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Abstract. Optimal control problems for semilinear elliptic equations with control constraints and
pointwise state constraints are studied. Several theoretical results are derived, which are necessary to
carry out a numerical analysis for this class of control problems. In particular, sufficient second-order
optimality conditions, some new regularity results on optimal controls and a sufficient condition for
the uniqueness of the Lagrange multiplier associated with the state constraints are presented.
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1. Introduction

In this paper, we consider different issues of state-constrained optimal control problems for semilinear elliptic
equations, which seem to be important for a related numerical analysis. In the last years, state-constrained
optimal control problems have attracted increasing attention. There are several reasons for this remarkable
activity in the research on state-constrained problems.

First of all, state constraints are very important in various applications of the optimal control of PDEs.
Moreover, in contrast to control-constrained problems, many interesting questions are still open or not yet
satisfactorily solved with state constraints. This concerns in particular second-order optimality conditions,
the error analysis for finite element approximations of the problems, numerical algorithms, and the associated
convergence analysis.

Let us motivate our results presented here in the context of recent developments in the numerical approxi-
mation of state-constrained optimal control problems by finite elements, where only a few results are known.
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In [3,5], error estimates for approximated locally optimal controls were shown for problems with semilin-
ear elliptic equation and finitely many state constraints. Recently, in [17], higher order error estimates were
established for a similar setting with control vectors instead of control functions.

A study of these three papers reveals that second-order sufficient conditions at (locally) optimal controls are
indispensable to obtain results on convergence or approximation of optimal controls. This is due to the non-
convex character of the problems with nonlinear equations. It is meanwhile known that second-order sufficient
optimality conditions are fairly delicate under the presence of state constraints. In [9], second-order sufficient
conditions were established, which are, in some sense, closest to associated necessary ones and admit a form
similar to the theory of nonlinear programming in finite-dimensional spaces. Here, we briefly discuss this result
and show its equivalence to an earlier form stated in [8] that was quite difficult to explain.

Error estimates for the approximated optimal controls of problems with pointwise state-constraints were
derived by Deckelnick and Hinze [10,11] and Meyer [18], who all consider linear-quadratic problems. It is known
from the control-constrained case that optimal estimates need a precise information on the regularity of the
optimal control. Therefore, the smoothness of optimal controls is a key question. We show for a problem with
pointwise state constraints in the whole domain that the optimal control is Lipschitz, if the state constraints
are only active at finitely many points.

We also present a counterexample that this result is not true for infinitely many active points. On the
other hand, we prove the somehow surprising result that optimal controls belong to H1(Ω) no matter how
large the active set is. Moreover, we discuss the uniqueness of the Lagrange multiplier associated with the
state-constraints.

2. The control problem

Let Ω be an open, connected and bounded domain in R
n, n = 2, 3, with a Lipschitz boundary Γ. In this

domain we consider the following state equation

{
Ay + a0(x, y) = u in Ω,

y = 0 on Γ, (2.1)

where a0 : Ω × R −→ R is a Carathéodory function and A denotes a second-order elliptic operator of the form

Ay(x) = −
n∑

i,j=1

∂xj (aij(x)∂xiy(x))

and the coefficients aij ∈ L∞(Ω) satisfy

λA‖ξ‖2 ≤
n∑

i,j=1

aij(x)ξiξj ∀ξ ∈ R
n, ∀x ∈ Ω

for some λA > 0. In (2.1), the function u denotes the control and we will denote by yu the solution associated
to u. We will state later the conditions leading to the existence and uniqueness of a solution of (2.1) in
C(Ω̄) ∩H1(Ω).
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The optimal control problem is formulated as follows

(P)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min J(u) =
∫

Ω

L(x, yu(x)) dx +
N

2

∫
Ω

u(x)2 dx

subject to (yu, u) ∈ (C(Ω̄) ∩H1(Ω)) × L∞(Ω),

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω,

a(x) ≤ g(x, yu(x)) ≤ b(x) ∀x ∈ K,

where K is as compact subset of Ω̄.

We impose the following assumptions on the data of the control problem.

(A1) In the whole paper a real number N > 0 and functions α, β are given in L∞(Ω), with α ≤ β a.e. in Ω.
We introduce the sets

Uα,β = {u ∈ L∞(Ω): α(x) ≤ u(x) ≤ β(x) a.e. in Ω}
Uad = {u ∈ Uα,β : a(x) ≤ g(x, yu(x)) ≤ b(x) ∀x ∈ K}.

(A2) The mapping a0 : Ω×R −→ R is a Carathéodory function of class C2 with respect to the second variable
and there exists a real number p > n/2 such that

a0(·, 0) ∈ Lp(Ω),
∂a0

∂y
(x, y) ≥ 0 for a.e. x ∈ Ω.

For all M > 0, there exists a constant C0,M > 0 such that

∣∣∣∣∂a0

∂y
(x, y)

∣∣∣∣+
∣∣∣∣∂2a0

∂y2
(x, y)

∣∣∣∣ ≤ C0,M for a.e. x ∈ Ω and for all |y| ≤M,∣∣∣∣∂2a0

∂y2
(x, y2) − ∂2a0

∂y2
(x, y1)

∣∣∣∣ ≤ C0,M |y2 − y1| for a.e. x ∈ Ω, ∀|y1|, |y2| ≤M.

(A3) L : Ω×R −→ R is a Carathéodory function of class C2 with respect to the second variable, L(·, 0) ∈ L1(Ω),
and for all M > 0 there exist a constant CL,M > 0 and a function ψM ∈ L1(Ω) such that

∣∣∣∣∂L∂y (x, y)
∣∣∣∣ ≤ ψM (x),

∣∣∣∣∂2L

∂y2
(x, y)

∣∣∣∣ ≤ CL,M ,

∣∣∣∣∂2L

∂y2
(x, y2) − ∂2L

∂y2
L(x, y1)

∣∣∣∣ ≤ CL,M (|y2 − y1|),

for a.e. x ∈ Ω and |y|, |yi| ≤M , i = 1, 2.

(A4) The function g : K × R −→ R is continuous, together with its derivatives (∂jg/∂yj) ∈ C(K × R) for
j = 1, 2. We also assume that a, b : K −→ [−∞,+∞] are measurable functions, with a(x) < b(x) for every
x ∈ K, such that their domains

Dom(a) = {x ∈ K: −∞ < a(x)} and Dom(b) = {x ∈ K: b(x) <∞}
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are closed sets and a and b are continuous on their respective domains. Finally, we assume that either K∩Γ = ∅
or a(x) < g(x, 0) < b(x) holds for every x ∈ K ∩ Γ. We will denote

Yab = {z ∈ C(K): a(x) ≤ z(x) ≤ b(x) ∀x ∈ K}.

Let us remark that a (b) can be identically equal to −∞ (+∞), which means that we only have upper (lower)
bounds on the state. Thus the above framework define a quite general formulation for the pointwise state
constraints.

