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Abstract— Fiber Specklegram Sensors (FSSs) are highly 

sensitive to external perturbations, however, trying to locate 

perturbation’s position remains as a barely addressed study. In 

this work a system able to classify perturbations according to the 

place they have been caused along a multimode optical fiber has 

been design. As proof of concept, a multimode optical fiber has 

been perturbated in different points, recording the videos of the 

perturbations in the speckle pattern, processing these videos, 

training with them a machine learning algorithm and classifying 

further perturbations based on the spatial locations they were 

generated. The results show classifications up to 99% when the 

system has to categorize among three different locations lowering 

to 71% when the locations rise to ten. 

 
Index Terms—Fiber optic sensors, Multimode waveguides, 

Neural networks, Pattern recognition, Speckle, Speckle 

Interferometry. 

 

I. INTRODUCTION 

he importance of the optical fiber sensors has been growing 

strongly in the last decades since their study started more 

than forty years ago. Among different applications, strain 

and temperature sensing has dominated the market and still 

attracts a huge interest [1]. However, apart from these typical 

applications, optical fiber sensors can be employed for many 

different purposes. In particular, the use of interferometers can 
provide exceptional vibration-sensing capabilities. 

Interferometric optical fiber sensors, like the fiber specklegram 

sensor (FSSs), exhibit remarkably good sensitivity to external 

vibrations which can be used as a sensing tool for applications 

such as non-contact patient monitoring [2, 3] or surveillance [4, 

5]. The speckle phenomenon in optical fibers was described by 

Spillman et al. who first realized about its utility as a sensing 

tool [6]. However, FSSs measure the perturbation by 

integrating all the small contributions at each different location, 

making much more complicated to locate each specific 

perturbation. This means that, when a speckle system in optical 
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fibers is used for sensing purposes, it measures the 

perturbations generated all along the fiber as a “unique sensing 

point”, independently of where the perturbation is being 

generated. 

A. Speckle Phenomenon in Optical Fiber 

The speckle phenomenon occurs when coherent light is 

conducted towards a multimode optical fiber. At the other end 

of the fiber, a granular pattern is generated, called specklegram 

[6]. This specklegram (speckle pattern) is highly sensitive to 

external perturbations such as vibrations, temperature, or strain 

[1-6].  A multimode optical fiber carries many different optical 

paths. In a simple way, these optical paths can be understood as 

the different paths light follows when travelling along the fiber, 

and are known as modes. Due to the different length of the 

modes, the optical phase of every light beam differs from each 

other, resulting in interference effects at the end of the optical 
fiber. In that sense, if the phase delay is 2π radians (or 

multiples), the interference phenomenon is constructive. In the 

opposite case, if the phase delay is π radians, the interference 

phenomenon is destructive, and therefore the intensities of each 

light beam are subtracted. All the other possible phase delays 

produce intermediate interferences being partially destructive 

or partially constructive. Eventually, all these interferences 

generate a light pattern at the other end of the fiber, which is 

composed of brighter and darker dots known as speckles.  

Indeed, speckle phenomenon in fiber optic is so highly non-

linear that obtaining a detailed mathematical model able to 
relate the behavior of the modes and the position of the 

perturbation would be too complex and would fail to provide 

much of the insight. Furthermore, most of the systems using the 

speckle phenomenon as sensing tool are focused on how much 

the speckle pattern varies in a global sense, addressing the 

sensor response from a statistical perspective [2]. In fact, the 

current state-of-the-art indicates there are almost no 

publications about the speckle system in fiber optic used as a 

distributed sensing method [7, 8]. Nevertheless, Plöchner M. et 

al. [9] proved that multimode fibers might not be as 
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unpredictable as it was previously thought by studying its 

behaviors in rather small segments of fiber optic. Some other 

authors have performed similar studies as well [10 - 12]. 

Moreover, the synthesis of the desired intensity profile at the 

output of the multimode fiber has led some authors to obtain 
some degree of deterministic transmission algorithms [12, 13]. 

