UNIVERSIDAD DE CANTABRIA

DEPARTAMENTO DE INGENIERÍA GEOGRÁFICA Y TÉCNICAS DE EXPRESIÓN GRÁFICA

TESIS DOCTORAL

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

Autor:

JULIO MANUEL DE LUIS RUIZ

Director:

BENJAMÍN PIÑA PATÓN

Santander, Diciembre de 2009

CAPÍTULO IV

CONTRASTE METODOLÓGICO EN LA RESOLUCIÓN DE AUSCULTACIONES.

1.- CÁLCULO POR MÉTODOS CLÁSICOS.

1.1.- INTRODUCCIÓN.

Para poder desarrollar los cálculos empleados en los métodos clásicos, cuyos fundamentos teóricos ya han sido descritos en el capítulo II de la presente tesis doctoral, se hace necesario concretar el instrumental empleado, el sistema de coordenadas local así como las coordenadas de todas las redes implicadas en la resolución de la auscultación.

Para realizar el contraste propuesto en la presente tesis doctoral, se utilizan dos campañas de observación que corresponden a los números 76 y 77 de auscultación en el historial de la Presa de la Cohilla. Hasta la campaña número 40 la observación, cálculos y resolución de la auscultación se realizaban por dos geodesias militares. A partir de ese momento y debido a la jubilación de dichos geodestas, se firma un convenio de investigación entre la entonces Saltos del Nansa y el Departamento de Ingeniería Geográfica y Técnicas de Expresión Gráfica de la Universidad de Cantabria. En base a dicho convenio las auscultaciones pasaron a ser responsabilidad del Área de Ingeniería Cartográfica, Geodésica y Fotogrametría de esta Universidad.

Los procedimientos de observación, cálculo y resolución de la auscultación fueron desarrollados por D. Rafael Ferrer Torio y D. Benjamín Piña Patón, utilizándose hasta la actualidad, salvo pequeñas modificaciones que ha sido necesario realizar con el objeto de introducir nuevos observables e instrumental. Desde la campaña número 52 el autor de la presente investigación, es el encargado de llevar a cabo las labores de observación y cálculo. Por todo lo anterior tanto, el instrumental empleado como las redes pre-existentes están perfectamente definidas y contrastadas en el tiempo, lo que ha evitado al investigador tener que definir el instrumental y diseñar las redes a emplear, con todas las ventajas e inconvenientes que ello conlleva.

1.1.1.- DESCRIPCIÓN DEL INSTRUMENTAL EMPLEADO.

Como se ha comentado en el capítulo II, la observación de una auscultación requiere observaciones angulares y distanciométricas lo más precisas posible. Para acotar de alguna forma el instrumental se recomienda generalmente que las mediciones angulares se realicen con teodolitos de alta precisión (TAP) o, por lo menos, de precisión (TP) cuya apreciación angular debe ser mejor que un segundo sexagesimal. En cuanto a las mediciones distanciométricas se recomienda que tengan una incertidumbre del orden de 1 mm + 1 ppm.

En esta banda de precisiones se encuentra el instrumento utilizado, una estación topográfica de la marca LEICA modelo TC2003, propiedad del Departamento de Ingeniería Geográfica y Técnicas de Expresión Gráfica de la Universidad de Cantabria caracterizado por tener las siguientes especificaciones técnicas:

-	Precisión en la medida de ángulos horizontales y verticales.	0,5".
-	Sensibilidad del nivel (Compensador electrónico de doble eje).	0,3".
-	Aumentos del anteojo.	30x.
-	Medición de distancias	1 mm. + 1 ppm.

En la fotografía puede apreciarse el aspecto exterior de este instrumento topográfico, que mediante tarjeta electrónica permite almacenar y posteriormente volcar toda la información captada de forma totalmente automática, lo cual, al margen de la mejora de rendimiento que produce, permite reducir notablemente el número errores groseros que se cometen al hacer el mismo proceso de forma manual.

Figura Número IV.1.- Estación topográfica empleada en la auscultación.

Todo el instrumental empleado en una auscultación geodésica, por ser una operación tremendamente exigente con respecto a la precisión, debe estar en buen estado, teniendo que pasar las oportunas revisiones de limpieza y calibraciones realizadas por el personal técnico de la empresa suministradora del instrumento, garantizando así tanto el buen estado del mismo como el cumplimento de las especificaciones técnicas marcadas en la definición técnica del propio instrumento.

1.1.2.- REDES PRE-EXISTENTES.

En este caso las redes pre-existentes ya han sido adecuadamente explicadas en el capítulo II de la presente tesis doctoral, definiéndose a continuación las coordenadas del conjunto de redes implicadas en la resolución por métodos clásicos, que se vienen utilizando históricamente y que son las siguientes.

1.1.2.1.- PILARES DE AUSCULTACIÓN.

Los pilares de auscultación son el soporte físico donde se ubica el instrumento topográfico y desde el que se realizan todas las observaciones, habiéndose descrito sus principales características geométricas y constructivas en el capítulo II del presente documento.

El sistema de coordenadas es local y se caracteriza porque dicho sistema es el utilizado en las auscultaciones desde su primera campaña. Se presupone que al igual que el resto de redes intervinientes en la resolución de la propia auscultación, su determinación se solventó a través de un ajuste por mínimos cuadrados apoyado en observaciones básicamente angulares, lo cual no deja de ser una presunción ya que este extremo no se ha podido confirmar debido a la antigüedad de la red.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

PUNTO	Coord. X	Coord. Y
PI	1.000,000	1.000,000
PII	1.092,055	961,153
PIII	1.033,480	1.014,112
PIV	1.086,300	992,664

Las coordenadas de los pilares son las siguientes:

Tabla Número IV.1.- Coordenadas de la red de pilares.

1.1.2.2.- POLARES.

En el ámbito de la observación de ángulo, se suele emplear un punto totalmente alejado del área de influencia de la presa, siendo su función principal permitir la inicialización del ángulo horizontal en las observaciones angulares, habiéndose descrito sus principales características geométricas y constructivas en el capítulo II del presente documento. En el caso de la Presa de la Cohilla se emplean dos polares diferentes, las cuales permiten en base a las lecturas de los ángulos horizontales realizadas en ambas polares, conseguir un promedio que se considera el origen de los ángulos horizontales para cada campaña, obteniendo posteriormente las variaciones angulares entre campañas. Dado que estos puntos únicamente tienen por misión inicializar los ángulos, sus coordenadas no se utilizan en el cálculo posterior, siendo simplemente aproximadas. Las coordenadas de los puntos son las siguientes:

PUNTO	Coord. X	Coord. Y
PA	1.042,583	1.517,675
PB	1.040,762	1.511,383

Tabla Número IV.2.- Coordenadas de las polares empleadas en la Presa de la Cohilla.

Analizando las coordenadas de las diferentes polares empleadas en la Presa de la Cohilla, se puede apreciar como todas se encuentran ubicadas en la misma zona, aproximadamente a unos 500 metros de los pilares, lo que garantiza en todo momento su más completa estabilidad y estar ubicadas a la distancia ideal para el objeto perseguido, con lo cual se logran buenas orientaciones angulares.

1.1.2.3.- PUNTOS DE SEGURIDAD.

El objetivo final de estos puntos es que se pueda determinar mediante métodos topográficos la estabilidad de los pilares de auscultación, en el periodo transcurrido entre campañas de observación. Al igual que en las redes anteriores, sus funciones y características constructivas ya han sido pormenorizadas en el capítulo II de esta tesis doctoral.

Para las observaciones exclusivamente angulares, y en el caso objeto de análisis, por ser muy complicada la morfología del terreno, los pilares de auscultación están dispuestos de forma que posibilitan divisar perfectamente el paramento de la presa, pero esto hace que conseguir tres puntos de seguridad visibles y con buena geometría para cada pilar de auscultación sea muy difícil, por lo que en su día se recurrió a implantar ocho puntos de seguridad que garanticen intersecciones inversas múltiples cuyas soluciones permiten a su vez determinar la estabilidad de los pilares o en su defecto la determinación del desplazamiento sufrido por éstos. Es de suponer que las coordenadas de esta red, al igual que los pilares de auscultación, fueron determinados mediante un ajuste por mínimos cuadrados, con observaciones exclusivamente angulares, obteniéndose los siguientes resultados:

PUNTO	Coord. X	Coord. Y
ТА	992,533	1.031,509
ТВ	1.006,259	1.052,993
TC	1.022,303	1.042,354
TD	1.008,631	1.109,395
ТЕ	1.066,829	1.200,231
TF	1.116,335	1.115,372
TG	1.112,528	1.050,613
TH	1.122,105	1.004,638

Tabla Número IV.3.- Coordenadas de los puntos de seguridad empleados en la observación angular.

Para las observaciones distanciométricas el fundamento es el mismo, salvo que cuando se proyectó la observación de distancias se recurrió a implantar cuatro nuevos puntos de seguridad, dado que la señalización para observar distancias requiere la colocación previa de prismas reflectores. Esto conlleva que los puntos de seguridad para el observable distanciométrico no puedan estar ubicados en el mismo lugar físico que los pre-existentes, aun así, los prismas se colocaron en las inmediaciones de las señales angulares, para su fácil localización. Se supone que las coordenadas de esta red, al igual que los pilares de auscultación, fueron determinados mediante un ajuste por mínimos cuadrados, con observaciones combinadas de ángulos y distancias, obteniéndose los siguientes resultados:

PUNTO	Coord. X	Coord. Y
DA	992,498	1.031,511
DD	1.008,702	1.109,335
DE	1.066,869	1.200,275
DG	1.112,859	1.050,564

Tabla Número IV.4.- Coordenadas de los puntos de seguridad empleados en la observación distanciométrica.

La caracterización geométrica en planta de las diferentes redes implicadas en la resolución de la auscultación es la que se puede apreciar en la siguiente figura:

Figura Número IV.2.- Representación planimétrica de las diferentes redes implicadas.

1.1.2.4.- DIANAS DE AUSCULTACIÓN.

Representan los lugares geométricos en los que se pretende realizar la determinación del posible movimiento y, por lo tanto, se disponen de forma homogénea por el elemento a auscultar, de modo que se pueda extrapolar el movimiento de estos puntos al de toda la estructura, habiéndose pormenorizado sus funciones y características constructivas en el capítulo II del presente documento.

Las coordenadas de la red de dianas se supone que también se determinaron con el resto de redes y, dada la mínima influencia que tienen las pequeñas variaciones que se producen en sus coordenadas para obtener el cálculo de la auscultación, se consideran aproximadas pero con precisión más que suficiente para calcular los desplazamientos objeto de estudio.

Cabe reseñar que las mismas coordenadas que se otorgan a las dianas para la lectura angular, se dan también al prisma reflector en el que se hace la observación de distancias, e incluso a posteriori se verá que también se conceden a la señalización empleada en el láser escáner, debido a que la señalización está dispuesta de forma vertical una sobre la otra, lo que permite suponer que las coordenadas planimétricas aproximadas de los tres elementos son muy parecidas, tal y como se puede apreciar en la siguiente figura:

Figura Número IV.3.- Tipología de las señales empleadas en las dianas de auscultación.

Las coordenadas de las dianas existentes en la presa son las siguientes:

PUNTO	Coord. X	Coord. Y
7A	1.087,505	920,610
6A	1.087,021	920,652
5A	1.086,784	920,999
4 A	1.086,116	921,706
3A	1.085,290	922,570
2A	1.084,000	923,000
7D	1.067,856	911,015

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

6D	1.067,585	911,128
5D	1.067,666	910,975
4D	1.067,610	910,314
3D	1.067,702	909,684
2D	1.067,695	909,743
1D	1.066,661	911,446
7C	1.044,885	907,357
6C	1.043,361	907,531
5C	1.043,344	907,018
4C	1.043,433	906,030
3C	1.043,482	904,789
2C	1.043,295	904,050
1C	1.043,526	905,390
0C	1.043,363	911,339
7E	1.019,145	911,998
6E	1.019,808	911,903
5E	1.019,585	911,597
4 E	1.019,247	911,153
3 E	1.019,311	910,368
2E	1.019,338	910,353
1E	1.020,006	911,869
7B	1.000,237	921,551
6B	1.000,288	921.876
5B	1.000,573	922,312
4B	1.001,251	923,075
3B	1.002,102	923,803
2B	1.003,216	925,215
1B	1.005,368	927,127

Tabla Número IV.5.- Coordenadas de las dianas ubicadas en la presa.

La caracterización geométrica en alzado de las dianas existente en la presa es la que se puede apreciar a continuación:

Figura Número IV.4.- Distribución de las dianas de puntería en la Presa de la Cohilla.

1.2.- OBSERVABLE ANGULAR.

Definidos el instrumental, las redes implicadas y sus coordenadas, y las metodologías de observación y de cálculo de una auscultación angular, llega el momento de particularizar para el caso concreto de la presente tesis doctoral, ubicada en la Presa de la Cohilla. En la presente memoria, y con el objeto de no hacerla excesivamente extensa, dado que esta metodología está plenamente consolidada, se pormenoriza el modo de llevar a cabo la observación y cálculo de una diana, concretamente la 7C, incluyendo el resto de observaciones y cálculos de todas las dianas en el Anejo Número 3 del presente documento, denominado "*Auscultación clásica mediante observable angular*".

Las condiciones en las que se encuentra la presa en los momentos en los que se realiza la observación vienen determinadas fundamentalmente por la temperatura en el momento de la observación y la cota de agua embalsada, siendo estos parámetros los que básicamente definen el empuje hidrostático al que está sometido la presa y, por lo tanto, el estado deformacional de la presa entre ambas campañas. Las campañas utilizadas para el contraste objeto de la presente tesis doctoral se llevaron a cabo en las siguientes condiciones:

CAMPAÑA 76	Fechas de observación: 23 y 24 de Mayo de 2008.		
	Cota media embalsada: 58,50 m.		
	Temperatura media de observación 14 °C.		
CAMPAÑA 77	Fechas de observación: 26 y 27 de Febrero de 2009.		
	Cota media embalsada: 42,25 m.		
	Temperatura media de observación 6°C.		

1.2.1.- DATOS DE CAMPO ANGULARES.

Para la obtención de los datos de campo se actúa según el siguiente procedimiento de observación: en cada campaña se estaciona la estación topográfica en cada uno de los cuatro pilares, y desde cada pilar se realizan tres series completas, observando en cada serie el ángulo horizontal a todos los puntos de seguridad y dianas visibles desde él.

En cada serie y con el objeto de optimizar los tiempos de observación, se realizan varias vueltas de horizonte, una para los puntos de seguridad, otra para las dianas de las columnas A y D, otra para la columna C y otra para las columnas B y E. En cada vuelta de horizonte se observa a las dos polares, a continuación a las dianas objeto de la vuelta de horizonte, y finalmente se vuelve a observar a las polares, con el objeto de determinar el error de cierre en la vuelta de horizonte.

En la siguiente tabla se pueden apreciar los resultados de la observación desde el pilar I, campaña 76, a todos los puntos de seguridad y dianas posibles, pudiéndose apreciar en la primera columna el nombre del punto observado, en las tres siguientes el valor del ángulo horizontal expresado en décimas de segundo centesimal, tal y como lo almacena el teodolito, y en la última columna el promedio de las tres lecturas en segundos centesimales. En las filas se puede comprobar el resultado de las diferentes vueltas de horizonte. Almacenando la información con este esquema resulta muy sencillo determinar los cierres resultantes en cada vuelta de horizonte. El resto de observaciones, tal y como se ha descrito anteriormente, se encuentra en el Anejo Número 3 de esta tesis doctoral.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

Presa:	Col	nilla	Campaña:	76	
Pilar:	I		Observable:	Ángulos	
	PUNTOS DE SEGURIDAD				
PUNTO	SERIE 1	SERIE 2	SERIE 3	PROMEDIO	
PR	125	80	148	11.77	
PA	16180	16218	16254	1621.73	
A	38010901	38010948	38010992	3801094.70	
B	243821	243976	243857	24388.47	
С	2580221	2580260	2580280	258025.37	
D					
Е	1544391	1544328	1544359	154435.93	
F	4519902	4519810	4519957	451988.97	
G	6802680	6802649	6802777	680270.20	
H	9251686	9251791	9251783	925175.33	
PB	36	86	114	7.87	
PA	16052	16203	16190	1614.83	
	DIANA	S DE LAS CO	LUMNAS A-D	101,00	
DUNTO	SEDIE 1	SEDIE 2	SEDIE 2	DDOMEDIO	
	32	SERIE 2	SERIE 5	ROMEDIO 8 70	
	16089	149	16137	1613.00	
ГА 7А	1/1838/0	1/18386/	1/18385/	1/18385 57	
7A 6A	14100537	14103604	14100673	1410303,37	
5A	14104283	14199044	14199073	1419901,00	
5A 4A	14194283	14194481	14194417	1419439,37	
4A 3A	14190402	14190304	14190399	1419039,50	
3A 2A	14187281	14187267	14187252	1410570,20	
2A 1A	14170862	14170052	14170066	1410/20,0/	
	14165010	14179932	14165801	1417592,07	
1D	15385281	15385255	15385242	1538525.03	
20	15396412	15396393	15396424	1530525,75	
2D 3D	15307075	15398001	15308010	1530700 83	
<u> 3D</u> 4D	15380800	15380875	15380816	1538083.03	
5D	15361783	15361736	15361917	1536181 20	
6D	15353975	15354070	15354172	1535407 23	
7D	15345827	15345755	15345808	1534579.67	
PR	24	80	171	9 17	
РА	16130	16248	16250	1620.93	
111				1020,95	
DUDING		NAS DE LA C			
PUNTO	SERIE 1	SERIE 2	SERIE 3	PROMEDIO	
PB	47	153	126	10,87	
PA	16100	16291	16282	1622,43	
7C	16621228	16621254	16621199	1662122,70	
6C	16/01856	16701905	16/018/9	1670188,00	
5C	16/16173	16/16259	16/16293	1671624,17	
4C	16/366/2	16/36/46	16/36803	1673674,03	
<u>3C</u>	16/65810	16765823	16/65857	1676583,00	
20	16740100	16740152	16/94/80	1679472,07	
	10/48133	10/48155	16/48119	1674813,50	
0C DD	1039/116	10396999	1059/119	1659707,80	
PH PH	53	95	106	8,47	
PA	15945	16225	16284	1615,13	

DIANAS DE LAS COLUMNAS B-E				
PUNTO	SERIE 1	SERIE 2	SERIE 3	PROMEDIO
PB	55	195	124	12,47
PA	16146	16269	16234	1621,63
7B	19474315	19474186	19474054	1947418,50
6B	19469895	19469594	19469689	1946972,60
5B	19446297	19446191	19446001	1944616,30
4B				
3B	19317724	19317497	19317522	1931758,10
2B	19219826	19219465	19219591	1921962,73
1B				
1E	18072335	18072145	18072022	1807216,73
2 E	18140737	18140640	18140548	1814064,17
3 E	18142408	18142333	18142243	1814232,80
4 E	18135068	18134942	18134979	1813499,63
5E	18105399	18105456	18105258	1810537,10
6E	18085304	18085190	18085148	1808521,40
7E	18129942	18129698	18129664	1812976,80
PB	255	223	133	20,37
PA	16384	16241	16253	1629,27

Tabla Número IV.6.- Observaciones del ángulo horizontal y valor del promedio, pilar I – campaña 76.

1.2.2.- PROCESADO DE LOS DATOS DE CAMPO ANGULARES.

1.2.2.1.- DETERMINACIÓN DE LAS VARIACIONES ANGULARES.

Para la determinación de las variaciones angulares en la observación a los puntos de seguridad o dianas de puntería entre campañas, se hace necesario tener en cuenta el valor de las orientaciones angulares a las polares, al existir dos polares se considera una polar media que es el resultado de la media de las cuatro observaciones, con lo que la determinación de las variaciones angulares resulta:

$$\Delta \theta_{PILAR}^{DIANA} = \left(L_{DIANA} - \frac{L_{PB} + L_{PA} + L_{PB}' + L_{PA}'}{4} \right)_{CAMP_{-77}} - \left(L_{DIANA} - \frac{L_{PB} + L_{PA} + L_{PB}' + L_{PA}'}{4} \right)_{CAMP_{-76}}$$
[IV.1]

Aplicando esta expresión a cualquiera de las dianas o puntos de seguridad se obtienen las variaciones angulares con las que posteriormente se establecerá el hipotético desplazamiento. A continuación y a modo de ejemplo se particularizan para el caso concreto del punto de seguridad "A":

PILAR I – CAMPAÑA 76					
PUNTO	SERIE 1	SERIE 2	SERIE 3	PROMEDIO	
PB	125	80	148	11,77	
PA	16180	16218	16254	1621,73	
Α	38010901	38010948	38010992	3801094,70	
PB	36	86	114	7,87	
PA	16052	16203	16190	1614,83	

Tabla Número IV.7.- Determinación del ángulo horizontal, pilar I – campaña 76.

	PILAR I – CAMPAÑA 77						
PUNTO	SERIE 1	SERIE 2	SERIE 3	PROMEDIO			
PB	348	370	293	33,70			
PA	16315	16410	16373	1636,60			
Α	38011068	38011099	38011152	3801110,63			
PB	269	344	277	29,67			
PA	16186	16382	16371	1631,30			

Tabla Número IV.8.- Determinación del ángulo horizontal, pilar I – campaña 77.

$$\Delta \theta_{PILAR I}^{PS A} = \left(3801110,63 - \frac{33,70 + 1636,60 + 29,67 + 1631,30}{4}\right) - \left(3801094,70 - \frac{11,77 + 1621,73 + 7,87 + 1614,83}{4}\right) = -2,83^{CC}$$

Operando de forma análoga se obtiene el resto de variaciones angulares para cada uno de los puntos observados, tanto de seguridad como dianas de puntería. En la siguiente tabla se pueden apreciar los resultados de las variaciones angulares entre ambas campañas, para todos los puntos observados y desde cada pilar:

Presa:	Cohilla	Can	77-76	
Pilar:	TODOS	Obse	rvable:	Ángulos
	PUN	TOS DE SEGUR	IDAD	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
Α	-2,83	4,23	4,19	0,90
В	4,90	-1,07	-2,87	-3,83
С	-3,53	3,23	-1,34	1,03
D		-3,98	-3,71	3,67
Ε	-3,80		-2,67	2,50
F	-2,97		-2,81	
G	-2,87		-1,08	-3,40
Н	2,50	-3,94		
	DIANAS	DE LAS COLUN	ANAS A-D	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7A	1,38		-2,81	-16,35
6A	2,48	-22,96	-2,17	-13,68
5A	2,11	-21,49	-0,56	-13,25
4A	1,84	-20,79	-0,79	-12,22
3A	0,01	-20,69	0,22	
2A	0,44		0,86	
1A	12,51			
0D	4,81		-2,61	
1D	-0,23	-3,92	-0,84	
2D	0,48	-7,19	0,73	
3D	1,51	-14,16	0,86	-6,48
4D	2,04	-17,09	0,43	-9,08
5D	2,94	-20,63	1,09	-11,25
6D	3,27	-24,79	1,49	-14,68
7D	3,47	-25,39	1,19	-17,02

	DIANA	AS DE LA COLU	JMNA C	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7C	10,07	-15,42	5,53	-9,48
6C	7,40		0,43	
5C	5,43	-15,52	1,97	-4,91
4C	4,33	-14,09	2,50	
3C	3,10	-10,26	2,30	-2,51
2C	1,13	-7,69	1,93	-3,94
1C	0,37	-5,22	1,07	-0,58
0C	-0,60	1,01	-2,10	-0,31
	DIANAS	DE LAS COLU	MNAS B-E	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7B	10,73	-10,31	5,73	-4,22
6B	7,07	-9,21	4,37	-3,46
5B	7,37	-6,24	3,70	-3,66
4B		-4,28	3,10	-2,66
3B		-3,14	2,80	-2,72
2B	2,97	-1,14	1,80	-1,86
1B		-0,88	0,63	-1,02
1E	1,93	-0,74	1,17	-0,89
2 E	5,60	-2,38	-0,23	-4,09
3 E	6,27	-3,78	2,03	-5,09
4E	6,53	-5,88	3,40	-5,72
5E	8,97	-8,34	3,97	-7,89
6E	9,30	-9,61	4,50	-9,32
7 E	10,57	-10,98	5,83	-10,29

Tabla Número IV.9.- Variaciones del ángulo horizontal entre las campañas 76 y 77.

1.2.2.2.- DETERMINACIÓN DE LA ESTABILIDAD DE LOS PILARES.

Antes de iniciar la resolución del hipotético desplazamiento de las dianas de puntería, es de obligado cumplimento comprobar la estabilidad de los pilares. Una vez determinadas las variaciones angulares se plantea resolver dicha indeterminación por el método de variación de coordenadas, ya descrito en el capítulo II del presente documento. Para ello, se plantea la ecuación de variación de coordenadas y se particulariza para cada una de las observaciones realizadas a los puntos de seguridad, desde el pilar objeto de análisis, tal y como se puede apreciar a continuación aplicado al pilar I:

$$\Delta \theta_{PILAR}^{PS} = \frac{1}{\left(D_{PILAR}^{PS}\right)^2} \left[\Delta Y_{PILAR}^{PS} \cdot dx - \Delta X_{PILAR}^{PS} \cdot dy \right]$$
[IV.2]

Para el punto de seguridad "A":
$$\frac{-2,83}{636.620} = \frac{1}{32,382^2} [-31,509 \cdot dx - 7,467 \cdot dy]$$
Para el punto de seguridad "B": $\frac{4,90}{636.620} = \frac{1}{53,361^2} [-52,993 \cdot dx + 6,259 \cdot dy]$ Para el punto de seguridad "C": $\frac{-3,53}{636.620} = \frac{1}{47,867^2} [-42,354 \cdot dx + 22,303 \cdot dy]$ Para el punto de seguridad "E": $\frac{-3,80}{636.620} = \frac{1}{211,089^2} [-200,231 \cdot dx + 66,829 \cdot dy]$

Para el punto de seguridad "F" :
$$\frac{-2,97}{636.620} = \frac{1}{163,843^2} \left[-115,372 \cdot dx + 116,335 \cdot dy\right]$$
Para el punto de seguridad "G":
$$\frac{-2,87}{636.620} = \frac{1}{123,386^2} \left[-50,613 \cdot dx + 112,528 \cdot dy\right]$$
Para el punto de seguridad "H":
$$\frac{-2,50}{636.620} = \frac{1}{122,193^2} \left[-4,638 \cdot dx + 122,105 \cdot dy\right]$$

Tal y como ya se ha descrito, a continuación se plantea un sistema de matrices que permita la resolución del sistema de ecuaciones planteadas:

$$\Delta \theta = A \cdot X$$
 [IV.3]

$$\begin{bmatrix} -4,451E - 06\\ 7,697E - 06\\ -5,550E - 06\\ -4,660E - 06\\ -4,503E - 06\\ 3,927E - 06 \end{bmatrix} = \begin{bmatrix} -3,005E - 02 & -7,121E - 03\\ -1,861E - 02 & 2,198E - 03\\ -1,848E - 02 & 9,734E - 03\\ -1,848E - 02 & 9,734E - 03\\ -4,298E - 03 & 1,500E - 03\\ -4,298E - 03 & 4,334E - 03\\ -3,325E - 03 & 7,391E - 03\\ -3,106E - 04 & 8,178E - 03 \end{bmatrix} \cdot \begin{bmatrix} dx\\ dy \end{bmatrix}$$

$$\begin{array}{c} A^{i} \cdot \Delta \theta = P \\ A^{i} \cdot A = N \end{array} \right\} P = N \cdot X \Longrightarrow X = N^{-1} \cdot P$$
 [IV.4]

 $A^{t} = \begin{bmatrix} -3,005E - 02 & -1,861E - 02 & -1,848E - 02 & -4,494E - 03 & -4,298E - 03 & -3,325E - 03 & -3,106E - 04 \\ -7,121E - 03 & 2,198E - 03 & 9,734E - 03 & 1,500E - 03 & 4,334E - 03 & 7,391E - 03 & 8,178E - 03 \end{bmatrix}$

$$N = A^{t} \cdot A = \begin{bmatrix} 1,641E - 03 & -5,933E - 05 \\ -5,933E - 05 & 2,928E - 04 \end{bmatrix}$$
$$P = A^{t} \cdot \Delta \theta = \begin{bmatrix} 1,537E - 07 \\ -3,573E - 08 \end{bmatrix}$$
$$N^{-1} = \begin{bmatrix} 6,139E + 02 & 1,244E + 02 \\ 1,244E + 02 & 3,440E + 03 \end{bmatrix}$$
$$X = N^{-1} \cdot P = \begin{bmatrix} dx \\ dy \end{bmatrix} = \begin{bmatrix} 0,00009 \\ -0,0001 \end{bmatrix}$$
[IV.5]

La matriz X define en sus dos filas los desplazamientos existentes, pudiéndose por tanto establecer que el desplazamiento según el eje de abcisas resulta 0,09 mm y según el eje de ordenadas -0.10 mm, todo ello conforme al mismo sistema referencial definido por las coordenadas de las redes implicadas. Una vez establecido el desplazamiento del pilar se hace necesario establecer, dado que existen datos suficientes, las dimensiones de la elipse de error que se produce al realizar el ajuste por mínimos cuadrados, para lo que se emplean las expresiones ya razonadas en el capítulo II del presente documento.

$$R = \Delta \theta - A \cdot X$$
 [IV.6]

$$R = \Delta \theta - A \cdot X = \begin{bmatrix} -4,451E - 06\\ 7,697E - 06\\ -5,550E - 06\\ -5,550E - 06\\ -4,660E - 06\\ -4,503E - 06\\ 3,927E - 06\end{bmatrix} - \begin{bmatrix} -3,005E - 02 & -7,121E - 03\\ -1,861E - 02 & 2,198E - 03\\ -1,848E - 02 & 9,734E - 03\\ -4,494E - 03 & 1,500E - 03\\ -4,298E - 03 & 4,334E - 03\\ -3,325E - 03 & 7,391E - 03\\ -3,106E - 04 & 8,178E - 03 \end{bmatrix} \cdot \begin{bmatrix} 0,00009\\ -0,0001 \end{bmatrix} = \begin{bmatrix} -2,488E - 06\\ 9,598E - 06\\ -2,878E - 06\\ -3,824E - 06\\ -3,437E - 06\\ 4,804E - 06 \end{bmatrix}$$

$$S^{2} = \frac{R'R}{m-n} = \frac{R' \cdot R}{7-5} = 3,707E - 11$$
 [IV.7]

$$C = S^2 N^{-1} = \begin{pmatrix} \sigma_X^2 & \sigma_{YX} \\ \sigma_{XY} & \sigma_Y^2 \end{pmatrix}$$
 [IV.8]

$$C = S^{2}N^{-1} = \begin{pmatrix} \sigma_{X}^{2} \sigma_{YX} \\ \sigma_{XY} \sigma_{Y}^{2} \end{pmatrix} = 3,707E - 11 \cdot \begin{bmatrix} 6,139E + 02 & 1,244E + 02 \\ 1,244E + 02 & 3,440E + 03 \end{bmatrix} = \begin{bmatrix} 2,276E - 08 & 4,612E - 09 \\ 4,612E - 09 & 1,275E - 07 \end{bmatrix}$$

$$\sigma^{2} = \frac{1}{2} \left[\sigma_{X}^{2} + \sigma_{Y}^{2} \pm \sqrt{(\sigma_{X}^{2} - \sigma_{Y}^{2})^{2} + 4\sigma_{XY}^{2}} \right] \Rightarrow \sigma \begin{cases} \sigma_{max} = 0,4 \, mm \\ \sigma_{max} = 0,2 \, mm \end{cases}$$
[IV.9]

$$tg 2\theta = \frac{2\sigma_{XY}}{\sigma_Y^2 - \sigma_X^2} \Longrightarrow \theta = 2,79476^g$$
 [IV.10]

Obteniéndose definitivamente los resultados que permiten definir la elipse de error mediante la siguiente geometría:

Figura Número IV.5.- Elipse de error en la determinación del desplazamiento del pilar (Ángulos).