Example. With fixed functions yd, e ∈ L2(Ω), a power λ ≥ 2, and real constants α < β, a < b, the following
particular problem satisfies all of our assumptions:

min J(u) :=
1
2

∫
Ω

(yu(x) − yd(x))2 dx+
N

2

∫
Ω

u(x)2 dx

subject to
Ay + |y|λy = u in Ω,

y = 0 on Γ,

α ≤ u(x) ≤ β for a.e. x ∈ Ω, a ≤ yu(x) ≤ b ∀x ∈ K.

Another interesting example for the semilinear term of the state equation can be a0(x, y) = θ1(x) +
θ2(x) exp (y), with θ1 ∈ Lp(Ω), θ2 ∈ L∞(Ω) and θ2(x) ≥ 0.

Let us state first the existence and uniqueness of the solution corresponding to the state equation (2.1).

Theorem 2.1. Under assumption (A2), equation (2.1) has a unique solution yu ∈ H1
0 (Ω) ∩ C(Ω̄) for every

u ∈ L2(Ω). If the coefficients of A, {aij}n
i,j=1, are Lipschitz functions in Ω̄, then yu ∈ H2(Ω) if Ω is convex and

yu ∈ W 2,p(Ω) if Γ is of class C1,1 and u ∈ Lp(Ω).

It is well known that, for every u ∈ Lp(Ω), equation (2.1) has a unique solution yu ∈ H1
0 (Ω)∩C(Ω̄). A proof

of this result can be obtained by the usual cut off process applied to a0, then applying the Schauder fix point
theorem combined with the monotonicity of a0 with respect to the second variable and the L∞ estimates for
the state; cf. Stampacchia [20]. The continuity of yu is proved in [12]. The W 2,p(Ω) and H2(Ω) estimates can
be found in Grisvard [13]. For details, the reader is referred to [1] or [2].

Now the existence of an optimal control can be proved by using standard arguments.

Theorem 2.2. If the set of controls Uad is not empty, then the control problem (P) has at least one solution.

In the rest of the paper, ū denotes a local minimum of (P) in the sense of the L∞(Ω)-topology and ȳ will be
its associated state. The pair (ȳ, ū) is our local reference solution. At this local solution, we will assume the
linearized Slater condition:

(A5) There exists u0 ∈ Uα,β such that

a(x) < g(x, ȳ(x)) +
∂g

∂y
(x, ȳ(x))z0(x) < b(x) ∀x ∈ K, (2.2)

where z0 ∈ H1
0 (Ω) ∩ C(Ω̄) is the unique solution of

⎧⎪⎨
⎪⎩

Az +
∂a0

∂y
(x, ȳ)z = u0 − ū in Ω

z = 0 on Γ.
(2.3)
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Taking into account that a and b are continuous on their domains Dom(a) and Dom(b) respectively and these
sets are compact subsets of K (see assumption (A4)), we deduce that (2.2) is equivalent to the existence of real
τ1, τ2 ∈ R such that

a(x) < τ1 < g(x, ȳ(x)) +
∂g

∂y
(x, ȳ(x))z0(x) < τ2 < b(x) ∀x ∈ K. (2.4)

3. First and second order optimality conditions

Before deriving the first order optimality conditions satisfied by the local minimum ū, we recall some results
about the differentiability of the mappings involved in the control problem. For the proofs, the reader is referred
to Casas and Mateos [5], where a Neumann boundary condition was considered instead of a Dirichlet condition,
which we consider in this paper. However, the method of proof is very similar and the changes are obvious.

Theorem 3.1. If (A2) and (A3) hold, then the mapping G : L2(Ω) −→ C(Ω̄) ∩H1
0 (Ω), defined by G(u) = yu

is of class C2. Moreover, for all u, v ∈ L2(Ω), zv = G′(u)v is defined as the solution of

⎧⎪⎨
⎪⎩

Azv +
∂a0

∂y
(x, yu)zv = v in Ω

zv = 0 on Γ.
(3.1)

Finally, for every v1, v2 ∈ L2(Ω), zv1v2 = G′′(u)v1v2 is the solution of
⎧⎪⎨
⎪⎩

Azv1v2 +
∂a0

∂y
(x, yu)zv1v2 +

∂2a0

∂y2
(x, yu)zv1zv2 = 0 in Ω

zv1v2 = 0 on Γ,
(3.2)

where zvi = G′(u)vi, i = 1, 2.

Remark 3.2. The assumption n ≤ 3 is required to make the second order optimality conditions work, because
the differentiability of G from L2(Ω) to C(Ω̄) is needed for the associated proof. This result holds true only for
n ≤ 3.

Theorem 3.3. Suppose that (A2) and (A3) hold. Then J : L2(Ω) → R is a functional of class C2. Moreover,
for every u, v, v1, v2 ∈ L2(Ω)

J ′(u)v =
∫

Ω

(ϕ0u +Nu) v dx (3.3)

and

J ′′(u)v1v2 =
∫

Ω

[
∂2L

∂y2
(x, yu)zv1zv2 +Nv1v2 − ϕ0u

∂2a0

∂y2
(x, yu)zv1zv2

]
dx, (3.4)

where yu = G(u) and ϕ0u ∈ W 1,s
0 (Ω), for all s < n/(n− 1), is the unique solution of the problem

⎧⎪⎨
⎪⎩

A∗ϕ+
∂a0

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu) in Ω

ϕ = 0 on Γ,
(3.5)

A∗ being the adjoint operator of A and zvi = G′(u)vi, i = 1, 2.

The previous theorem and the next one follow easily from Theorem 3.1 and the chain rule.
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Theorem 3.4. If (A2) and (A3) hold, then the mapping F : L2(Ω) → C(K), defined by F (u) = g(·, yu(·)), is
of class C2. Moreover, for every u, v, v1, v2 ∈ L2(Ω)

F ′(u)v =
∂g

∂y
(·, yu(·))zv(·) (3.6)

and

F ′′(u)v1v2 =
∂2g

∂y2
(·, yu(·))zv1(·)zv2(·) +

∂g

∂y
(·, yu(·))zv1v2(·) (3.7)

where zvi = G′(u)vi, i = 1, 2, and zv1v2 = G′′(u)v1v2.

Before stating the first order necessary optimality conditions, let us fix some notation. We denote by M(K)
the Banach space of all real and regular Borel measures in K, which is identified with the dual space of C(K).
The following result is well known, it follows from the Pontryagin principle that was derived in [7].

Theorem 3.5. Let ū be a local solution of (P) and suppose that the assumptions (A1)–(A5) hold. Then there
exist a measure μ̄ ∈M(K) and a function ϕ̄ ∈ W 1,s

0 (Ω), for all 1 ≤ s < n/(n− 1), such that⎧⎪⎨
⎪⎩

A∗ϕ̄+
∂a0

∂y
(x, ȳ(x))ϕ̄ =

∂L

∂y
(x, ȳ) +

∂g

∂y
(x, ȳ(x))μ̄ in Ω,

ϕ̄ = 0 on Γ,
(3.8)

∫
K

(z(x) − g(x, ȳ(x)))dμ̄(x) ≤ 0 ∀z ∈ Yab, (3.9)∫
Ω

(ϕ̄+Nū)(u − ū) dx ≥ 0 ∀u ∈ Uα,β. (3.10)

Remark 3.6. Inequality (3.9) is equivalent with the well-known complementary slackness conditions. Along
with the constraint a(x) ≤ g(x, ȳ(x)) ≤ b(x), it implies that the support of μ̄ is in the set

K0 = Ka ∪Kb

with
Ka = {x ∈ K: g(x, ȳ(x)) = a(x)} and Kb = {x ∈ K: g(x, ȳ(x)) = b(x)}.

