (Fig.3i and o). In
fact, the characteristic pattern of traveling waves described
before is more clearly observed in the case of strong cou-
pling. Finally, the localization patterns shown by panels
in the bottom row of Fig.3 show a different spatial be-
havior, since the saturation of the fast variables produces
a cross-over in the slow ones with two separate regimes.
Before the saturation of the fast variables, the growth of
the slow ones follow the characteristic regime where per-
turbations get progressively localized. This is better appre-
ciated in the histograms (see Fig.4f and g). When non-
linear saturation effects appear in the fast variables (yield-
ing the Gaussian-like spatial distribution of perturbations in
Fig. 4m), the slow variables are also forced to lose the local-
ized structure (Fig.4h). Afterwards, when the fast variables
are fully saturated (cross-over point), the slow ones recover
the localized spatial structure (Fig.4i) until they also satu-
rate (Fig.4j). These two characteristic regimes have not been
reported elsewhere and are a fundamental knowledge to un-
derstand the different dynamical behavior of perturbations in
multi-scale spatio-temporal models, including weather mod-
els; for instance, atmosphere-ocean coupled models show
different time scales for the different components: fast at-
mosphere and slow ocean.

4.1 MVL diagrams

In order to analyse these regimes in detail, Fig.6 shows the
MVL diagram for the one- and two-scale L96 models in three
cases of weak (Fig.6c), intermediate (Fig.6g) and strong
(Fig. 6j) coupling parameters. In the weak coupling case
the diagram of the slow variable is very similar to the one
of the one-scale system. The dynamics of the fast variable
is conditioned to the dynamics of the slow variable, which
drives the whole system. The slope of the logarithmic am-
plitude in the growth process, which is closely related with
the first Liapunov exponent, is similar in the cases of one
or two-scale systems (Fig.6a). In the strong coupling case,
the MVL Diagram shows a complicated behavior of the slow
variable (Fig.6j). Since now the fast scale dominates the
evolution of the slow one there is an initial evolution regime,
until the saturation of the fast scale. In this initial regime, the
slow variable follows the dynamics of the fast variable with
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Fig. 6. Time series of the mean(a, e, h)and variance(b, f, i) of the log-perturbations of a simplified L96 model (black) and the slow (xi , dark
gray) and fast (yj,i , light gray) components of a two-scale L96 model.(c, g, j) MVL diagrams corresponding to the previous components.
The upper row(a, b, c) is for weak couplingh=0.26, the medium row(e, f, g) is for medium couplingh=0.6 and the lower row is for strong
couplingh=1. All curves are averages of 200 realizations (see text).

a greater slope in the logarithmic amplitude (Fig.6h) than in
the weak coupling configuration. There is a second regime,
after the saturation of the fast variable, where the dynamics
of the slow variables becomes independent and the slope of
the logarithmic amplitude is smaller. In terms of the variance
(Fig. 6b, f, and i) there are two effects on the fast variable
when increasing the coupling parameter. The first is the ear-
lier decay of the variance with the increasing coupling. This
is related to the fast arrival to the non-linear barrier caused by
the faster growth of the amplitude. The second effect is that
increased coupling leads to a larger maximum variance (i.e.
localization of the perturbation) reached by the fast variable.
That is, the stronger the coupling, the more relevant the fast
variable becomes and, thus, the finer the spatial detail it can
develop.

It is worth remarking the complex patterns of the slow
variable in this case. Four regimes are observed in the MVL
diagram (Fig.6j). The first two are induced by the beha-
vior of the fast variables. After the saturation of this vari-
able the slow one continues increasing the structure until its

own saturation. In Fig.6h and i, it is apparent that when
the amplitude of the fast variable is saturated (aroundt =2),
the variance continues its evolution in a slowing down pro-
cess that lasts until the saturation time of the slow variable
(aroundt = 7−8).