 

B. Hypothesis and Purpose 

The starting point of this hypothesis is provided by previous 

works already cited. These works suggest that, in a way, getting 

to a degree of spatial-resolved sensing system using 

specklegram sensors in fiber optic could be possible. Although 

the propagation of light waves in dispersive media (such as 

multimode fibers) has a very large number of degrees of 

freedom, the location of the perturbation along the fiber might 
have a consistent effect on the changes of the speckle pattern. 

In addition, even though the speckle phenomenon in fiber optic 

can result in a very complex model, the knowledge gathered so 

far about this effect and how the disorder affects light transport 

in crystalline lattice [14] supply even more evidences. Indeed, 

all of this can lead to think the way the different modes vary 

and exchange energy among them could be the same. On the 

assumption that we could generate the exact same perturbation 

on the exact point in an ideal system.  

Therefore, the purpose of this work is to find out whether 

there is a clear correlation between the distance at which the 

perturbation is generated in a fiber optic and the changes that 
occur in the outer speckle pattern. In this regard, if this 

hypothesis is confirmed a new set of applications with 

specklegram sensors could be developed. We do not attempt 

here to provide a detailed theoretical study of the way the modes 

vary in relation with the distance where the perturbation is 

caused. Rather, the aim is to provide a proof-of-concept able to 

show the capabilities of machine learning techniques as a 

monitoring system for a spatial-resolved FSSs sensor. 

II. SET UP AND PROCESSING METHOD 

In order to validate this hypothesis, it was decided to use an 

approach based on machine learning techniques. Thus, by 

generating very big amounts of perturbations in the same places 

of a multimode fiber, recording the videos of the changes in the 

speckle pattern, processing them and training with them 

different machine learning algorithms, it could be possible to 

predict the point where new perturbations were being generated 

along the fiber.   

Eventually, two different systems were created: the first 

could distinguish among three different locations, while the 
second one was able to distinguish among 10 different sections. 

A. Set Up 

The main objective to consider for designing this set up was to 

generate a system capable of perturbing the fiber at different 

locations, but with the highest degree of similarity between the 

perturbations caused on them. It was critically needed that the 
machine learning techniques did not classify based on the 

mechanical differences in the perturbation, but instead 

classified the videos based on how the specklegram changes, 

depending on the point where the perturbation was generated.  

Following this previous consideration, two equivalent 

systems were designed and constructed. The only difference 

between them was the first one consisted of a 6-meters-long 

plastic optical fiber, for generating perturbations in the three 

points, while the second one consisted of a 12-meters-long 
plastic optical fiber, for generating perturbations in 10 spatially 

distributed points. The rest of the elements were the same for 

both systems: a CCD camera, a coherent light source (638 nm 

wavelength), and a linear stepper motor. This motor had an 

extension coupled which acted as a hitter perturbing the fiber in 

different points, as it is shown in the schema of Figure 1. 

 

  
Fig. 1. Set up used for the automatic recording of videos of the speckle pattern 

while perturbating a multimode plastic optical fiber at 10 different locations. 

 

The system was design in a way that every perturbation was 

lasting slightly less than a third of second. The frame rate of the 

sensing element was 30 frames per second. So, from every 

perturbation a nine-frames color video was recorded. 

Additionally, some other videos of tactile perturbations were 

recorded too. In these videos the perturbations were done by 

touching the fiber with short sticks or just the fingertip. All 

these short videos were processed, normalized and labelled.  

Since hundreds of thousands of videos were recorded in 
different days, each group of videos captured sequentially was 

considered a dataset, and when the capture was stopped for 

some time and then resumed, a new dataset was generated.  This 

fact was rather important because it was observed in some 

preliminary test that the categorization accuracy when using 

data of the same dataset (same conditions) tend to be better than 

when using mixed data from different datasets. In the results 

section this fact will be discussed in more detail. 