The Lebesgue decomposition of μ̄ = μ+ − μ− into the positive and negative part of the measure μ shows
that suppμ+ ⊂ Kb and suppμ− ⊂ Ka. Because of this property and the assumption (A5), we have that
supp μ̄ ∩ Γ = ∅. Notice that the continuity of a and b on their respective domains (assumption (A4)) implies
that Ka and Kb are closed subsets.

Remark 3.7. From (3.10) it follows for almost all x ∈ Ω that

ū(x) = Proj[α(x),β(x)]

(
− 1
N
ϕ̄(x)

)
= max{α(x),min{ϕ̄(x), β(x)}}. (3.11)

Let us formulate also the Lagrangian version of the optimality conditions (3.8)–(3.10). The Lagrange function
L : L2(Ω) ×M(K) −→ R associated with problem (P) is defined by

L(u, μ) = J(u) +
∫

K

g(x, yu(x)) dμ(x).
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Using (3.3) and (3.6) we find that

∂L
∂u

(u, μ)v =
∫

Ω

(ϕu(x) +Nu(x)) v(x) dx, (3.12)

where ϕu ∈W 1,s
0 (Ω), for all 1 ≤ s < n/(n− 1), is the solution of the Dirichlet problem⎧⎪⎨

⎪⎩
A∗ϕ+

∂a0

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu) +

∂g

∂y
(x, yu(x))μ in Ω

ϕ = 0 on Γ.
(3.13)

Now the inequality (3.10) along with (3.12) leads to

∂L
∂u

(ū, μ̄)(u− ū) ≥ 0 ∀u ∈ Uα,β. (3.14)

Before we set up the sufficient second order optimality conditions, we evaluate the expression of the second
derivative of the Lagrangian with respect to the control. From (3.7) we get

∂2L
∂u2

(u, μ)v1v2 = J ′′(u)v1v2 +
∫

K

[
∂2g

∂y2
(x, yu(x))zv1 (x)zv2(x) +

∂g

∂y
(x, yu(x))zv1v2(x)

]
dμ(x).

By (3.2) and (3.4), this is equivalent to

∂2L
∂u2

(u, μ)v1v2 =
∫

Ω

[
∂2L

∂y2
(x, yu)zv1zv2 +Nv1v2 − ϕu

∂2a0

∂y2
(x, yu)zv1zv2

]
dx

+
∫

K

∂2g

∂y2
(x, yu(x))zv1 (x)zv2(x) dμ(x), (3.15)

where ϕu is the solution of (3.13).

Associated with ū, we define the cone of critical directions by

Cū = {v ∈ L2(Ω): v satisfies (3.16), (3.17) and (3.18) below},

v(x) =

⎧⎨
⎩

≥ 0 if ū(x) = α(x),
≤ 0 if ū(x) = β(x),
= 0 if ϕ̄(x) +Nū(x) 
= 0,

(3.16)

∂g

∂y
(x, ȳ(x))zv(x) =

{ ≥ 0 if x ∈ Ka

≤ 0 if x ∈ Kb,
(3.17)∫

K

∂g

∂y
(x, ȳ(x))zv(x) dμ̄(x) = 0, (3.18)

where zv ∈ H1
0 (Ω) ∩C(Ω̄) satisfies ⎧⎪⎨

⎪⎩
Azv +

∂a0

∂y
(x, ȳ)zv = v in Ω

zv = 0 on Γ.

The relation (3.17) expresses the natural sign conditions, which must be fulfilled for feasible directions at active
points x ∈ Ka or Kb, respectively. On the other hand, (3.18) states that the derivative zv must be zero whenever
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the corresponding Lagrange multiplier is non-vanishing. This restriction is needed for second-order sufficient
conditions. Compared with the finite dimensional case, this is exactly what we can expect. Therefore the
relations (3.17)–(3.18) provide a convenient extension of the usual conditions of the finite-dimensional case.

We should mention that (3.18) is new in the context of infinite-dimensional optimization problems. In earlier
papers on this subject, other extensions to the infinite-dimensional case were suggested. For instance, Maurer
and Zowe [16] used first-order sufficient conditions to account for the strict positivity of Lagrange multipliers.
Inspired by their approach, in [8] an application to state-constrained elliptic boundary control was suggested
by the authors. In terms of our problem, equation (3.18) was relaxed by

∫
K

∂g

∂y
(x, ȳ(x))zv(x) dμ̄(x) ≥ −ε

∫
{x:|ϕ̄(x)+Nū(x)|≤τ}

|v(x)| dx

for some ε > 0 and τ > 0, cf. [8], (5.15). In the next theorem, which was proven in [9], Theorem 4.3, we
will see that this relaxation is not necessary. We obtain a smaller cone of critical directions that seems to be
optimal. However, the reader is referred to Theorem 3.9 below, where we consider the possibility of relaxing
the conditions defining the cone Cū.

Theorem 3.8. Assume that (A1)–(A4) hold. Let ū be a feasible control of problem (P), ȳ the associated state
and (ϕ̄, μ̄) ∈W 1,s

0 (Ω) ×M(K), for all 1 ≤ s < n/(n− 1), satisfying (3.8)–(3.10). Assume further that

∂2L
∂u2

(ū, μ̄)v2 > 0 ∀v ∈ Cū\{0}. (3.19)

Then there exist ε > 0 and δ > 0 such that the following inequality holds:

J(ū) +
δ

2
‖u− ū‖2

L2(Ω) ≤ J(u) if ‖u− ū‖L2(Ω) ≤ ε and u ∈ Uad. (3.20)

The condition (3.19) seems to be natural. In fact, under some regularity assumption, we can expect the
inequality

∂2L
∂u2

(ū, μ̄)v2 ≥ 0 ∀v ∈ Cū

to be necessary for local optimality. At least, this is the case when the state constraints are of integral type,
see [5], or when K is a finite set of points, see [4]. In the general case of (P), to our best knowledge, the necessary
second order optimality conditions are still open.