For the sake of completeness, we represent in Fig.7 the
behavior of fluctuations in the whole interval of the coupling
parameter. We plot the maximum value ofV for the fast
scale, which gives the strength of spatial localization, as a
function of parameterh. Three regions for the coupling pa-
rameter (labeled as weak, medium or strong) exhibiting dif-
ferent behaviors can be observed. As expected, in the weak
coupling zone,h ∈ (0,0.3), V has a value close to the one of
the single scale and no interaction between slow and fast dy-
namics takes place; in the intermediated zone,h ∈ (0.3,0.7),
V grows linearly withh, and interactions start taking place.
Finally, the varianceV remaining saturated in the strong cou-
pling zoneh ∈ (0.7,1) and two different regimes appear in
the slow variables as a consequence of the interplay with fast
ones.
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4.2 Fast dynamics and effective noise

It is interesting to investigate the role played by the fast vari-
ables in the dynamics of a multi-scale system. The possibility
of parametrization of fast degrees of freedom by an equiva-
lent noise is important to reduce the complexity of a problem
(Just et al., 2001). For the sake of illustration we explore this
possibility in our case.

In a case with weak coupling, where the slow variable is
dominant, the fast variables play a secondary role and they
could be substituted by a weak additive noise without altering
the main dynamics. However, when the coupling is strong,
the existence of two distinct regimes impede the existence of
an equivalent effective noise, even to reproduce the second
regime, when fast variables are saturated and the slow ones
become dominant. We show in Fig.8 the effect of adding a
random Gaussian noise in a one-scale model with an inten-
sity equivalent to those of the fast source term (i.e. with the
same mean and standard deviation). The noise is added at
the saturation time but we checked that the effect is similar
when it is placed in any other previous time. We can see that
the equivalent noise does not reproduce the dynamics of the
two-scale model. The added noise is not dynamically assim-
ilated,V decreases until the noise is assimilated, and a very
different pattern is observed in the MVL diagram (Fig.8).
Note that starting in a previous time is not a solution since at
these times the fast variable is dominant and cannot be sub-
stituted by a passive component. How to find a dynamically
compatible noise to reduce the two-scale model in this case
is a difficult problem that exceeds the scope of this paper.
Figure8 is a good illustration of this problem. Note that this
may have important implications in order to define appropri-
ate initial perturbations for ensemble prediction in coupled
atmosphere-ocean models.
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Fig. 8. Growth of perturbations in the two-scale model (xi;yj,i )
with strong coupling (h=1) versus the single-scale model (zi ) and
the single-scale model with an equivalent noise (x∗

i
): (a) temporal

evolution of the M-component of the growth of perturbations,(b)
temporal evolution of the V-component,(c) MVL diagram.

5 Conclusions

The spatio-temporal dynamics of the error growth in the two-
scale model proposed byLorenz(1996) has been character-
ized by means of the MVL diagram. For comparison pur-
poses, a simplified version of the model with a single scale
was also considered. This latter model was already charac-
terized byGutiérrez et al.(2008) and evolves from a small
random initial perturbation by increasing the mean error and
the localization until the finite-size and non-linear effects be-
come large and destroy the localization gained reaching a sta-
tionary state.

Depending on the strength of the coupling between the fast
and slow variables the two-scale model presents a more or
less complex picture. The weak coupling does not introduce
appreciable changes with respect to the one-scale system.
Contrarily, strong coupling introduces a complex behavior,
where the errors of the fast variables rapidly gain and lose
local structure, affecting the slow variables in a non-trivial
manner. The loss of structure arising from the saturation of
the fast variables induces a loss also in the slow ones. When
the fast variables saturate, the slow ones gain structure again
forming a secondary hump, which ends as expected when
the non-linear barrier is reached. On the other hand, the slow
variables also have an effect on the fast ones. Namely, the
localization of the fast variables does not reach a constant
value (full saturation) until the slow ones saturate.
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Finally, we tried to reproduce the second hump experi-
enced by the slow variables in the MVL diagram by sub-
stituting the fast variables (once saturated) by an equivalent
noise term in the governing equation for the slow variables,
but our attempt was unsuccessful.

This complex behavior may be relevant for other systems
such as the atmosphere-ocean system where there are fast
varying variables (in the atmosphere) gaining and losing the
structure much faster than others (in the ocean, for instance).
This issue could be made evident by analyzing atmosphere-
ocean coupled model output from existing ensemble predic-
tion systems. Of course, this is out of the scope of the present
work and will be dealt with in a forthcoming paper.
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