B. Data Preparation 

All the recorded videos were stored on a hard drive until the 

dataset was complete. Once the record was finished, the videos 

were pre-processed for subtracting only the useful information. 

After that, each video was converted into a single image, which 

was then normalized and classified.  

Every video was converted to a grayscale, then, a 

differential processing was done by subtracting one frame from 

the previous one (see Figure 2.b), obtaining a video sequence in 
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which each frame has only its variation to the previous one pixel 

by pixel. Each pixel (pn,m) of a differentially processed i-th 

frame, Diff_Framepn,m
i  for two specklegrams of NxM pixels can 

be defined as follows: 

Diff_Framepn,m
i = |Framepn,m

i − Framepn,m
i−1 | (1) 

where Framepn,m
i  corresponds to the pixel of the n,m position of 

the specklegram frame i. 

In this way, the pixels of each image have information 
about the speckles which are changing and not about the ones 

which are not. In last two steps, the differential frames 

associated to each perturbation hit (h), comprised within an 

averaging window of nine frames (Nw=4) were summed into a 

single image (see Figure 2.c), and this image was pondered by 

dividing the value of every pixel by the sum of the values of all 

pixels in the image Thus, each pixel (pn,m) of the averaged 

frame associated at each hit (h) can be computed as: 

 

Frame_sumpn,m
h = ∑ Diff_Framepn,m

i

h+Nw

i=h−Nw

 
 
(2) 

 

  

After computing the averaged Frame_sum{h} it is 

normalized (Frame_norm{h}) by the intensity sum of every 

pixel comprised within the frame. The fundamental reason of 

this pre-processing method is making sure the obtained 

classification is based on the changes generated in the pattern. 

In particular, the aim is to avoid a categorization based on 

temporal or intensity patterns. In this way, any degree of 

classification achieved by the machine learning techniques 

would be obtained based on the differences in the pattern 

behavior derived from the place the perturbations were caused. 

 

Fig. 2. a) Frames related to a detected perturbation in 240 µm optical fiber; 

b) Differential frames of the ones in Fig 2.a; c) Example of the result of the 

sum and the normalization of the nine differential frames. 
 

C. Machine Learning 

Two different supervised machine-learning techniques 

were selected and implemented to predict where the 

perturbations were being caused. In both cases the algorithms 

were implemented in Matlab R2016a. The first approach, 

employed as a reference, was based on the training of a 

feedforward neural network, by means of the images previously 
normalized and categorized. There are evidences of good 

outcomes when using this kind of algorithms for processing 

speckle images [15,16]. This network consisted of three layers 

of neurons of different sizes, related one to the other as follows 

(see Figure 3.a). The first layer had a number of neurons equal 

to the number of pixels, while the second layer had a dimension 

between 10 and 20 neurons. The third layer was composed of a 

number of neurons equal to the number of categories we aim to 

characterize (3 in the Experiment 1 and 10 in the Experiment 

2).  

The second approach was based on a Convolutional Neural 

Network (CNN) that provided a structure composed of twelve 
layers. The input layer (imageInputLayer) was followed by two 

sequences of convolution, max pooling and rectifier linear unit 

(ReLU) layers and after them there were fully connected layer, 

ReLu, Fully Connected Layer, Softmax and finally the 

classification layer. This last one was the output layer which 

computes the class and scores in the classification. In Figure 

3.b. a simplification of the structure can be noticed. This 

method has been chosen based on its accuracy for classifying 

images [17]. Once again, the trained network obtained with this 

procedure provided the classification of a given input as the 

maximum of the values associated with the related output 

neurons.    
 

 
 

Fig. 3. a) Inputs and outputs of a neuron in the network; b) Structure of the 

convolutional neural network. 

III. RESULTS 

Initially, a bunch of experiments was carried out for checking 

the availability of the process. In these experiments, different 
kinds of pre-processing methods, video resolution, spatial 

configuration, machine learning algorithms and size of the 

datasets were tested. After multiple cross combinations and 

having recorded hundreds of thousand videos in different 

conditions, two different fiber optics were selected: 50 and 240 

µm. The resolution of the images was 60 by 80 pixels, and the 

distance between the perturbed points was two meters long. 