We finish this section by establishing an equivalent condition to (3.19) that is more convenient for the
numerical analysis of problem (P). Let us introduce a cone Cτ

ū of critical directions that is bigger than Cū.
Given τ > 0, we define

Cτ
ū = {v ∈ L2(Ω) | v satisfies (3.21)–(3.23) below},

v(x) =

⎧⎨
⎩

≥ 0 if ū(x) = α(x),
≤ 0 if ū(x) = β(x),
= 0 if |ϕ̄(x) +Nū(x)| > τ,

(3.21)

∂g

∂y
(x, ȳ(x))zv(x) =

{ ≥ −τ‖v‖L2(Ω) if x ∈ Ka

≤ +τ‖v‖L2(Ω) if x ∈ Kb,
(3.22)∫

K

∂g

∂y
(x, ȳ(x))zv(x) dμ̄(x) ≥ −τ‖v‖L2(Ω). (3.23)
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Theorem 3.9. Under the assumptions (A1)–(A4), relation (3.19) holds if and only if there exist τ > 0 and
ρ > 0 such that

∂2L
∂u2

(ū, μ̄)v2 ≥ ρ‖v‖2
L2(Ω) ∀v ∈ Cτ

ū . (3.24)

Proof. Since Cū ⊂ Cτ
ū , it is clear that (3.24) implies (3.19). Let us prove by contradiction that (3.24) follows

from (3.19). Assume that (3.19) holds but not (3.24). Then, for all positive integers k and all ρ = τ = 1/k,
there exists an element vk ∈ C

1/k
ū such that (3.24) is not satisfied, i.e.

∂L
∂u

(ū, μ̄)v2
k <

1
k
‖vk‖2

L2(Ω). (3.25)

Redefining vk by vk/‖vk‖L2(Ω) and selecting a subsequence, if necessary, denoted in the same way, we can
assume that

‖vk‖L2(Ω) = 1, vk ⇀ v weakly in L2(Ω) and
∂L
∂u

(ū, μ̄)v2
k <

1
k
, (3.26)

and from (3.21)–(3.23)

vk(x) =

⎧⎨
⎩

≥ 0 if ū(x) = α(x),
≤ 0 if ū(x) = β(x),
= 0 if |ϕ̄(x) +Nū(x)| > 1/k,

(3.27)

∂g

∂y
(x, ȳ(x))zvk

(x) =
{ ≥ −1/k if x ∈ Ka

≤ +1/k if x ∈ Kb,
(3.28)∫

K

∂g

∂y
(x, ȳ(x))zvk

(x) dμ̄(x) ≥ −1/k. (3.29)

Since zvk
→ zv strongly in H1

0 (Ω) ∩C(Ω̄), we can pass to the limit in (3.26)–(3.29) and get that v ∈ Cū and

∂L
∂u

(ū, μ̄)v2 ≤ 0. (3.30)

This is only possible if v = 0; see (3.19). Let us note that the only delicate point to prove that v ∈ Cū is to
establish (3.18). Indeed, (3.16) and (3.17) follow easily from (3.27) and (3.28). Passing to the limit in (3.29)
we get ∫

K

∂g

∂y
(x, ȳ(x))zv(x) dμ̄(x) ≥ 0.

This inequality, along with (3.17) and the structure of μ̄, implies (3.18).

Therefore, we have that vk ⇀ 0 weakly in L2(Ω) and zvk
→ 0 strongly in H1

0 (Ω) ∩ C(Ω̄). Hence, using the
expression (3.15) of the second derivative of the Lagrangian we get

N = lim inf
k→∞

N‖vk‖2
L2(Ω) ≤ lim inf

k→∞
∂L
∂u

(ū, μ̄)v2
k ≤ 0,

which is a contradiction. �

4. Regularity of the optimal control

In this section, the existence of the second derivatives of the functions involved in the control problem is
not needed (cf. assumptions (A2)–(A4)). Let us start with the following well known regularity result for the
optimal control:
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Theorem 4.1. If (ȳ, ū) ∈ (H1
0 (Ω) ∩ C(Ω̄)) × L∞(Ω) is a feasible pair for problem (P) and (ȳ, ū, ϕ̄) with

ϕ ∈ ×W 1,s
0 (Ω) satisfies the optimality system (3.8)–(3.10), then ū ∈ W 1,s(Ω) for all s < n/(n − 1) and

ū ∈ C(Ω̄\K0).

Since α, β, ϕ̄ ∈ W 1,s(Ω) for every 1 ≤ s < n/(n − 1), the regularity ū ∈ W 1,s(Ω) follows immediately
from (3.11). The continuity ū ∈ C(Ω̄ \K0) is deduced in the same way. This regularity result on the control ū
can be improved if there is a finite number of points, where the state constraints are active. More precisely, let
us assume that K0 = {xj}m

j=1 ⊂ Ω. Then Remark 3.6 implies that

μ̄ =
m∑

j=1

λ̄jδxj , with λ̄j =
{ ≥ 0 if g(xj , ȳ(xj)) = b(xj),

≤ 0 if g(xj , ȳ(xj)) = a(xj),
(4.1)

where δxj denotes the Dirac measure centered at xj . If we denote by ϕ̄j , 1 ≤ j ≤ m, and ϕ̄0 the solutions of⎧⎪⎨
⎪⎩

A∗ϕ̄j +
∂a0

∂y
(x, ȳ(x))ϕ̄j = δxj in Ω,

ϕ̄j = 0 on Γ,
(4.2)

and ⎧⎪⎨
⎪⎩

A∗ϕ̄0 +
∂a0

∂y
(x, ȳ(x))ϕ̄0 =

∂L

∂y
(x, ȳ) in Ω,

ϕ̄0 = 0 on Γ,
(4.3)

then the adjoint state associated to ū is given by

ϕ̄ = ϕ̄0 +
m∑

j=1

λ̄j
∂g

∂y
(xj , ȳ(xj))ϕ̄j . (4.4)

Now we have the following regularity result.

Theorem 4.2. Assume p > n in assumption (A2) and ψM ∈ Lp(Ω) in (A3). Suppose also that ai,j , α, β ∈
C0,1(Ω̄), 1 ≤ i, j ≤ n and that Γ is of class C1,1. Let (ȳ, ū, ϕ̄) ∈ H1

0 (Ω) ∩ C(Ω̄) × L∞(Ω) ×W 1,s
0 (Ω), for all

1 ≤ s < n/(n− 1), satisfy the optimality system (3.8)–(3.10). If the active set consists of finitely many points,
i.e. K0 = {xj}m

j=1 ⊂ Ω, then ū belongs to C0,1(Ω̄) and ȳ to W 2,p(Ω).

Since p > n, it holds that W 2,p(Ω) ⊂ C1(Ω̄) and therefore ϕ̄0 ∈ C1(Ω̄). On the other hand, ϕ̄j(x) → +∞
when x→ xj , hence ϕ̄ has singularities at the points xj where λ̄j 
= 0. Consequently ϕ̄ cannot be Lipschitz.

Surprisingly, this does not lower the regularity of ū: Notice that (3.11) implies that ū is identically equal to
α or β in a neighborhood of xj , depending on the sign of λ̄j . This implies the desired result; see Casas [4] for
the details.