Operando de forma análoga se pueden determinar los hipotéticos desplazamientos del resto de pilares, planteándose en el Anejo Número 3 del presente documento la resolución pormenorizada de la auscultación de todos los pilares.

1.2.2.3.- DETERMINACIÓN DEL MOVIMIENTO DE LAS DIANAS.

Comprobada la estabilidad de los pilares se procede a resolver la auscultación de las dianas de puntería, ubicadas todas ellas en el paramento de la presa. Al igual que con la resolución de los pilares de auscultación, una vez establecidas las variaciones angulares se plantea resolver el procedimiento de cálculo mediante el método de variación de coordenadas. La única singularidad que se da en la resolución de las dianas de puntería es que el número de visuales máximas no pasa de cuatro, ya que el número de pilares precisamente es cuatro. Con tres el sistema es resoluble y sigue teniendo redundancia, siendo el número mínimo para poder resolver el sistema dos visuales, con el inconveniente, en este caso, de no tener datos suficientes para determinar la elipse de error.

Para resolver el sistema se plantea nuevamente la ecuación de variación de coordenadas y se particulariza para cada una de las observaciones realizadas desde cada pilar, tal y como se puede apreciar a continuación aplicado a la diana 7C:

$$\Delta \theta_{PILAR}^{DIANA} = \frac{1}{\left(D_{PILAR}^{DIANA}\right)^2} \left[\Delta Y_{PILAR}^{DIANA} \cdot dx - \Delta X_{PILAR}^{DIANA} \cdot dy \right]$$
[IV.11]

$$\frac{10,07}{636.620} = \frac{1}{102,944^2} \left[-92,643 \cdot dx - 44,885 \cdot dy \right]$$

Desde el pilar II:
$$\frac{-15,42}{636.620} = \frac{1}{71,547^2} \left[-53,796 \cdot dx + 47,170 \cdot dy \right]$$

Desde el pilar III:
$$\frac{5,53}{636.620} = \frac{1}{107,362^2} \left[-106,755 \cdot dx - 11,405 \cdot dy \right]$$

Desde el pilar IV:
$$\frac{-9,48}{636.620} = \frac{1}{94,829^2} \left[-85,307 \cdot dx + 41,415 \cdot dy \right]$$

Tal y como se ha descrito anteriormente, a continuación se presenta un sistema de matrices que permita la resolución del sistema de ecuaciones planteadas:

$$\Delta \theta = A \cdot X \tag{[IV.12]}$$

$$\begin{bmatrix} 1,582E - 05 \\ -2,422E - 05 \\ 8,687E - 06 \\ -1,489E - 05 \end{bmatrix} = \begin{bmatrix} -8,742E - 03 & -4,235E - 03 \\ -1,051E - 02 & 9,215E - 03 \\ -9,262E - 03 & -9,895E - 04 \\ -9,486E - 03 & 4,605E - 03 \end{bmatrix} \cdot \begin{bmatrix} dx \\ dy \end{bmatrix}$$
$$\begin{bmatrix} A^{t} \cdot \Delta \theta = P \\ A^{t} \cdot A = N \end{bmatrix} P = N \cdot X \Longrightarrow X = N^{-1} \cdot P$$
$$\begin{bmatrix} IV.13 \end{bmatrix}$$
$$A^{t} = \begin{bmatrix} -8,742E - 03 & -1,051E - 02 & -9,262E - 03 & -9,486E - 03 \\ -4,235E - 03 & 9,215E - 03 & -9,895E - 04 & 4,605E - 03 \end{bmatrix}$$
$$N = A^{t} \cdot A = \begin{bmatrix} 3,626E - 04 & -9,434E - 05 \\ -9,434E - 05 & 1,250E - 04 \end{bmatrix}$$

$$P = A^{t} \cdot \Delta \theta = \begin{bmatrix} 1,771E - 07 \\ -3,674E - 07 \end{bmatrix}$$
$$N^{-1} = \begin{bmatrix} 3,431E + 03 & 2,589E + 03 \\ 2,589E + 03 & 9,950E + 03 \end{bmatrix}$$
$$X = N^{-1} \cdot P = \begin{bmatrix} dx \\ dy \end{bmatrix} = \begin{bmatrix} -0,0003 \\ -0,0032 \end{bmatrix}$$
[IV.14]

La matriz X define en sus dos filas los desplazamientos existentes, pudiéndose por tanto establecer que el desplazamiento según el eje de abcisas resulta 0,3 mm y según el eje de ordenadas -3,2 mm, todo ello conforme al mismo sistema referencial definido por las coordenadas de las redes implicadas.

Una vez establecido el desplazamiento del pilar se hace necesario establecer, dado que existen datos suficientes, las dimensiones de la elipse de error que se produce al realizar el ajuste por mínimos cuadrados, para lo que se emplean las expresiones ya razonadas en el capítulo II del presente documento.

-

$$R = \Delta \theta - A \cdot X$$

$$\begin{bmatrix} 1,582E - 05 \\ -2,422E - 05 \\ -2,422E - 05 \\ -1,051E - 02 \\ -2,051E - 02 \\ -2,051E - 03 \\ -1,051E - 02 \\ -2,051E - 03 \\ -1,051E - 03 \\ -2,051E - 03 \\$$

$$\Delta \theta - A \cdot X = \begin{bmatrix} 2,348E - 06 \\ -1,489E - 05 \end{bmatrix}^{-1} \begin{bmatrix} -9,262E - 03 & -9,895E - 04 \\ -9,486E - 03 & 4,605E - 03 \end{bmatrix} \cdot \begin{bmatrix} 0,0022 \\ -0,0032 \end{bmatrix}^{-1} \begin{bmatrix} 2,348E - 06 \\ -3,416E - 06 \end{bmatrix}$$

$$S^{2} = \frac{R'R}{m-n} = \frac{R' \cdot R}{4-2} = 1,018E - 11$$
 [IV.16]

$$C = S^{2} N^{-1} = \begin{pmatrix} \sigma_{X}^{2} \sigma_{YX} \\ \sigma_{XY} \sigma_{Y}^{2} \end{pmatrix}$$
 [IV.17]

$$C = S^{2}N^{-1} = \begin{pmatrix} \sigma_{X}^{2} & \sigma_{YX} \\ \sigma_{XY} & \sigma_{Y}^{2} \end{pmatrix} = 1,018E - 11 \cdot \begin{bmatrix} 3,431E + 03 & 2,589E + 03 \\ 2,589E + 03 & 9,950E + 03 \end{bmatrix} = \begin{bmatrix} 3,491E - 08 & 2,634E - 08 \\ 2,634E - 08 & 1,012E - 07 \end{bmatrix}$$

$$\sigma^{2} = \frac{1}{2} \left[\sigma_{X}^{2} + \sigma_{Y}^{2} \pm \sqrt{(\sigma_{X}^{2} - \sigma_{Y}^{2})^{2} + 4\sigma_{XY}^{2}} \right] \Rightarrow \sigma \begin{cases} \sigma_{max} = 0.3 \, mm. \\ \sigma_{min} = 0.2 \, mm. \end{cases}$$
[IV.18]

$$tg 2\theta = \frac{2\sigma_{XY}}{\sigma_Y^2 - \sigma_X^2} \Longrightarrow \theta = 21,36284^g$$
 [IV.19]

Operando de forma análoga se pueden determinar los hipotéticos desplazamientos y sus correspondientes elipses de error del resto de las dianas de puntería, en el Anejo Número 3 del presente documento resolviéndose de forma pormenorizada todas las dianas.

1.2.3.- RESULTADOS DE LA AUSCULTACIÓN CLÁSICA ANGULAR.

A continuación se muestran los resultados obtenidos para los hipotéticos desplazamientos de los pilares, en los que se detallan el desplazamiento descompuesto en el eje de abcisas y ordenadas definiéndose también el desplazamiento en polares y los datos relativos a las elipses de error, eje mayor y menor y acimut del eje mayor.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

FTT 7 1 7 1

Presa:	Cohilla			Campaña:	77-76			
RESUL	TADOS				Observable: Ángulos		ulos	
PUNTO	DESPLAZAMIENTO				ELIPSE DE ERROR			
FUNIO	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σ min (mm)	Acimut (grad)	
P I	0,09	-0,10	0,14	154,5549	0,36	0,15	2,7948	
P II	0,13	-0,46	0,48	182,2437	0,36	0,27	18,6140	
P III	0,29	-0,33	0,44	154,5449	0,17	0,08	-36,5156	
P IV	0,16	-0,18	0,24	154,3741	0,33	0,25	-37,7950	

Tabla Número IV.10.- Desplazamientos y elipses de error de los pilares entre las campañas 76 y 77 (Ángulos).

En la tabla anterior se puede apreciar que tanto los desplazamientos como las elipses de error obtenidas se caracterizan por ser inferiores al medio milímetro, considerando que la precisión establecida para este tipo de auscultación es del orden de un milímetro, esto indica que el desplazamiento está por debajo de la precisión establecida, lo que motiva que no se considere movimiento de los pilares entre las campañas de observación. Si por el contrario de lo que sucede en esta auscultación, se detectase movimiento en alguno de los cuatro pilares, se puede efectuar correcciones por excentricidad sobre los observables, con el objetivo de poder compararles con los de la campaña anterior.

Una vez comprobada la no existencia de movimientos en los pilares de auscultación, se muestran a continuación los resultados obtenidos para las dianas de puntería. Su presentación tiene la misma estructura de datos que los pilares de auscultación, es decir, desplazamiento descompuesto en el eje de abcisas y ordenadas, desplazamiento en polares y los datos relativos a las elipses de error, eje mayor y menor y acimut del eje mayor.

Presa:	Cohilla			77-76				
RESUL	TADOS	S Observable			Observable:	Ángulos		
	DIANAS DE LAS COLUMNAS A-D							
		DESPLAZ	AMIENTO		ELI	PSE DE ERI	ROR	
PUNIO	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σ min (mm)	Acimut (grad)	
7A	1,87	-2,13	2,83	154,0782	0,15	0,05	-18,6983	
6A	1,34	-1,67	2,14	156,9246	0,31	0,09	-0,1194	
5A	1,23	-1,66	2,07	159,3829	0,37	0,10	0,2920	
4 A	1,15	-1,50	1,89	158,5570	0,28	0,08	1,3872	
3A	1,05	-1,32	1,68	157,2466	0,41	0,14	3,3666	
2A	-0,21	0,08	0,22	323,9650				
1A								
0A								
1D	0,25	-0,27	0,37	153,2470	0,01	0,00	13,9709	
2D	0,31	-0,80	0,86	176,1374	0,23	0,10	12,1930	
3D	0,60	-1,59	1,70	177,1398	0,23	0,09	12,7367	
4D	0,77	-1,88	2,03	175,3354	0,19	0,08	13,1171	
5D	0,88	-2,34	2,50	177,0011	0,26	0,10	13,4261	
6D	1,10	-2,80	3,00	176,1403	0,40	0,16	13,5604	
7D	1,21	-2,88	3,12	174,6834	0,53	0,21	13,3223	

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

DIANAS DE LA COLUMNA C								
		DESPLAZ	AMIENTO		EL	IPSE DE ERI	ROR	
PUNTO	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σmin (mm)	Acimut (grad)	
7C	-0,34	-3,20	3,22	206,8118	0,33	0,16	21,3628	
6C	0,23	-3,29	3,30	195,5209				
5C	-0,02	-2,42	2,42	200,6398	0,34	0,16	21,5946	
4 C	0,07	-2,31	2,31	198,1366	0,36	0,20	16,7579	
3 C	-0,06	-1,64	1,64	202,2697	0,36	0,17	20,7118	
2C	0,09	-1,21	1,21	195,2559	0,29	0,13	20,4899	
1C	0,03	-0,67	0,67	196,7835	0,30	0,14	20,9249	
0C	0,14	0,24	0,28	34,1702	0,16	0,08	23,3968	
		DIAL	AMIENTO	COLUMINAS	S B-E	LIPSE DE ERROR		
PUNTO	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σmin (mm)	Acimut (grad)	
1E	-0,20	-0,32	0,38	235,7529	0,08	0,04	26,0778	
2 E	-0,37	-0,99	1,06	222,5338	0,43	0,22	26,0066	
3E	-0,53	-1,32	1,43	224,3304	0,38	0,19	26,0119	
4 E	-0,62	-1,64	1,75	222,9638	0,34	0,17	26,1013	
5E	-0,80	-2,24	2,38	221,7261	0,42	0,22	26,1020	
6E	-0,82	-2,49	2,62	220,1723	0,50	0,26	26,1051	
7 E	-0,99	-2,84	3,01	221,3686	0,57	0,30	26,1958	
7B	-1,46	-2,24	2,67	236,7619	0,27	0,14	29,8637	
6B	-1,03	-1,79	2,07	233,2849	0,33	0,17	29,8331	
5B	-0,96	-1,47	1,76	236,6420	0,16	0,08	29,7073	
4 B	-0,87	-1,15	1,44	241,1493	0,22	0,08	-49,2341	
3B	-0,71	-0,93	1,17	241,3725	0,36	0,13	-49,2452	
2B	-0,34	-0,43	0,55	242,6991	0,15	0,08	28,5743	
1B	-0.15	-0.24	0.28	235.3996	0.13	0.05	-49,1118	

Tabla Número IV.11.- Desplazamientos y elipses de error de las dianas de puntería entre la campaña 76 y 77 (Ángulos).

Con los resultados obtenidos, tanto para el desplazamiento como las elipses de error, es sencillo hacer una representación que permita el análisis de dichos resultados de forma mucho más gráfica, todo ello con el objeto de simplificar la interpretación posterior y necesaria de los resultados obtenidos en toda auscultación.

A continuación se muestran los dos tipos de gráficos que el autor considera sencillos de llevar a cabo, pero muy intuitivos. Por un lado se lleva a cabo una representación en planta y por filas de las dianas de auscultación con sus correspondientes desplazamientos y elipses de error, y por otro lado se efectúa una representación en alzado y por columnas en la que se vuelven a representar las dianas con sus correspondientes desplazamientos. Dadas las grandes dimensiones que tiene la presa y las pequeñas dimensiones de los movimientos y elipses de error, en la figura se trabaja con dos escalas diferentes: a escala 1/1.000 se representa un esquema de la geometría de la presa y la posición de las dianas en la presa, y a escala 10/1 se representan los movimientos de las dianas y sus correspondientes elipses de error.

Figura Número IV.6.- Vista en planta de los desplazamientos y elipses de error de las dianas de la fila número 7 (Ángulos).

Figura Número IV.7.- Vista en alzado de los desplazamientos de la columna C (Ángulos).

1.3.- OBSERVABLE DISTANCIOMÉTRICO.

Definidos el instrumental, las redes implicadas y sus coordenadas, las metodologías de observación y de cálculo de una auscultación distanciométrica, llega el momento de particularizar para el caso concreto de la presente tesis doctoral. Con el objeto de no hacer excesivamente extensa la memoria, dado que esta metodología está plenamente consolidada, se pormenoriza el modo de llevar a cabo la observación y cálculo de una diana, concretamente la 7C, incluyendo el resto de observaciones y cálculos de todas las dianas en el Anejo Número 4 del presente documento, denominado "*Auscultación clásica mediante observable distanciométrico*".

Las condiciones en las que se encuentra la presa en los momentos en los que se realiza la observación y las fechas de observación son las mismas que en el caso angular, puesto que las observaciones se hacen de forma consecutiva en cada pilar, primero ángulos y después distancias, pasándose posteriormente a otro pilar y así sucesivamente.

1.3.1.- DATOS DE CAMPO DISTANCIOMÉTRICOS.

En el caso de la presente investigación, para la obtención de los datos de campo en cada campaña, se estaciona la estación topográfica en cada uno de los cuatro pilares, y desde cada pilar se realizan tres series completas, observando en cada serie la distancia geométrica y el ángulo cenital a los prismas reflectores ubicados en los puntos de seguridad y dianas. Con el objeto de optimizar los tiempos de observación, cabe reseñar que la observación de distancias se hace de forma consecutiva a la observación angular en cada pilar, de forma que primero se observan los ángulos horizontales y después las distancias y ángulos cenitales en cada pilar, y cuando se acaba un pilar se pasa a otro, y así sucesivamente, evitando tener que hacer dos estacionamientos del equipo, uno para ángulos y otros para distancias.

En primera instancia, y antes de empezar a observar distancias, es necesario introducir en el software de la estación topográfica los datos meteorológicos, con el objeto de que el instrumento pueda almacenar las distancias corregidas de efectos meteorológicos. En esta línea, tal y como se ha descrito en el capítulo II de este documento, el observador lleva al campo una estación meteorológica de fácil uso, que le permite determinar en todo momento, e incluso ir corrigiendo si se hace necesario, los datos meteorológicos, presión, temperatura y humedad. Siendo conscientes de la mínima influencia que esta corrección tiene, dado el orden de magnitud de las distancias que se pretenden observar.

En la siguiente tabla se pueden apreciar los resultados de la observación desde el pilar I, campaña 76, a todos los puntos de seguridad y dianas posibles, pudiéndose apreciar en la primera columna el nombre del punto observado, en las tres siguientes el valor de la distancia reducida y corregida de efectos meteorológicos, tal y como lo almacena la estación topográfica, y en la última columna el promedio de las tres lecturas, todo ello en metros. En las filas se puede apreciar el resultado de las diferentes vueltas de horizonte. Almacenando la información con este esquema resulta muy sencillo determinar las variaciones de distancia. El resto de observaciones, tal y como se ha descrito anteriormente, se encuentra en el Anejo Número 4 de la presente tesis doctoral.

Presa:	Cohilla		76						
Pilar:	Ι		Observable:	Distancias					
	PU	NTOS DE SE	GURIDAD						
PUNTO	SERIE 1	SERIE 2	SERIE 3	PROMEDIO					
A	32,3920	32,3918	32,3919	32,3919					
D									
E	211.1425	211.1410	211.1430	211.1422					
G	123 6714	123 6713	123 6714	123.6714					
	DIANAS DE LAS COL LIMNAS A-D								
PUNTO	SERIE 1	SERIE 2	SERIE 3	PROMEDIO					
74	118 1357	118 1355	118 1356	118 1356					
64									
54	117 2983	117 2987	117 2985	117 2985					
<u>4</u> A	116 2813	116 2814	116 2812	116 2813					
31	115,2015	115 1058	115,1059	115 1058					
24	113,1057	113,1050	113,1035	113,1030					
2A 1A	115,4909	115,4900	115,4970	113,4771					
0.4	103 9823	103 9820	103 0827	103 0823					
1D	110,9825	110 4850	110,9827	110,7825					
1D 2D	110,4000	110,4039	110,4034	110,4050					
2D 2D	112,0343	112,0349	112,8343	112,8340					
3D 4D	112,0001	112,0001	112,0050	112,0051					
4D 5D	112,3339	112,5559	112,3339	112,3539					
<u>50</u>	111,9878	111,9873	111,9879	111,9877					
6D 7D	111,0937	111,0945	111,0949	111,6944					
7D	111,8988	111,8962	111,8978	111,8976					
	DIA	NAS DE LA C	OLUMNA C	•					
PUNTO	SERIE 1	SERIE 2	SERIE 3	PROMEDIO					
7C	102,9399	102,9388	102,9402	102,9396					
6C	102,1904	102,1880	102,1895	102,1893					
5C	102,6023	102,6030	102,6029	102,6027					
4 C	103,5974	103,5973	103,5973	103,5973					
3 C	104,7899	104,7901	104,7899	104,7900					
2C	105,2838	105,2839	105,2838	105,2839					
1C									
0C	98,4013	98,4006	98,4013	98,4011					
	DIANA	AS DE LAS CO	LUMNAS B-E						
PUNTO	SERIE 1	SERIE 2	SERIE 3	PROMEDIO					
1E	90,1499	90,1497	90,1503	90,1499					
2 E	91,6750	91,6759	91,6754	91,6755					
3E	91,6922	91,6920	91,6919	91,6920					
4 E	90,9051	90,9051	90,9054	90,9052					
5E	90,5656	90,5653	90,5649	90,5652					
6E	90,3159	90,3152	90,3159	90,3157					
7E	90,0260	90,0268	90,0265	90,0265					
7B									
<u>6</u> B									
5B	77,6139	77,6142	77,6142	77,6141					
4 B									
3B									
2B									
1B									

Tabla Número IV.12.- Observaciones de la distancia reducida y valor del promedio, pilar I – campaña 76.

1.3.2.- PROCESADO DE LOS DATOS DE CAMPO DISTANCIOMÉTRICOS.

1.3.2.1.- DETERMINACIÓN DE LAS VARIACIONES DE DISTANCIA.

El principio bajo el cual se determinan las variaciones de distancia que se producen entre campañas, es idéntico al utilizado en la observación angular, diferencia de observables, salvo que en la observación angular se utilizan referencias externas, mientras que en las distancias tan solo requiere la diferencia entre los valores promediados entre campañas directamente:

$$\Delta D_{PILAR}^{DIANA} = \left(L_{DIANA}\right)_{CAMP_{-77}} - \left(L_{DIANA}\right)_{CAMP_{-76}}$$
[IV.20]

Aplicando esta expresión a cualquiera de las dianas o puntos de seguridad se obtienen las variaciones distanciométricas con las que posteriormente se establecerá el hipotético desplazamiento. A continuación, y a modo de ejemplo, se particularizan para el caso concreto del punto de seguridad "A":

$$\Delta D_{PILARIJ}^{PSA} = (32,3922) - (32,3919) = 0,0003 m$$

Operando de forma análoga se consigue obtener el resto de variaciones de distancia para cada uno de los puntos observados, tanto de seguridad como dianas de puntería. En la siguiente tabla se pueden apreciar los resultados de las variaciones de distancia en milímetros, entre ambas campañas, para todos los puntos observados y desde cada pilar.

Presa:	Cohilla		Campaña:	77-76		
Pilar:	TODOS	Observable: Distance				
	PUN	TOS DE SEGUR	IDAD			
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV		
Α	0,29	0,52	-0,07	0,39		
D		0,53	0,41	0,14		
Е	0,29	0,29	-0,03	-0,30		
G	-0,26		-0,20	-0,01		
	DIANAS	DE LAS COLUM	ANAS A-D			
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV		
7A	2,62		2,63			
6A						
5A	2,17	1,42	2,31	2,23		
4A	1,88		1,92			
3A	1,52		1,57			
2A	0,80		0,77			
1A						
0A	-0,42					
1D	0,16					
2D	0,80					
3D	1,25	0,92	1,20			
4D	1,80	1,33	1,84			
5D	2,36	1,58	2,37			
6D	2,52	1,72	2,51			
7D	2,86		2,96			

DIANAS DE LA COLUMNA C									
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV					
7C	2,94		2,96	2,93					
6C	2,85		3,05						
5C	2,24	2,21	2,25	1,95					
4 C	1,95	1,97	1,96	1,60					
3C	1,36	1,18	1,29	1,24					
2C	0,98	0,84	0,98	1,03					
1C		0,53		0,67					
0C	0,20		0,15	0,29					
	DIANAS	DE LAS COLU	MNAS B-E						
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV					
1E	0,26	0,39	0,78	0,26					
2 E			0,72	0,69					
3E	1,42	0,92	0,94	1,65					
4 E	1,57	1,18	1,09	1,47					
5E	2,09	1,69	1,66	1,98					
6E	2,58	2,14	2,11	2,39					
7E	2,98	2,98	2,58	2,38					
7B				-3,15					
6B		1,99		2,26					
5B	1,89	1,79	1,85	2,06					
4B		1,21	1,45	1,72					
3B		1,01		1,17					
2B		0,63		0,70					
1B		0,45	0,50	0,47					

Tabla Número IV.13.	· Variaciones de l	a distancia reducida	a entre las campaña	s 76 y 77.
---------------------	--------------------	----------------------	---------------------	------------

1.3.2.2.- DETERMINACIÓN DE LA ESTABILIDAD DE LOS PILARES.

Antes de iniciar la resolución del hipotético desplazamiento de las dianas de puntería, es de obligado cumplimento comprobar la estabilidad de los pilares. Una vez determinadas las variaciones de distancia se propone resolver dicha indeterminación por el método de variación de coordenadas, ya descrito en el capítulo II del presente documento. Para ello se propone la ecuación de variación de coordenadas y se particulariza para cada una de las observaciones realizadas a los puntos de seguridad, desde el pilar objeto de análisis, tal y como se puede apreciar a continuación aplicado al pilar I:

$$\Delta D_{PILAR}^{PS} = \frac{1}{D_{PILAR}^{PS}} \cdot \left[\Delta X_{PILAR}^{PS} \cdot dx + \Delta Y_{PILAR}^{PS} \cdot dy \right]$$
[IV.21]

Para el punto de seguridad "A":

$$0,00029 = \frac{1}{32,392} \cdot [7,502 \cdot dx - 31,511 \cdot dy]$$

 Para el punto de seguridad "D":
 No hay visual.

 Para el punto de seguridad "E":
 $0,00029 = \frac{1}{211,143} \cdot [-66,869 \cdot dx - 200,275 \cdot dy]$

Para el punto de seguridad "G": $-0,00026 = \frac{1}{123,668} \cdot [-112,859 \cdot dx - 50,564 \cdot dy]$

Tal y como ya se ha descrito, a continuación se propone un sistema de matrices que permita la resolución del sistema de ecuaciones planteadas:

$$\Delta D = A \cdot X$$
[IV.22]

$$\begin{bmatrix} 2.924E - 04\\ 2.890E - 04\\ -2.571E - 04 \end{bmatrix} = \begin{bmatrix} 2.316E - 01 & -9.728E - 01\\ -3.167E - 01 & -9.485E - 01\\ -9.126E - 01 & -4.089E - 01 \end{bmatrix} \cdot \begin{bmatrix} dx\\ dy \end{bmatrix}$$

$$A^{\prime} \cdot \Delta D = P\\ A^{\prime} \cdot A = N \end{bmatrix} P = N \cdot X \Rightarrow X = N^{-1} \cdot P$$
[IV.23]

$$A^{\prime} = \begin{bmatrix} 2.316E - 01 & -3.167E - 01 & -9.126E - 01\\ -9.728E - 01 & -9.485E - 01 & -4.089E - 01 \end{bmatrix}$$

$$N = A^{\prime} \cdot A = \begin{bmatrix} 9.868E - 01 & 4.482E - 01\\ 4.482E - 01 & 2.013E - 00 \end{bmatrix}$$

$$P = A^{\prime} \cdot \Delta D = \begin{bmatrix} 2.108E - 04\\ -4.535E - 04 \end{bmatrix}$$

$$N^{-1} = \begin{bmatrix} 1.127E + 00 & -2.510E - 01\\ -2.510E - 01 & 5.526E - 01 \end{bmatrix}$$

$$X = N^{-1} \cdot P = \begin{bmatrix} dx\\ dy \end{bmatrix} = \begin{bmatrix} 0.0004\\ -0.0003 \end{bmatrix}$$
[IV.24]

La matriz X define en sus dos filas los desplazamientos existentes, pudiéndose por tanto establecer que el desplazamiento según el eje de abcisas resulta 0,4 mm y según el eje de ordenadas -0.3 mm, todo ello según el mismo sistema referencial definido por las coordenadas de las redes implicadas. Una vez establecido el desplazamiento del pilar se hace necesario establecer, dado que existen datos suficientes, las dimensiones de la elipse de error que se produce al realizar el ajuste por mínimos cuadrados, para lo que se emplean las expresiones ya razonadas en el capítulo II de éste documento.

$$R = \Delta D - A \cdot X$$
 [IV.25]

$$R = \Delta D - A \cdot X = \begin{bmatrix} 2,924E - 04\\ 2,890E - 04\\ -2,571E - 04 \end{bmatrix} - \begin{bmatrix} 2,316E - 01 & -9,728E - 01\\ -3.167E - 01 & -9,485E - 01\\ -9,126E - 01 & -4,089E - 01 \end{bmatrix} \cdot \begin{bmatrix} 0,0004\\ -0,0003 \end{bmatrix} = \begin{bmatrix} -8,423E - 05\\ 1,124E - 04\\ -6,039E - 05 \end{bmatrix}$$

$$S^{2} = \frac{R'R}{R} = \frac{R' \cdot R}{R} = 2,388E - 08$$
 [IV.26]

$$S^{2} = \frac{1}{m-n} = \frac{1}{3-2} = 2,388E - 08$$
[1V.20]

$$C = S^{2} N^{-1} = \begin{pmatrix} \sigma_{X}^{2} \sigma_{YX} \\ \sigma_{XY} \sigma_{Y}^{2} \end{pmatrix}$$
[IV.27]

$$C = S^{2}N^{-1} = \begin{pmatrix} \sigma_{x}^{2} & \sigma_{yx} \\ \sigma_{xy} & \sigma_{y}^{2} \end{pmatrix} = 2,338E - 08 \cdot \begin{bmatrix} 1,127E + 00 & -2,510E - 01 \\ -2,510E - 01 & 5,526E - 01 \end{bmatrix} = \begin{bmatrix} 2,636E - 08 & -5,869E - 09 \\ -5,869E - 09 & 1,292E - 08 \end{bmatrix}$$
$$\sigma^{2} = \frac{1}{2} \begin{bmatrix} \sigma_{x}^{2} + \sigma_{y}^{2} \pm \sqrt{(\sigma_{x}^{2} - \sigma_{y}^{2})^{2} + 4\sigma_{xy}^{2}} \end{bmatrix} \Rightarrow \sigma \begin{cases} \sigma_{max} = 0,2 \ mm. \\ \sigma_{min} = 0,1 \ mm. \end{cases}$$
[IV.28]

$$tg 2\theta = \frac{2\sigma_{XY}}{\sigma_Y^2 - \sigma_X^2} \Longrightarrow \theta = 22,8509^s$$
 [IV.29]

Dichos resultados nuevamente se pueden representar mediante una elipse de error con la siguiente geometría:

Figura Número IV.8.- Elipse de error en la determinación del desplazamiento del pilar (Distancias).

Operando de forma análoga se pueden determinar los hipotéticos desplazamientos del resto de pilares, planteándose en el anejo número 4 del presente documento la resolución pormenorizada de la auscultación de todos los pilares.

1.3.2.3.- DETERMINACIÓN DEL MOVIMIENTO DE LAS DIANAS.

Una vez comprobada la estabilidad de los pilares se procede a resolver la auscultación de las dianas de puntería, ubicadas todas ellas en el paramento de la presa. Al igual que con la resolución de los pilares de auscultación, una vez establecidas las variaciones distanciométricas se procede a calcular los desplazamientos mediante el método de variación de coordenadas. La única singularidad que se da en la resolución de las dianas de puntería es que el número de visuales máximas no pasa de cuatro, ya que el número de pilares precisamente es cuatro, con tres el sistema es resoluble y sigue teniendo redundancia, y el número mínimo para poder resolver el sistema es de dos visuales, con el inconveniente en este caso, de no tener datos suficientes para determinar la elipse de error.