Each configuration was tested using two different machine 

learning methods. In Figure 4, the confusion matrices of the 

selected combinations are displayed. 

This confusion matrix represents the percentage of correct 

classification of the data that the algorithm has categorized.  
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Fig. 4. a) Confusion matrix 50 µm fiber and convolutional neural network; b) 

Confusion matrix 50 µm fiber and feedforward neural network. c) Confusion 

matrix 240 µm fiber and convolutional neural network. d) Confusion matrix 

240 µm fiber and feedforward neural network. 

These initial results show some remarkable degrees of 

classification when the algorithms classify videos which are not 

part of the training set. Besides, it is clear that the 50 µm fiber 

achieves better classifications than the fiber of 240 µm, while 

the feedforward neural network usually offers better degrees of 

classifications than the convolutional neural network. After 

ensuring there was some degree of classification of the videos 

based on the place where the perturbation was being caused, a 

larger test dataset was carried out in Experiment 1. 

A. Experiment I 

In the first experiment, the fiber was perturbed only in three 

points. The results are divided into two different tables. In the 

first one (Table 1), all the datasets are mixed, that means that 

there are videos of the same datasets for testing and training. 

From this mix of videos, the 75% is used for training and the 

remaining 25% is used for testing. However, the second table 

(Table 2) exhibits the results when the data sets for testing and 
training are different from one another. The classifications 

displayed in the tables correspond to the total degree of 

classification. 

Table 1. Results of the overall accuracy when using parts of the same 

datasets for training and for testing. The total number of videos of used 

for training and testing is represented while the letters following it 

represent the perturbation method: linear stepper [L] or manual [M].  

Fiber Train Data Test Data Feedforward 

Neural Net. 
Convolutional 

Neural Net. 

50 

µm 
112,500 [L] 37,500 [L] 99.8% 99.71% 

17,050 [M] 5,680 [M] 79.1% 78.3% 

240 

µm 
43,020 [L] 14,340 [L] 79.1% 80.08% 

14,550 [M] 4,850 [M] 78.7% 72.26% 

 

 

 

 

Table 2. Results of the overall accuracy when using different datasets for 

training than testing. The total number of videos used for training and 

testing is represented while the letters following it represent the 

perturbation method: linear stepper [L] or manual [M].  

Fiber Train Data Test Data Feedforward 

Neural Net. 
Convolutional 

Neural Net. 

50 

µm 
112,500 [L] 37,500 [L] 96.9 % 90.34 % 

17,050 [M] 5,680 [M] 53.4 % 48.91 % 

240 

µm 
43,020 [L] 14,340 [L] 73.7 % 71.01 % 

14,550 [M] 4,850 [M] 75.6 % 66.07 % 

As it is shown in both tables, classifications are very 

precise over 99% when the 50 µm plastic optical fiber is used, 

while only 80% accuracy is obtained when using a 240 µm 

plastic optical fiber. Due to its bigger diameter, the number of 
modes generated in a 240 µm fiber is several times greater than 

the number of modes in a 50 µm fiber. Since the complexity of 

the system is fully proportional to the number of modes 

propagated by the fiber, the size of the dataset required might 

need to be significantly larger in the 240 fiber. Furthermore, the 

camera resolution might have to be higher as well, since the 

speckles are smaller.  

When analyzing the results of the perturbations caused 

manually, in every case the classifications are less precise, 

probably because the variations introduced manually have a 

wider deviation, making their classification more challenging. 
Furthermore, the differences become clearer when different 

datasets are used. Comparing the results of the handmade 

perturbations, the differences between the datasets are more 

important because the way the fiber was perturbed was different 

from dataset to dataset, so it seems logical the classification is 

worse than the one of the combined datasets.  