Now the question arises if this Lipschitz property remains also valid for an infinite number of points where
the pointwise state constraints are active. Unfortunately, the answer is negative. In fact, the optimal control
can even fail to be continuous if K0 is an infinite and numerable set. Let us present an associated

Counterexample. We set

Ω = {x ∈ R
2: ‖x‖ <

√
2}, ȳ(x) =

{
1 if ‖x‖ ≤ 1

1 − (‖x‖2 − 1)4 if 1 < ‖x‖ ≤ √
2,

K = {xk}∞k=1 ∪ {x∞}, where xk =
(1
k
, 0
)

and x∞ = (0, 0), μ̄ =
∞∑

k=1

1
k2
δxk .
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Now we define ϕ̄ ∈ W 1,s
0 (Ω) for all 1 ≤ s < n/(n− 1) as the solution of the equation{ −Δϕ̄ = ȳ + μ̄ in Ω,

ϕ̄ = 0 on Γ. (4.5)

The function ϕ̄ can be decomposed in the following form

ϕ̄(x) = ψ̄(x) +
∞∑

k=1

1
k2

[ψk(x) + φ(x − xk)],

where φ(x) = −(1/2π) log ‖x‖ is the fundamental solution of −Δ and the functions ψ̄, ψk ∈ C2(Ω̄) satisfy{
−Δψ̄(x) = ȳ(x) in Ω,

ψ̄(x) = 0 on Γ,

{
−Δψk(x) = 0 in Ω,

ψk(x) = −φ(x− xk) on Γ.

Finally we set ⎧⎪⎨
⎪⎩

M =

∣∣∣∣∣ψ̄(0) +
∞∑

k=1

1
k2
ψk(0)

∣∣∣∣∣+
∞∑

k=1

1
k2
φ(xk) + 1,

ū(x) = Proj[−M,+M ](−ϕ̄(x))

(4.6)

and a0(x) = ū(x) + Δȳ(x). Then ū is the unique global solution of the control problem

(Q)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min J(u) =
1
2

∫
Ω

(y2
u(x) + u2(x)) dx

subject to (yu, u) ∈ (C(Ω̄) ∩H1(Ω)) × L∞(Ω),
−M ≤ u(x) ≤ +M for a.e. x ∈ Ω,
−1 ≤ yu(x) ≤ +1 ∀x ∈ K,

where yu is the solution of { −Δy + a0(x) = u in Ω,
y = 0 on Γ. (4.7)

As a first step to prove that ū is a solution of problem, we verify thatM is a real number: Since {φ(x−xk)}∞k=1

is bounded in C2(Γ), the sequence {ψk}∞k=1 is bounded in C2(Ω̄). Therefore, the convergence of the first series
of (4.6) is obvious. The convergence of the second one is also clear,

∞∑
k=1

1
k2
φ(xk) =

1
2π

∞∑
k=1

1
k2

log k <∞.

Problem (Q) is strictly convex and ū is a feasible control with associated state ȳ satisfying the state constraints.
Therefore, there exists a unique solution characterized by the optimality system. In other words, the first
order optimality conditions are necessary and sufficient for a global minimum. Let us check that (ȳ, ū, ϕ̄, μ̄) ∈
H1

0 (Ω) ∩ C(Ω̄) × L∞(Ω) ×W 1,s
0 (Ω) ×M(K) satisfies the optimality system (3.8)–(3.10). First, in view of the

definition of a0, it is clear that ȳ is the state associated to ū. On the other hand, ϕ̄ is the solution of (4.5), which
is the same as (3.8) for our example. Relation (3.10) follows directly from the definition of ū given in (4.6).
Finally, because of the definition of μ̄ and K, (3.9) can be written in the form

∞∑
k=1

1
k2
z(xk) ≤

∞∑
k=1

1
k2

∀z ∈ C(K) such that − 1 ≤ z(x) ≤ +1 ∀x ∈ K,

which obviously is satisfied.
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Now we prove that ū is not continuous at x = 0. Notice that ϕ̄(xk) = +∞ for every k ∈ N, because
φ(0) = +∞. Therefore, (4.6) implies that ū(xk) = −M for every k. Since xk → 0, the continuity of ū at x = 0
requires that ū(x) → −M as x→ 0. However, we have for ξj = (xj + xj+1)/2 that

lim
j→∞

ϕ̄(ξj) = lim
j→∞

(
ψ̄(ξj) +

∞∑
k=1

1
k2
ψk(ξj) +

∞∑
k=1

1
k2
φ(ξj − xk)

)

= ψ̄(0) +
∞∑

k=1

1
k2
ψk(0) +

∞∑
k=1

1
k2
φ(xk), (4.8)

as we will verify below. Moreover, by the definition of M ,
∣∣∣∣∣ψ̄(0) +

∞∑
k=1

1
k2
ψk(0) +

∞∑
k=1

1
k2
φ(xk)

∣∣∣∣∣ ≤
∣∣∣∣∣ψ̄(0) +

∞∑
k=1

1
k2
ψk(0)

∣∣∣∣∣+
∞∑

k=1

1
k2
φ(xk) = M − 1 < M,

therefore (4.8) implies limj→∞ ϕ̄(ξj) > −M and hence limj→∞ ū(ξj) > −M by the definition (4.6) of ū, in
contrary to ū(x) → −M as x→ 0.

Let us finally justify (4.8). To this end, we only have to show that

∞∑
k=1

1
k2
ψk(ξj) +

∞∑
k=1

1
k2
φ(ξj − xk) →

∞∑
k=1

1
k2
ψk(0) +

∞∑
k=1

1
k2
φ(xk),

as j → ∞. This holds true, if the associated function series are uniformly convergent. For the first series, this
is easy to see since the functions ψk are uniformly bounded on Ω̄, hence a multiple of

∑∞
k=1

1
k2 is a dominating

series. Uniform convergence follows by the Weierstrass theorem. The second series is more delicate. To find a
dominating series, we estimate the items as follows: We consider

|φ(ξj − xk)| = − 1
2π

log
∣∣∣∣12
[
1
j

+
1

j + 1

]
− 1
k

∣∣∣∣·
The right-hand side can admit its maximum only at j = k or j = k − 1 as one can easily confirm. Therefore,
this maximum is certainly smaller than the sum of both values,

|φ(ξj − xk)| ≤ − 1
2π

{
log
∣∣∣∣12
[

1
k

+
1

k + 1

]
− 1
k

∣∣∣∣+ log
∣∣∣∣12
[

1
k − 1

+
1
k

]
− 1
k

∣∣∣∣
}

= − 1
2π

{
log

1
2k(k + 1)

+ log
1

2k(k − 1)

}
≤ 1
π

log[2k(k + 1)].

On the other hand,
∞∑

k=1

1
k2

log[2k(k + 1)] =
∞∑

k=1

1
k3/2

log[2k(k + 1)]√
k

is obviously convergent, since log[2k(k + 1)]/
√
k → 0 as k → ∞.

Nevertheless, we are able to improve the regularity result of Theorem 4.1.