Para resolver el sistema se plantea nuevamente la ecuación de variación de coordenadas y se particulariza para cada una de las observaciones realizadas desde cada pilar, tal y como se puede apreciar a continuación aplicado a la diana 7C:

$$\Delta D_{PILAR}^{DIANA} = \frac{1}{D_{PILAR}^{DIANA}} \cdot \left[\Delta X_{PILAR}^{DIANA} \cdot dx + \Delta Y_{PILAR}^{DIANA} \cdot dy \right]$$
[IV.30]

Desde el pilar I:

$$0,00294 = \frac{1}{102,944} [44,885 \cdot dx - 92,643 \cdot dy]$$
Desde el pilar II:
No hay visual.
Desde el pilar III:

$$0,00296 = \frac{1}{107,362} [11,405 \cdot dx - 106,755 \cdot dy]$$
Desde el pilar IV:

$$0,00293 = \frac{1}{94,829} [-41,415 \cdot dx - 85,307 \cdot dy]$$

Tal y como ya se ha descrito, a continuación se plantea un sistema de matrices que permita la resolución del sistema de ecuaciones:

$$\Delta D = A \cdot X$$
 [IV.31]

$$\begin{bmatrix} 2,940E - 03\\ 2,956E - 03\\ 2,932E - 03 \end{bmatrix} = \begin{bmatrix} 4,360E - 01 & -8,999E - 01\\ 1,062E - 01 & -9,943E - 01\\ -4,367E - 01 & -8,996E - 01 \end{bmatrix} \cdot \begin{bmatrix} dx\\ dy \end{bmatrix}$$

$$\begin{bmatrix} A^{t} \cdot \Delta D = P\\ A^{t} \cdot A = N \end{bmatrix} P = N \cdot X \Rightarrow X = N^{-1} \cdot P$$

$$A^{t} = \begin{bmatrix} 4,360E - 01 & 1,062E - 01 & -4,367E - 01\\ -8,999E - 01 & -9,943E - 01 & -8,996E - 01 \end{bmatrix}$$

$$N = A^{t} \cdot A = \begin{bmatrix} 3,921E - 01 & -1,051E - 01\\ -1,051E - 01 & 2,608E - 00 \end{bmatrix}$$

$$P = A^{t} \cdot \Delta D = \begin{bmatrix} 3,156E - 04\\ -8,222E - 03 \end{bmatrix}$$

$$N^{-1} = \begin{bmatrix} 2,578E + 00 & 1,039E - 01\\ 1,039E - 01 & 3,876E - 01 \end{bmatrix}$$

$$X = N^{-1} \cdot P = \begin{bmatrix} dx\\ dy \end{bmatrix} = \begin{bmatrix} -0,00004\\ -0,00315 \end{bmatrix}$$
[IV.33]

La matriz X define en sus dos filas los desplazamientos existentes, pudiéndose por tanto establecer que el desplazamiento según el eje de abcisas resulta -0,04 mm y según el eje de ordenadas -3,15 mm, todo ello según el mismo sistema referencial definido por las coordenadas de las redes implicadas. Una vez establecido el desplazamiento del pilar se hace necesario establecer, dado que existen datos suficientes, las dimensiones de la elipse de error que se produce al realizar el ajuste por mínimos cuadrados, para lo que se emplean las expresiones ya razonadas en el capítulo II de éste documento.

$$R = \Delta D - A \cdot X$$
 [IV.34]

$$R = \Delta \theta - A \cdot X = \begin{bmatrix} 2,940E - 03\\ 2,956E - 03\\ 2,932E - 03 \end{bmatrix} - \begin{bmatrix} 4,360E - 01 & -8,999E - 01\\ 1,062E - 01 & -9,943E - 01\\ -4,367E - 01 & -8,996E - 01 \end{bmatrix} \cdot \begin{bmatrix} -0,00004\\ -0,00315 \end{bmatrix} = \begin{bmatrix} 1,1190E - 04\\ -1,763E - 04\\ 7,589E - 05 \end{bmatrix}$$

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

$$S^{2} = \frac{R'R}{m-n} = \frac{R' \cdot R}{3-2} = 5,101E - 08$$
 [IV.35]

$$C = S^{2} N^{-1} = \begin{pmatrix} \sigma_{X}^{2} \sigma_{YX} \\ \sigma_{XY} \sigma_{Y}^{2} \end{pmatrix}$$
 [IV.36]

$$C = S^{2}N^{-1} = \begin{pmatrix} \sigma_{X}^{2} & \sigma_{YX} \\ \sigma_{XY} & \sigma_{Y}^{2} \end{pmatrix} = 5,101E - 08 \cdot \begin{bmatrix} 2,578E + 00 & 1,039E - 01 \\ 1,039E - 01 & 3,876E - 01 \end{bmatrix} = \begin{bmatrix} 1,315E - 07 & 5,301E - 09 \\ 5,301E - 09 & 1,977E - 08 \end{bmatrix}$$

$$\sigma^{2} = \frac{1}{2} \left[\sigma_{X}^{2} + \sigma_{Y}^{2} \pm \sqrt{(\sigma_{X}^{2} - \sigma_{Y}^{2})^{2} + 4\sigma_{XY}^{2}} \right] \Rightarrow \sigma \begin{cases} \sigma_{max} = 0,4 \, mm \\ \sigma_{min} = 0,1 \, mm \end{cases}$$
[IV.37]

$$tg2\theta = \frac{2\sigma_{XY}}{\sigma_Y^2 - \sigma_X^2} \Longrightarrow \theta = -3,0116^g$$
 [IV.38]

Operando de forma análoga se pueden determinar los hipotéticos desplazamientos del resto de las dianas de puntería, planteándose en el Anejo Número 4 del presente documento la resolución pormenorizada de la auscultación de todas las dianas.

1.3.3.- RESULTADOS DE LA AUSCULTACIÓN CLÁSICA DISTANCIOMÉTRICA.

A continuación se muestran los resultados obtenidos para los hipotéticos desplazamientos de los pilares, en los que se detalla el desplazamiento descompuesto en el eje de abcisas y ordenadas, se define también el desplazamiento en polares y los datos relativos a las elipses de error, eje mayor y menor y acimut del eje mayor.

Presa:	Cohilla			Campaña:	77-76		
RESUL	TADOS				Observable:	Distancias	
DESPLAZAMIENTO				ELI	PSE DE ERI	77-76 Distancias SE DE ERROR σ min (grad) 0,10 22,8509 0,04 -33,2669 0,19 -6,8035 0,14 -01,556	
runio	dX	dY	Despl.	Acimut	σmax	σ min	Acimut
	(mm)	(mm)	(mm)	(grad)	(mm)	(mm)	(grad)
P I	0,35	-0,30	0,46	145,3442	0,17	0,10	22,8509
P II	0,48	-0,27	0,55	132,4557	0,12	0,04	-33,2669
P III	0,12	-0,11	0,17	146,0643	0,21	0,19	-6,8035
P IV	0,34	0,08	0,35	84,3882	0,23	0,14	-21,5569

Tabla Número IV.14.- Desplazamientos y elipses de error de los pilares entre las campañas 76 y 77 (Distancias).

En la tabla anterior se puede apreciar que tanto los desplazamientos como las elipses de error obtenidas se caracterizan por ser inferiores al medio milímetro; considerando que la precisión establecida para este tipo de auscultación es del orden de un milímetro, ésto indica que el desplazamiento está por debajo de la precisión establecida, lo que motiva que no se considere movimiento de los pilares entre las campañas de observación.

Una vez comprobada la no existencia de movimientos en los pilares de auscultación, se muestran a continuación los resultados obtenidos para las dianas de puntería que se realizaba con la misma estructura de datos que los pilares de auscultación, es decir, desplazamiento descompuesto en el eje de abcisas y ordenadas, desplazamiento en polares y los datos relativos a las elipses de error, eje mayor y menor y acimut del eje mayor.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

		DIAN	NAS DE LAS	COLUMNAS	S A-D		
		DESPLAZ	AMIENTO		ELI	PSE DE ERI	ROR
PUNTO	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σmin (mm)	Acimut (grad)
7A	1,65	-2,09	2,66	157,5303			
6A							
5A	1,30	-1,90	2,30	161,7750	0,42	0,17	-18,9706
4 A	1,11	-1,57	1,93	160,8122			
3A	0,87	-1,31	1,57	162,8245			
2A	0,56	-0,57	0,80	150,4797			
1A							
0A							
1D							
2D							
3D	0,42	-1,19	1,26	178,6118	0,10	0,05	-13,5245
4D	0,62	-1,76	1,87	178,3681	0,05	0,02	-13,5636
5D	0,95	-2,21	2,41	174,1822	0,04	0,02	-13,6962
6D	0,98	-2,37	2,57	174,9992	0,09	0,04	-13,6730
7D	1,12	-2,75	2,96	175,3719			
		DI	ANAS DE LA	A COLUMNA	C		
	DESPLAZAMIENTO			ELIPSE DE ERROR			
PUNTO	dX	dY	Despl.	Acimut	σmax	σ min	Acimut
	(mm)	(mm)	(mm)	(grad)	(mm)	(mm)	(grad)
<u>7C</u>	-0,04	-3,15	3,15	200,8241	0,36	0,14	-3,0116
<u>6C</u>	0,22	-3,04	3,05	195,3986			
<u>5C</u>	-0,23	-2,39	2,40	206,0876	0,37	0,18	11,1060
40	-0,18	-2,06	2,07	205,4814	0,39	0,19	10,9075
<u> </u>	-0,05	-1,41	1,41	202,1442	0,15	0,07	10,7001
20	-0,07	-1,06	1,06	204,3407	0,08	0,04	10,7056
	0,11	-0,80	0,81	191,2792			
	-0,12	-0,23	0,20	231,3710	0,15	0,05	-2,2084
	T	DIA	NAS DE LAS	COLUMNAS	S B-E		
		DESPLAZ	AMIENTO		ELI	PSE DE ERF	ROR
PUNTO	dX	dY	Despl.	Acimut	σmax	σ min	Acimut
	(mm)	(mm)	(mm)	(grad)	(mm)	(mm)	(grad)
1E	-0,10	-0,48	0,49	213,0527	0,31	0,15	25,3646
2E	-0,25	-0,69	0,73	221,9447			
3 E	-0,41	-1,31	1,38	219,2637	0,50	0,24	25,3752
4 E	-0,41	-1,42	1,48	217,7221	0,39	0,19	25,5984
5E	-0,60	-1,98	2,07	218,6910	0,39	0,19	25,5251
<u>6E</u>	-0,74	-2,46	2,57	218,6318	0,45	0,22	25,4796
7E	-1,04	-2,83	3,02	222,4443	0,73	0,36	25,8594
7B							
<u>6B</u>	-1,33	-1,94	2,35	238,2161			
5B	-1,16	-1,76	2,11	237,2207	0,20	0,10	38,4334
4B	-0,91	-1,29	1,58	239,1117	0,43	0,15	-48,3348
<u>5B</u>	-0,6/	-1,04	1,23	230,4728			
<u>2</u> B	-0,44	-0,57	0,72	241,9853			
110	-0,50	-0,42	0,32	239,9902	0,05	0,02	-40,1309

Tabla Número IV.15.- Desplazamientos y elipses de error de las dianas de puntería entre las campañas 76 y 77 (Distancias).

A continuación, y con los mismos condicionantes geométricos que en el caso angular, se muestran los dos tipos de gráficos que el autor considera más representativos.

Figura Número IV.9.- Vista en planta de los desplazamientos y elipses de error de dianas de la fila número 7 (Distancias).

Figura Número IV.10.- Vista en alzado de los desplazamientos de la columna C (Distancias).

1.4.- DATOS DEL PÉNDULO DIRECTO.

En el año 1951, al ponerse en servicio la presa, era la más alta de España, y Saltos del Nansa consideró oportuno investigar el procedimiento más idóneo de controlar los movimientos, para lo que envió a Suiza al Ingeniero de Caminos, Canales y Puertos D. José María García González y al Ingeniero Geógrafo D. José Soriano, ya que era el país más avanzado en estas tecnologías. El resultado del análisis aconsejó una evaluación de movimientos del paramento, prácticamente continua, controlados mediante la implantación de un péndulo en la coronación de la presa y el control periódico desde puntos fijos exteriores planteando una auscultación geodésica que permitiese controlar tanto la presa como el propio péndulo.

El péndulo fue encargado a la empresa ICON y se instaló en octubre de 1951, existiendo relación entre los movimientos registrados por la diana 7C y el propio péndulo, todo ello en base a la proximidad de la diana y el extremo del péndulo. En la siguiente figura se puede apreciar la bajante del péndulo a lo largo del paramento de la presa.

Figura Número IV.11.- Bajante del péndulo sobre el paramento de la presa.

En el extremo inferior el péndulo tiene definidos unos ejes XY de medición, claramente establecidos, siendo el error en la lectura inferior a 1 mm. En febrero de 1952 se realizó una campaña con embalse vacío y temperatura mínima, considerándola como el estado inicial. En un principio se observaba semanalmente, siendo en la actualidad cada dos o tres días.

Figura Número IV.12.- Extremo inferior del péndulo donde se encuentra el micrómetro de lectura.

Los datos que se obtienen directamente del péndulo son las dos coordenadas cartesianas que determinan la posición vertical del péndulo, obteniéndose posteriormente el desplazamiento por diferencia de posiciones. Dichas coordenadas se obtienen en un micrómetro tal y como se puede apreciar en la siguiente figura.

Figura Número IV.13.- Micrómetro de lectura del péndulo.

En la siguiente tabla se puede apreciar el conjunto de datos que se observan en cada campaña de observación y que básicamente son los siguientes, número de lectura, fecha de la lectura, las temperaturas en el interior, en el pie y en la coronación de la presa, las coordenadas X e Y que definen la posición del péndulo, la cota de agua embalsada y la campaña de auscultación geodésica a la que corresponde cada lectura realizada en el péndulo. Dado el gran volumen de lecturas que se han realizado desde su inicio, el autor ha considerado suficiente presentar las lecturas que afectan al intervalo de tiempo transcurrido precisamente entre las campañas objeto de análisis.

Número Lectura	Fecha Lectura	Temp. °C Interior	Temp. °C Repie	Temp. °C Coronac.	Lectura X(mm)	Lectura Y(mm)	Cota de Agua Embalsada	Camp. Auscult
4511	20.05.08	6	2	4	8,43	12,07	58,40	
4512	23.05.08	6	15	16	8,11	11,74	57,75	76
4513	27.05.08	6	5	7	8,57	12,19	59,34	
4514	03.06.08	6	5	7	8,97	12,54	61,24	
4515	06.06.08	6	7	8	8,62	12,23	60,39	
4516	10.06.08	6	9	11	8,54	12,17	59,06	
4517	13.06.08	6	8	10	9,01	12,54	61,25	
4518	17.06.08	6	7	8	8,59	12,21	60,06	
4519	20.06.08	6	9	11	8,38	12,01	58,21	
4520	24.06.08	6	12	14	7,90	11,49	54,49	
4521	27.06.08	6	10	12	7,62	11,28	53,55	
4522	01.07.08	6	14	16	7,39	10,96	50,57	
4523	09.07.08	6	16	18	6,76	10,34	47,81	
4524	11.07.08	6	6	8	5,13	8,67	36,26	
4525	16.07.08	6	8	9	4,64	8,16	33,14	
4526	18.07.08	6	8	10	4,16	7,71	29,80	
4527	22.07.08	6	3	5	3,21	6,69	24,84	
4528	25.07.08	6	9	11	3,15	6,66	24,35	
4529	29.07.08	6	11	12	2,89	6,49	23,43	
4530	01.08.08	6	11	13	2,83	6,45	23,30	
4531	06.08.08	6	10	12	2,69	6,24	22,86	
4532	12.08.08	6	14	16	3,32	6,86	25,26	

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

4533	19.08.08	6	10	12	3,93	7,57	27,72	
4534	22.08.08	6	14	15	4,01	7,62	28,80	
4535	26.08.08	6	4	6	4,32	7,93	30,18	
4536	29.08.08	6	9	10	4,38	7,99	30,90	
4537	02.09.08	6	11	13	4,38	7,99	31,95	
4538	05.09.08	6	16	18	4,59	8,17	32,74	
4539	09.09.08	6	14	17	4,71	8,26	33,59	
4540	12.09.08	6	4	5	5,06	8,69	35,29	
4541	16.09.08	6	4	5	5,24	8,80	36,35	
4542	19.09.08	6	9	11	5,31	8,92	36,92	
4543	23.09.08	6	5	7	5,43	8,99	37,60	
4544	26.09.08	6	5	7	5,51	9,12	38,11	
4545	30.09.08	6	9	11	5,59	9,21	38,71	
4546	03.10.08	6	4	6	5,49	9,09	38,11	
4547	07.10.08	6	12	14	5,36	8,89	37,26	
4548	10.10.08	6	7	9	5,42	8,96	37,61	
4549	14.10.08	6	8	9	5,27	8,81	36,69	
4550	17.10.08	6	8	10	5,09	8,71	35,68	
4551	21.10.08	6	9	11	4,82	8,39	34,72	
4552	24.10.08	6	1	3	5,40	8,99	37,62	
4553	28.10.08	6	1	2	5,43	9,01	37,83	
4554	31.10.08	6	-1	-1	5,91	9,54	41,06	
4555	04.11.08	6	5	6	5,98	9,52	44,12	
4556	07.11.08	6	3	4	6,01	9,56	44,63	
4557	11.11.08	6	4	6	6,11	9,68	45,81	
4558	14.11.08	6	2	4	6,51	10,09	47,03	
4559	18.11.08	6	3	5	6,07	9,61	44,94	
4560	21.11.08	6	4	6	6,72	10,31	47,53	
4561	28.11.08	6	-4	-3	7,57	11,22	53,69	
4562	05.12.08	6	2	4	6,94	10,59	49,60	
4563	09.12.08	6	2	4	7,96	11,54	54,87	
4564	12.12.08	6	-1	0	8,41	12,05	58,38	
4565	19.12.08	6	0	2	8.01	11.59	57.25	
4566	23.12.08	6	-2	0	8.19	11.74	55.86	
4567	26.12.08	6	0	1	7.76	11.32	54.01	
4568	30.12.08	6	0	1	7.49	10.98	51.37	
4569	02.01.09	6	1	3	7.53	11.13	52.40	
4570	20.01.09	6	-4	-3	5.97	9.61	42.28	
4571	23.01.09	6	11	13	6.09	9.63	43.76	
4572	27.01.09	6	1	4	6.97	10.61	49 58	
4573	30.01.09	6	3	5	7 51	11.06	51.52	
4574	03 02 09	6	-3	_3	7,51	11,00	51,52	
4575	06.02.09	6	-1	-2	7 32	10.89	50.18	
4576	10.02.09	6	3	6	7 37	10,07	50.15	
4577	13 02 00	6	_3		7 50	11 16	51.85	
1578	17.02.09	6	-3	-2	7 30	10.06	50.56	
4570	20.02.09	6	-3	-3	6.87	10,90	18 07	
4319	20.02.09	6	-4	-4 0	5.01	0.46	40,07	
4500	24.02.09	6	14	0 17	5.04	9,40	41.25	77
4501	03 02 00	6	14	2	5 56	0.14	41,43	11
4302	05.05.09	0	-2	-2	5,50	7,14	30,47	

Tabla Número IV.16.- Lecturas del péndulo entre las campañas 76 y 77.

Así como todas las redes empleadas en la auscultación geodésica utilizan el mismo sistema referencial, en el momento de instalación del péndulo en la presa se colocó con un sistema de referencia propio. Si se representan todas las observaciones en un sistema cartesiano cualquiera, se puede apreciar que todas las posiciones del péndulo se caracterizan por estar en una dirección que obviamente debe ser radial con la geometría de la presa, tal y como se puede apreciar en la siguiente figura en la que se establece el sistema de referencia con los datos del péndulo tomados en la campaña 76 y 77.

Figura Número IV.14.-Representación de las diferentes posiciones del péndulo.

Teniendo en cuenta la dirección radial del movimiento de la presa entre campañas, dirección norte-sur en el sistema de referencia empleado en la auscultación geodésica, la magnitud del movimiento es fácilmente determinable por la diferencia de posiciones del péndulo.

Posición del péndulo en la campaña 76: (8,11/11,74)Posición del péndulo en la campaña 77: (5,94/9,56) $\begin{cases} \Delta X = 8,11-5,94 = 2,17 \text{ mm.} \\ \Delta Y = 11,74-9,56 = 2,18 \text{ mm.} \end{cases} \Rightarrow Desplazamiento = \sqrt{2,17^2 + 2,18^2} = 3,08 \text{ mm.}$ $Desplazamiento: \begin{cases} Módulo 3,08 \text{ mm.} \\ Acimut 200,0000^g \end{cases}$ [IV.39]

Este procedimiento permite calcular de forma rápida y sencilla el módulo del vector desplazamiento, pero debido al grado de libertad que se produce en la definición del sistema, se produce una indeterminación en el establecimiento del acimut del vector, aunque si se representan todas las lecturas en el sistema del referencia del péndulo se obtiene la dirección genérica de dicho desplazamiento, pudiéndose, por tanto, obtener tanto el sistema referencial como el desplazamiento caracterizado por su módulo y vector, tal y como se puede apreciar en la siguiente figura.

Figura Número IV.15.- Sistema de referencia empleado por el péndulo.

Obteniéndose el vector desplazamiento determinado con el péndulo y que nuevamente se puede representar tanto en planta como en alzado, con los mismos criterios geométricos que para el caso angular y distanciométrico, tal y como se puede apreciar en las siguientes figuras. Además cabe reseñar, aunque ya se ha comentado anteriormente, que dicho desplazamiento se puede asimilar a la diana 7C por su cercanía en la posición del instrumental y de la señalización con la que se observan ángulos y distancias.

Figura Número IV.16.- Vista en planta del desplazamiento determinado por el péndulo.

Figura Número IV.17.- Vista en alzado del desplazamiento determinado por el péndulo.

2.- CÁLCULO POR MÉTODOS DE OBSERVACIÓN CON LÁSER ESCÁNER.

2.1.- DESCRIPCIÓN DEL INSTRUMENTAL.

En el capítulo III del presente documento se analizaron los diferentes aspectos genéricos del láser escáner, particularizándose a continuación al caso concreto del instrumento empleado en contraste objeto de la tesis doctoral, Leica HDS3000. Es sin duda alguna uno de los equipos más difundidos a nivel mundial, de los más precisos y con más prestaciones que existen actualmente en el mercado, siendo éstos los motivos por los que ha sido elegido para el contraste.

2.1.1.- COMPONENTES DEL EQUIPO.

Los principales elementos que componen un equipo de estas características son los siguientes:

Figura Número IV.18.- Componentes del equipo HDS3000.

- a) Láser Escáner HDS3000.
- b) Ordenador portátil.
- c) Cable Ethernet.
- d) Cargador para fuente de alimentación con cable para suministro de energía.
- e) Alimentación A/C con cable para suministro de energía.
- f) Cable para suministro de energía.
- g) Fuente de alimentación.
- h) Base nivelante con plomada óptica.
- i) Trípode.
- j) Estuche de transporte para el Láser Escáner HDS3000.
- k) Estuche de transporte para fuente de alimentación.

Los diferentes elementos que componen por sí mismo el láser escáner son los siguientes:

Figura Número IV.19.- Detalles del HDS3000.

- a) Manija.
- b) Cubierta para ventana superior.
- c) Cubierta para ventana frontal.
- d) Indicadores LED.
- e) Conector para fuente de alimentación.
- f) Conector Ethernet.
- g) Ventana superior/ventana frontal.
- h) Nivel de burbuja.
- i) Botón QuickScanTM.
- j) Botón de seguro.
- k) Soportes del instrumento.

2.1.2.- CAMPO DE VISIÓN.

El instrumento cuenta con un sistema de doble ventana que cubre un campo de visión de 360 x 270 grados. La ventana principal (a) mide hasta 45 grados por debajo del horizonte y hasta 32 grados por encima del horizonte. La ventana superior (b) mide desde 22,5 grados hasta el cenit (90°).

Figura Número IV.20.- Detalle del campo de visión del equipo.

2.1.3.- DATOS TÉCNICOS DEL EQUIPO.

Los datos técnicos que caracterizan el equipo pormenorizadamente son los siguientes:

2.1.3.1.- DATOS TÉCNICOS GENERALES DEL INSTRUMENTO.

Tipo de instrumento	 Escáner láser de impulsos de alta velocidad con compensador de dos ejes, con precisión, alcance y campo visual topográfico 	
Interfaz de usuario	 Ordenador portátil o Tablet PC 	
Controlador escáner	Servomotor	
Cámara	Cámara digital integrada de alta resolución	

Tabla Número IV.17.- Datos técnicos generales del instrumento.

2.1.3.2.- FUNCIONAMIENTO DEL SISTEMA.

Precisión de medición simple	 Con alcance de 1 a 50 m, 1 δ => Precisión 6mm Sujeto a superficie modelada => 4mm 	
	 Ángulo (horizontal/vertical) 60 micro radianes/1 δ 	
Precisión de superficie modelada/ruido	• 2 mm, 1 δ	
Adquisición de puntería	 Ajuste algorítmico planar para punterías HDS => 2 mm desviación típica 	
Compensador de dos ejes	 Precisión estabilización: 1,5" / 7,275 micro radianes 	
Control de integridad de datos	 Comprobación periódica automática durante el inicio y el funcionamiento 	

Tabla Número IV.18.- Datos sobre el funcionamiento del sistema.

2.1.3.3.- SISTEMA DE LÁSER ESCÁNER.

Tipo	 Láser escáner de impulsos 	
Color	 Verde visible. 	
Alcance	• 300 m al 90% y 134 m al 18% de albedo.	
Velocidad de escaneo	 Hasta 4.000 puntos/segundo, 	
	 Tamaño del punto, de 0 a 50 metros: 6 mm. 	
	 Espaciamiento entre puntos: Selección horizontal y vertical; 1,2 mm de espaciamiento mínimo, cubriendo todo el alcance. 	
Resolución de escaneo	 Densidad máxima de muestra: 1,2 mm. 	
	• Muestra:	
	• Línea de barrido horizontal: 20.000 puntos/línea.	
	• Columna de barrido vertical: 5.000 puntos/columna.	
Campo visual (por barrido)	 Horizontal: 360° (máximo) 	
	 Vertical: 270° (máximo) 	
Óptica de escaneo	 Espejo individual, panorámico y ventana frontal y superior Protegido por la carcasa y dos cristales. 	
Motores de escaneo:	 Controlador directo, sin escobillas 	
Transferencia de datos y alimentación	 Sin contacto: enlace óptico de datos y transferencia inductiva de alimentación. 	
Comunicaciones	 Dirección estática de Protocolo de Internet (IP). 	
Imagen digital a color integrada	 Resolución de pixel personalizada: baja, media, alta. 	

	 Imagen individual de 24° x 24°: 1024 x 1024 pixeles (1 megapixel) en configuración "Alta". 	
	 Cobertura total de 360° x 270°: 111 imágenes, aprox. 64 megapixeles, rectificación espacial automática. 	
Indicadores de estado:	 3 indicadores LED indican cuando el sistema está listo, si el láser está encendido y el estado de comunicación. 	
Nivel circular	• Externo.	

Tabla Número IV.19.- Propiedades fundamentales del sistema del láser escáner.

2.1.3.4.- SISTEMA ELÉCTRICO.

Fuente de alimentación	 36 Voltios en corriente continua y alterna. 		
Consumo de energía	 Menor que 80 W en promedio 		
Tipo de batería	 Batería de plomo sellada. 		
Puertos de alimentación	 Dos de uso simultáneo y de intercambio en caliente 		
Duración	 Mayor que 6 horas, uso continuo típico, utilizado ambas baterías simultáneamente. 		
Indicadores	 Cinco (5) LED indican el cambio del estado y los niveles d energía (bajo/medio/alto) 		

Tabla Número IV.20.- Propiedades fundamentales del sistema eléctrico del láser escáner.

2.1.3.5.- ESPECIFICACIONES AMBIENTALES.

Temperatura	 HDS3000 => Functionamiento 0-40°C 		
	 HDS3000 => Almacenamiento -25-65°C. 		
	 Alimentación D/C => Funcionamiento -20-120°C 		
	 Alimentación D/C => Almacenamiento -20-120°C. 		
	 Alimentación A/C => Funcionamiento 0-70°C 		
	 Alimentación A/C => Almacenamiento -40-85°C. 		
Protección agua, polvo y arena	• IP52 (IEC 60529)		
Humedad	 Máx. 95 % no condensante. 		
Iluminación	 Funcionamiento completo desde condiciones de luz solar brillante hasta oscuridad total. 		

Tabla Número IV.21.- Especificaciones ambientales del equipo.

2.1.3.6.- CARACTERÍSTICAS FÍSICAS.

Dimensiones	 Escáner/HDS3000 => 265 x 370 x 510 milímetros.
	 Fuente de alimentación => 165 x 236 x 215
	 Escáner => 19,5 Kg.
Peso	 HDS3000 => 16,0 Kg.
	 Fuente de alimentación => 12,0 Kg.

Tabla Número IV.22.- Características físicas del equipo.

2.1.3.7.- ACCESORIOS.

Este tipo de equipos requiere además una serie de elementos accesorios como pueden ser los siguientes:

HARDWARE.

- Ordenador portátil con los siguientes requerimientos mínimos:
 - i. Procesador Pentium M a 1,4 GHz o mayor.
 - ii. Memoria RAM del sistema 512 MB o mayor.
 - iii. Disco duro de 40 GB o mayor.
 - iv. Conexión de red Ethernet.
 - v. Sistema operativo Windows XP o 2000.
 - vi. Batería adicional (recomendable).
- Tablet PC.
- Tablillas de puntería HDS y accesorios para tablillas de puntería.

Los requerimientos mínimos para las operaciones de modelado son diferentes, dependiendo exclusivamente del software con el que se procesan los datos. El fabricante Leica propone que el procesado de datos se lleve a cabo con una herramienta informática desarrollada íntegramente para la gestión de datos tomados con equipos HDS. Esta aplicación se denomina Cyclone y se comercializa de forma independiente al equipo.

- SOFTWARE Cyclone-scan.

Todas las opciones y herramientas que posee esta aplicación informática se pueden consultar en los manuales de usuario que el fabricante entrega al cliente. Con el objetivo de que este epígrafe no se convierta en un manual de usuario, a continuación se describen de forma breve las principales herramientas que aporta la aplicación informática, remitiendo al lector interesado en profundizar en este tema a dichos manuales.

- Densidad de escaneo vertical y horizontal independiente.
- Filtros de escaneo, velocidad e intensidad.
- Selección del área de barrido.
- Corrección atmosférica.
- Alcance de barrido previo con un disparo.
- Visualización de puntos de barrido y campo visual.
- Adquisición automática de señales de puntería HDS.
- Radiación.
- Puesta en estación con informes mediante intersección inversa.
- Puesta en estación con informes mediante punto conocido.
- Puesta en estación con informes mediante azimut conocido.
- Entrada directa de coordenadas para el punto estación.
- Compensación de dos ejes elegible.
- Entrada de altura de señal de puntería e instrumento.
- Control luminoso para imágenes digitales.
- Adquisición y visualización de imágenes digitales.

- Configuración de resolución de imagen (alta, media, baja).
- Posibilidad para utilizar imágenes digitales externas.
- Visualización 3D en tiempo real durante el barrido.
- Análisis, desplazamiento y rotación de nubes de puntos.
- Creación de mallas y modelos 3D.
- Visualización de nubes de puntos con intensidad o color verdadero.
- Creación automática de mosaico panorámico de imágenes digitales.
- Visualizador general de imágenes digitales.
- Medición y dimensión: distancia geométrica, ΔX , ΔY , ΔZ .
- Creación y gestión de anotaciones y capas.
- Guardar y restaurar vistas.

2.1.3.8.- FORMATOS DE DATOS.

Los principales formatos con los que es capaz de importar y exportar datos la herramienta informática son los siguientes:

- Formatos de importación directa.
 - Formato en base de datos IMP propio de Cyclone.
 - Formato para intercambio de datos Cyclone Object Exchange (COE).
 - Datos de puntos ASCII (XYZ, SVY, PTS, PTX, TXT).
 - Formato DBX para X-Función de Leica.
 - LandXML // ZFS // ZFC // 3DD // SIMA.
- Formatos de exportación directa.
 - Formato de datos de puntos ASCII (XYZ, SVY, PTS, PTX, TXT).
 - Formato DBX para X-Función de Leica.
 - LandXML.
 - Formato SIMA.
- Formatos de exportación indirecta.
 - AutoCAD.
 - MicroStation.
 - AutoPLANT.

2.2.- AUTOCALIBRACIÓN DEL INSTRUMENTO.

2.2.1.- INTRODUCCIÓN.