Finally, both machine learning methods are rather accurate, 

although the feedforward neural network method is slightly 

more precise. 

 

B. Experiment II 

Based on the results obtained in the first experiment, we 

decided to increase the complexity of the system by increasing 

the number of points where the fiber was perturbed. However, 

in this case only the worst behaving fiber was selected, i.e. 

240 µm fiber.  In this test, a set up for perturbing the fiber at 10 

different points was prepared, being the distances between 

points one-meter-long, as it can be seen in Figure 1. The 
preprocessing of every video was the same than the one done in 

the previous experiment. However, in this experiment, the 

conditions remained unchanged, and the system was not 

modified in any way at any moment during the whole recording 

time. Therefore, the training and testing videos belong to the 

same dataset.  

Figure 5 displays the classifications achieved using the 

feedforward neural network and convolutional neural network 

techniques. Once again, it can be seen that the system is able to 

classify videos of perturbations which are not part of the 

training set. The categories are in a sequential order, being Input 
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1 the point closer to the laser and Input 10 the point closer to 

the camera. 

 

 

Fig. 5. a) Convolutional neural network confusion matrix for the 240 µm 

fiber. b) Feedforward neural network confusion matrix for the 240 µm fiber. 

 

In general, the results are quite accurate, getting up to 

71.3% of correct categorization.  It can be seen in Figure 5 that 

the system tends to confuse the categories with the nearby ones, 

while the percentage of misclassification decrease strongly 

when the categories are far from each other. The relevant result 

of the system is the accuracy increases for those perturbations 

represented by the last inputs 10, 9, 8. Indeed, in previous 

research it has been identify that perturbations in a multimode 

optical fiber last for a certain length along the fiber, and the 
farer the perturbation is done from the sensing element the 

weaker the perturbation appears [6]. Therefore, one of the 

possible reasons why there are higher degrees of classifications 

in perturbations closer to the camera is that they get a lower 

degree of noise.  

 

On the other hand, the stability of the high and low order 
modes may be critical in this process, since the high-order 

modes in a multimode fiber are more susceptible to instabilities 

that break their symmetries [18]. Some other authors have 

proved the stability of nonlinear modes against small 

perturbations, showing for high-order modes, the existence of 

symmetry-breaking unstable modes may be observed [19].   

IV. CONCLUSIONS 

Based on the results obtained in this proof of concept, a machine 
learning algorithm can be trained for classifying perturbations 

according to the distance where the perturbation is caused along 

a multimode optical fiber. The pre-processing method makes 

sure the videos are not classified for the differences in the 

intensity of perturbation or the differences in the temporal 

evolution of the perturbation. This method has been proved by 

the accuracy in the results of the perturbations generated 

manually, up to 79% of classification among three categories. 

However, any slight modification in the conditions of the 

environment or in the alignment of the fiber with the camera 

will generate an important degree of misclassification in the 
machine learning method. At the same time, when the number 

of points is increased up to 10, the classification percentage 

decrease to 71%. Furthermore, an interesting tendency is 

observed: the classifications are more accurate for the 

perturbations that have been generated closer to the sensing 

element. That might suggest the perturbations tend to become 

more diffuse as the light travels further through the fiber. 

Moreover, the existence of some modes more stable than others 

could lead to a higher degree of repeatability. In conclusion, 

despite the proposed system represents a very basic set up, it is 

able to achieve interesting results, which can be enhanced in 

future works implementing different machine learning 
techniques or focusing the analysis to some specific regions of 

the specklegram. 

REFERENCES 

 

1. Lee, B. (2003). Review of the present status of optical fiber sensors. 

Optical Fiber Technology, 9(2), 57-79. doi:10.1016/S1068-

5200(02)00527-8 

2. Efendioglu, H. S. (2017). A review of fiber-optic modal modulated 

sensors: Specklegram and modal power distribution sensing. IEEE 

Sensors Journal, 17(7), 2055-2064 

3. Rodriguez-Cuevas A, Pena ER, Rodriguez-Cobo L, Lomer M, Higuera 

JM. Low-cost fiber specklegram sensor for noncontact continuous 

patient monitoring. J Biomed Opt. 2017 Mar 1;22(3):37001. 