Theorem 4.3. Suppose that ū is a strict local minimum of (P) in the sense of the L2(Ω) topology. We also
assume that assumptions (A1)–(A5) hold, α, β ∈ L∞(Ω)∩H1(Ω), aij ∈ C(Ω̄) (1 ≤ i, j ≤ n) and ψM ∈ Lp(Ω),
p > n/2, in (A3). Then ū ∈ H1(Ω).
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Let us remark that any global solution of (P) is a local solution of (P) in the sense of L2(Ω), but we can
expect to have more local or global solutions in the sense of L2(Ω). Theorem 3.8 implies that ū is at least a
strict local minimum in the sense of L2(Ω), if the sufficient second-order optimality conditions are satisfied at ū.
This guarantees that ū is the unique global solution in an L2(Ω)-neighborhood. However, the quadratic growth
condition alone does not imply that ū is an isolated minimum. The control ū might be an accumulation point
of different local minima.

Proof of Theorem 4.3. Fix εū > 0 such that ū is a strict global minimum of (P) in the closed ball B̄εū(ū) ⊂ L2(Ω).
This implies that ū is the unique global solution of the problem

(P0)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min J(u)
subject to (yu, u) ∈ (C(Ω̄) ∩H1(Ω)) × L∞(Ω),

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω, ‖u− ū‖L2(Ω) ≤ εū

a(x) ≤ g(x, yu(x)) ≤ b(x) ∀x ∈ K,

where yu is the solution of (2.1).

Now we select a sequence {xk}∞k=1 being dense in Dom(a) ∪ Dom(b) and consider the family of control
problems

(Pk)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min J(u)
subject to (yu, u) ∈ (C(Ω̄) ∩H1(Ω)) × L∞(Ω),

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω, ‖u− ū‖L2(Ω) ≤ εū

a(xj) ≤ g(xj , yu(xj)) ≤ b(xj), 1 ≤ j ≤ k.

Obviously, ū is a feasible control for every problem (Pk). Therefore, the existence of a global minimum uk

of (Pk) follows easily by standard arguments.

The proof of the theorem is split into three steps: First, we show that the sequence {uk}∞k=1 converges
to ū strongly in L2(Ω). In a second step, we will check that the linearized Slater condition corresponding to
problem (Pk) holds for all sufficiently large k. Finally, we confirm the boundedness of {uk}∞k=1 in H1(Ω).

Step 1: Convergence of {uk}∞k=1. By taking a subsequence, if necessary, we can suppose that uk ⇀ ũ weakly
in L2(Ω). This implies that yk = yuk

→ ỹ = yũ strongly in H1
0 (Ω) ∩ C(Ω̄). Because of the density of {xk}∞k=1

in Dom(a) ∪ Dom(b) and the fact that

a(xj) ≤ g(xj , ỹ(xj)) = lim
k→∞

g(xj , yk(xj)) ≤ b(xj) ∀j ≥ 1,

it holds that a(x) ≤ g(x, ỹ(x)) ≤ b(x) for every x ∈ K. The control constraints define a closed and convex subset
of L2(Ω), hence ũ satisfies all the control constraints. Therefore ũ is a feasible control for problem (P0). Since
ū is the solution of (P0), uk is a solution of (Pk), and ū is feasible for every problem (Pk), we have J(uk) ≤ J(ū)
and further

J(ū) ≤ J(ũ) ≤ lim inf
k→∞

J(uk) ≤ lim sup
k→∞

J(uk) ≤ J(ū).

Since ū is the unique solution of (P0), this implies ū = ũ and J(uk) → J(ū), hence the strong convergence
uk → ū in L2(Ω) follows from this convergence along with the uniform convergence yk → ȳ.

Step 2: The linearized Slater condition for (Pk) holds at uk. Assumption (A5) and (2.4) ensure the
existence of a number ρ > 0 such that for every x ∈ K the following inequalities hold

a(x) + ρ < τ1 + ρ < g(x, ȳ(x)) +
∂g

∂y
(x, ȳ(x))z0(x) < τ2 − ρ < b(x) − ρ. (4.9)
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Given 0 < ε < 1, we multiply the previous inequality by ε and the inequality a(x) ≤ g(x, ȳ(x)) ≤ b(x) by 1− ε.
Next, we add both inequalities to get

a(x) + ερ < g(x, ȳ(x)) + ε
∂g

∂y
(x, ȳ(x))z0(x) < b(x) − ερ ∀x ∈ K. (4.10)

We fix

0 < ε < min
{

1,
εū

‖u0 − ū‖L2(Ω)

}

and define u0,ε = ε(u0− ū)+ ū. It is obvious that u0,ε satisfies the control constraints of problem (Pk) for any k.
Consider now the solutions zk of the boundary value problem

⎧⎪⎨
⎪⎩

Az +
∂a0

∂y
(x, yk)z = u0,ε − uk in Ω

z = 0 on Γ.

In view of uk → ū in L2(Ω) and yk → ȳ in C(Ω̄), we obtain the convergence zk → εz0 in H1
0 (Ω)∩C(Ω̄). Finally,

from (4.10) we deduce the existence of k0 > 0 such that

a(xj) + ε
ρ

2
≤ g(xj , yk(xj)) +

∂g

∂y
(xj , yk(xj))zk(xj) ≤ b(xj) − ε

ρ

2
(4.11)

for 1 ≤ j ≤ k and every k ≥ k0.

Step 3: {uk}∞k=1 is bounded in H1(Ω). The strong convergence uk → ū in L2(Ω) implies that ‖uk −
ū‖L2(Ω) < εū for k large enough. Therefore, uk does not touch the boundary of the ball {u | ‖u− ū‖L2(Ω) ≤ εū}.
Consequently, the additional constraint ‖uk − ū‖L2(Ω) ≤ εū is not active, and hence uk is a local minimum of
the problem

(Qk)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min J(u)
subject to (yu, u) ∈ (C(Ω̄) ∩H1(Ω)) × L∞(Ω),

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω,

a(xj) ≤ g(xj , yu(xj)) ≤ b(xj) 1 ≤ j ≤ k.

Now we can apply Theorem 3.5 and deduce

uk(x) = Proj[α(x),β(x)]

(
− 1
N
ϕk(x)

)
, (4.12)

with

ϕk = ϕk,0 +
k∑

j=1

λk,j
∂g

∂y
(xj , yk(xj))ϕk,j . (4.13)

Above, {λk,j}k
j=1 are the Lagrange multipliers, more precisely

μk =
k∑

j=1

λk,jδxj , with λk,j =
{ ≥ 0 if g(xj , yk(xj)) = b(xj),

≤ 0 if g(xj , yk(xj)) = a(xj).
(4.14)
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Finally, ϕk,0 and {ϕk,j}k
j=1 are given by

⎧⎪⎨
⎪⎩

A∗ϕk,0 +
∂a0

∂y
(x, yk(x))ϕk,0 =

∂L

∂y
(x, yk) in Ω,

ϕk,0 = 0 on Γ,
(4.15)

⎧⎪⎨
⎪⎩

A∗ϕk,j +
∂a0

∂y
(x, yk(x))ϕk,j = δxj in Ω,

ϕk,j = 0 on Γ.
(4.16)

Let us prove the following boundedness property:

∃C > 0 such that ‖μk‖M(K) =
k∑

j=1

|λk,j | ≤ C ∀k. (4.17)

Indeed, from (4.11) we get

⎧⎪⎪⎨
⎪⎪⎩

λk,j > 0 ⇒ g(xj , yk(xj)) = b(xj) ⇒ ∂g

∂y
(xj , yk(xj))zk(xj) ≤ −ερ

2

λk,j < 0 ⇒ g(xj , yk(xj)) = a(xj) ⇒ ∂g

∂y
(xj , yk(xj))zk(xj) ≥ +ε

ρ

2
·

Next, in view of (3.14) and u0,ε = ε(u0 − ū) + ū we obtain

0 ≤ ∂L
∂u

(uk, μk)(u0,ε − uk) = J ′(uk)(u0,ε − uk) +
k∑

j=1

λk,j
∂g

∂y
(xj , yk(xj))zk(xj)

≤ J ′(uk)(u0,ε − uk) − ε
ρ

2

k∑
j=1

|λk,j |.