La calibración de un explorador refleja la relación entre los observables que captura el propio explorador (distancia, dirección horizontal y ángulo de la vertical) y los errores instrumentales sistemáticos. Para llevar a cabo la calibración se hace necesario disponer de un laboratorio de calibración 3D instalado a tales efectos, que debe contener al menos un campo de calibración fotogramétrica y el suficiente número de puntos de control en un determinado sistema referencial con la suficiente precisión para poder contrastar con los resultados que se obtengan de la observación

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

realizada con el explorador objeto de la calibración. En la siguiente figura se muestra parte de un laboratorio empleado habitualmente para realizar calibraciones, en la que se pueden apreciar los diferentes elementos que componen un laboratorio de esta tipología.

Figura Número IV.21.- Imagen de una parte del laboratorio de calibración.

El número de puntos o blancos no debe bajar de la veintena y tipología depende de los exploradores que se pretenda calibrar, siendo la condición fundamental que los blancos se distribuyan uniformemente por el laboratorio empleando todas las paredes y el techo del propio laboratorio, no debiéndose colocar ninguno en el suelo para garantizar su perdurabilidad. La posición de dichos puntos se debe determinar con una estación topográfica y las desviaciones estándar de las coordenadas ajustadas de los diferentes blancos deben estar por debajo de los 0,5 milímetros en cada coordenada.

2.2.2.- AUTOCALIBRACIÓN.

2.2.2.1.- OBSERVACIONES GENERALES.

Como ya se ha descrito anteriormente, el modelo de calibración para un explorador láser expresa la relación entre los observables (distancia, dirección horizontal y ángulo de la vertical) y los errores instrumentales sistemáticos. Los exploradores láser son considerablemente diferentes de los instrumentos tradicionalmente empleados en observación clásica, lo que hace tremendamente difícil establecer las analogías entre ambos tipos de equipos. Los exploradores láser pueden ser considerados como variante "rápida" de las estaciones topográficas robotizadas, igualmente utilizando el principio de la medida mediante polares. Por esta razón, el modelo geométrico del último se ha utilizado como aproximación del modelo geométrico del explorador láser en muchas investigaciones. Mientras que el modelo geométrico de la estación topográfica pudo ser absolutamente adecuado para los exploradores láser, experimentos realizados en calibración con diversos exploradores por [LICH-05] han demostrado errores sistemáticos adicionales no explicados por el modelo total del error de la estación topográfica.

La mayoría de las investigaciones sobre escaneados con láser terrestre (TLS) han considerado la calibración como sistema de procedimientos independientes, siendo el procedimiento más eficaz e integral la "*Autocalibración*", donde se estiman simultáneamente los parámetros externos de la orientación del explorador (EOP) con respecto al sistema coordenado elegido, y los errores instrumentales sistemáticos o parámetros de calibración. Entre otros parámetros, en este procedimiento se puede determinar la correlación entre los EOP y los parámetros de calibración. Según [XU-93], la calibración de un sensor tipo TLS consiste en los pasos siguientes:

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

- *Medidas*. Es necesario obtener datos para la valoración de los parámetros de calibración. Las medidas se realizan en el laboratorio anteriormente descrito.
- *Modelado*. Analizando el diseño y tolerancias de fabricación del sensor se crea un modelo analítico de los errores instrumentales, que constituye en definitiva el modelo de la calibración. En el contexto TLS, este paso es probablemente el más difícil de acometer.
 - El conocimiento de los errores instrumentales sistemáticos es limitado debido al diseño propio de los exploradores.
 - Las especificaciones que dan los fabricantes, referidas al explorador no están estandarizadas, por lo que al referirlas a medidas únicas de un punto, hace que no se pueda verificar por el usuario.
- *Identificación.* Se identifican los parámetros de calibración desconocidos usando un algoritmo especialmente diseñado para ello.
- *Corrección*. El modelo desarrollado en la calibración se puede utilizar para corregir los datos de TLS, y los resultados obtenidos después de la corrección pueden ayudar a verificar el modelo y a encontrar errores adicionales no considerados anteriormente.

A continuación se analiza el procedimiento que sigue la autocalibración en TLS y su grado de acercamiento a los pasos citados anteriormente, comenzando con una descripción de las medidas a tomar con el explorador propiamente dicho, en el caso del presente estudio el HDS3000.

2.2.2.- POSICIONAMIENTO DEL EXPLORADOR.

Para realizar la calibración se hace necesario llevar a cabo una serie de exploraciones en diferentes posiciones del laboratorio de calibración; por tanto, es conveniente realizar exploraciones múltiples tomadas en diversos ángulos de incidencia del rayo láser y a varios ángulos verticales. La posición del centro del explorador en el sistema externo se debe determinar por un método que permita la máxima precisión posible, siendo lo ideal que se realice con el mismo rango de precisión con los puntos que se van a utilizar de control. Posteriormente, se debe centrar y nivelar el equipo en su posición de forma cuidadosa, medir la altura del instrumento con una cinta métrica e introducir dicha medida en el software antes de la exploración.

Para orientar el explorador se puede hacer una exploración a un blanco con coordenadas conocidas a priori en el sistema externo o con un acimut también conocido a priori; aún así, no es imprescindible puesto que la posición del blanco se determina en la exploración. Los errores sistemáticos en la dirección horizontal medida causarán un error en la orientación del explorador que será tenida en cuenta. Después de la exploración, las coordenadas de los centros de los puntos de control se calculan con la correspondiente aplicación informática, obteniéndose unos valores medios de las coordenadas XYZ de las vueltas del rayo láser de los puntos de control, en los que se deben discriminar los puntos con resultados dudosos.

2.2.2.3.- EL MODELO MATEMÁTICO.

Tanto los parámetros externos de la orientación (EOP) del explorador como los parámetros de la transformación entre las coordenadas de los puntos obtenidas por el explorador (coordenadas instrumentales) y el sistema coordenado externo (coordenadas laboratorio), se estiman usando un modelo de transformación Helmert de 6 parámetros, es decir, tres traslaciones y tres rotaciones.

No se suele estimar el factor de escala puesto que se entiende que la distancia entre el explorador y los puntos de control es pequeña debido a que las dimensiones del laboratorio también se presupone que son reducidas, lo que motiva que dicho factor no se puede obtener de forma fiable.

Como en la autocalibración, el punto de partida consiste en asumir que los errores instrumentales en los exploradores láser son similares a los de la una estación topográfica robotizada, es decir, el error cero " k_0 ", colimación "c", los errores horizontales del eje "i", y el error del índice vertical " ζ ". Se puede utilizar el siguiente modelo matemático [LICH-05]:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix} + R(\alpha_1, \alpha_2, \alpha_3) \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
[IV.40]

donde:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} (r_{scan} - k_o) \cdot \cos[\varphi_{scan} - (c) - (i)] \cdot \cos(\theta_{scan} - \zeta) \\ (r_{scan} - k_o) \cdot sen[\varphi_{scan} - (c) - (i)] \cdot \cos(\theta_{scan} - \zeta) \\ (r_{scan} - k_o) \cdot sen(\theta_{scan} - \zeta) \end{bmatrix}$$
[IV.41]

Aquí $[X,Y,Z]^T$ y $[x,y,z]^T$ son las coordenadas de los centros del punto en el sistema coordenado externo y del explorador respectivamente, $[\Delta X, \Delta Y, \Delta Z]^T$ es el vector de traslación en los parámetros de la transformación Helmert, $R(\alpha_1, \alpha_2, \alpha_3)$ es la matriz de rotación entre los dos sistemas, que es función de los ángulos de la rotación (α_1 , α_2 , α_3) sobre los ejes x,y,z respectivamente, r_{scan}, φ_{scan} y θ_{scan} son las distancias medidas, direcciones horizontales y ángulos verticales, respectivamente:

$$(c) = \frac{c}{\cos \theta_{scan}} \iff (i) = i \cdot \tan \theta_{scan}$$
 [IV.42]

Utilizando signos negativos en los términos del error de la ecuación [IV.41] puesto que el "error" se define convencionalmente como la "observación" menos "valor verdadero". Las medidas originales r_{scan} , ϕ_{scan} y θ_{scan} no se encuentran disponibles después de la exploración ya que requieren un cómputo previo empleando las coordenadas del centro del blanco de la exploración:

$$r_{scan} = \sqrt{x^2 + y^2 + z^2} \iff \varphi_{scan} = \arctan\left(\frac{y}{x}\right) \iff \theta_{scan} = \arctan\left(\frac{z}{\sqrt{x^2 + y^2}}\right)$$
 [IV.43]

La forma explícita de la matriz $R(\alpha_1, \alpha_2, \alpha_3)$ de la ecuación [IV.40] se obtiene mediante la siguiente expresión [FAN-05]:

$$R(\alpha_{1}, \alpha_{2}, \alpha_{3}) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} =$$

$$[IV.44]$$

$$= \begin{bmatrix} \cos \alpha_{2} \cdot \cos \alpha_{3} & \cos \alpha_{1} \cdot \sin \alpha_{3} + \sin \alpha_{1} \cdot \sin \alpha_{2} \cdot \cos \alpha_{3} & \sin \alpha_{1} \cdot \sin \alpha_{3} - \cos \alpha_{1} \cdot \sin \alpha_{2} \cdot \cos \alpha_{3} \\ -\cos \alpha_{2} \cdot \sin \alpha_{3} & \cos \alpha_{1} \cdot \cos \alpha_{3} - \sin \alpha_{1} \cdot \sin \alpha_{2} \cdot \sin \alpha_{3} & \sin \alpha_{1} \cdot \cos \alpha_{3} + \cos \alpha_{1} \cdot \sin \alpha_{2} \cdot \sin \alpha_{3} \\ \sin \alpha_{2} & -\sin \alpha_{1} \cdot \cos \alpha_{2} & \cos \alpha_{1} \cdot \cos \alpha_{2} \end{bmatrix}$$

La autocalibración se realiza mediante ajuste por mínimos cuadrados quedando la ecuación linealizada tal y como sigue:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} - D^{0} = \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix} + \frac{\partial D^{0}}{\partial \alpha_{1}} \delta \alpha_{1} + \frac{\partial D^{0}}{\partial \alpha_{2}} \delta \alpha_{2} + \frac{\partial D^{0}}{\partial \alpha_{3}} \delta \alpha_{3} + \frac{\partial D^{0}}{\partial k_{0}} \delta k_{0} + \frac{\partial D^{0}}{\partial c} \delta c + \frac{\partial D^{0}}{\partial i} \delta i + \frac{\partial D^{0}}{\partial \zeta} \delta \zeta \qquad [IV.45]$$

donde:

_

_

$$D^{0} = R(\alpha_{1}^{0}, \alpha_{2}^{0}, \alpha_{3}^{0}) \cdot \begin{bmatrix} x^{0} \\ y^{0} \\ z^{0} \end{bmatrix} = \begin{bmatrix} r_{11}^{0} & r_{12}^{0} & r_{13}^{0} \\ r_{21}^{0} & r_{22}^{0} & r_{23}^{0} \\ r_{31}^{0} & r_{32}^{0} & r_{33}^{0} \end{bmatrix} \cdot \begin{bmatrix} (r_{scan} - k_{0}^{0}) \cdot \cos[\varphi_{scan} - (c)^{0} - (i)^{0}] \cdot \cos(\theta_{scan} - \zeta^{0}) \\ (r_{scan} - k_{0}^{0}) \cdot sen[\varphi_{scan} - (c)^{0} - (i)^{0}] \cdot \cos(\theta_{scan} - \zeta^{0}) \\ (r_{scan} - k_{0}^{0}) \cdot sen(\theta_{scan} - \zeta^{0}) \end{bmatrix}$$
[IV.46]

En esta ecuación los exponentes cero indican que se pueden utilizar los valores aproximados de los parámetros desconocidos; por lo tanto, en la autocalibración se estiman las correcciones a estos valores $\delta \alpha_{4}$, $\delta \alpha_{2}$, etc. El vector D^o contiene las observaciones del láser escáner r_{scan} , ϕ_{scan} y θ_{scan} . Los valores aproximados para todos los parámetros de calibración se fijan a los ceros puesto que es razonable asumir que el fabricante intenta reducir al mínimo errores instrumentales tanto cuanto sea posible. La forma explícita de las derivadas de la ecuación [IV.45] se da a continuación, basándose parcialmente en los análisis realizados por [FAN-05]:

$$\frac{\partial D^{0}}{\partial \alpha_{1}} = \begin{bmatrix} 0 & -r_{13}^{0} & r_{12}^{0} \\ 0 & -r_{23}^{0} & r_{22}^{0} \\ 0 & -r_{33}^{0} & r_{32}^{0} \end{bmatrix} \cdot \begin{bmatrix} x^{0} \\ y^{0} \\ z^{0} \end{bmatrix}$$
[IV.47]

$$\frac{\partial D^{0}}{\partial \alpha_{2}} = \begin{bmatrix} -\sec \alpha_{2}^{0} \cdot \cos \alpha_{3}^{0} & -r_{32}^{0} \cdot \cos \alpha_{3}^{0} & -r_{33}^{0} \cdot \cos \alpha_{3}^{0} \\ \sec \alpha_{2}^{0} \cdot \sec \alpha_{3}^{0} & r_{32}^{0} \cdot \sec \alpha_{3}^{0} & r_{33}^{0} \cdot \sec \alpha_{3}^{0} \\ \cos \alpha_{2}^{0} & \sec \alpha_{1}^{0} \cdot \sec \alpha_{2}^{0} & -\cos \alpha_{1}^{0} \cdot \sec \alpha_{2}^{0} \end{bmatrix} \cdot \begin{bmatrix} x^{0} \\ y^{0} \\ z^{0} \end{bmatrix}$$
[IV.48]

$$\frac{\partial D^{0}}{\partial \alpha_{3}} = \begin{bmatrix} r_{21}^{0} & r_{22}^{0} & r_{23}^{0} \\ -r_{11}^{0} & -r_{12}^{0} & -r_{13}^{0} \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x^{0} \\ y^{0} \\ z^{0} \end{bmatrix}$$
[IV.49]

$$\frac{\partial D^{0}}{\partial k_{0}} = -R(\alpha_{1}^{0}, \alpha_{2}^{0}, \alpha_{3}^{0}) \cdot \begin{bmatrix} \cos\left[\varphi_{scan} - (c)^{0} - (i)^{0}\right] \cdot \cos\left(\theta_{scan} - \zeta^{0}\right) \\ sen\left[\varphi_{scan} - (c)^{0} - (i)^{0}\right] \cdot \cos\left(\theta_{scan} - \zeta^{0}\right) \\ sen\left(\theta_{scan} - \zeta^{0}\right) \end{bmatrix}$$
[IV.50]

$$\frac{\partial D}{\partial c}^{0} = \frac{1}{\cos \theta_{scan}} \cdot R(\alpha_{1}^{0}, \alpha_{2}^{0}, \alpha_{3}^{0}) \cdot \begin{bmatrix} (r_{scan} - k_{0}^{0}) \cdot sen [\varphi_{scan} - (c)^{0} - (i)^{0}] \cdot \cos(\theta_{scan} - \zeta^{0}) \\ - (r_{scan} - k_{0}^{0}) \cdot \cos[\varphi_{scan} - (c)^{0} - (i)^{0}] \cdot \cos(\theta_{scan} - \zeta^{0}) \\ 0 \end{bmatrix}$$
[IV.51]

$$\frac{\partial D}{\partial i}^{0} = \tan \theta_{scan} \cdot R(\alpha_{1}^{0}, \alpha_{2}^{0}, \alpha_{3}^{0}) \cdot \begin{bmatrix} (r_{scan} - k_{0}^{0}) \cdot sen [\varphi_{scan} - (c)^{0} - (i)^{0}] \cdot \cos(\theta_{scan} - \zeta^{0}) \\ - (r_{scan} - k_{0}^{0}) \cdot \cos[\varphi_{scan} - (c)^{0} - (i)^{0}] \cdot \cos(\theta_{scan} - \zeta^{0}) \\ 0 \end{bmatrix}$$
[IV.52]

$$\frac{\partial D}{\partial \zeta}^{0} = R(\alpha_{1}^{0}, \alpha_{2}^{0}, \alpha_{3}^{0}) \cdot \begin{bmatrix} (r_{scan} - k_{0}^{0}) \cdot \cos \left[\varphi_{scan} - (c)^{0} - (i)^{0} \right] \cdot sen(\theta_{scan} - \zeta^{0}) \\ (r_{scan} - k_{0}^{0}) \cdot sen\left[\varphi_{scan} - (c)^{0} - (i)^{0} \right] \cdot sen(\theta_{scan} - \zeta^{0}) \\ - (r_{scan} - k_{0}^{0}) \cdot \cos(\theta_{scan} - \zeta^{0}) \end{bmatrix}$$
[IV.53]

La suposición realizada anteriormente sobre los parámetros de calibración tan solo es cierta en primera aproximación, puesto que los exploradores láser se diseñan de forma totalmente diferente de las estaciones topográficas. Por lo tanto, después de que la autocalibración calcule el valor "verdadero" de las distancias r_{true} , las direcciones horizontales verdaderas φ_{true} y los ángulos verticales verdaderos θ_{true} , usando los coordenadas "verdaderas" de los blancos y las coordenadas del explorador centradas en el sistema externo, se puede realizar el ajuste global o determinar independientemente las variables. Así pues, se pueden analizar las diferencias entre la "exploración" y las cantidades "verdaderas", determinándose "errores" para revelar algunas tendencias sistemáticas no-modeladas; sin embargo, resulta difícil comparar directamente φ_{scan} y φ_{true} debido al desconocimiento de la orientación en cada exploración.

Por lo tanto, las coordenadas de los puntos de control (corregidas para el efecto de los parámetros de calibración), son transformadas por el explorador en el sistema coordenado externo usando los parámetros estimados de Helmert. Con estas coordenadas "transformadas", se calculan las direcciones horizontales "transformadas" y los ángulos verticales, ϕ_{true} y θ_{true} , respectivamente. Si se descubren tendencias sistemáticas, los nuevos parámetros de calibración ya se incluyen en la autocalibración. Este procedimiento se realiza hasta que dejan de existir dichas tendencias.

2.2.2.4.- EL MODELO ESTOCÁSTICO.

La matriz C a priori de varianzas-covarianzas de las "observaciones", cuando la posición del centro del explorador en el sistema externo es desconocida, se calcula como sigue:

$$C = C_{XYZ} + R(\alpha_1, \alpha_2, \alpha_3) \cdot J \cdot C_{inst} \cdot J^T \cdot R(\alpha_1, \alpha_2, \alpha_3)^T$$
[IV.54]

donde está R ($\alpha_1 \alpha_2, \alpha_3$) descrita anteriormente, J es la matriz Jacobiana de las derivadas $[x,y,z]^T$ con respecto: r_{scan} , ϕ_{scan} y θ_{scan} , C_{XYZ} es la matriz diagonal de varianzas-covarianzas de las coordenadas "verdaderas" del punto y la matriz C_{inst} . Se calcula como sigue:

$$C_{inst} = diag\left(\sigma_r^2, \, \sigma_{\varphi}^2 + \sigma_{beam}^2, \, \sigma_{\theta}^2 + \sigma_{beam}^2\right)$$
[IV.55]

Aquí σ_r , σ_{ϕ} y σ_{θ} son las exactitudes de r_{scan} , ϕ_{scan} y θ_{scan} , respectivamente, datos proporcionados habitualmente por el fabricante y el σ_{beam} es la incertidumbre debido a la amplitud de rayo, computada anteriormente. Existen investigadores que no consideran el error σ_{beam} ; sin embargo, es importante considerarlo en aquellos exploradores en los que la divergencia del haz pueda ser importante. La matriz C_{XYZ} se compone de las variaciones de las coordenadas del blanco en el sistema externo, obtenidas después del ajuste de la red. En una auto-calibración realizada para un HDS3000, la matriz de varianzas-covarianzas de las "observaciones" queda como sigue:

$$C = C_{XYZ} + C_{scanner} + R(\alpha_1, \alpha_2, \alpha_3) \cdot J \cdot C_{inst} \cdot J^T \cdot R(\alpha_1, \alpha_2, \alpha_3)^T$$
 [IV.56]

donde está la matriz $C_{scanner}$ de varianzas-covarianzas de la posición del centro del explorador en el sistema coordenado externo. Para el explorador Leica HDS3000 esta matriz se calcula como sigue:

$$C_{scanner} = C_0 + C_H$$
 [IV.57]

donde C_0 es la matriz de varianzas-covarianzas de las coordenadas del punto estación donde se centra el explorador y C_H es la matriz de varianzas-covarianzas de la posición del centro del explorador con respecto al punto de la estación, siendo ambas matrices diagonales. La matriz C_0 se compone de las variaciones de las coordenadas del punto de la estación, obtenidas en el ajuste de las medidas de la libre-estación y las C_H como sigue:

$$C_{H} = diag \left(\sigma_{centr}^{2} + \sigma_{non-vert}^{2}, \sigma_{centr}^{2} + \sigma_{non-vert}^{2}, \sigma_{H}^{2} \right)$$
[IV.58]

donde σ_{centr} es la exactitud del centro de la plomada óptica, σ_{H} es la exactitud de la determinación de la altura instrumental y $\sigma_{non-vert}$ es el error en la posición horizontal del explorador causado por su nivelación inexacta. Valores habituales pueden ser del orden de $\sigma_{centr} = 0.5$ milímetros, $\sigma_{H} = 1$ milímetro y $\sigma_{non-vert} = 1$ milímetro. La matriz J se computa como sigue:

$$J = \begin{bmatrix} \frac{\partial x_{j}}{\partial r_{scan}} & \frac{\partial x_{j}}{\partial \varphi_{scan}} & \frac{\partial x_{j}}{\partial \theta_{scan}} \\ \frac{\partial y_{j}}{\partial r_{scan}} & \frac{\partial y_{j}}{\partial \varphi_{scan}} & \frac{\partial y_{j}}{\partial \theta_{scan}} \\ \frac{\partial z_{j}}{\partial r_{scan}} & \frac{\partial z_{j}}{\partial \varphi_{scan}} & \frac{\partial z_{j}}{\partial \theta_{scan}} \end{bmatrix}$$
[IV.59]

donde:

$$\begin{bmatrix} \frac{\partial x_{j}}{\partial r_{scan}} \\ \frac{\partial y_{j}}{\partial r_{scan}} \\ \frac{\partial z_{j}}{\partial r_{scan}} \end{bmatrix} = \begin{bmatrix} \cos \left[\varphi_{scan} - (c)^{0} - (i)^{0} \right] \cdot \cos \left(\theta_{scan} - \zeta^{0} \right) \\ sen \left[\varphi_{scan} - (c)^{0} - (i)^{0} \right] \cdot \cos \left(\theta_{scan} - \zeta^{0} \right) \\ sen \left(\theta_{scan} - \zeta^{0} \right) \end{bmatrix}$$
[IV.60]

$$\begin{vmatrix} \frac{\partial x_j}{\partial \varphi_{scan}} \\ \frac{\partial y_j}{\partial \varphi_{scan}} \\ \frac{\partial z_j}{\partial \varphi_{scan}} \end{vmatrix} = \begin{bmatrix} -(r_{scan} - k_0^0) \cdot sen[\varphi_{scan} - (c)^0 - (i)^0] \cdot cos(\theta_{scan} - \zeta^0) \\ (r_{scan} - k_0^0) \cdot cos[\varphi_{scan} - (c)^0 - (i)^0] \cdot cos(\theta_{scan} - \zeta^0) \\ 0 \end{bmatrix}$$
[IV.61]

$$\begin{bmatrix} \frac{\partial x_j}{\partial \theta_{scan}} \\ \frac{\partial y_j}{\partial \theta_{scan}} \\ \frac{\partial z_j}{\partial \theta_{scan}} \end{bmatrix} = \begin{bmatrix} (r_{scan} - k_0^0) \cdot \left\{ sen[\varphi_{scan} - (c)^0 - (i)^0] \cdot \left(\frac{c^0 \cdot sen\theta_{scan} - i^0}{\cos^2 \theta} \right) \cdot \cos(\theta_{scan} - \zeta^0) - \cos[\varphi_{scan} - (c)^0 - (i)^0] \cdot sen(\theta_{scan} - \zeta^0) \right\} \\ (r_{scan} - k_0^0) \cdot \left\{ -\cos[\varphi_{scan} - (c)^0 - (i)^0] \cdot \left(\frac{c^0 \cdot sen\theta_{scan} - i^0}{\cos^2 \theta} \right) \cdot \cos(\theta_{scan} - \zeta^0) - sen[\varphi_{scan} - (c)^0 - (i)^0] \cdot sen(\theta_{scan} - \zeta^0) \right\} \\ (r_{scan} - k_0^0) \cdot \left\{ -\cos[\varphi_{scan} - (c)^0 - (i)^0] \cdot \left(\frac{c^0 \cdot sen\theta_{scan} - i^0}{\cos^2 \theta} \right) \cdot \cos(\theta_{scan} - \zeta^0) - sen[\varphi_{scan} - (c)^0 - (i)^0] \cdot sen(\theta_{scan} - \zeta^0) \right\} \end{bmatrix}$$
[IV.62]

La varianza a priori σ_0^2 se fija habitualmente a 1; por lo tanto, la inversa de la matriz de varianzascovarianzas se utiliza como matriz de "peso". Se debe observar que σ_r , σ_{ϕ} y σ_{θ} son las especificaciones de los fabricantes usadas para calcular la matriz C, refiriéndose a medidas del punto únicas, mientras que habitualmente se estima la posición del centro del punto de control en un número determinado de medidas.

2.2.2.5.- VALORACIÓN DE LA PRECISIÓN.

En la autocalibración, también se estiman la precisión y la exactitud de las coordenadas alcanzadas con los exploradores. Este parámetro tan solo se puede estimar en las localizaciones de los puntos de control puesto que en ellas se tienen datos de la realidad existente. Las precisiones de los parámetros Helmert y de las residuales de la autocalibración dan buena idea de la precisión del explorador. Además, las residuales de la autocalibración a lo largo de cada uno de los ejes coordenados, permiten calcular la residual tridimensional, tal y como se describe a continuación:

$$\boldsymbol{\varepsilon}_{3D} = \sqrt{\boldsymbol{\varepsilon}_X^2 + \boldsymbol{\varepsilon}_Y^2 + \boldsymbol{\varepsilon}_Z^2}$$
[IV.63]

donde están las residuales ε_X , ε_Y y ε_Z a lo largo de los ejes coordenados respectivamente, proporcionando el valor ε_{3D} una buena idea sobre la precisión "total" de las coordenadas del punto de control alcanzada con un explorador particular. La exactitud de las coordenadas de los puntos de control se puede estimar de forma práctica, para lo que una vez realizada la autocalibración, se calcula la distancia de la línea de fondo entre cada par de puntos en cada una de las exploraciones, usando la exploración corregida y las coordenadas verdaderas de los blancos. La exactitud de las coordenadas de los blancos se calcula como sigue:

$$\sigma_{puntoA} = \sqrt{\frac{\left(d_{escaneada} - d_{verdadera}\right)^2}{2}}$$
[IV.64]

donde σ_{puntoA} es el error en los coordenadas del blanco, d_{escaneada} y d_{verdadera} son las distancias de exploración y verdaderas de la línea de fondo, respectivamente, entre dos puntos de control A y B.

2.2.3.- OTROS PROCEDIMIENTOS SIMPLES DE CALIBRACIÓN.

El procedimiento de autocalibración descrito anteriormente permite estimar los parámetros de calibración en el explorador y que realice el gravamen de su precisión y exactitud, requiriendo que el explorador se analice en un laboratorio de calibración 3D; sin embargo, los usuarios pueden necesitar calibrar los exploradores de forma más accesible para ellos, por ejemplo, antes de cada sesión de trabajo. Por esta razón, se desarrollan a continuación dos procedimientos simples que se pueden utilizar para la calibración:

- *Calibración del error vertical de la escala*. En el explorador Callidus 1.1, donde este error se ha demostrado que existe, es de obligado cumplimiento. Sin embargo, los exploradores de otros fabricantes se dejan como recomendable.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

- *Calibración del error cero en el telémetro del láser*. Este error puede estar presente en cualquier explorador, y su magnitud puede variar para diversos exploradores, incluso del mismo fabricante. El desarrollo de dicho procedimiento fue desarrollado por [BOEH-05].

2.2.3.1.- CALIBRACIÓN DEL ERROR VERTICAL DE LA ESCALA.

Para la calibración de este error, se tiene que utilizar un tablero de una anchura cercana a 0,5 metros y longitudes de 2-3 metros, con los puntos de control montados en él, en la dirección vertical y uno sobre otro, tal y como se muestra en la siguiente figura, pudiéndose montar también en la pared de un laboratorio.

Figura Número IV.22.- Mecanismo para la determinación del error vertical de la escala en un escáner.

Para realizar esta calibración, el tipo de puntos de control se deben adaptar a la naturaleza del explorador; por ejemplo, se pueden utilizar blancos tipo HDS, o similar, para la calibración de un explorador pulsado con láser visible. Para la calibración de un escáner láser pulsado que funcione en la banda del infrarrojo cercano se pueden usar blancos reflectantes que no causan saturación en el detector debido a la alta intensidad de trabajo.

El número de puntos debe ser suficientemente grande para proporcionar estimaciones estadísticas adecuadas en la determinación del error vertical de la escala y su precisión. Habitualmente se propone fijar los puntos cada 20 - 30 centímetros en la dimensión vertical, que da lugar a 10 - 15 blancos en total. La distancia entre cada par de puntos se debe conocer a priori con precisiones del orden de diez veces mejor que la exactitud de la distancia del explorador. Las coordenadas del punto en el sistema externo se deben determinar con la precisión mencionada arriba dividida por $\sqrt{2}$. Si la prueba de calibración del explorador se pretende realizar en laboratorio, se pueden colocar blancos en el techo para probar el conjunto vertical del explorador. El procedimiento de calibración se diferencia levemente dependiendo de si se utiliza el tablero o las blancos de calibración se montan en laboratorio, y si el explorador puede ser centrado en el punto conocido a priori y nivelado de forma rigurosa. En este último caso, el explorador se fija de forma que los blancos estén bien distribuidos sobre el conjunto del explorador. Las distancias del centro del explorador al suelo y al blanco montado en la pared y el techo deben ser aproximadamente iguales.

El conjunto de blancos se explora 2 ó 3 veces con alta resolución del muestreo, y los ángulos θ_i de la vertical de la "exploración" de cada blanco se calculan usando las coordenadas del blanco en el sistema coordenado del explorador. Estos ángulos se comparan con los "verdaderos", las diferencias en la "exploración" y los ángulos verticales "verdaderos" se calculan y se trazan contra los ángulos verticales de la "exploración". El error vertical del índice se puede estimar mediante la siguiente expresión matemática:

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

$$\theta_{scan} - \theta_{true} = \zeta + \delta\theta \cdot \theta_{scan}$$
 [IV.65]

donde θ_{true} y θ_{scan} son los ángulos verticales verdaderos y explorados respectivamente, y ζ y $\delta \theta$ es el índice vertical y la escala errores, respectivamente. La significación de los parámetros de calibración se estima en el nivel de la confianza del 99%, usando una t-student, si los dos parámetros o cualesquiera de ellos son significativos, se corrigen los ángulos verticales con un θ_{corr} que se calcula mediante la siguiente expresión:

$$\theta_{corr} = \theta_{scan} - \zeta - \delta\theta \cdot \theta_{scan}$$
[IV.66]

Si se utiliza tablero para realizar la calibración, si el explorador no puede ser estacionado en un punto de coordenadas conocidas o simplemente no permite la nivelación rigurosa, el procedimiento de calibración sufre pequeñas variaciones. La disposición es igual que la mostrada en la imagen anterior y el tablero de la calibración o el arsenal de puntos en la pared y techo también se explora 2 ó 3 veces. El explorador se debe nivelar tan cuidadosamente como sea posible si constructivamente permite hacerlo, si no lo permite, tiene que ser fijado encima de modo que su eje de rotación vertical sea aproximadamente vertical, las distancias de la "exploración" entre el punto en la altura más cercana a la altura del instrumento y el resto de puntos se distribuyen tal y como se muestra en la figura anterior. Las diferencias entre las distancias de "exploración" y "verdaderas" se determinan mediante el siguiente procedimiento matemático que además permite convertirlas a unidades angulares:

$$\Delta \theta_i \approx \frac{S_{scan \, i} - S_{true \, i}}{R} \tag{IV.67}$$

donde $\Delta \theta_i$ es el error en el ángulo vertical (en radianes), S_{truei} y S_{scani} son las distancias verticales "verdadera" y "explorada" entre el blanco en la altura del instrumento y el punto "i", respectivamente, y R es la distancia del centro del explorador al punto "i". Si la tendencia lineal es similar a la figura mostrada anteriormente del error vertical, las ecuaciones de la observación en este caso son las siguientes:

$$\Delta \theta_i = \delta \theta \cdot \theta_{scan} \qquad [IV.68]$$

donde $\delta \theta$ es la escala del error vertical. Este error posee significación en el cálculo de las correcciones a los ángulos verticales, aplicándose según la ecuación [IV.66], con excepción de la corrección para el error vertical del índice.