4. Dhall, A., Chhabra, J. K., & Aulakh, N. S. (2005). Intrusion detection 

system based on speckle pattern analysis. Experimental Techniques, 

29(1), 25-31. 

5. Rodriguez-Cuevas, A., Rodriguez-Cobo, L., Lomer, M., & Lopez-

Higuera, J. M. (2017, April). Safe and private pedestrian detection by a 

low-cost fiber-optic specklegram. In Optical Fiber Sensors Conference 

(OFS), 2017 25th (pp. 1-4). IEEE. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

6. Spillman W, Kline B, Maurice L, Fuhr P. Statistical-mode sensor for 

fiber optic vibration sensing uses. Appl Opt. 1989;28(15):3166-76. 

7. Kotov O, Chapalo I. Mode-mode fiber interferometer with impact 

localization ability. SPIE Photonics Europe; International Society for 

Optics and Photonics; 2016. 

8. Fujiwara E, Wu YT, dos Santos, Murilo Ferreira Marques, Schenkel EA, 

Suzuki CK. Development of a tactile sensor based on optical fiber 

specklegram analysis and sensor data fusion technique. Sensors and 

Actuators A: Physical. 2017;263:677-86. 

9. Plöschner M, Tyc T, Čižmár T. Seeing through chaos in multimode 

fibres. Nature Photonics. 2015;9(8):529-35. 

10. Popoff, S. M., Lerosey, G., Carminati, R., Fink, M., Boccara, A. C., & 

Gigan, S. (2010). Measuring the transmission matrix in optics: an 

approach to the study and control of light propagation in disordered 

media. Physical review letters, 104(10), 100601. 

11. Carpenter, J., Eggleton, B. J., & Schröder, J. (2016). Complete 

spatiotemporal characterization and optical transfer matrix inversion of a 

420 mode fiber. Optics letters, 41(23), 5580-5583. 

12. Mahalati, R. N., Askarov, D., Wilde, J. P., & Kahn, J. M. (2012). 

Adaptive control of input field to achieve desired output intensity profile 

in multimode fiber with random mode coupling. Optics express, 20(13), 

14321-14337. 

13. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, "Focusing and 

scanning light through a multimode optical fiber using digital phase 

conjugation," Opt. Express  20, 10583-10590 (2012). 

14. Segev, M., Silberberg, Y., & Christodoulides, D. N. (2013). Anderson 

localization of light. Nature Photonics, 7(3), 197-204 

15. Efendioglu, H. S., Yildirim, T., & Toker, O. (2011). Advanced image 

processing and artificial intelligence based approaches to fiber optic 

statistical mode sensor design. Paper presented at the Proceedings of 

SPIE - the International Society for Optical Engineering, , 7982 

doi:10.1117/12.880054 

16. Efendioglu, H. S., Yildirim, T., Toker, O., & Fidanboylu, K. (2012). 

Design of intelligent fiber optic statistical mode sensors using novel 

features and artificial neural networks. Paper presented at the INISTA 

2012 - International Symposium on INnovations in Intelligent SysTems 

and Applications, doi:10.1109/INISTA.2012.6247006 

17. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A 

survey of deep neural network architectures and their applications. 

Neurocomputing, 234, 11-26. 

18. Longhi, S., & Janner, D. (2004). Self-focusing and nonlinear periodic 

beams in parabolic index optical fibres. Journal of Optics B: Quantum 

and Semiclassical Optics, 6(5), S303. 

19. Longhi, S., & Janner, D. (2004). Self-focusing and nonlinear periodic 

beams in parabolic index optical fibres. Journal of Optics B: Quantum 

and Semiclassical Optics, 6(5), S303. 

 

 