This implies that
k∑

j=1

|λk,j | ≤ 2
ερ
J ′(uk)(u0,ε − uk) → 2

ρ
J ′(ū)(u0 − ū) when k → ∞,

hence (4.17) holds. Now (4.13), (4.15) and (4.16) lead to

⎧⎪⎨
⎪⎩
A∗ϕk +

∂a0

∂y
(x, yk(x))ϕk =

∂L

∂y
(x, yk) +

∂g

∂y
(x, yk(x))μk in Ω,

ϕk = 0 on Γ.
(4.18)

Let us set
Cα,β = ‖α‖L∞(Ω) + ‖β‖L∞(Ω) + 1

and

vk(x) = Proj[−Cα,β,+Cα,β ]

(
− 1
N
ϕk(x)

)
.
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From the last relation and (4.12) it follows that

uk(x) = Proj[α(x),β(x)](vk(x)).

Notice that the trace of uk on Γ is not necessarily zero, if 0 /∈ Uα,β . Therefore it is a delicate question to
multiply equation (4.18) by uk and to integrate by parts. However, vk vanishes on Γ and hence the previous
operation can be done without difficulty and we will do it later.

The goal is to prove that {vk}∞k=1 is bounded in H1(Ω), which yields the boundedness of {uk}∞k=1 in the same
space. The last claim is an immediate consequence of

|∇uk(x)| ≤ |∇vk(x)| + |∇α(x)| + |∇β(x)| a.e. Ω.

If {uk}∞k=1 is bounded in H1(Ω), then ū ∈ H1(Ω) obviously.

Let us prove the boundedness of {vk}∞k=1 in H1
0 (Ω). The solution of a Dirichlet problem associated with an

elliptic operator with coefficients aij ∈ C(Ω̄) and Lipschitz boundary Γ belongs to W 1,r
0 (Ω), if the right hand

side is in W−1,r(Ω) for any n < r < n+εn, where εn > 0 depends on n and n ∈ {2, 3}; cf. Jerison and Kenig [14]
and Mateos [15]. If p > n/2, then Lp(Ω) ⊂ W−1,2p(Ω) and consequently ϕk,0 ∈ W 1,r

0 (Ω) holds for all r in the
range indicated above with r < 2p.

In view of this, we have ϕk ∈W 1,s
0 (Ω) ∩W 1,r(Ω\Sk), where Sk is the set of points xj such that λk,j(∂g/∂y)

(xj , yk(xj)) 
= 0. Notice that by (4.13) only these ϕk,j appear in the representation of ϕk. Taking into account
that vk is constant in a neighborhood of every point xj ∈ Sk, we deduce that vk ∈W 1,r

0 (Ω) ⊂ C(Ω̄). Therefore,
we are justified to multiply equation (4.18) by −vk and to integrate by parts. We get

−
∫

Ω

⎛
⎝ n∑

i,j=1

aij(x)∂xivk∂xjϕk +
∂a0

∂y
(x, yk)vkϕk

⎞
⎠dx = −

∫
Ω

∂L

∂y
(x, yk)vk dx−

k∑
j=1

λk,j
∂g

∂y
(xj , yk(xj))vk(xj).

(4.19)
From the definition of vk we obtain for a.a. x ∈ Ω

∇vk(x) =

⎧⎨
⎩ − 1

N
∇ϕk(x) if −Cα,β ≤ − 1

N
ϕk(x) ≤ +Cα,β

0 otherwise.
(4.20)

Invoking this property in (4.19) along with the boundedness of {yk}∞k=1 in C(Ω̄), the estimate ‖vk‖L∞(Ω) ≤ Cα,β ,
and the assumptions (A3) and (A4), we get

λAN

∫
Ω

|∇vk|2 dx ≤ ‖ψM‖L2(Ω)‖vk‖L2(Ω) + C

k∑
j=1

|λk,j | ‖vk‖L∞(Ω) ≤ C′.

Clearly, this implies that {vk}∞k=1 is bounded in H1(Ω) as required. �

5. On the uniqueness of the Lagrange multiplier µ̄

In this section, we provide a sufficient condition for the uniqueness of the Lagrange multiplier associated with
the state constraints. We also analyze some situations, where these conditions are satisfied. It is known that a
non-uniqueness of Lagrange multipliers may lower the efficiency of numerical methods, e.g. primal-dual active
set methods. Moreover, some other theoretical properties of optimization problems depend on the uniqueness
of multipliers. Therefore, this is desirable property.
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Theorem 5.1. Assume (A1)–(A5) and the existence of some ε > 0 such that

T : L2(Ωε) −→ C(K0), with Tv =
∂g

∂y
(x, ȳ(x))zv, has a dense range, (5.1)

where

Ωε = {x ∈ Ω: α(x) + ε < ū(x) < β(x) − ε},

zv ∈ H1
0 (Ω) ∩ C(Ω̄) satisfies ⎧⎪⎨

⎪⎩
Azv +

∂a0

∂y
(x, ȳ)zv = v in Ω

zv = 0 on Γ,
(5.2)

and v is extended by zero to the whole domain Ω. Then there exists a unique Lagrange multiplier μ ∈ M(K)
such that (3.8)–(3.10) hold.

Proof. Let us assume to the contrary that μ̄i, i = 1, 2, are two Lagrange multipliers associated to the state
constraints corresponding to the optimal control ū. Then (3.14) holds for μ̄ = μ̄i, i = 1, 2. Taking v ∈
L∞(Ωε)\{0} arbitrarily, we have for a.e. x ∈ Ω

α(x) ≤ uρ(x) = ū(x) + ρv(x) ≤ β(x) ∀|ρ| < ε

‖v‖L∞(Ωε)
,

where v is extended by zero to the whole domain Ω. Inserting u = uρ in (3.14), with positive and negative ρ
and remembering that supp μ̄i ⊂ K0 (Rem. 3.6), we deduce

J ′(ū)v +
∫

K

∂g

∂y
(x, ȳ(x))zv(x) dμ̄i(x) =

∂L
∂u

(ū, μ̄i)v = 0, i = 1, 2,

which leads to

〈μ̄1, T v〉 = −J ′(ū)v = 〈μ̄2, T v〉 ∀v ∈ L∞(Ωε).