2.2.3.2.- CALIBRACIÓN DEL ERROR CERO EN EL TELÉMETRO DEL LÁSER.

Para la determinación del error cero se utiliza una línea de fondo con dos blancos, tal y como se muestra en la siguiente figura, de forma que el tipo de blancos se debe adaptar al tipo del explorador, según lo expuesto en el epígrafe anterior. La longitud B de la línea de fondo debe ser del orden de 3 a 5 metros. Los blancos se pueden montar en la pared de un laboratorio, por ejemplo, o en los dos extremos de una barra, proporcionando la última alternativa mayor flexibilidad de modo que el explorador pueda tener el área calibrada. El montaje de los blancos debe garantizar su estabilidad en el tiempo y la longitud se tiene que conocer con precisiones del orden de 10 veces mejor que la precisión en la medida de la distancia por el explorador. Es deseable que los blancos se puedan rotar de forma que puedan ser fijados en la dirección normal con respecto al rayo láser para reducir al mínimo el error en la medida.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

El explorador se estaciona a la distancia S de la línea de fondo, según las indicaciones de la siguiente figura de modo que el ángulo entre dos blancos, con la cima en el centro del explorador, sea igual a 60°, [BOEH-05]. Las distancias del explorador a los blancos deben ser aproximadamente iguales. La línea de fondo se debe localizar aproximadamente a la altura del instrumento.

Figura Número IV.23.- Instalación de un telémetro láser para la determinación del error cero. Izquierda: caso ideal. Derecha: caso verdadero.

Los blancos se exploran entre 3 y 5 veces consecutivas con alta resolución y la longitud B' de la línea de fondo de la "exploración" se calcula usando las coordenadas de los blancos en el sistema del explorador. Entonces el explorador se mueve a lo largo de la dirección "S" normal a las dos nuevas localizaciones, en las cuales el ángulo es igual a 90° y a 120°, y se repite el mismo procedimiento, lo que permite calcular las diferencias entre las longitudes de "exploración" y "verdaderas" de la línea de fondo, con lo que a su vez se consigue obtener el error cero, tal y como se describe a continuación:

$$k_0 = \frac{x}{sen\frac{\alpha}{2}} = \frac{\Delta B}{2 \cdot sen\frac{\alpha}{2}}$$
[IV.69]

donde ko es el error cero, ΔB es la diferencia entre las longitudes de "exploración" y "verdaderas" de la línea de fondo, y el significado de la cantidad (x = $\Delta B/2$) se puede analizar en la figura anterior. Usando la ecuación anterior como la de observación, el error se calcula mediante un ajuste por mínimos cuadrados. En sentido estricto, la ecuación anterior es válida bajo la condición de que la geometría de la estructura formada sea totalmente simétrica, hecho que en la práctica es totalmente imposible de alcanzar, en cuyo caso la ecuación resultante utilizando el teorema del coseno para los triángulos formados es la siguiente:

$$B^{2} = (r_{1} - k_{0})^{2} + (r_{2} - k_{0})^{2} - 2 \cdot (r_{1} - k_{0}) \cdot (r_{2} - k_{0}) \cdot \cos \alpha$$
 [IV.70]

donde B es la longitud "verdadera" de la línea de fondo, r_1 y r_2 son las distancias medidas a los blancos, α es el ángulo entre los blancos, y ko es el error cero buscado. Puesto que en la ecuación anterior las observaciones r_1 y r_2 no se pueden expresar explícitamente como funciones de ko, se puede utilizar el modelo del Gauss-Helmert para solucionar el problema. La condición del modelo no es lineal, motivo por el que lo primero que se debe llevar a cabo es la linealización en el entorno del valor aproximado de ko, que se puede fijar a cero, obteniéndose posteriormente la solución mediante procedimientos iterativos:

$$B \cdot \varepsilon + A \cdot \delta X = W$$
 [IV.71]

donde " ε " es el vector de residuales, δX es la corrección buscada al valor aproximado de ko y los valores de B, A y W los que se obtienen de resolver las siguientes matrices:

$$W = \begin{bmatrix} B^{2} - \left[(r_{1} - k_{0}^{0})^{2} + (r_{2} - k_{0}^{0})^{2} - 2 \cdot (r_{1} - k_{0}^{0}) \cdot (r_{2} - k_{0}^{0}) \cdot (r_{2} - k_{0}^{0}) \cdot \cos \alpha \end{bmatrix}^{(1)}$$
[IV.72]

$$W = \begin{bmatrix} B^{2} - \left[(r_{1} - k_{0}^{0})^{2} + (r_{2} - k_{0}^{0})^{2} - 2 \cdot (r_{1} - k_{0}^{0}) \cdot (r_{2} - k_{0}^{0}) \cdot \cos \alpha \right]^{(1)} \\ \vdots \\ B^{2} - \left[(r_{1} - k_{0}^{0})^{2} + (r_{2} - k_{0}^{0})^{2} - 2 \cdot (r_{1} - k_{0}^{0}) \cdot (r_{2} - k_{0}^{0}) \cdot \cos \alpha \right]^{(2)} \\ \vdots \\ B^{2} - \left[(r_{1} - k_{0}^{0})^{2} + (r_{2} - k_{0}^{0})^{2} - 2 \cdot (r_{1} - k_{0}^{0}) \cdot (r_{2} - k_{0}^{0}) \cdot \cos \alpha \right]^{(2)} \\ \vdots \\ B^{2} - \left[(r_{1} - k_{0}^{0})^{2} + (r_{2} - k_{0}^{0})^{2} - 2 \cdot (r_{1} - k_{0}^{0}) \cdot (r_{2} - k_{0}^{0}) \cdot \cos \alpha \right]^{(m)} \end{bmatrix}$$
[IV.74]

donde k_o^o es el valor aproximado de k_o. Los exponentes en paréntesis en las ecuaciones [IV.72], [IV.73] y [IV.74] se refieren al número de la observación. El número total de las observaciones es "m". Las expresiones explícitas para las derivadas empleadas en las ecuaciones [IV.72] y [IV.73] son las siguientes:

$$\frac{\partial F}{\partial r_1} = 2 \cdot \left[\left(r_1 - k_0^0 \right) - \left(r_2 - k_0^0 \right) \cdot \cos \alpha \right]$$
 [IV.75]

$$\frac{\partial F}{\partial r_2} = 2 \cdot \left[\left(r_2 - k_0^0 \right) - \left(r_1 - k_0^0 \right) \cdot \cos \alpha \right]$$
 [IV.76]

$$\frac{\partial F}{\partial k_0} = 2 \cdot \left(\cos \alpha - 1\right) \cdot \left(r_1 + r_2 - 2 \cdot k_0^0\right)$$
 [IV.77]

2.3.- AJUSTE DE LA RED.

Cuando se plantea el objeto de la presente tesis, y especialmente a la vista de las especificaciones técnicas del equipo, se intuye el hecho de que con una única observación del láser escáner es muy difícil obtener la precisión que se consigue con los métodos clásicos. Por ello se propone hacer una observación múltiple con el láser escáner desde cada pilar a la presa, para poder así tener mayor información y obtener el mismo nivel de precisión que con los métodos clásicos. Además, la observación de este tipo de elementos en los que hay que determinar el hipotético desplazamiento de un punto, no requiere un barrido genérico de la estructura, sino la implantación de unas dianas que permitan fijar la posición exacta de cada uno de los puntos escaneados mediante un ajuste radiométrico del propio escaneado.

Todo ello justifica que la primera labor a realizar para poder llevar a cabo la observación, fuera precisamente la implantación de esta nueva señalización y la determinación de las coordenadas de cada nueva señal en el sistema referencial utilizado para el resto de auscultaciones geodésicas. Como ya se ha dicho anteriormente, las coordenadas de las dianas utilizadas en las metodologías clásicas, tan sólo es necesario tenerlas de forma aproximada, lo que no ocurre en el caso del cálculo con láser escáner, debido a que la determinación del desplazamiento se pretende calcular por diferencia de coordenadas entre campañas. Para poder calcular las coordenadas estrictas de las nuevas dianas de puntería es necesario tener las coordenadas de los puntos de seguridad y pilares de auscultación de forma estricta, lo que motivó que en primera instancia se realizase una observación en red (observación de ángulos y distancias) de todos los pilares y puntos de seguridad. Esta observación se llevó a cabo con la misma estación topográfica con la que se realizó la auscultación geodésica clásica, y el fin que persigue no es otro que trabajar con láser escáner en un doble sentido: emplear el mismo sistema referencial que el utilizado en los casos angular y distanciométrico, y además calcular coordenadas absolutas estrictas de las dianas, para posteriormente establecer el desplazamiento por diferencia de coordenadas.

Para efectuar el ajuste y cálculo de las observaciones distanciométricas y angulares de los pilares de auscultación y puntos de seguridad, se ha efectuado un ajuste matemático por el método de los mínimos cuadrados, que se caracteriza por hacer mínimo el valor de la suma al cuadrado de todos los residuos obtenidos en cada ecuación de observación. Está demostrado que los valores de las cantidades ajustadas son más probables con este método que con otros, de ahí su habitual utilización actual, además de permitir la asignación de pesos a las medidas según la fiabilidad de las observaciones. Para ello, el primer paso es plantear las ecuaciones de dirección y distancia a partir de las observaciones angulares y de distancias realizadas para poder definir los residuos de la observación, siendo las expresiones matemáticas que definen dichos residuos:

Ecuaciones de dirección:

$$V_{ij} = \frac{r''}{D_{calc}^2} \left[(y_j - y_i) dx_j - (y_j - y_i) dx_i - (x_j - x_i) dy_j + (x_j - x_i) dy_i \right] + Az_{casl} - Az_{obs}$$
[IV.78]

Ecuaciones de distancia:

$$V_{ij} = \frac{1}{D_{calc}} \left[(x_j - x_i) dx_j - (x_j - x_i) dx_i - (y_j - y_i) dy_j + (y_j - y_i) dy_i \right] + D_{casl} - D_{obs}$$
[IV.79]

Estas ecuaciones se transforman en un sistema matricial de la forma:

$$P \cdot V = P \cdot A \cdot X - P \cdot T$$
 [IV.80]

en donde:

V.- es la matriz de los residuos.

- A.- es la matriz de los coeficientes.
- X.- es la matriz de las incógnitas.
- T.- es la matriz de los términos independientes.

P.- es la matriz de los pesos.

La matriz P es una matriz diagonal, en la que cada elemento tiene la siguiente forma:

$$p_{ii} = \frac{1}{e^2}$$
[IV.81]

siendo "e" el error medio cuadrático de la media de cada observación.

Tanto las distancias como los ángulos se observan con diferentes unidades, por lo que para que se combinen en un mismo ajuste se deben emplear coeficientes apropiados en los pesos. De este modo, se deduce que si las observaciones se pesan en función del inverso de sus errores y si se usan las mismas unidades en los residuos y en los errores, los términos P-V deben ser adimensionales y, por lo tanto, compatibles para ajustes simultáneos.

Como se ha comentando al inicio, la condición fundamental del método de mínimos cuadrados es la minimización de la suma de los residuos al cuadrado, es decir, en la forma matricial definida anteriormente V^tPV. Para que se cumpla esta condición, el diferencial de V^tPV debe ser igual a cero.

$$\frac{\partial (V^t \cdot P \cdot V)}{\partial X} = 2 \cdot V^t \cdot P \cdot \frac{\partial V}{\partial X} = 0$$
 [IV.82]

Diferenciando la expresión anterior, se obtiene:

$$P\frac{\partial V}{\partial X} = p\frac{\partial (V' \cdot P \cdot V)}{\partial X} = P \cdot A \qquad [IV.83]$$

Sustituyendo la ecuación anterior en la condición, resulta:

$$0 = 2 \cdot V^t \cdot P \cdot A \qquad [IV.84]$$

Trasponiendo la ecuación anterior se deduce:

$$0 = A^t \cdot P^t \cdot V \tag{[IV.85]}$$

Sustituyendo el valor de V en la expresión anterior se obtiene:

$$0 = A^{t} \cdot P^{t} \cdot (A \cdot X - T) = A^{t} \cdot P^{t} \cdot A \cdot X - A^{t} \cdot P^{t} \cdot T$$
 [IV.86]

Como P es una matriz diagonal $P = P^t$, entonces:

$$A^{t} \cdot P \cdot A \cdot X = A^{t} \cdot P \cdot T$$
 [IV.87]

Definitivamente se deduce X:

$$X = \left(A^{t} \cdot P \cdot A \cdot\right)^{-1} \cdot A^{t} \cdot P \cdot T$$
 [IV.88]

siendo esta ecuación la expresión matricial general para mínimos cuadrados de ecuaciones de observación utilizando pesos. Una vez calculadas las incógnitas, se obtiene la desviación estándar del ajuste mediante la expresión:

$$S_o = \sqrt{\frac{\sum (p \cdot v^2)}{m - n}}$$
[IV.89]

En esta ecuación m es el número de ecuaciones de observación y n es el número de incógnitas. El denominador (m - n) es la redundancia, normalmente conocida en estadística como el número de grados de libertad.

Para el cálculo de las desviaciones estándar de los valores ajustados se emplea la matriz de covarianza, que está formada a partir de los coeficientes de las incógnitas en las ecuaciones de observación.

Despejando el término P A X de la ecuación inicial, se obtiene:

$$P \cdot A \cdot X = P \cdot T + P \cdot V \tag{[IV.90]}$$

En la ecuación final del ajuste en la que se define X, éste es el valor más probable de las incógnitas. Se considera que el valor real de las incógnitas sea la matriz:

$$X = X + \Delta X$$
 [IV.91]

El término ΔX es el error cometido en los valores ajustados. Este ΔX produce un ΔT en los valores de T, por lo que la ecuación definitiva se transforma en:

$$X + \Delta X = (A^{t} \cdot P \cdot A)^{-1} \cdot A^{t} \cdot P \cdot (T + \Delta T)$$
 [IV.92]

Operando, se obtiene:

$$X + \Delta X = (A^t \cdot P \cdot A)^{-1} \cdot A^t \cdot P \cdot T + (A^t \cdot P \cdot A)^{-1} \cdot A^t \cdot P \cdot \Delta T$$
 [IV.93]

Sustituyendo la ecuación de X en la anterior, resulta:

$$\Delta X = (A^t \cdot P \cdot A)^{-1} \cdot A^t \cdot P \cdot \Delta T$$
 [IV.94]

Reconociendo ΔT como los residuos en los valores de T observados, la ecuación anterior se transforma en:

$$\Delta X = (A^t \cdot P \cdot A)^{-1} \cdot A^t \cdot P \cdot V$$
 [IV.95]

Considerando también que:

$$B = (A^{t} \cdot P \cdot A)^{-1} \cdot A^{t} \cdot P$$
 [IV.96]

entonces:

$$\Delta X = B \cdot V \tag{IV.97}$$

Multiplicando ambos lados de la ecuación anterior por sus traspuestas se obtiene:

$$\Delta X \cdot \Delta X^{t} = B \cdot V \cdot V^{t} \cdot B^{t}$$
 [IV.98]

Desarrollando el primer término de la ecuación anterior resulta:

$$\Delta X \cdot \Delta X' = \begin{pmatrix} \Delta X_1^2 & \Delta X_1 \Delta X_2 & \Delta X_1 \Delta X_3 & \dots & \Delta X_1 \Delta X_n \\ \Delta X_2 \Delta X_1 & \Delta X_2^2 & \Delta X_2 \Delta X_3 & \dots & \Delta X_2 \Delta X_n \\ \dots & \dots & \dots & \dots & \dots \\ \Delta X_n \Delta X_1 & \Delta X_n \Delta X_2 & \Delta X_n \Delta X_3 & \dots & \Delta X_n^2 \end{pmatrix}$$
[IV.99]

Desarrollando el segundo término:

$$\boldsymbol{B} \cdot \boldsymbol{V} \cdot \boldsymbol{V}^{t} \cdot \boldsymbol{B}^{t} = \boldsymbol{B} \cdot \begin{pmatrix} v_{1}^{2} & v_{1}v_{2} & v_{1}v_{3} & \dots & v_{1}v_{n} \\ v_{2}v_{1} & v_{2}^{2} & v_{2}v_{3} & \dots & v_{2}v_{n} \\ \dots & \dots & \dots & \dots & \dots \\ v_{n}v_{1} & v_{n}v_{2} & v_{n}v_{3} & \dots & v_{n}^{2} \end{pmatrix} \cdot \boldsymbol{B}^{t}$$
[IV.100]

Se asume que es posible repetir toda la secuencia de observaciones un número "a" de veces, siendo cada vez ligeramente diferente el resultado del ajuste. Promediando los resultados para cada valor, la expresión se convierte en:

Si el valor de "a" es grande, los términos de la expresión anterior equivalen a las varianzas y covarianzas, resultando la siguiente matriz:

$$\begin{pmatrix} S_{X1}^2 & S_{X1}S_{X2} & S_{X1}S_{X3} & \dots & S_{X1}S_{Xn} \\ S_{X2}S_{X1} & S_{X2}^2 & S_{X2}S_{X3} & \dots & S_{X2}S_{Xn} \\ \dots & \dots & \dots & \dots & \dots \\ S_{Xn}S_{X1} & S_{Xn}S_{X2} & S_{Xn}S_{X3} & \dots & S_{Xn}^2 \end{pmatrix}$$
[IV.102]

La matriz anterior es la matriz de covarianza. También, teniendo en cuenta un número V de observaciones, la ecuación del segundo término se convierte en:

$$\frac{1}{a}\sum B \cdot V \cdot V' \cdot B' = B \cdot \begin{pmatrix} \frac{\sum v_1^2}{a} & \frac{\sum v_1 v_2}{a} & \frac{\sum v_1 v_3}{a} & \dots & \frac{\sum v_1 v_n}{a} \\ \frac{\sum v_2 v_1}{a} & \frac{\sum v_2^2}{a} & \frac{\sum v_2 v_3}{a} & \dots & \frac{\sum v_2 v_n}{a} \\ \frac{\sum v_n v_1}{a} & \frac{\sum v_n v_2}{a} & \frac{\sum v_n v_3}{a} & \dots & \frac{\sum v_n^2}{a} \end{pmatrix} \cdot B'$$
[IV.103]

Para un valor grande de "a", los términos que están fuera de la diagonal son 0, por lo que la matriz se convierte en:

$$B \cdot \begin{pmatrix} S_1^2 & 0 & 0 & \dots & 0 \\ 0 & S_2^2 & 0 & \dots & 0 \\ \dots & \dots & S_3^2 & \dots & \dots \\ 0 & 0 & 0 & \dots & S_n^2 \end{pmatrix} \cdot B^t$$
 [IV.104]

Sabiendo que los pesos de las observaciones son inversamente proporcionales a las varianzas de las mismas, se tiene que:

$$S_1^2 = \frac{S_0^2}{P_i}$$
 [IV.105]

Sustituyendo el valor de B en la ecuación anterior:

$$S_0^2 \cdot B \cdot P^{-1} \cdot B^t = S_0^2 \cdot (A^t \cdot P \cdot A)^{-1} \cdot A^t \cdot P \cdot P^{-1} \cdot P^t \cdot A \cdot \left[(A^t \cdot P \cdot A)^{-1} \right]^t$$
 [IV.106]

Puesto que las ecuaciones normales son simétricas, y por ser P una matriz diagonal, resulta:

$$S_0^2 \cdot (A^t \cdot P \cdot A)^{-1} \cdot (A^t \cdot P \cdot A) \cdot (A^t \cdot P \cdot A)^{-1} = S_0^2 \cdot (A^t \cdot P \cdot A)^{-1}$$
[IV.107]

Igualando las ecuaciones anteriores se obtiene que la matriz covarianza es igual a la inversa de la matriz de los coeficientes de las ecuaciones normales por la varianza unidad.

$$S_x^2 = S_0^2 \cdot (A^t \cdot P \cdot A)^{-1} = S_0^2 \cdot Q$$
 [IV.108]

Despejando el valor de la desviación estándar en la expresión anterior se calcula el error para cualquier incógnita:

$$S_{Xi} = S_0 \cdot \sqrt{Q_{XiXi}}$$
 [IV.109]

donde Q_{XiXi} es el elemento diagonal de la matriz Q.

Para un punto A de coordenadas X e Y se obtiene una desviación $\sigma x y \sigma y$. Puesto que la probabilidad de que ambos errores se den conjuntamente es mínima, se adopta como área de posible error la elipse de tolerancia cuyos semiejes son dichas desviaciones. Esto significa que cualquier nueva posición que está dentro de la elipse será aceptable (variaciones no representativas de movimientos) y que ninguna nueva posición dentro de la elipse tendrá un radio de desplazamiento superior al semieje mayor. Por esta razón se toma como valor de la precisión en las coordenadas el semieje mayor de ambos.

Ante la dificultad que conlleva trabajar de forma manual con sistemas matriciales en los que las matrices son tan grandes, es habitual trabajar con herramientas informáticas que facilitan la ardua labor matemática de resolver estos sistemas. Actualmente estas herramientas informáticas son fáciles de encontrar y manejar, motivo por el cual su uso está totalmente generalizado.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

Con el objeto de no hacer excesivamente extensa la memoria de la tesis doctoral y dado que esta metodología esta plenamente consolidada, en el Anejo Número 5 del presente documento, denominado "*Ajuste de la red de pilares y puntos de seguridad*", se pormenorizan las observaciones, el modo de llevar a cabo el cálculo de la red y los resultados. El programa informático empleado en la resolución del ajuste matemático de las coordenadas de los puntos de seguridad y pilares de auscultación se denomina TOPCAL, y permite realizar ajustes por mínimos cuadrados planimétrica y altimétricamente, siendo los resultados obtenidos para las coordenadas de los pilares los siguientes:

PUNTO	Coord. X	Coord. Y
PI	1.000,000	1.000,000
PII	1.092,056	961,153
PIII	1.033,486	1.014,111
PIV	1.086,300	992,664

Tabla Número IV.23.- Coordenadas de la red de pilares.

Si se comparan las coordenadas obtenidas en la actualidad con las que se tienen históricamente (Tabla Número IV.1), se puede apreciar como no existiendo diferencias significativas para el cálculo clásico de la auscultación, si que son significativas para el cálculo con láser escáner, lo que motiva que para los cálculos del láser escáner se utilice este nuevo juego de coordenadas de los pilares de auscultación.

Para las observaciones con láser escáner, los criterios bajo los que se disponen los puntos de seguridad son los mismos que se utilizaron para las auscultaciones clásicas, salvo que en su día se recurrió a implantar el tipo de señalización ya descrita para láser escáner, lo que hizo necesario la observación y cálculo de coordenadas con las técnicas aquí descritas que generaron las siguientes coordenadas:

PUNTO	Coord. X	Coord. Y
LA	992.588	1031.632
LD	1009.173	1109.489
LE	1066.953	1200.325
LG	1112.566	1050.352

Tabla Número IV.24.- Coordenadas de los puntos de seguridad.

2.4.- PROCEDIMIENTO DE OBSERVACIÓN CON LÁSER ESCÁNER.

2.4.1.- ESTACIONAMIENTO DEL EQUIPO.

El estacionamiento que requiere este equipo no varía en gran medida frente al estacionamiento de cualquier equipo clásico; si existe alguna diferencia, ésta se caracteriza por la singularidad de tener que hacerlo sobre un pilar en vez de un trípode, hecho que también sucede con los instrumentos clásicos, y que se debe a la necesidad imperiosa de llevar a cabo el escaneo con el instrumento estacionado con la máxima estabilidad durante dicha operación.

El procedimiento para colocar el instrumento en disposición de escanear se llama estacionamiento y los pasos a llevar a cabo son los siguientes:

- Se encaja la basada especialmente diseñada para estos pilares sobre el propio pilar, teniendo una única posición debido a que el triángulo que forman las tres patas de la basada es irregular, lo que hace que la posición sea única y se eviten errores sistemáticos.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

- Se coloca la base nivelante sobre la basada y a continuación se enrosca de forma que se hagan solidarias la basada y la base nivelante.
- Se nivela la base nivelante utilizando el nivel de burbuja, para acometer esta nivelación se recurre a centrar la burbuja del nivel esférico con los tornillos de nivelación disponibles en la propia base nivelante.
- Finalmente se coloca el instrumento sobre la base nivelante y se asegura con el botón de fijación de la base. Una vez fijado, conviene asegurarse de que el instrumento se encuentra bien nivelado revisando el nivel de burbuja integrado.

En la siguiente figura se puede apreciar el detalle de la basada empleada en los pilares de la Presa de la Cohilla, la base nivelante del instrumento y el propio instrumento sobre dicha base, una vez estacionado el equipo y en disposición de observar:

Figura Número IV.24.- Detalle de la nivelación del equipo Leica HDS3000.

El instrumento debe estar nivelado antes de encenderlo. Si el instrumento no se nivela utilizando el nivel de burbuja de la base nivelante o del propio instrumento, puede no encenderse correctamente o la precisión del barrido se puede ver afectada. Al colocar el instrumento sobre la base nivelante se deben alinear los soportes inferiores del escáner con los tornillos de la misma.

2.4.2.- PROCESO DE ESCANEADO.

2.4.2.1.- ENCENDIDO DEL SISTEMA.

El procedimiento a seguir para llevar a cabo el encendido del equipo se puede esquematizar en los siguientes pasos

- Estacionar el instrumento según los requerimientos definidos anteriormente.
- Encender el ordenador portátil.
- Conectar todos los cables al instrumento siguiendo las indicaciones señaladas.
- Retirar las cubiertas de las ventanas.
- Liberar el instrumento activando el botón negro que se encuentra en la parte posterior y colocándolo en la posición "UNLOCKED". El instrumento permite a partir de ese momento el giro libre aunque no esté encendido.
- Conectar y encender la fuente de alimentación A/C.

- La luz amarilla RDY debe mostrarse intermitente mientras el instrumento se prepara para efectuar un barrido. (El proceso de encendido tarda aproximadamente cinco minutos en completarse. Mientras tanto, el escáner girará y el espejo que se encuentra detrás de la ventana principal dará vueltas.)
- El instrumento estará listo cuando la luz RDY cambie a verde. Nótese que al encenderse, el instrumento dejará de girar libremente. (El instrumento no debe tocarse mientras se enciende o al estar listo para trabajar).
- Iniciar Cyclone.
- El programa Cyclone-SCAN controla las operaciones de barrido con el instrumento y permite visualizar y medir la nube de puntos obtenida.

Figura Número IV.25.- Detalle de las conexiones del equipo Leica HDS3000.

2.4.2.2.- SIGNIFICADO DE LOS LED DE CONTROL DEL INSTRUMENTO.

Básicamente existen tres LED (Diodos Emisores de Luz) que indican al operador sobre diferentes aspectos de la observación:

Figura Número IV.26.- Detalle de los indicadores luminosos del equipo.

- *RDY*. Al mostrarse en color amarillo intermitente indica que el instrumento se está encendiendo y en color verde indica que el instrumento está listo para comenzar a escanear. Si la luz amarilla intermitente aparece mientras el instrumento efectúa un barrido o espera un comando, indica que se está llevando a cabo un ajuste de precisión automática, proceso que tarda unos minutos.
- *COM*. El color verde intermitente indica que el instrumento se está comunicando con Cyclone. El color rojo indica que existe un fallo en el escáner. Más adelante se describen los procedimientos para diagnosticar los errores más comunes.
- *LSR*. El color naranja indica que el láser está encendido. Cuando el escáner completa el proceso de encendido, la luz LSR siempre se mostrará en color naranja.

2.4.2.3.- CONDICIONES A TENER EN CUENTA EN UNA OBSERVACIÓN.

Las principales condiciones a tener en cuenta cuando se realiza una observación con este tipo de equipos son las siguientes:

- *Superficies desfavorables.* Se consideran como superficies desfavorables para realizar observaciones aquéllas que se caracterizan por ser altamente reflectantes (metal pulido, pintura brillante), o tienen alta absorción (cuerpos negros), o se caracterizan por ser traslúcidas (vidrio transparente), etc.
- Condiciones climáticas adversas. La lluvia, nieve o niebla repercuten en la calidad de las mediciones, por lo que se recomienda no efectuarlas bajo estas condiciones. En caso de hacer el barrido de algunos objetos a contraluz o con la luz solar incidiendo por detrás, el receptor óptico del instrumento puede ser deslumbrado de tal forma que en el área afectada no se registrarán datos. Como resultado, aparecerá un "agujero negro" en la imagen obtenida.
- *Cambios de temperatura.* Si el instrumento se lleva de un ambiente frío (por ejemplo, de estar almacenado) a un ambiente cálido y húmedo, la ventana donde se encuentra el espejo o incluso (en casos extremos) el sistema óptico interior se pueden empañar, lo cual provocará errores de medición. Por tanto, se deben evitar cambios bruscos de temperatura, procurando que el instrumento se adapte paulatinamente.
- *Vidrio de la ventana.* Si existe suciedad en el vidrio, como una capa de polvo, agua condensada o huellas dactilares, se presentarán errores de medición considerables.
- Ordenador portátil. Dependiendo del proyecto y del ordenador, puede ser necesario reservar hasta un 50% del disco duro. Al efectuar un barrido se recomienda no saturar el ordenador con procesos adicionales. Se recomienda no ejecutar otras tareas de Cyclone durante un barrido.
- *Otros*. Es muy interesante para el posterior procesado de datos llevar un registro de campo que incluya aspectos como pueden ser las posiciones visadas con respecto al instrumento, la posición del instrumento en el área medida, etc.

2.4.2.4.- PROCEDIMIENTO DE DIAGNÓSTICO.

El procedimiento de diagnóstico explica cómo obtener informes cuando se presentan problemas con el escáner o con la conexión. Para su obtención se deben seguir los siguientes pasos:

Conectar el cable ethernet al instrumento y al ordenador portátil.

- Iniciar Cyclone y abrir una ventana de ScanControl.
- Encender el instrumento.
- Establecer conexión con el instrumento desde la ventana ScanControl de Cyclone. La información del diagnóstico se guarda en un archivo de texto en cuanto se intenta establecer la conexión.

2.4.2.5.- SOLUCIÓN DE PROBLEMAS ELEMENTALES.

En este epígrafe se describe una serie de recomendaciones para solucionar problemas elementales que se pueden plantear cuando se pretende trabajar con este tipo de equipos. Dichas recomendaciones vienen abaladas y prescritas por el fabricante, pero algo que nunca debe generar la más mínima duda es que en cuanto se tenga la sospecha de que puede existir una avería en el equipo, es el fabricante el que debe revisar y controlar el equipo.

- *Problemas físicos*. La resolución de problemas físicos pasa por llevar a cabo los siguientes controles elementales:
 - Revisar si uno de los extremos del cable ethernet está conectado correctamente al conector denominado Network que se encuentra en la base del instrumento.
 - Revisar si el otro extremo del cable ethernet está conectado correctamente al ordenador portátil.
 - Revisar si el indicador luminoso COM del instrumento se encuentra encendido ya que esto indica que el módulo de red del instrumento tiene energía suficiente.
 - Asegurarse de utilizar el cable de red correcto. Para hacerlo, sostener uno junto a otro los dos conectores modulares. Los cables de colores del interior de ambos conectores modulares deben estar en el mismo orden.
- *Problemas con la conexión del escáner*. Para la resolución de problemas con la conexión del escáner se deben llevar a cabo los siguientes controles en la mencionada conexión:
 - Si el instrumento no se enciende, intentar establecer conexión con el instrumento desde la ventana ScanControl, recordando que cada vez que se intenta establecer conexión con el escáner, se guarda un informe de diagnóstico.
 - Si el instrumento y el indicador luminoso RDY se encienden, pero no es posible establecer conexión, revisar la dirección de red del equipo mediante un procedimiento denominado ping al instrumento.
 - En caso de que no se genere un informe de diagnóstico, revisar la dirección de red del instrumento y la configuración de red del ordenador portátil.
 - Si existen problemas al efectuar barridos o durante la toma de imágenes, contactar con el soporte técnico del fabricante.
 - Si el indicador COM se muestra en color rojo, reiniciar el instrumento. Si continúa en rojo, contactar con el soporte técnico.
- *Problemas con la configuración del programa*. La resolución de problemas con la configuración del software requiere llevar a cabo los siguientes controles del programa:
 - Iniciar Cyclone.
 - Iniciar el visor ScanControl para su escáner.

- Iniciar la conexión con el instrumento.
- Si la barra de progreso no avanza más allá de 10% se debe a que Cyclone no puede localizar el escáner en la red.
- Si la barra de progreso se mantiene en 40% ó 70% se debe a que Cyclone puede localizar al instrumento en la red, pero no puede completar el protocolo de conexión.
- Si persiste la falta en la conexión con el instrumento, efectuar el procedimiento de diagnóstico descrito anteriormente.

2.4.3.- LOS DATOS DE CAMPO.

Las condiciones en las que se encuentra la presa en los momentos en los que se realiza la observación vienen determinadas básicamente por la temperatura en el momento de la observación y la cota de agua embalsada, siendo estos parámetros los que definen el empuje hidrostático al que está sometido la presa y, por lo tanto, el estado deformacional de la presa entre ambas campañas. Las campañas utilizadas para el contraste objeto de la presente tesis doctoral se llevaron a cabo con los siguientes condicionantes, totalmente análogos con los tomados en las auscultaciones clásicas:

CAMPAÑA 76	Fechas de observación: 26 de Mayo de 2008.	
	Cota media embalsada: 58,50 m.	
	Temperatura media de observación 14 °C.	
CAMPAÑA 77	Fechas de observación: 24 de Febrero de 2009.	
	Cota media embalsada: 42,25 m.	
	Temperatura media de observación 6°C.	

Los programas informáticos con los que se capturan y procesan los datos obtenidos con láser escáner se estructuran habitualmente en módulos. De esta forma el fabricante ofrece al usuario diferentes niveles de manipulación de los datos de campo en función de las necesidades que éste pueda tener. En esta línea, el programa Cyclone desarrollado por Leica Geosystems para todos sus equipos HDS, ofrece a los usuarios una gama muy amplia de opciones, con el objeto de desarrollar proyectos a partir de escaneados realizados con estos equipos.

La aplicación informática en esencia está formada por cuatro paquetes modulares, caracterizados por ser capaces de llevar a cabo las siguientes tareas:

- Cyclone-Scan. Permite al usuario controlar el escáner.
- *Cyclone-Register*. Permite al usuario controlar el escáner, registrar diferentes escaneados simultáneamente y georreferenciar nubes de puntos.
- *Cyclone-Survey*. Permite las funciones anteriores y además ofrece funciones básicas para exportar información y llevar a cabo mediciones a partir de nubes de puntos.
- *Cyclone-Model.* Ofrece al usuario todas las funciones disponibles de Cyclone y además permite exportar información, efectuar mediciones y crear modelados tridimensionales a partir de nubes de puntos.

Este software convencional e imprescindible si se desean obtener los datos de campo, ya que es la única herramienta que permite la manipulación del equipo, la extracción y tratamiento de los datos, está sin duda alguna enfocado a la generación de modelos mediante herramientas de fusión de datos a través de ajuste mínimo cuadráticos de los propios datos, principal aportación de este equipo. Esto

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

motivó que, aunque no fuera el objeto de la tesis y dada la rapidez con la que se podían tomar los observables de campo, se plantearan dos observaciones con diferentes objetivos.

2.4.3.1.- EL MODELADO DE LA PRESA.

En el mundo actual, cuando se pretende solucionar un gran número de problemas prácticos, existentes en muchas áreas de la actividad humana, es habitual realizar medidas para crear modelos del mundo real, a partir de los cuales es posible conseguir un cierto conocimiento sobre los objetos que son medidos y plantear la mejor solución posible para el problema suscitado. Por tanto, se puede asegurar que las informaciones geométrica y temática, obtenidas en el proceso de modelado, forma la base para la toma de decisiones adecuada. Puesto que la realidad es tridimensional, la captura de la información también ha de ser tridimensional y más hoy, cuando el nivel del desarrollo técnico ha permitido procesar y visualizar eficientemente dicha información.

El láser escáner modifica la concepción de levantamiento tridimensional al obtener mediante barrido miles de puntos en un corto espacio de tiempo con buenas precisiones. Además, la identificación de puntos homólogos en los distintos escaneados que se puedan hacer del objeto, generados desde diferentes posicionamientos del instrumento, permite la fusión de diferentes escaneados, consiguiendo en este caso mejorar las precisiones de las superficies modeladas.

Hasta la aparición de estas técnicas, habitualmente se modelizaba a partir de nubes de puntos codificados o identificados mediante croquis, puntos que representan a los detalles característicos del territorio u objetos. En el caso de los barredores láser, el barrido por lo general es indiscriminado y, al mismo tiempo, se obtiene una nube de puntos de densidades impensables hasta hace poco tiempo (una fachada de un edificio de 60 por 20 metros, puede suponer una nube de 15 millones de puntos con información posicional y radiométrica), con lo que se tiene garantizada la captura íntegra del objeto, aunque se dificulta aparentemente el proceso de modelización, debido a la dificultad de interpretación y manejo de tal cantidad de información.

La gestión de la información se garantiza en términos de velocidad de procesado, ligado a la revolución del hardware y diferentes técnicas y algoritmos de compresión, rastreo, etc., implementados en los paquetes de modelización, no siendo en la actualidad excesivamente complejo el manejo de nubes de alta densidad y tamaño. Esto vale de igual modo para el modelizado de la nube de puntos, con la evolución de los algoritmos de tratamiento de nubes de puntos en espacios tridimensionales que permitan la geometrización de formas, depuración y eliminación de ruido, ajuste de entidades gráficas tridimensionales básicas y complejas, etc. Por tanto, el aspecto clave en el futuro desarrollo y utilización de los barredores láser esta ligado a la evolución del software, el cual en la actualidad permite manejar y modelizar la nube de puntos en formato tridimensional o en formato bidimensional clásico, actualmente se deben olvidar las técnicas de representación clásicas y pensar exclusivamente en espacios virtuales tridimensionales, que permitan fácilmente cualquier tipo de representación convencional.

La cantidad de aplicaciones y técnicas que se pueden llevar a cabo con este equipo, es tan sumamente grande que este epígrafe se puede extender todo lo que se desee. Con el objetivo de no dispersar excesivamente la información y centrarse adecuadamente en el ámbito del trabajo, se describe a continuación y de forma somera, algunas de las aplicaciones más importantes de este instrumental, donde realmente este equipo muestra todo su potencial y aportación al mundo de la representación tridimensional. Cabe reseñar que se han descartado algunas aplicaciones que en otras líneas de trabajo pueden ser tan importantes como la medicina, reconstrucción de accidentes, presentación de pequeños objetos, hundimientos y derrumbes, etc.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

Arqueología, arquitectura y patrimonio cultural. Los archivos arquitectónicos de monumentos y edificios históricos son una fuente muy valiosa de información para preservar, reconstruir y rehabilitar el patrimonio existente. La creación de estos archivos debe considerarse una necesidad si se desea proteger el patrimonio arquitectónico de la degradación, el fuego y otros desastres que puedan ocasionar su extinción. Normalmente, antes de intervenir una unidad patrimonial arquitectónica, se debe realizar un exhaustivo levantamiento examinando, al por menor, la geometría del objeto y un estudio de deformaciones y desviaciones de las estructuras principales. Paralelamente, los análisis del estado de los materiales pueden ser un valioso documento si van unidos a un estudio geométrico de detalle que permita al arquitecto establecer un diagnóstico fiable.

La tecnología láser escáner pretende ser una alternativa eficiente a las técnicas tradicionales de captura métrica o, al menos, ser un complemento a las mismas. La complejidad de las formas, que generalmente existen, y la gran valía cultural de los monumentos arquitectónicos, hacen de ella un objeto a ser representado con gran detalle geométrico y radiométrico. Es por ello que el láser escáner es una técnica óptima para estas aplicaciones, ya que su naturaleza geométrica es de gran precisión y posee la posibilidad de aceptar texturas de alta resolución a partir de cámaras calibradas.

- *Estudios geológicos y geotécnicos*. En la actualidad se están desarrollando trabajos enfocados a la evaluación de riesgos geológicos, en concreto en el estudio de los procesos de laderas inestables. La finalidad de estos trabajos es generar la información necesaria para, partiendo de estos estudios, establecer las soluciones más apropiadas a los problemas derivados de inestabilidad geológica.

Los instrumentos de captura masiva de puntos permiten obtener modelos muy completos, independientemente de los criterios del operador. El láser escáner es un sistema de medida que no necesita un contacto directo con el modelo y, además de ángulos y distancias, el láser también obtiene el valor de reflectancia de la superficie objeto.

- Ingeniería Industrial, Civil y Minera. La representación cartográfica y geométrica de instalaciones industriales presenta grandes dificultades debido a la presencia de numerosos obstáculos que entorpecen las visuales en topografía clásica, el gran número de elementos a representar, así como la propia inaccesibilidad de conducciones, depósitos, etc. Estas técnicas permiten obtener representaciones rápidas en la toma de datos, acumular información suficiente pese a la dificultad del entorno y con el grado suficiente de fiabilidad que es necesario en este tipo de representaciones.

En el ámbito de la Ingeniería Civil los levantamientos topográficos de presas, carreteras, puertos, etc., son tremendamente sencillos de realizar cuando se dispone de un láser escáner. En la actualidad, se han realizando estudios comparativos entre equipos láser escáner y estaciones topográficas y, a la vista de los resultados, se llega a la conclusión que los rendimientos con ambas tecnologías no tienen nada que discutir: con los láser escáner el nivel de detalle es mucho mayor y encima con observaciones más rápidas, produciéndose un mayor rendimiento económico y un procedimiento más seguro ya que no es necesario acceder a muchos lugares a los que con la estación topográfica hay que acceder.

El levantamiento de galerías y túneles siempre es una labor lenta y dificultosa, incluso con las estaciones topográficas robotizadas actuales, en el ámbito de la Ingeniería Minera. El sistema empleado por los equipos láser escáner ofrece ventajas de rapidez y seguridad. No hace falta estar junto al equipo durante el trabajo y se obtienen unos rendimientos de unos

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

40 m. de túnel por cada puesta en estación y observación (15 minutos de observación). Se puede levantar la zona del frente de ataque sin interferir con los procesos de producción. El software de proceso permite además exportar los datos obtenidos bien como una sucesión de perfiles o como una nube de puntos que se puede procesar para obtener un modelo.

Cuando se establece la idea general sobre la que cimentar la investigación objeto de esta tesis doctoral, se plantea también la posibilidad de realizar un escaneado general de la presa con un doble objetivo: generar un modelo tridimensional de la presa no existente en la actualidad y dar a conocer, el gran potencial de estas técnicas que, precisamente, tienen su principal campo de aplicación en la representación tridimensional de objetos. En esta línea de trabajo se planificaron observaciones anteriores a las realizadas para el objeto de la tesis desde cada pilar y campaña, pero aprovechando dichos estacionamientos, para llevar a cabo escaneados genéricos de la estructura que permitiesen su representación tridimensional. Siguiendo estas pautas, desde cada pilar se realizó un escaneado en cada campaña, con los siguientes condicionantes técnicos:

- Una vez estacionado el equipo en cada pilar, en primera instancia se realiza una toma fotográfica de contorno que permite fijar el área a escanear, que se determina mediante una herramienta tipo ventana que tiene el propio software.
- Dado que la superficie a explorar era bastante grande se hizo una exploración preliminar de la presa con baja resolución, lo que permite la generación de un mapa de contorno aproximado del lugar, que posteriormente posibilita la planificación la observación.
- A continuación se definen en la aplicación informática la resolución y la exactitud prevista en la nube de puntos. En el escaneado de la presa objeto se planteó una precisión de 6 milímetros y una resolución de 4 centímetros, permitiendo estimar de forma aproximada, en función de las dimensiones de la estructura, el volumen de datos a capturar, la capacidad de almacenamiento y procesado del equipo informático. En el caso objeto se estima una estructura en forma de trapecio, con una base mayor de 150 metros, una base menor de 100 metros y una altura de 115 metros; si la resolución es de 4 centímetros, supone que a priori se genere una nube de aproximadamente 9 millones de puntos.
- Una vez comenzada la exploración, el operador puede seguir el proceso en la pantalla del ordenador portátil, archivándose los datos de campo en un archivo del proyecto previamente especificado. En el caso de los escaneos objeto, el volumen de la base de datos de los cuatro escaneos que se hicieron por campaña supuso cerca de 3 gigabytes.
- En cada escaneo el sistema referencial empleado para la nube de puntos es el interno del explorador. Para obtener una representación completa del objeto explorado, las nubes de puntos (exploraciones) se deben transformar primero a un sistema coordenado común, procedimiento que se denomina habitualmente el registro. En el caso de la presa objeto no fue necesario porque a posteriori se pretendía realizar un georreferenciación global.
- Para poder integrar los datos obtenidos con el registro en otros datos georreferenciados espacialmente se tienen que transformar las nubes de puntos registradas con el sistema referencial elegido o impuesto, denominándose este procedimiento georreferenciación. En este caso se hicieron el registro y la georreferenciación directa de forma simultánea, ya que tan solo requieren conocer las coordenadas de los puntos estación (pilares de auscultación) y las referencias (puntos de seguridad).
- A continuación se plantea el procesado previo y el modelado de los datos. En el procesado
 previo las observaciones son filtradas, ya que las nubes de puntos originales poseen mucho
 ruido y son excesivamente redundantes, lo cual empeora la calidad del modelado. Acto
 seguido se lleva a cabo el modelado en el que se obtiene una representación tridimensional

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

del objeto cuestión. Generalmente existen dos procedimientos totalmente diferentes que se emplean según el uso que se pretenda dar al modelo y que se han llevado a cabo en la Presa de la Cohilla:

- Aproximación a primitivas geométricas apropiadas a las nubes de puntos (planos, paralelepípedos, esferas, cilindros, etc.). Se usan para modelar los objetos que consisten en elementos con formas geométricas regulares.
- Triangulación de la superficie. Se produce un acoplamiento triangular, que aproxima de cerca la superficie real y la nube de puntos. La densidad del acoplamiento puede ser controlada dependiendo de la complejidad de la superficie.

Los resultados obtenidos, después de llevar a cabo el flujo de actividades descrito anteriormente, se pueden apreciar en las siguientes figuras:

Figura Número IV.27.- A la izquierda la imagen de la presa, a la derecha la nube de puntos correspondiente.

Figura Número IV.28.- A la izquierda la imagen de la presa, a la derecha el modelado correspondiente.

En este tipo de aplicaciones es donde el láser escáner muestra todo su potencial y donde realmente tiene un amplio campo de aplicación. La explicación es fácil de encontrar si se analizan las principales ventajas que tiene utilizar este tipo de técnicas: capacidad impensable hasta hace poco tiempo de captación, procesado, representación y manipulación de los datos de campo, analizando el caso presentado se observa la magnitud de lo manifestado: cada escaneado está formado por aproximadamente nueve millones de puntos, captados aproximadamente en 35 minutos (4.000 puntos/segundo) y procesados en poco menos de diez minutos. En la actualidad no existe otra técnica capaz de hacer lo mismo y esto es precisamente lo que justifica la gran expansión que el manejo de estas técnicas está teniendo y tendrá en un futuro no muy lejano.

2.4.3.2.- LA AUSCULTACIÓN DE LA PRESA.

Justificada la principal aplicación de este tipo de instrumental, y todo lo que lleva asociado en el epígrafe anterior, es necesario afrontar el objeto real de la tesis, el cual condiciona inevitablemente la captación de los observables de campo. Dado que la captación masiva de puntos no posibilita la identificación estricta de las clásicas dianas de puntería, ubicadas en el paramento de la presa, la primera necesidad que surge es colocar una nueva señalización que permita el contraste de la información radiométrica que genera el instrumento, con el objeto de que el software sea capaz de llevar a cabo un ajuste radiométrico posterior, con el que llevar a cabo la identificación estricta y automática del punto observado.

Esto condiciona la observación de las dianas, las cuales se caracterizan por no tener un sinfín de puntos en el hay que identificar posteriormente la diana, sino que la observación tan solo requiere definir la ventana de observación, para que posteriormente el software se encargue de definir el centro de la diana mediante un ajuste radiométrico, que además es resuelto de forma automática por el propio software a partir del escaneo de la diana. Esto justifica el procedimiento seguido para la obtención de los observables de campo que, aún siendo parecido al anterior, tiene diferencias reseñables. A continuación se hace una pequeña descripción del procedimiento seguido:

- Una vez finalizado el escaneo general de la presa en cada pilar, manteniendo el equipo estacionado y aprovechando la toma fotográfica de contorno realizada para la toma general, se define el conjunto de ventanas (una por cada diana) que se pretende observar. Por tanto, aquí se tiene la primera diferencia con respecto al escaneado general, ya que mientras en el escaneado general sólo se tiene una ventana de observación, ahora se tienen muchas y muy pequeñas ventanas de observación.
- A continuación se definen en la aplicación informática la resolución y la exactitud prevista en la nube de puntos. Hay que pensar que a priori el resultado buscado no es la nube de puntos, pero también es cierto que resulta muy difícil dimensionar la ventana de observación exactamente igual que el tamaño de la diana, por lo que en la observación se toma una ventana un poco mayor que el tamaño de la diana, lo que genera una nube de puntos, y en el centro un único punto que es la ubicación estricta de la diana. En el escaneado de la presa objeto se planteó la máxima precisión que el equipo es capaz de generar. No hace falta detallar que el volumen de puntos y, por tanto, de la base de datos es en este caso mucho más pequeña que en el caso del escaneado global.
- En cada escaneo el sistema referencial empleado para la nube de puntos es el interno del explorador. Para obtener una representación las nubes de puntos se deben transformar primero a un sistema coordenado común, procedimiento denominado habitualmente el registro. En el caso de la presa objeto no fue necesario porque a posteriori se realiza una georreferenciación global.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

- La georrefereciación se lleva a cabo de forma directa, apoyándose en el conocimiento de los puntos estación (pilares de auscultación) y las referencias (puntos de seguridad), con la salvedad de que como se realizan dos campañas, es importante que en ambas campañas se estacione y oriente el equipo con los mismos puntos, para que el sistema referencial en ambas campañas se mantenga constante y se puedan comparar resultados.
- Dado que la aplicación informática que permite la captura y procesado de los datos está abocada a la principal aplicación de este instrumental, que es el modelado de objetos o superficies, cabe reseñar que dicha aplicación procesa los datos mediante transformaciones tridimensionales que aplica a las nubes de puntos, con el objeto de obtener un único modelo a partir de varias nubes de puntos. En estas transformaciones se aplican parámetros de transformación a todas las observaciones, incluidas las de los pilares, lo cual obviamente es inviable para el caso de las auscultaciones geodésicas, en las que una de las premisas básicas consiste en la estabilidad de los pilares. Esto justifica que el procesado de datos del presente trabajo de investigación no se realice mediante la aplicación informática que gestiona el instrumento, sino que se tenga que recurrir a aplicaciones informáticas desarrolladas por el autor de la tesis, las cuales deben permitir tratar los datos convenientemente y no bajo las premisas del modelado de objetos o superficies.
- Establecido el procedimiento que se pretende seguir para procesar los datos, éste requiere obtener los datos de campo para posteriormente tratarles con las aplicaciones informáticas que permitan ensayar los diferentes procedimientos de cálculo. Esto justifica la necesidad de obtener los datos que registra el instrumento para posteriormente proceder al cálculo planteado. Como ya se ha justificado anteriormente, el equipo observa la distancia geométrica, el ángulo horizontal y el ángulo cenital, pero la aplicación informática que gestiona la captura de datos no permite exportar esos datos, dejando exportar como datos más básicos los incrementos de coordenadas, lo cual aunque sean datos derivados, ya no son los observables directos de la observación. El sistema referencial empleado para la determinación de los incrementos es el sistema de referencia interno del equipo ya descrito anteriormente.

Esto justifica que los observables de campo sean exclusivamente los incrementos de coordenadas en el sistema de referencia local del instrumento, para cada uno de los puntos de seguridad y dianas de puntería, observados desde cada pilar y en cada campaña. El hecho de que se tenga una única observación responde, como ya se ha justificado anteriormente, al ajuste radiométrico que se hace de las observaciones de cada una de las señales ubicadas en los diferentes puntos de observación. Con el objeto de no extender excesivamente la presente memoria, todos los datos captados en campo se encuentran en el Anejo Número 6, titulado "*Ensayos con las observaciones del láser escáner*". Aún así, y a modo de ejemplo, en la siguiente tabla se pueden apreciar los datos que genera el láser escáner en la campaña 76 desde el pilar I, siendo el resto similares.

Presa:	Cohilla	Campaña:	76
Pilar:	I	Observable:	Láser Escáner
	PUNTOS DE	SEGURIDAD	
PUNTO	ΔΧ	ΔΥ	ΔZ
LA	-10,5710	-30,7205	-2,6247
LD			
LE			
LG	-122.0788	17.2841	-4,7740
I	DIANAS DE LAS	COLUMNAS A-I	D
PUNTO	AX	AV	Δ7.
74	-31.8368	113,7546	44,3940
6A	-31.4452	113,4455	31,6034
5A	-31.4120	112,9987	19,7739
44	-31.2265	112.0021	7.5547
3A			
2A	-30.5176	109.3377	-16.6626
1A	-29.8733	106,5056	-27.8995
0A	-28,2804	100,3576	-40,4889
1D	-9,3070	110,2889	-28,3896
2D	-9,2533	112,4395	-15,9114
3D	-9,2415	112,4837	-4,4343
4D	-9,4890	111,9238	7,7301
5D	-9,8013	111,5266	19,9381
6D	-9,9187	111,2296	31,9638
7D	-10,0961	111,4334	44,4702
	DIANAS DE LA	A COLUMNA C	
PUNTO	ΔΧ	ΔΥ	ΔΖ
7C	11,3111	102,3059	44,4340
6C			
5C	12,7979	101,7916	19,8655
4C	13,2528	102,7048	7,6344
3C	13,8886	103,7871	-4,4971
2C	14,4286	104,2718	-16,2084
1C	13,4363	103,1339	-28,2505
0C	10,3752	97,9656	-40,8252
I	DIANAS DE LAS	COLUMNAS B-	E
PUNTO	ΔΧ	ΔΥ	ΔZ
7B	41,5750	66,4969	44,3916
6B	41,3312	66,2737	31,7901
5B	40,8110	66,0207	19,6927
4B			
3B	38,7017	65,5985	-4,3252
2B	36,9866	64,9888	-16,3702
1B	34,0614	64,5338	-28,3692
1E	29,7963	85,1337	-28,3182
2E	31,3301	86,1458	-16,5623
3E	31,3671	86,1451	-4,3697
4E	30,9926	85,4314	8,1373
5E	30,4876	85,2509	19,9289
6E	30,1371	85,1318	31,9043
7E	30,6169	84,6777	44,5614

Tabla Número IV.25.- Observaciones del láser escáner, pilar I – campaña 76.
2.5.- PROCESADO DE LOS DATOS DE CAMPO.

2.5.1.- INTRODUCCIÓN.

Capturados los observables que exporta la aplicación informática, parece coherente procesar los datos mediante un procedimiento que permita obtener coordenadas en el mismo sistema de referencia y poder así calcular el desplazamiento de cada diana por diferencia de coordenadas. Para conseguir el mismo sistema referencial y evitar el sistema interno del escáner, con el que se obtienen las coordenadas de cada campaña, es necesario calcular la desorientación angular respecto a un sistema determinado que se produce en cada estacionamiento del láser escáner.

Cabe reseñar que el procedimiento a seguir para llevar a cabo el contraste planteado en el objeto de esta tesis, se apoya en la determinación del desplazamiento de las dianas de puntería mediante la comparación de coordenadas resultantes de cada diana entre campañas. Si este procedimiento no diese el resultado esperado, también es posible la determinación del desplazamiento de cada diana mediante el análisis de las variaciones angulares y distanciométricas de las observaciones generadas por el propio instrumento entre campañas. Dejando claro que esta segunda fase del estudio puede determinar la posibilidad de aprovechar los datos, pero cuestionando muy seriamente la viabilidad técnica del procedimiento.

Volviendo al tema del cálculo de las desorientaciones en cada estacionamiento del instrumento, mencionar que el cálculo de las mismas es el resultado de una observación topográfica convencional, en la que el instrumento se estaciona en un punto de coordenadas conocidas (pilar de auscultación) y observa el ángulo horizontal (se calcula a través del $\Delta X e \Delta Y$ que genera el láser escáner) a otro punto de coordenadas conocidas (puntos de seguridad), todo ello bajo la premisa ya demostrada anteriormente de la estabilidad de los pilares y los puntos de seguridad entre campañas. En la siguiente tabla se muestran las coordenadas de los pilares de auscultación y puntos de seguridad, obtenidas en base al ajuste matemático ya justificado y cuyos resultados se muestran en el Anejo Número 5 de esta tesis doctoral. A partir de dichas coordenadas en la tabla siguiente se determinan las desorientaciones en cada pilar y campaña en base a las distintas observaciones realizadas a diferentes puntos de seguridad.

COORDEN	COORDENADAS DE LOS PILARES Y PUNTOS DE SEGURIDAD							
COORDENADAS PILARES								
Punto	Coordenada X	Coordenada Y	Coordenada Z					
P I	1000,000	1000,000	100,000					
P II	1092,056	961,153	107,491					
P III	1033,486	1014,111	74,221					
P IV	1086,300	992,664	101,341					
(COORDENADAS PUN	TOS DE SEGURIDA	D					
Punto	Coordenada X	Coordenada Y	Coordenada Z					
LA	992,588	1031,632						
LD	1009,173	1109,489						
LE	1066,953	1200,325						
LG	1112,566	1050,352						

Tabla Número IV.26.- Coordenadas ajustadas de la red de pilares y puntos de seguridad.

С	CÁLCULO DE LAS DESORIENTACIONES EN LOS ESTACIONAMIENTOS DEL LÁSER ESCÁNER									
EST.	REF.	ΔΧ	ΔΥ	Acimut	Dist. Red.	Lect. C1	Lect. C2	Dist. C1	Dist. C2	
ΡI	LA	-7,412	31,632	385,34710	32,4888	221,09830	333,98607	32,4884	32,4923	
ΡII	LA	-99,468	70,479	339,24427	121,9064	279,23525	399,95519	121,9116	121,9035	
P III	LA	-40,898	17,521	325,76738	44,4931	51,24171	8,05536	44,5217	44,5284	
P IV	LA	-93,712	38,968	325,08763	101,4911	340,45288	329,81023	101,4834	101,4937	
			DOT	DEE	D C1					
			EST.	KEF.	Desor. CI	Desor. C2				
				LA	164,24881	31,36104				
				LA	60,00902	339,28908				
				LA	274,52567	317,71202				
			PIV	LA	384,03470	395,27741				
EST.	REF.	ΔΧ	ΔΥ	Acimut	Dist. Red.	Lect. C1	Lect. C2	Dist. C1	Dist. C2	
ΡI	LD	9,173	109,489	5,3212	109,8726					
ΡΠ	LD	-82,883	148,336	367,5618	169,9210	307,5423	28,2675	169,9565	169,9013	
P III	LD	-24,313	95,378	384,1102	98,4281	109,5660	66,3594	98,4134	98,4168	
P IV	LD	-77,127	116,825	362,8528	139,9881	378,2021	367,5449	139,9722	139,9910	
			EST	REF	Desor C1	Desor C2				
			PI	LD						
			РП	LD	60 01949	339 29436				
			РШ	LD	274 54417	317 75079				
			PIV	LD	384.65069	395.30792				
					501,05009	575,50772		1		
EST.	REF.	ΔΧ	ΔΥ	Acimut	Dist. Red.	Lect. C1	Lect. C2	Dist. C1	Dist. C2	
PI	LE	66,953	200,325	20,5342	211,2174					
P II	LE	-25,103	239,172	393,3425	240,4858		54,0506		240,4458	
P III	LE	33,467	186,214	11,3207	189,1975	136,7871	93,5769	189,1612	189,1484	
P IV	LE	-19,347	207,661	394,0859	208,5603	9,4357	398,7754	208,5065	208,5098	
			EST.	REF.	Desor. C1	Desor. C2				
			PI	LE						
			РП	LE		339.29197				
			P III	LE	274.53363	317.74381				
			P IV	LE	384,65025	395,31051				
						-				
EST.	REF.	ΔΧ	ΔΥ	Acimut	Dist. Red.	Lect. C1	Lect. C2	Dist. C1	Dist. C2	
PI	LG	112,566	50,352	73,2228	123,3143	308,9538	21,8692	123,2963	123,2869	
PII	LG	20,510	89,199	14,3880	91,5266					
P III	LG	79,080	36,241	72,6431	86,9888	198,0732	154,8510	86,9636	86,9675	
P IV	LG	26,266	57,688	27,2003	63,3862		31,9120		63,3622	
			EST.	REF.	Desor. C1	Desor. C2				
			P I	LG	164,26894	51,35360				
			P II	LG						
			P III	LG	274,56991	317,79216				
			P IV	LG		395,28831				

Tabla Número IV.27.- Cálculo de las desorientaciones en cada pilar y campaña de observación con el láser escáner.

2.5.2.- EVALUACIÓN DEL DESPLAZAMIENTO COMPARANDO COORDENADAS.

Como ya se ha mencionado, el procedimiento para comparar coordenadas requiere en cada pilar y en cada campaña obtener coordenadas en el mismo sistema referencial, lo que justifica no poder trabajar con los incrementos tal y como se obtienen del instrumento, ya que en cada pilar y campaña el instrumento tiene diferente origen de ángulos horizontales. Para subsanar este inconveniente se obtienen las coordenadas de cada pilar y en cada campaña según el siguiente procedimiento:

Partiendo de los incrementos generados por el instrumento se calculan el ángulo horizontal y la distancia reducida de todas las observaciones realizadas desde cada pilar y campaña:

$$H_{PILAR}^{DIANA} = Arctag \frac{\Delta X_{PILAR}^{DIANA}}{\Delta Y_{PILAR}^{DIANA}}$$
[IV.110]

$$D_{PILAR}^{DIANA} = \sqrt{\Delta X_{PILAR}^{DIANA^2} + \Delta Y_{PILAR}^{DIANA^2}}$$
[IV.111]

A continuación se determina el acimut de cada observación, para lo que se emplean las desorientaciones calculadas anteriormente y el ángulo horizontal determinado mediante la expresión anterior. Con respecto a las diferentes desorientaciones posibles en cada pilar, reseñar que se generan tantas desorientaciones como visuales a puntos de seguridad, ya que desde cada pilar se observa a todos los puntos de seguridad visibles. Con el objeto de no introducir fuentes de error, se ha empleado siempre el punto de seguridad LA, por ser el único punto de seguridad que se ve desde los cuatro pilares. Para ello se emplea la expresión:

$$\theta_{PILAR}^{DIANA} = \varepsilon_{PILAR}^{LA} + H_{PILAR}^{DIANA}$$
[IV.112]

Una vez establecidos el acimut y la distancia reducida entre el pilar y cada una de las dianas se obtienen las coordenadas mediante las expresiones:

$$X_{DIANA} = X_{PILAR} + D_{PILAR}^{DIANA} \cdot Sen \theta_{PILAR}^{DIANA}$$

$$Y_{DIANA} = Y_{PILAR} + D_{PILAR}^{DIANA} \cdot Cos \theta_{PILAR}^{DIANA}$$

$$Z_{DIANA} = Z_{PILAR} + \Delta Z$$
[IV.113]

Determinadas las coordenadas de las dianas en el mismo sistema referencial, se establece el hipotético desplazamiento de cada una mediante dos procedimientos diferentes, con el objeto de poder hacer un primer contraste de los desplazamientos obtenidos con el láser escáner, antes de contrastarles con los métodos clásicos:

- Calculando el desplazamiento de cada diana como la diferencia de coordenadas entre campañas, calculándose las coordenadas de cada diana desde cada pilar y campaña individualmente. En este caso, para cada diana se deducen tantos desplazamientos como número de pilares desde los que se ha observado la diana, generalmente cuatro. Los desplazamientos obtenidos desde cada pilar a cada diana debieran de coincidir.
- Calculando el desplazamiento de cada diana como la diferencia de coordenadas entre campañas, calculándose las coordenadas de cada diana como la media aritmética de las coordenadas obtenidas desde cada pilar. En este caso, para cada diana se calcula un único desplazamiento.