Since L∞(Ωε) is dense in L2(Ωε) and T (L2(Ωε)) is dense in C(K0) we obtain from the above identity that
μ̄1 = μ̄2. �

Remark 5.2. For a finite set K = {xj}n
j=1, assumption (5.1) is equivalent to the independence of the gradients

{G′
j(ū)}j∈I0 in L2(Ωε), where the functions Gj : L2(Ωε) −→ R are defined by Gj(u) = g(xj , yu(xj)) and I0 is

the set of indexes j corresponding to active constraints. It is a regularity assumption on the control problem
at ū. This type of assumption was introduced by the authors in [6] to analyze control constrained problems
with finitely many state constraints. The first author proved in [4] that, under very general hypotheses, this
assumption is equivalent to the Slater condition in the case of a finite number of pointwise state constraints.

We show finally that (5.1) holds under some more explicit assumptions on ū and on the set of points K0,
where the state constraint is active.
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Theorem 5.3. Assume that (A1)–(A5) hold and that the coefficients aij belong to C0,1(Ω̄) (1 ≤ i, j ≤ n). We
also suppose the following properties:

(1) The Lebesgue measure of K0 is zero.
(2) There exists ε > 0 such that, for every open connected component A of Ω\K0, the set A ∩ Ωε has a

nonempty interior.
(3) (∂g/∂y)(x, ȳ(x)) 
= 0 for every x ∈ K0.

Then the regularity assumption (5.1) is satisfied.

Remark 5.4. If α, β ∈ C(Ω̄), then ū ∈ C(Ω̄\K0); cf. Theorem 4.1. Hence property (2) of the theorem is
fulfilled, if ū is not identically equal to α or β in any open connected component A ⊂ Ω\K0. Indeed, since
ū ∈ C(A) and ū 
≡ α and ū 
≡ β in A, there exists x0 ∈ A such that α(x0) < ū(x0) < β(x0). Consequently, the
continuity of ū implies the existence of ε > 0 such that A ∩ Ωε contains a ball Bρ(x0).

Let us also mention that property (3) of the theorem is trivially satisfied if the state constraint is a(x) ≤
y(x) ≤ b(x) for every x ∈ K.

Proof of Theorem 5.3. Fix ε > 0 as in property (2). We will argue by contradiction. If R(T ) 
= C(K0), then
there exists μ ∈ C(K0)′ = M(K0), μ 
= 0, such that

0 = 〈μ, T v〉 =
∫

K0

∂g

∂y
(x, ȳ(x))zv(x) dμ(x) ∀v ∈ L2(Ωε). (5.3)

We take the function ψ ∈W 1,s
0 (Ω) for all 1 ≤ s < n/(n− 1) satisfying⎧⎪⎨
⎪⎩

A∗ψ +
∂a0

∂y
(x, ȳ(x))ψ =

∂g

∂y
(x, ȳ(x))μ in Ω

ψ = 0 on Γ.
(5.4)

From (5.3) and (5.4), it follows for every v ∈ L2(Ωε)∫
Ωε

ψv dx =
∫

Ω

ψv dx =
∫

Ω

[
Azv +

∂a0

∂y
(x, ȳ(x))zv

]
ψ dx

=
∫

K0

∂g

∂y
(x, ȳ(x))zv dμ = 〈μ, T v〉 = 0,

which implies that ψ = 0 in Ωε. Consider now an open connected component A of Ω\K0. It holds ψ = 0 in the
interior of A ∩ Ωε and

A∗ψ +
∂a0

∂y
(x, ȳ(x))ψ = 0 in A,

therefore ψ = 0 in A; see Saut and Scheurer [19]. Thus we have that ψ = 0 in Ω\K0, but K0 has zero Lebesgue
measure, hence ψ = 0 in Ω and consequently μ = 0 in contrary to our previous assumption.

We conclude our paper by proving that the regularity condition (5.1) is stronger that the linearized Slater
assumption (A5).

Theorem 5.5. Under the assumptions (A1)–(A4) the regularity condition (5.1) implies the linearized Slater
condition (A5).

Proof. We define the set

B = {z ∈ C(K0): a(x) − g(x, ȳ(x)) < z(x) < b(x) − g(x, ȳ(x)) ∀x ∈ K0}.
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From our assumptions it follows that B is a non empty open set of C(K0), hence condition (5.1) implies the
existence of v ∈ L2(Ωε) such that Tv ∈ B. By density of L∞(Ωε) in L2(Ωε) we can assume that v ∈ L∞(Ωε).
Outside Ωε, we extend v by zero. The inclusion Tv ∈ B can be expressed by

a(x) < g(x, ȳ(x)) +
∂g

∂y
(x, ȳ(x))zv(x) < b(x) ∀x ∈ K0, (5.5)

where zv ∈ H1
0 (Ω) ∩C(Ω̄) is the solution of (5.2). From here, we deduce the existence of ρ1 > 0 such that

a(x) + ρ1 < g(x, ȳ(x)) +
∂g

∂y
(x, ȳ(x))zv(x) < b(x) − ρ1 ∀x ∈ K0. (5.6)

Given ρ ∈ (0, 1) arbitrarily, multiplying the inequalities

a(x) ≤ g(x, ȳ(x)) ≤ b(x) ∀x ∈ K (5.7)

by 1 − ρ, (5.6) by ρ, and adding the resulting inequalities we get for every x ∈ K0 and all ρ ∈ (0, 1]

a(x) + ρρ1 < g(x, ȳ(x)) + ρ
∂g

∂y
(x, ȳ(x))zv(x) < b(x) − ρρ1. (5.8)

Define now, for any δ > 0,
K0,δ = {x ∈ K: dist(x,K0) < δ}.

Taking δ small enough, we get from (5.8) for all x ∈ K0,δ and every ρ ∈ (0, 1]

a(x) + ρ
ρ1

2
< g(x, ȳ(x)) + ρ

∂g

∂y
(x, ȳ(x))zv(x) < b(x) − ρ

ρ1

2
· (5.9)

On the other hand, since the state constraint is not active in the compact set K \K0,δ, we deduce the existence
of 0 < ρ2 < 1 such that

a(x) + ρ2 < g(x, ȳ(x)) < b(x) − ρ2 ∀x ∈ K \K0,δ. (5.10)
If we select a ρ ∈ (0, 1) that satisfies

ρ

∣∣∣∣∂g∂y (x, ȳ(x))zv(x)
∣∣∣∣ < ρ2

2
∀x ∈ K,

we obtain from (5.10)

a(x) +
ρ2

2
< g(x, ȳ(x)) + ρ

∂g

∂y
(x, ȳ(x))zv(x) < b(x) − ρ2

2
· (5.11)

Finally, taking 0 < ρ < ε/‖v‖L∞(Ωε), recalling the definition of Ωε and that v vanishes in Ω \ Ωε, we deduce
that u0 = ū+ ρv ∈ Uαβ . Moreover, (5.9) and (5.11) imply that (2.2) holds, which concludes the proof. �
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Basel (1998) 89–102.
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