Todos los resultados de las coordenadas calculadas desde cada pilar y campaña para cada diana se encuentran en el Anejo Número 6, titulado "*Ensayos con las observaciones del láser escáner*". Aún así, y a modo de ejemplo, en la siguiente tabla se pueden apreciar las coordenadas calculadas en base a los observables del láser escáner, en la campaña 76 desde el pilar I, siendo el resto similares.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

Presa:	Cohilla					Campaña:	7	6
Pilar:	Ι					Observable:	Láser E	scáner
			PUNT	OS DE SEGU	RIDAD			
PUNTO	ΔΧ	ΔΥ	ΔZ	Angulo H	Dist. Red.	Coord. X	Coord. Y	Coord. Z
LA	-10,5710	-30,7205	-2,6247	221,09830	32,4884	992,5881	1031,6316	97,3753
LD								
LE								
LG	-122,0788	17,2841	-4,7740	308,95385	123,2963	1112,5336	1050,3802	95,2260
			DIANAS D	E LAS COLU	MNAS A-D			
PUNTO	ΔΧ	ΔY	ΔZ	Angulo H	Dist. Red.	Coord. X	Coord. Y	Coord. Z
7A	-31,8368	113,7546	44,3940	382,62725	118,1257	1087,5241	920,6702	144,3940
6A	-31,4452	113,4455	31,6034	382,78613	117,7229	1087,0280	920,7232	131,6034
5A	-31,4120	112,9987	19,7739	382,73871	117,2835	1086,7620	921,0837	119,7739
4A	-31,2265	112,0021	7,5547	382,69042	116,2737	1086,0743	921,8285	107,5547
3A								
2A	-30,5176	109,3377	-16,6626	382,67209	113,5168	1084,0554	923,7062	83,3374
1A	-29,8733	106,5056	-27,8995	382,59106	110,6158	1082,0019	925,7602	72,1005
0A	-28,2804	100,3576	-40,4889	382,51373	104,2661	1077,3797	930,1157	59,5111
1D	-9,3070	110,2889	-28,3896	394,64043	110,6809	1066,6089	911,6059	71,6104
2D	-9,2533	112,4395	-15,9114	394,77267	112,8196	1067,7087	909,7570	84,0886
3D	-9,2415	112,4837	-4,4343	394,78134	112,8627	1067,7223	909,7133	95,5657
4D	-9,4890	111,9238	7,7301	394,61556	112,3253	1067,6336	910,3191	107,7301
5D	-9,8013	111,5266	19,9381	394,41953	111,9565	1067,6864	910,8216	119,9381
6D	-9,9187	111,2296	31,9638	394,33803	111,6710	1067,6276	911,1355	131,9638
7D	-10,0961	111,4334	44,4702	394,24780	111,8898	1067,8863	911,0574	144,4702
			DIANAS	DE LA COL	UMNA C			
PUNTO	ΔΧ	ΔΥ	ΔZ	Angulo H	Dist. Red.	Coord. X	Coord. Y	Coord. Z
7C	11,3111	102,3059	44,4340	7,01010	102,9293	1044,9063	907,3833	144,4340
6C								
5C	12,7979	101,7916	19,8655	7,96222	102,5930	1043,3740	907,0268	119,8655
4C	3,2528	102,7048	7,6344	8,16966	103,5563	1043,4753	906,0116	107,6344
<u> 3C</u>	13,8886	103,7871	-4,4971	8,46882	104,7123	1043,5135	904,7570	95,5029
2C	14,4286	104,2718	-16,2084	8,75363	105,2653	1043,3145	904,0592	83,7916
	13,4363	103,1339	-28,2505	8,24744	104,0055	1043,5485	905,5507	/1,/495
UC	10,3752	97,9030	-40,8252	0,/1/18	98,5155	1045,5872	911,5554	39,1748
DUNTO	4.87	4 77	DIANAS D	E LAS COLU	MINAS B-E	C I V	C I V	0 17
PUNIO	ΔX 41.5750	ΔΥ	ΔZ	Angulo H	78 4240	Coord. X	021 5762	Coord. Z
/B	41,3730	66 2727	44,3910	35,37148	78,4240	1000,2214	921,3703	144,3910
0B 5D	41,5512	66.0207	10 6027	35,49945	78,1033	1000,5089	921,8931	131,7901
5D 4D	40,8110	00,0207	19,0927	55,24719	77,0102	1000,0145	922,3803	119,0927
4D 2D			4 2252	22 02200	76 1642		022 8660	
3D 2P	36,0866	64 0888	-4,3232	32,93299	70,1042	1002,1730	925,8009	93,0748
2D 1R	34,0614	64 5338	-10,3702	30,91712	72 0712	1005,5020	925,2905	71 6308
10 1F	29 7963	85 1337	-28,3092	21 43305	90 1974	1020 1156	912.0743	71 6818
2E	31,3301	86.1458	-16.5623	22,20629	91.6661	1019 3563	910,4009	83,4377
3E	31,3671	86,1451	-4.3697	22,23061	91,6781	1019,3246	910,3817	95.6303
4E	30,9926	85,4314	8,1373	22,15515	90,8794	1019.2616	911,1853	108,1373
5E	30,4876	85.2509	19,9289	21,86463	90,5384	1019.5929	911.6070	119,9289
6E	30,1371	85,1318	31,9043	21,66025	90,3087	1019,8261	911,8944	131,9043
7 E	30,6169	84,6777	44,5614	22,08718	90,0428	1019,1782	912,0233	144,5614

Tabla Número IV.28.- Cálculo de las coordenadas de las dianas desde el pilar I en la campaña 76.

2.5.2.1.- EVALUACIÓN DEL DESPLAZAMIENTO COMPARANDO COORDENADAS INDIVIDUALES DESDE CADA PILAR.

Obtenidas las coordenadas de las dianas en el mismo sistema referencial, desde cada pilar y campaña, para obtener el hipotético desplazamiento de la diana tan solo es necesario comparar dichas coordenadas. Por tanto, para calcular el desplazamiento entre campañas, se calcula la diferencia de coordenadas (X,Y,Z), pudiendo posteriormente definir el vector desplazamiento por su módulo y dirección horizontal.

La justificación de todos los cálculos se encuentra en el Anejo Número 6, titulado "*Ensayos con las observaciones del láser escáner*". Aún así, y a modo de resumen, en la siguiente tabla se pueden apreciar los resultados obtenidos para cada uno de los cuatro pilares, no siendo necesario argumentar que los desplazamientos debieran ser parecidos o con variaciones del orden de magnitud de la precisión del instrumento, lo que no sucede ya que si se comparan los resultados de los desplazamientos obtenidos en los cuatro pilares, se puede apreciar que los resultados son muy diferentes y además incoherentes.

Presa:	Cohilla				Ca	mpaña:		77-76	
Pilar:	TODOS				Obse	ervable:	L	Láser Es	cáner
		DIAN	NAS DE I	LAS COLUN	MNAS A-	D			
	PII	LAR I	PII	LAR II	PILAR III			PILAR IV	
PUNTO	Despl. (mm)	Acimut (grad)	Despl. (mm)	Acimut (grad)	Despl. (mm)	Acim (grad	ut 1)	Despl. (mm)	Acimut (grad)
7A	130,1	153,5520							
6A	101,0	166,5253	52,1	368,7366	61,0	27,73	78	35,2	77,0631
5A	75,3	184,0977	26,3	361,9663	52,6	31,49	57	22,5	80,1186
4A	60,7	218,3252	5,1	257,8999	46,4	38,33	91	8,5	114,7554
3A			26,8	180,1698	39,9	45,90	98		
2A	88,0	278,7363	56,2	176,7470	33,1	57,86	58		
1A	110,5	292,3746							
0A	143,2	301,6257							
1D	119,9	298,1553	81,7	178,8595	30,5	85,36	91		
2D	87,5	285,8528	53,4	180,9236	34,9	64,76	37		
3D	63,3	265,8261	26,8	188,3004	39,0	51,94	72		
4D	49,4	224,7478	7,5	284,1323	43,5	39,74	46		
5D	61,7	185,3572	28,5	363,6771	50,9	33,120	03		
6D	87,1	163,2330	56,7	367,3536	58,2	27,17	08		
7D	115,4	148,9591	82,9	364,2615					
		DI	ANAS D	E LA COLU	MNA C				
	PII	LAR I	PII	LAR II	PI	LAR III		PIL	AR IV
Ρυντο	Despl. (mm)	Acimut (grad)	Despl. (mm)	Acimut (grad)	Despl. (mm)	Acim (grad	ut I)	Despl. (mm)	Acimut (grad)
7C	104,0	144,0560	91,9	373,3013				49,1	56,6172
6C									
5C	48,3	183,7996	32,5	361,5673	47,8	39,793	31	16,3	65,8623
4C	39,0	235,2282	7,4	309,7700	39,3	47,43	18	2,3	57,4435
3C	60,8	279,6910	25,2	189,6505	37,5	62,90	65	11,4	261,9993
2C	84,4	294,8040	51,5	184,1010	35,5	81,434	46	25,9	265,6537
1C	108,9	307,9688	78,2	180,3758	34,3	94,78	84	38,9	266,3649
0C	142,3	310,8656	105,6	180,0719	30,8	117,29	22	54,9	264,4200

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

DIANAS DE LAS COLUMNAS B-E									
	PII	PILAR I		LAR II	PILAR III		PIL	PILAR IV	
PUNTO	Despl. (mm)	Acimut (grad)	Despl. (mm)	Acimut (grad)	Despl. (mm)	Acimut (grad)	Despl. (mm)	Acimut (grad)	
7B	118,3	127,9751	89,1	374,2992			50,8	57,2207	
6B	76,2	135,2298	59,9	367,8437	41,4	45,5049	31,2	58,4126	
5B	41,3	146,8000	33,7	361,1917	34,9	54,2662	17,0	49,1763	
4B			7,6	317,4184	29,7	67,7662	5,2	387,9259	
3B	37,6	297,4698	21,4	193,3800	26,0	82,2372	13,7	288,5184	
2B	70,3	309,3116	47,0	184,0442	27,1	110,4361	29,0	282,7162	
1B			72,6	181,7804	29,2	128,0014	41,1	266,4379	
1E	107,9	310,8501	77,8	182,3197	32,8	114,2912	41,4	269,1958	
2 E	74,5	305,0372	50,7	184,8891	29,9	94,0112	26,8	271,0435	
3E	42,8	292,0314	24,3	192,2934	31,8	79,5433	13,3	282,5165	
4 E	20,5	221,0062	9,8	321,7650	34,9	60,8097	4,7	382,8841	
5E	43,5	155,3013			39,6	46,6870	17,4	61,4075	
6E	78,0	140,4376	61,3	367,5591	47,9	42,0083	30,7	58,9499	
7E	113,9	131,5157	91,8	378,0903			52,2	58,2621	

Tabla Número IV.29.- Resumen de los desplazamientos de las dianas calculados desde cada pilar.

2.5.2.2.- EVALUACIÓN DEL DESPLAZAMIENTO COMPARANDO COORDENADAS MEDIAS.

El segundo procedimiento de cálculo, descrito en el epígrafe 2.5.2 de este capítulo, justifica la necesidad de calcular las coordenadas medias de cada diana para cada campaña, todo ello en base a las coordenadas obtenidas desde cada pilar, en cada campaña. En la siguiente tabla se muestran las coordenadas medias de cada diana en cada campaña.

Presa:	Cohilla				Campaña:	77-	-76
Pilar:	TODOS				Observable:	Láser H	Escáner
		DIANAS	DE LAS COLU	M	NAS A-D		
PUNTO	Coord_X (76)	Coord_Y (76)	Coord_Z (76)		Coord_X (77)	Coord_Y (77)	Coord_Z (77)
7A	1087,5241	920,6702	144,3940		1087,6108	920,5732	144,0627
6A	1087,0281	920,7240	131,6588		1087,0493	920,7306	131,6277
5A	1086,7567	921,0825	119,8278		1086,7692	921,0830	119,7971
4 A	1086,0618	921,8240	107,6081		1086,0651	921,8178	107,5782
3A	1085,2273	922,6622	95,9343		1085,2446	922,6644	96,0123
2A	1084,0402	923,7075	83,3883		1084,0278	923,6872	83,3356
1A	1082,0019	925,7602	72,1005		1081,8922	925,7470	71,7989
0A	1077,3797	930,1157	59,5111		1077,2366	930,1194	59,2271
1D	1066,5921	911,6091	71,6644		1066,5709	911,5846	71,6302
2D	1067,6939	909,7604	84,1424		1067,6806	909,7431	84,1075
3D	1067,7093	909,7166	95,6214		1067,7023	909,7060	95,5863
4D	1067,6246	910,3231	107,7834		1067,6244	910,3191	107,7460
5D	1067,6777	910,8256	119,9924		1067,6857	910,8282	119,9539
6D	1067,6203	911,1401	132,0183		1067,6349	911,1500	131,9772
7D	1067,9073	911,0256	144,4656		1067,9267	911,0205	144,3543
		DIANA	AS DE LA COLU	JN	ANA C		
PUNTO	Coord_X (76)	Coord_Y (76)	Coord_Z (76)		Coord_X (77)	Coord_Y (77)	Coord_Z (77)
7C	1044,9341	907,3715	144,4869		1044,9610	907,3876	144,4678
6C							
5 C	1043,3681	907,0319	119,9438		1043,3770	907,0387	119,9541
4C	1043,4654	906,0142	107,7125		1043,4656	906,0138	107,7245

3C	1043,4950	904,7581	95,5819		1043,4871	904,7507	95,5957			
2C	1043,2945	904,0574	83,8710		1043,2796	904,0424	83,8856			
1C	1043,5301	905,5513	71,8282		1043,5092	905,5319	71,8387			
0C	1043,3654	911,5524	59,2528		1043,3342	911,5240	59,2635			
DIANAS DE LAS COLUMNAS B-E										
PUNTO	Coord_X (76)	Coord_Y (76)	Coord_Z (76)		Coord_X (77)	Coord_Y (77)	Coord_Z (77)			
7B	1000,2600	921,5717	144,4907		1000,2973	921,5927	144,5117			
6B	1000,3177	921,9083	131,8840		1000,3397	921,9240	131,9181			
5B	1000,6179	922,3969	119,7865		1000,6303	922,4057	119,8217			
4B	1001,3236	923,1426	107,7563		1001,3294	923,1498	107,8316			
3B	1002,1686	923,8723	95,7681		1002,1626	923,8678	95,8030			
2B	1003,2902	925,2995	83,7222		1003,2754	925,2876	83,7557			
1B	1005,5178	927,2416	71,7196		1005,5157	927,2082	71,8211			
1E	1020,0975	912,0759	71,7686		1020,0751	912,0552	71,7968			
2E	1019,3441	910,4039	83,5272		1019,3299	910,3908	83,5566			
3E	1019,3162	910,3885	95,7192		1019,3107	910,3828	95,7477			
4 E	1019,2604	911,1934	108,2256		1019,2633	911,1955	108,2530			
5E	1019,5925	911,6280	120,0243		1019,6098	911,6258	120,0424			
6E	1019,8357	911,9073	131,9913		1019,8574	911,9232	132,0162			
7E	1019,2147	912,0172	144,6405		1019,2515	912,0386	144,6444			

Tabla Número IV.30.- Coordenadas medias de las dianas obtenidas desde todos los pilares en cada campaña.

Establecidas las coordenadas medias de cada diana para cada campaña, la diferencia de coordenadas permite determinar el desplazamiento buscado para cada diana, haciéndose de forma exclusivamente planimétrica, aunque también se ha calculado la variación altimétrica. En la siguiente tabla se pueden apreciar los resultados de la variación de las coordenadas, así como el vector desplazamiento entre campañas, que posteriormente se debiera contrastar con el obtenido en los métodos clásicos.

Presa:	Со	Cohilla		: 7	7-76	
Pilar:	ТО	DOS	Observable	Láser	Láser Escáner	
		DIANAS DE LA	AS COLUMNAS A-	D		
PUNTO	ΔΧ	ΔΥ	ΔZ	Despl. (mm)	Acimut (grad)	
7A	0,0867	-0,0969	-0,3313	130,05	153,55199	
6A	0,0212	0,0066	-0,0311	22,20	80,84432	
5A	0,0125	0,0005	-0,0306	12,54	97,48701	
4 A	0,0033	-0,0063	-0,0299	7,08	168,79923	
3A	0,0173	0,0022	0,0779	17,42	91,92436	
2A	-0,0123	-0,0204	-0,0528	23,79	234,65053	
1A	-0,1097	-0,0132	-0,3016	110,51	292,37458	
0A	-0,1431	0,0037	-0,2840	143,16	301,62568	
1D	-0,0212	-0,0246	-0,0343	32,46	245,32137	
2D	-0,0133	-0,0173	-0,0349	21,83	241,66815	
3D	-0,0070	-0,0106	-0,0351	12,73	237,09768	
4D	-0,0002	-0,0041	-0,0374	4,10	202,95235	
5D	0,0080	0,0027	-0,0385	8,43	79,57509	
6D	0,0146	0,0098	-0,0411	17,61	62,28069	
7D	0,0194	-0,0050	-0,1114	20,03	116,18582	

DIANAS DE LA COLUMNA C									
PUNTO	ΔΧ	ΔΥ	ΔZ		Despl. (mm)	Acimut (grad)			
7C	0,0269	0,0162	-0,0190		31,41	65,61169			
6C									
5C	0,0089	0,0068	0,0104		11,21	58,70737			
4 C	0,0002	-0,0004	0,0120		0,46	174,53332			
3C	-0,0080	-0,0074	0,0138		10,88	252,19961			
2C	-0,0149	-0,0150	0,0146		21,10	249,86323			
1C	-0,0209	-0,0194	0,0105		28,56	252,37678			
0C	-0,0311	-0,0284	0,0107		42,16	252,89541			
DIANAS DE LAS COLUMNAS B-E									
PUNTO	ΔΧ	ΔΥ	ΔZ		Despl. (mm)	Acimut (grad)			
7B	0,0373	0,0211	0,0210		42,82	67,27307			
6B	0,0219	0,0156	0,0342		26,96	60,57240			
5B	0,0124	0,0088	0,0352		15,18	60,74250			
4B	0,0059	0,0072	0,0753		9,31	43,60128			
3B	-0,0060	-0,0045	0,0349		7,48	258,69742			
2B	-0,0148	-0,0119	0,0335		18,96	256,88528			
1B	-0,0021	-0,0334	0,1015		33,50	204,06034			
1E	-0,0224	-0,0208	0,0283		30,56	252,45912			
2 E	-0,0142	-0,0131	0,0294		19,28	252,49930			
3E	-0,0055	-0,0058	0,0285		7,98	248,69179			
4E	0,0028	0,0021	0,0275		3,56	58,88342			
5E	0,0173	-0,0021	0,0181		17,39	107,79714			
6E	0,0217	0,0159	0,0249		26,89	59,78442			
7E	0,0369	0,0214	0,0039		42,63	66,54543			

Tabla Número IV.31.- Desplazamientos de las dianas calculados con las coordenadas medias de cada campaña.

La dispersión de las coordenadas calculadas para cada diana desde cada pilar, a priori permitían intuir que los resultados por este método de cálculo tampoco iban a ser buenos, tal y como se puede apreciar en la tabla anterior.

2.5.2.3.- CONCLUSIONES SOBRE LA EVALUACIÓN DEL DESPLAZAMIENTO COMPARANDO COORDENADAS.

En ninguno de los dos métodos desarrollados para conseguir el desplazamiento de las dianas, comparando las coordenadas obtenidas, tanto individuales como medias, con el láser escáner, se obtienen resultados comparables con los obtenidos con los métodos clásicos. Este razonamiento es fácilmente deducible si se analizan someramente los desplazamientos obtenidos con el láser escáner y con los métodos clásicos. Las diferencias tan notables que se obtienen al hacer la mencionada comparación de los desplazamientos justifica que ni siquiera se plantee la posibilidad de llevar a cabo el contraste objeto inicial de la tesis.

Dado el orden de magnitud de las diferencias entre los vectores y la precisión del láser escáner, también es cierto que hay que buscar una causa que produzca que la magnitud de dichas diferencias sea mucho mayor que la precisión del instrumento y el propio desplazamiento esperado. En este caso, dicha causa puede ser la combinación de las precisiones en la medida de ángulos y distancias propias del equipo que además en grandes ámbitos territoriales acrecientan los valores. Este razonamiento también se esgrime en las técnicas topográficas convencionales, en las que se recurre a calcular los desplazamientos mediante procedimientos en los que se manipulan las variaciones en las observables en vez del observable absoluto. Cabe reseñar que esta causa de error viene influenciada por el formato de los observables que genera el software del equipo, que al tener otro objeto fundamental, el modelado de superficies, restringe a los datos a trabajar por coordenadas absolutas.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

Todo lo anterior justifica que el objeto fundamental de la tesis, contrastar los desplazamientos obtenidos en una auscultación realizada por métodos clásicos y con láser escáner, ya tenga respuesta. A la vista de los resultados obtenidos se puede asegurar que el láser escáner y su método fundamental de cálculo no reportan la precisión necesaria para realizar auscultaciones geodésicas, en el ámbito de las precisiones milimétricas. Este afirmación abre una nueva línea de investigación, la de determinar si las observaciones realizadas con el láser escáner se pueden aprovechar o no en un procedimiento que aunque no sea el más ortodoxo, puesto que el software no está desarrollado, intente al menos aprovechar dichos observables.

Parece lógico pensar que, puesto que las coordenadas son consecuencia directa de la evaluación de ángulos y distancias, se analicen individualmente cada uno de dichos observables, para ver si observando las variaciones que se producen en dichos observables, se pueden establecer desplazamientos, con un orden de precisión mayor que el obtenido con el tratamiento de coordenadas. En este sentido, se propone a continuación desarrollar los métodos de cálculo de auscultaciones clásicas, ya utilizados para las observaciones tomadas con la estación topográfica, a los obtenidos con el láser escáner, con el objeto de analizar si al menos los observables angulares o distanciométricos se pueden aprovechar.

2.5.3.- CÁLCULOS EMPLEANDO LA VARIACIÓN DE ÁNGULOS DEL ESCÁNER.

Demostrada en el epígrafe anterior la imposibilidad de emplear las coordenadas que genera el software, a continuación se emplea el observable angular. En esta línea se procede a determinar las variaciones angulares que se producen en las observaciones realizadas con el láser escáner. Para ello se obtienen las lecturas de los ángulos horizontales, partiendo de los datos brutos que exporta el equipo.

$$H_{PILAR}^{DIANA} = Arctag \frac{\Delta X_{PILAR}^{DIANA}}{\Delta Y_{PILAR}^{DIANA}}$$
[IV.114]

A continuación y con el objeto de referenciar los ángulos horizontales de forma idéntica en las dos campañas, se utilizan las desorientaciones calculadas en el epígrafe "2.5.1.- Introducción" de este capítulo, lo que genera diversas formas de plantear dicha orientación, puesto que los resultados obtenidos de las desorientaciones son similares pero no iguales:

- Empleando la orientación al punto de seguridad más lejano, que es el método que debiera generar menor error angular en la determinación del acimut, debido a que el error en la visual que se realiza a la orientación es menor cuanto más alejado esté el punto de orientación.
- Empleando la orientación a un punto de seguridad único, que es el método que debiera generar menor error angular en la determinación del acimut, debido a trabajar con el menor número de puntos de coordenadas conocidas y eliminar así posibles problemas del ajuste de la red.
- Empleando una orientación media consistente en la determinación de la orientación al punto medio de todos los observables realizados a puntos de seguridad, que es el que debiera generar menor error angular desde un punto de vista estadístico, ya que se observa a más de un punto de seguridad.

Dadas las dudas que se pueden plantear sobre qué método es el más apropiado, en los siguientes epígrafes se desarrollan cada uno de ellos, con el objeto de analizar si los resultados son parecidos o

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

diferentes y, en su caso, si hay alguno bueno o son todos malos. Una vez elegidas las referencias a emplear en cada orientación se procede a calcular los acimutes desde cada pilar a cada diana en ambas campañas:

$$\theta_{PILAR}^{DIANA} = \varepsilon_{PILAR}^{P.SEG} + H_{PILAR}^{DIANA}$$
[IV.115]

Determinados los acimutes, se calculan para cada diana las variaciones angulares que se producen desde cada pilar de auscultación, todo ello mediante la simple diferencia de acimutes.

$$\Delta \theta_{PILAR}^{DIANA} = \left(\theta_{PILAR}^{DIANA}\right)_{CAMP77} - \left(\theta_{PILAR}^{DIANA}\right)_{CAMP76}$$
[IV.116]

Como ya se ha comentado, una vez calculadas las variaciones angulares, el procedimiento de cálculo que se plantea llevar a cabo es el mismo que el desarrollado en el capítulo II, epígrafe "1.2.2.-Procesado de los datos de campo angulares" y desarrollado en el Anejo Número 3"Auscultación clásica mediante observable angular" de la presente tesis doctoral, aplicado al caso de las observaciones tomadas con el teodolito de la estación topográfica.

2.5.3.1.- CÁLCULOS EMPLEANDO LA ORIENTACIÓN AL PUNTO MÁS LEJANO.

Tal y como se ha justificado anteriormente, se procede a calcular los acimutes desde cada pilar de auscultación a cada diana de puntería para cada campaña, en base a las observaciones de los ángulos horizontales extraídos del sistema local del instrumento y la orientación al punto de seguridad más lejano observado desde cada pilar. Nuevamente la justificación de todos los cálculos se encuentra en el Anejo Número 6, titulado "*Ensayos con las observaciones del láser escáner*". En las siguientes tablas se pueden apreciar los resultados obtenidos para cada uno de los acimutes calculados desde los cuatro pilares, para ambas campañas:

Presa:	Cohilla		Campaña:	76
Pilar:	TODOS		Observable:	Láser Escáner
	DIANA	S DE LAS COL	UMNAS A-D	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7A	546,8962			
6A	547,0551	207,8367	566,8734	599,3499
5A	547,0077	208,3519	566,9008	599,5988
4A	546,9594	209,6345	567,0355	600,2295
3A		211,2004	567,2176	
2A	546,9410	213,4923	567,5354	
1A	546,8600			
0A	546,7827			
1D	558,9094	230,2986	580,1006	
2D	559,0416	228,2297	579,8286	
3D	559,0503	228,1700	579,8334	
4D	558,8845	228,5240	579,7755	
5D	558,6885	228,6928	579,6604	
6D	558,6070	228,8834	579,6405	
7D	558,5167	228,5534		

DIANAS DE LA COLUMNA C									
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV					
7C	171,2790	245,7789		628,7645					
6C									
5C	172,2312	246,6224	594,1630	629,5938					
4C	172,4386	245,9887	594,1487	629,2416					
3C	172,7378	245,2779	594,1891	628,8675					
2C	173,0226	245,0349	594,3309	628,7891					
1C	172,5164	245,7344	594,1039	629,0828					
0C	170,9861	249,4846	593,8504	631,0256					
DIANAS DE LAS COLUMNAS B-E									
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV					
7B	199,8404	274,0640		656,0627					
6B	199,7684	274,2424	622,0317	656,1753					
5B	199,5161	274,4680	621,9393	656,2847					
4B		274,7458	621,6520	656,3583					
3B	198,2019	274,9870	621,2687	656,3793					
2B	197,2080	275,5907	620,8539	656,6145					
1B	195,1861	276,2650	619,8025	656,6829					
1E	185,7020	261,9424	608,2815	643,8027					
2E	186,4752	261,2407	608,6153	643,5122					
3E	186,4995	261,2283	608,6444	643,5158					
4E	186,4241	261,7105	608,7580	643,8452					
5E	186,1336		608,6003	643,8492					
6E	185,9292	261,8714	608,4931	643,8443					
7E	186,3561	262,1971		644,1937					

Tabla Número IV.32.- Resumen de acimutes obtenidos con la orientación más lejana en la campaña 76.

Presa:	Cohilla		Campaña:	77
Pilar:	TODOS		Observable:	Láser Escáner
	DIANA	S DE LAS COL	UMNAS A-D	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7A	546,8759			
6A	547,0439	207,8784	566,8677	599,3382
5A	547,0026	208,3743	566,8981	599,5974
4A	546,9617	209,6348	567,0342	600,2397
3A		211,1748	567,2186	
2A	546,9568	213,4362	567,5392	
1A	546,8805			
0A	546,8121			
1D	558,9381	230,2260	580,1065	
2D	559,0591	228,1841	579,8327	
3D	559,0582	228,1472	579,8367	
4D	558,8810	228,5253	579,7788	
5D	558,6752	228,7152	579,6621	
6D	558,5830	228,9316	579,6411	
7D	558,4794	228,6285		

DIANAS DE LA COLUMNA C					
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV	
7C	171,2248	245,8480		628,7681	
6C					
5C	172,2090	246,6449	594,1683	629,6055	
4C	172,4310	245,9889	594,1554	629,2585	
3C	172,7470	245,2562	594,1937	628,8888	
2C	173,0431	244,9941	594,3346	628,8159	
1C	172,5454	245,6715	594,1077	629,1145	
0C	171,0331	249,3937	593,8565	631,0623	
	DIANAS DE LAS COLUMNAS B-E				
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV	
7B	199,7261	274,1156		656,0798	
6B	199,6881	274,2752	622,0459	656,1923	
5B	199,4636	274,4840	621,9520	656,3034	
4 B		274,7437	621,6628	656,3786	
3B	198,2058	274,9684	621,2783	656,4008	
2B	197,2392	275,5545	620,8596	656,6390	
1B		276,2103	619,8061	656,7043	
1E	185,7448	261,8833	608,2852	643,8301	
2E	186,4972	261,2017	608,6214	643,5365	
3E	186,5016	261,2077	608,6508	643,5380	
4E	186,4039	261,7110	608,7662	643,8651	
5E	186,0918	261,8291	608,6104	643,8639	
6E	185,8656	261,9107	608,5020	643,8575	
7 E	186,2675	262,2563		644,2043	

Tabla Número IV.33.- Resumen de acimutes obtenidos con la orientación más lejana en la campaña 77.

En la tabla siguiente se encuentran los resultados de las variaciones angulares, analizando los cuales, se puede apreciar que ni el rango de los valores, ni el sentido de las variaciones angulares tienen coherencia espacial. Esto hace que ni siquiera se plantee el cálculo de los desplazamientos, para posteriormente contrastar los mismos con los obtenidos por los métodos clásicos. Tal y como se ha descrito anteriormente, se procede a continuación a emplear las desorientaciones de otros puntos de seguridad, puesto que las diferencias entre los valores de las desorientaciones son lo suficientemente grandes como para generar dudas.

Presa:	Cohilla		Campaña: 77-76		
Pilar:	TODOS		Observable:	Láser Escáner	
DIANAS DE LAS COLUMNAS A-D					
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV	
7A	-202,46				
6A	-111,34	416,97	-56,62	-116,85	
5A	-50,90	224,12	-27,05	-14,36	
4 A	23,45	3,80	-12,26	101,72	
3A		-256,24	10,03		
2 A	157,53	-561,19	37,48		
1A	204,72				
0A	293,97				

1D	287,40	-725,55	58,94	
2D	174,96	-455,90	41,43	
3D	79,03	-227,13	33,33	
4D	-35,07	12,94	33,31	
5D	-132,89	224,25	16,42	
6D	-239,57	482,10	5,89	
7D	-373,61	751,27		
	DIA	NAS DE LA COI	LUMNA C	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7C	-542,10	690,83		36,13
6C				
5C	-221,51	224,25	52,30	117,50
4 C	-75,87	1,87	66,93	169,52
3C	91,96	-216,82	46,52	212,96
2C	205,10	-408,35	37,82	267,55
1C	290,33	-628,43	37,87	317,18
0C	469,76	-909,11	60,60	366,62
	DIANA	AS DE LAS COL	UMNAS B-E	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7B	-1143,41	515,30		170,72
6B	-802,58	328,21	141,29	169,74
5B	-525,21	159,54	127,18	186,93
4 B		-21,22	108,31	202,82
3B	38,45	-186,02	96,38	214,99
2B	311,88	-361,81	56,99	244,92
1B		-546,98	36,05	214,52
1E	427,57	-591,13	36,37	274,17
2 E	220,02	-390,94	61,07	243,40
3 E	20,36	-205,94	64,50	221,86
4 E	-201,51	5,61	82,00	199,02
5E	-417,91		101,04	147,37
6E	-635,82	392,87	89,62	132,01
7E	-885,92	592.61		106.43

Tabla Número IV.34.- Variaciones angulares obtenidas con la orientación más lejana entre campañas (^{CC}).

2.5.3.2.- CÁLCULOS EMPLEANDO ORIENTACIÓN A UN PUNTO DE SEGURIDAD FIJO.

Tal y como se ha justificado anteriormente, se procede a calcular los acimutes desde cada pilar de auscultación a cada diana de puntería para cada campaña, en base a las observaciones de los ángulos horizontales extraídos del sistema local del instrumento y la orientación a un punto de seguridad fijo, concretamente LA. La justificación de todos los cálculos se encuentra en el Anejo Número 6, titulado *"Ensayos con las observaciones del Láser Escáner"*. En las siguientes tablas se pueden apreciar los resultados obtenidos para cada uno de los acimutes calculados desde los cuatro pilares para ambas campañas.

Presa:	Cohilla	Campaña: 76		
Pilar:	TODOS		Observable:	Láser Escáner
	DIANA	S DE LAS COLU	UMNAS A-D	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7A	546,8761			
6A	547,0349	207,8263	566,8654	599,3344
5A	546,9875	208,3414	566,8928	599,5833
4A	546,9392	209,6240	567,0275	600,2140
3A		211,1899	567,2097	
2A	546,9209	213,4818	567,5275	
1A	546,8399			
0A	546,7625			
1D	558,8892	230,2881	580,0927	
2D	559,0215	228,2192	579,8206	
3D	559,0302	228,1595	579,8254	
4D	558,8644	228,5135	579,7675	
5D	558,6683	228,6823	579,6525	
6D	558,5868	228,8729	579,6326	
7D	558,4966	228,5429		
	DIA	NAS DE LA COI	LUMNA C	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7C	171,2589	245,7685		628,7490
6C				
5C	172,2110	246,6120	594,1551	629,5783
4C	172,4185	245,9783	594,1407	629,2261
3C	172,7176	245,2675	594,1811	628,8520
2C	173,0024	245,0245	594,3229	628,7736
1C	172,4962	245,7239	594,0959	629,0673
0C	170,9660	249,4742	593,8425	631,0101
	DIANA	AS DE LAS COLU	UMNAS B-E	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7B	199,8203	274,0536		656,0472
6B	199,7482	274,2319	622,0238	656,1598
5B	199,4960	274,4575	621,9313	656,2692
4B		274,7353	621,6440	656,3428
3B	198,1818	274,9765	621,2607	656,3638
2B	197,1879	275,5802	620,8459	656,5990
1B	195,1659	276,2545	619,7945	656,6674
1E	185,6819	261,9319	608,2736	643,7872
2 E	186,4551	261,2303	608,6073	643,4967
3 E	186,4794	261,2178	608,6364	643,5003
4 E	186,4040	261,7000	608,7500	643,8297
5E	186,1134		608,5923	643,8337
6E	185,9091	261,8609	608,4851	643,8288
7E	186,3360	262,1866		644,1782

Tabla Número IV.35.- Resumen de acimutes obtenidos con orientación única en la campaña 76.

Presa:	Cohilla	Campaña: 77				
Pilar:	TODOS		Observable:	Láser Escáner		
	DIANA	AS DE LAS COLU	UMNAS A-D			
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV		
7A	546,8834					
6A	547,0514	207,8731	566,8359	599,3051		
5A	547,0100	208,3690	566,8663	599,5643		
4A	546,9692	209,6295	567,0025	600,2066		
3A		211,1695	567,1869			
2A	546,9642	213,4309	567,5074			
1A	546,8879					
0A	546,8195					
1D	558,9455	230,2207	580,0747			
2D	559,0665	228,1788	579,8009			
3D	559,0656	228,1420	579,8049			
4D	558,8884	228,5200	579,7470			
5D	558,6826	228,7099	579,6303			
6D	558,5905	228,9263	579,6093			
7D	558,4868	228,6232				
	DIANAS DE LA COLUMNA C					
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV		
7C	171,2323	245,8427		628,7350		
6C						
5C	172,2164	246,6396	594,1365	629,5724		
4C	172,4385	245,9836	594,1236	629,2254		
3 C	172,7544	245,2510	594,1620	628,8557		
2C	173,0505	244,9888	594,3029	628,7828		
1C	172,5529	245,6663	594,0759	629,0814		
0C	171,0405	249,3884	593,8247	631,0291		
	DIANA	AS DE LAS COL	UMNAS B-E			
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV		
7B	199,7335	274,1103		656,0467		
6B	199,6955	274,2700	622,0141	656,1592		
5B	199,4711	274,4787	621,9202	656,2703		
4B		274,7384	621,6310	656,3455		
3B	198,2132	274,9631	621,2465	656,3677		
2B	197,2467	275,5492	620,8278	656,6059		
1B		276,2050	619,7743	656,6712		
1E	185,7522	261,8780	608,2534	643,7970		
2 E	186,5047	261,1964	608,5896	643,5034		
3E	186,5090	261,2024	608,6190	643,5049		
4 E	186,4114	261,7057	608,7344	643,8320		
5E	186,0992	261,8239	608,5786	643,8308		
6E	185,8731	261,9054	608,4702	643,8244		
7E	186.2750	262.2511		644.1712		

Tabla Número IV.36.- Resumen de acimutes obtenidos con orientación única en la campaña 77.

En la tabla siguiente se pueden apreciar los resultados de las variaciones angulares, analizando los cuales, se puede apreciar que ni el rango de los valores, ni el sentido de las variaciones angulares tienen coherencia espacial. Esto hace que ni siquiera se plantee el cálculo de los desplazamientos para, posteriormente, contrastar los desplazamientos con los obtenidos por los métodos clásicos.

Presa:	Cohilla		Campaña:	77-76		
Pilar:	TODOS		Observable:	Láser Escáner		
	DIANA	AS DE LAS COL	UMNAS A-D			
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV		
7A	73,29					
6A	164,40	468,83	-294,92	-292,91		
5A	224,84	275,98	-265,35	-190,43		
4 A	299,20	55,65	-250,56	-74,34		
3A		-204,38	-228,27			
2A	433,27	-509,33	-200,82			
1A	480,47					
0A	569,72					
1D	563,15	-673,69	-179,37			
2D	450,70	-404,04	-196,87			
3D	354,77	-175,27	-204,97			
4D	240,68	64,79	-204,99			
5D	142,86	276,11	-221,88			
6D	36,18	533,96	-232,41			
7D	-97,86	803,12				
	DIANAS DE LA COLUMNA C					
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV		
7C	-266,36	742,68		-139,93		
6C						
5C	54,23	276,10	-186,01	-58,56		
4 C	199,88	53,72	-171,37	-6,55		
3 C	367,70	-164,96	-191,78	36,90		
2C	480,84	-356,49	-200,48	91,49		
1C	566,07	-576,57	-200,43	141,11		
0C	745,50	-857,25	-177,71	190,56		
	DIANA	AS DE LAS COL	UMNAS B-E			
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV		
7B	-867,67	567,16		-5,34		
6B	-526,84	380,07	-97,01	-6,32		
5B	-249,47	211,40	-111,13	10,87		
4 B		30,64	-130,00	26,75		
<u>3</u> B	314,19	-134,16	-141,92	38,92		
2B	587,62	-309,95	-181,31	68,85		
1B		-495,12	-202,25	38,46		
1E	703,31	-539,27	-201,93	98,10		
2 E	495,76	-339,08	-177,23	67,33		
3 E	296,10	-154,09	-173,80	45,80		
4 E	74,24	57,46	-156,30	22,96		
5 E	-142,16		-137,26	-28,69		
6E	-360,07	444,73	-148,69	-44,05		
7 E	-610,18	644,47		-69.63		

Tabla Número IV.37- Variaciones angulares obtenidas con orientación única entre campañas (^{CC}).

2.5.3.3.- CÁLCULOS EMPLEANDO ORIENTACIÓN A UN PUNTO DE SEGURIDAD MEDIO.

A continuación se procede a calcular los acimutes desde cada pilar de auscultación a cada diana de puntería para cada campaña, en base a las observaciones de los ángulos horizontales extraídos del sistema local del instrumento y la orientación a un punto de seguridad medio de todos los puntos de

seguridad observados desde cada pilar. La justificación de todos los cálculos se encuentra en el Anejo Número 6. En las siguientes tablas se pueden apreciar los resultados obtenidos para cada uno de los acimutes calculados desde los cuatro pilares para ambas campañas.

Presa:	Cohilla	Campaña: 76		
Pilar:	TODOS	Observable: Láser Escáner		
	DIANA	S DE LAS COLU	MNAS A-D	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7A	546,8861			
6A	547,0450	207,8315	566,8831	599,3449
5A	546,9976	208,3467	566,9105	599,5938
4A	546,9493	209,6292	567,0452	600,2245
3A		211,1952	567,2274	
2A	546,9310	213,4871	567,5452	
1A	546,8499			
0A	546,7726			
1D	558,8993	230,2933	580,1103	
2D	559,0315	228,2244	579,8383	
3D	559,0402	228,1647	579,8431	
4D	558,8744	228,5188	579,7852	
5D	558,6784	228,6875	579,6702	
6D	558,5969	228,8781	579,6503	
7D	558,5067	228,5481		
DIANAS DE LA COLUMNA C				
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7C	171,2690	245,7737		628,7595
6C				
5C	172,2211	246,6172	594,1727	629,5888
4C	172,4285	245,9835	594,1584	629,2366
3C	172,7277	245,2727	594,1988	628,8625
2C	173,0125	245,0297	594,3406	628,7841
1C	172,5063	245,7291	594,1136	629,0778
0C	170,9761	249,4794	593,8601	631,0206
	DIANA	AS DE LAS COLU	MNAS B-E	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7B	199,8304	274,0588		656,0577
6B	199,7583	274,2372	622,0414	656,1703
5B	199,5061	274,4628	621,9490	656,2797
4B		274,7406	621,6617	656,3533
3B	198,1919	274,9817	621,2784	656,3742
2B	197,1980	275,5854	620,8636	656,6094
1B	195,1760	276,2597	619,8122	656,6779
1E	185,6919	261,9372	608,2913	643,7976
2E	186,4652	261,2355	608,6250	643,5071
3E	186,4895	261,2230	608,6541	643,5108
4E	186,4140	261,7052	608,7677	643,8402
5E	186,1235		608,6100	643,8442
<u>6E</u>	185,9191	261,8662	608,5028	643,8393
7E	186,3461	262,1918		644,1887

Tabla Número IV.38.- Resumen de acimutes obtenidos con orientación ficticia en la campaña 76.

Presa:	Cohilla	Campaña: 77		
Pilar:	TODOS		Observable:	Láser Escáner
	DIANA	AS DE LAS COLU	UMNAS A-D	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7A	546,8797			
6A	547,0477	207,8758	566,8736	599,3263
5A	547,0063	208,3717	566,9040	599,5855
4 A	546,9654	209,6322	567,0401	600,2278
3A		211,1721	567,2245	
2A	546,9605	213,4335	567,5451	
1A	546,8842			
0A	546,8158			
1D	558,9418	230,2234	580,1124	
2D	559,0628	228,1814	579,8386	
3D	559,0619	228,1446	579,8426	
4D	558,8847	228,5226	579,7847	
5D	558,6789	228,7126	579,6680	
6D	558,5867	228,9289	579,6470	
7D	558,4831	228,6259		
	DIA	NAS DE LA COI	LUMNA C	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7C	171,2285	245,8454		628,7562
6C				
5C	172,2127	246,6422	594,1741	629,5936
4 C	172,4347	245,9863	594,1613	629,2466
3C	172,7507	245,2536	594,1996	628,8769
2C	173,0468	244,9915	594,3405	628,8040
1C	172,5491	245,6689	594,1136	629,1026
0C	171,0368	249,3911	593,8624	631,0504
	DIANA	AS DE LAS COL	UMNAS B-E	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7B	199,7298	274,1129		656,0679
6B	199,6918	274,2726	622,0517	656,1804
5B	199,4673	274,4813	621,9579	656,2915
4B		274,7410	621,6687	656,3667
3B	198,2095	274,9657	621,2842	656,3889
2B	197,2429	275,5518	620,8655	656,6271
1B		276,2076	619,8120	656,6924
1E	185,7485	261,8806	608,2911	643,8182
2 E	186,5010	261,1990	608,6273	643,5246
3 E	186,5053	261,2050	608,6567	643,5261
4 E	186,4077	261,7084	608,7721	643,8532
5E	186,0955	261,8265	608,6163	643,8520
6E	185,8693	261,9081	608,5079	643,8456
7 E	186 2712	262 2537		644 1924

Tabla Número IV.39.- Resumen de acimutes obtenidos con orientación ficticia en la campaña 77.

En la tabla siguiente se pueden apreciar los resultados de las variaciones angulares, analizando las cuales, se puede apreciar que ni el rango de los valores, ni el sentido de las variaciones angulares tienen coherencia espacial. Esto hace que ni siquiera se plantee el cálculo de los desplazamientos para, posteriormente, contrastar los desplazamientos con los obtenidos por los métodos clásicos. Este

procedimiento agota la vía de calcular desplazamientos con las variaciones angulares que se obtienen con el láser escáner, debido a que cualquiera de los tres procedimientos empleados en el cálculo de las mismas carece de la precisión necesaria.

Presa:	Cohilla	Campaña: 77-76		
Pilar:	TODOS		Observable:	Láser Escáner
	DIANA	S DE LAS COLU	JMNAS A-D	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7A	-64,59			
6A	26,53	442,90	-94,92	-185,66
5A	86,97	250,05	-65,35	-83,17
4 A	161,33	29,73	-50,56	32,91
3A		-230,31	-28,27	
2A	295,40	-535,26	-0,82	
1A	342,59			
0A	431,85			
1D	425,27	-699,62	20,64	
2D	312,83	-429,97	3,13	
3D	216,90	-201,20	-4,97	
4D	102,80	38,87	-4,99	
5D	4,98	250,18	-21,88	
6D	-101,70	508,03	-32,41	
7D	-235,74	777,19		
DIANAS DE LA COLUMNA C				
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7C	-404,23	716,75		-32,67
6C				
5C	-83,64	250,17	14,00	48,70
4C	62,00	27,79	28,63	100,71
3C	229,83	-190,89	8,22	144,16
2C	342,97	-382,42	-0,48	198,75
1C	428,20	-602,50	-0,43	248,37
0C	607,63	-883,18	22,30	297,81
	DIANA	S DE LAS COLU	UMNAS B-E	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7B	-1005,54	541,23		101,91
6B	-664,71	354,14	102,99	100,93
5B	-387,34	185,47	88,88	118,12
4B		4,71	70,01	134,01
3B	176,32	-160,09	58,08	146,18
2B	449,75	-335,88	18,69	176,11
1B		-521,05	-2,25	145,71
1E	565,44	-565,20	-1,93	205,36
2E	357,89	-365,01	22,77	174,59
3E	158,23	-180,02	26,20	153,06
4E	-63,63	31,54	43,70	130,21
5E	-280,04		62,74	78,56
<u>6</u> E	-497,95	418,80	51,32	63,21
7E	-748,05	618,54		37,63

Tabla Número IV.40.- Variaciones angulares obtenidas con orientación ficticia entre campañas (^{CC}).

2.5.3.4.- CONCLUSIONES DEL TRATAMIENTO DE LOS ÁNGULOS.

Cuando se determinaron las distintas desorientaciones resultantes de observar diferentes puntos de seguridad desde cada pilar, ya se observó que las desorientaciones no sólo no eran iguales, sino que además tenían gran variabilidad. Este dato que se debiera haber tomado como un mal indicador se justificó en base a la propia precisión del instrumento en la medida de ángulos horizontales y verticales, del orden de 60 microradianes (aproximadamente 40^{cc}).

Aún así, se calcularon los acimutes desde cada pilar a cada diana con tres hipótesis diferentes al obtener la desorientación de la estación: punto de seguridad más lejano, punto de seguridad fijo y punto de seguridad medio. Las tres alternativas de cálculo de acimutes generaron variaciones angulares con valores excesivamente grandes, comparadas con los obtenidos en los métodos clásicos, y además sin ningún tipo de coherencia espacial entre sí, lo que justificó que ni siguiera se procediera a calcular los desplazamientos, debido a la falta de precisión en la medida de ángulos.

Todo esto permite asegurar que la precisión en la medida de ángulos con el láser escáner, no permite llevar a cabo la resolución de auscultaciones geodésicas con precisión milimétrica, y además justifica nuevamente el mal funcionamiento cuando se pretende trabajar por coordenadas. Analizada la comparación de coordenadas y las variaciones de ángulos, sólo queda el recurso de las distancias para ver si los datos generados por el láser escáner se pueden aprovechar.

2.5.4.- CÁLCULOS EMPLEANDO LA VARIACIÓN DE DISTANCIAS DEL ESCÁNER.

Ante la falta de precisión que existe en los resultados obtenidos al determinar los desplazamientos con el método de comparación de coordenadas y de variaciones angulares, nuevamente parece lógico buscar otro procedimiento de cálculo que permita aprovechar las observaciones. Con este objeto, tan solo queda intentar la determinación de los desplazamientos a través del cálculo de la variación de distancias que se produce entre campañas, procediéndose a determinar las variaciones distanciométricas.

Para llevar a cabo el cálculo de las variaciones distanciométricas es necesario calcular las distancias reducidas, para lo que básicamente existen dos procedimientos. El primero es muy sencillo de llevar a cabo, consiste en obtener las distancias reducidas directamente con los incrementos de coordenadas $\Delta X e \Delta Y$, partiendo de la hipótesis de haber estacionado adecuadamente el equipo.

$$D_{PILAR}^{DIANA} = \sqrt{\left(\Delta X_{PILAR}^{DIANA}\right)^2 + \left(\Delta Y_{PILAR}^{DIANA}\right)^2}$$
[IV.117]

El segundo método se aplica en aquellos casos en los que se tengan dudas sobre el estacionamiento del equipo, y en él se parte de los incrementos en el sistema de coordenadas internas del escáner para calcular la distancia geométrica (Dg), la cuál obviamente no se verá afectada por dicha incertidumbre. Además requiere tener un ángulo cenital (V) del punto que puede ser el promedio de varias observaciones, valor fijo determinado mediante observaciones hechas con otro instrumento, etc.:

$$Dg_{PILAR}^{DIANA} = \sqrt{\left(\Delta X_{PILAR}^{DIANA}\right)^2 + \left(\Delta Y_{PILAR}^{DIANA}\right)^2 + \left(\Delta Z_{PILAR}^{DIANA}\right)^2}$$
[IV.118]

$$V_{PILAR}^{DIANA} = Arctag \frac{\sqrt{\Delta X_{PILAR}^{DIANA^2} + \Delta Y_{PILAR}^{DIANA^2}}}{\Delta Z_{PILAR}^{PILAR}}$$
[IV.119]

En el presente caso, dado que el estacionamiento del instrumento en la primera campaña se hizo mediante técnicas convencionales y la segunda con el compensador automático de doble eje que lleva incorporado el instrumento y, por tanto, se tienen dudas sobre la calidad del estacionamiento, especialmente el primero, ha motivado que se utilice el segundo método para el cálculo de las distancias reducidas en vez del primero que matemáticamente es más sencillo. En primer lugar se han calculado las distancias geométricas, a continuación se han establecido los ángulos cenitales en cada campaña, utilizando en ambas el promedio de los dos ángulos cenitales observados, uno en cada campaña. A partir de la distancia geométrica y del ángulo cenital, se obtiene la distancia reducida:

$$D_{PILAR}^{DIANA} = Dg_{PILAR}^{DIANA} \cdot Sen V_{PILAR}^{DIANA}$$
[IV.120]

Todos los cálculos se encuentran convenientemente justificados en el Anejo Número 6, titulado *"Ensayos con las observaciones del láser escáner"*. En las siguientes tablas se pueden apreciar los resultados obtenidos para cada una de las distancias calculadas desde los cuatro pilares para ambas campañas.

Presa:	Cohilla	Campaña: 76		
Pilar:	TODOS		Observable:	Láser Escáner
	DIANA	S DE LAS COLU	UMNAS A-D	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7A	118,1882			
6A	117,7667	40,7718	107,5477	71,9398
5A	117,3109	40,4469	107,1243	71,5893
4A	116,2841	39,8092	106,1606	70,8560
3A		39,1241	105,0522	
2A	113,4939	38,3282	103,5807	
1A	110,5778			
0A	104,2110			
1D	110,6454	55,7429	107,7405	
2D	112,7997	56,9076	109,8158	
3D	112,8571	56,9372	109,8398	
4D	112,3350	56,4211	109,2143	
5D	111,9817	55,9424	108,7306	
6D	111,7121	55,6814	108,3904	
7D	111,9467	55,6391		
	DIA	NAS DE LA COI	LUMNA C	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7C	102,9778	71,5115		94,7354
6C				
5C	102,6142	72,8122	107,4722	95,7773
4C	103,5644	73,5105	108,5134	96,6632
3C	104,7075	74,4404	109,7853	97,7953
2C	105,2486	75,1042	110,4835	98,5299
1C	103,9754	73,8184	109,0349	97,0992
0C	98,4701	69,5296	103,0655	91,8466

DIANAS DE LAS COLUMNAS B-E				
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7B	78,4482	99,9646		111,5444
6B	78,1230	99,7716	97,9384	111,3029
5B	77,6268	99,3099	97,3868	110,7818
4B		98,3769	96,4589	109,7850
3B	76,1618	97,3213	95,4988	108,6884
2B	74,7675	95,7480	93,7930	106,9388
1B	72,9712	92,9660	91,2612	104,0058
1E	90,1745	87,1215	102,9157	104,3498
2 E	91,6531	88,6873	104,6590	106,1016
3 E	91,6746	88,7150	104,6615	106,1113
4 E	90,8859	88,2982	103,8572	105,5029
5E	90,5547		103,3782	104,9427
6E	90,3356	87,4114	103,0432	104,5472
7E	90,0800	87,8654		104,8358

Tabla Número IV.41.- Resumen de distancias reducidas obtenidas con el láser escáner en la campaña 76.

Presa:	Cohilla	Campaña: 77		
Pilar:	TODOS		Observable:	Láser Escáner
	DIANA	S DE LAS COLU	UMNAS A-D	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7A	118,1929			
6A	117,7756	40,7754	107,5513	71,9461
5A	117,3192	40,4511	107,1289	71,5940
4A	116,2899	39,8130	106,1643	70,8621
3A		39,1248	105,0553	
2A	113,4977	38,3283	103,5827	
1A	110,5816			
0A	104,2128			
1D	110,6472	55,7444	107,7410	
2D	112,8039	56,9100	109,8157	
3D	112,8617	56,9402	109,8403	
4D	112,3410	56,4263	109,2151	
5D	111,9878	55,9463	108,7314	
6D	111,7169	55,6848	108,3908	
7D	111,9472	55,6380		
	DIA	NAS DE LA COI	LUMNA C	
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV
7C	102,9756	71,5106		94,7352
6C				
5C	102,6193	72,8173	107,4720	95,7832
4C	103,5699	73,5147	108,5136	96,6681
3C	104,7105	74,4437	109,7857	97,7993
2C	105,2539	75,1081	110,4846	98,5334
1C	103,9781	73,8216	109,0334	97,1015
0C	98,4735	69,5314	103,0644	91,8476

DIANAS DE LAS COLUMNAS B-E									
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV					
7B	78,4505	99,9673		111,5470					
6B	6B 78,1284 99,779		97,9416	111,3096					
5B	77,6335	99,3180	97,3902	110,7881					
4B		98,3829	96,4623	109,7909					
3B	76,1670	97,3262	95,5007	108,6935					
2B	74,7726	95,7524	93,7962	106,9429					
1B		92,9697	91,2630	104,0075					
1E	90,1788	87,1253	102,9169	104,3523					
2 E	91,6578	88,6920	104,6599	106,1046					
3E	91,6780	88,7200	104,6648	106,1156					
4 E	90,8905	88,3043	103,8599	105,5086					
5E	90,5607	87,7787	103,3803	104,9481					
6E	90,3409	87,4175	103,0478	104,5530					
7E	90,0799	87,8656		104,8350					

Tabla Número IV.42.- Resumen de distancias reducidas obtenidas con el láser escáner en la campaña 77.

Establecidas en las tablas anteriores las distancias reducidas desde cada pilar a cada diana, se procede a calcular las variaciones distanciométricas en cada observación por simple diferencia de distancias:

$$\Delta D_{PILAR}^{DIANA} = \left(D_{PILAR}^{DIANA} \right)_{CAMP77} - \left(D_{PILAR}^{DIANA} \right)_{CAMP76}$$
[IV.121]

Los resultados obtenidos se recopilan en la tabla siguiente, en la que si se analizan dichas variaciones, se puede apreciar que tanto el rango de los valores de las variaciones (orden milimétrico), como el sentido de las variaciones (distancias en la campaña 77 mayores que en la campaña 76, lo que hace pensar que el desplazamiento tiene el sentido hacia aguas arriba, tal y como sucedía con los métodos clásicos) tienen coherencia espacial. Y por tanto, se alimenta la idea de haber conseguido encontrar el observable que permite reutilizar los datos de campo que genera el láser escáner para la resolución de auscultaciones.

Presa:	Cohilla		77-76	
Pilar:	TODOS		Observable:	Láser Escáner
PUNTO	PILAR I	PILAR II	PILAR IV	
7A	4,71			
6A	8,94	3,62	3,53	6,26
5A	8,28	4,19	4,51	4,70
4A	5,79	3,83	3,69	6,17
3A		0,75	3,17	
2A	3,85	0,08	2,01	
1A	3,82			
0A	1,83			
1D	1,83	1,46	0,54	
2D	4,23	2,44	-0,10	
3D	4,64	3,03	0,41	
4D	6,02	5,23	0,77	
5D	6,15	3,89	0,82	
6D	4,78	3,49	0,36	
7D	0,54	-1,12		

DIANAS DE LA COLUMNA C										
PUNTO	PILAR I PILAR II PILAR II									
7C	-2,16	-0,90		-0,25						
6C										
5C	5,07	5,11	-0,13	5,90						
4C	5,52	4,18	0,22	4,90						
3C	3,00	3,34	0,32	3,96						
2C	5,38	3,90	1,09	3,44						
1C	2,72	3,18	-1,48	2,29						
0C	3,35	1,81	-1,12	0,99						
DIANAS DE LAS COLUMNAS B-E										
PUNTO	PILAR I	PILAR II	PILAR III	PILAR IV						
7B	2,28	2,70		2,58						
6B	5,46	7,55	3,22	6,70						
5B	6,72	8,07	3,37	6,30						
4B		6,00	3,37	5,88						
3B	5,16	4,96	1,96	5,13						
2B	5,16	4,32	3,23	4,12						
1B		3,66	1,77	1,75						
1E	4,37	3,75	1,13	2,41						
2 E	4,73	4,76	0,89	3,02						
3E	3,37	4,91	3,35	4,29						
4 E	4,58	6,17	2,75	5,70						
5E	5,94		2,08	5,37						
6E	5,29	6,11	4,55	5,76						
7 E	-0,07	0,21		-0,88						

Tabla Número IV.43.- Variaciones de distancia (mm), obtenidas con el láser escáner entre las campañas 76 y 77.

Después de calcular las variaciones de distancia, el procedimiento de cálculo es el mismo que el desarrollado en el capítulo II de la presente tesis doctoral, aplicado en este capítulo en el epígrafe "1.3.2.- Procesado de los datos de campo distanciométricos" y desarrollado en el Anejo Número 4, "Auscultación clásica mediante observable distanciométrico". Dado que los resultados de las variaciones de distancias no parecen descabellados como en los casos anteriores, se procede a calcular los desplazamientos, que posteriormente serán contrastados con el resto de resultados. Con el objeto de no hacer este capítulo excesivamente largo y farragoso, en el Anejo Número 7, "Auscultación con láser escáner y observable distanciométrico" se incluyen todas las observaciones y la justificación pormenorizada de cálculos que permiten obtener los resultados tal y como aparecen en la siguiente tabla.

Presa:	Cohilla	Campaña: 77-76								
RESU	LTADOS	Observable: Láser Escáner								
DIANAS DE LAS COLUMNAS A-D										
		DESPLAZ		ELIPSE DE ERROR						
PUNTO	dX	dY	Despl.	Acimut	σmax	σmin	Acimut			
	(mm)	(mm)	(mm)	(grad)	(mm)	(mm)	(grad)			
7A										
6A	5,22	-4,60	6,96	146,0091	3,79	1,52	-19,1279			
5A	5,30	-4,41	6,89	144,2241	2,32	0,94	-18,9706			
4A	2,18	-4,82	5,29	172,9846	2,19	0,90	-18,4878			
3A	3,88	-1,44	4,14	122,7144						
2A	7,64	-0,40	7,65	103,3083	1,16	0,24	-13,7756			
1A										
0A										
1D	0,15	-1,38	1,39	193,2063	1,41	0,69	-13,1883			
2D	0,97	-2,17	2,38	173,1772	4,35	2,08	-13,5290			
3D	0,85	-2,76	2,89	181,0757	4,37	2,08	-13,5245			
4D	-0,15	-4,38	4,38	202,2263	5,88	2,83	-13,5636			
5D	1,29	-3,70	3,92	178,6285	5,41	2,62	-13,6962			
6D	0,46	-3,03	3,07	190,3728	4,65	2,26	-13,6730			
7D	1,55	0,50	1,62	80,0718						
			DIANAS DE I	A COLUMNA	С					
		DESPLAZ	AMIENTO		ELIPSE DE ERROR					
PUNTO	dX	dY	Despl.	Acimut	σmax	σmin	Acimut			
	(mm)	(mm)	(mm)	(grad)	(mm)	(mm)	(grad)			
7C	-1,26	1,59	2,02	357,4257	1,05	0,55	19,9662			
6C										
5C	-2,72	-3,92	4,77	238,6421	3,88	1,88	11,1060			
4C	-1,19	-3,85	4,03	219,1441	3,64	1,74	10,9075			
3C	-1,93	-2,60	3,24	240,7354	2,20	1,04	10,7001			
2C	-0,19	-3,73	3,73	203,1986	2,88	1,35	10,7056			
1C	-1,83	-1,47	2,34	256,9649	2,99	1,42	10,7598			
0C	0,54	-1,27	1,38	174,2668	2,75	1,31	-1,1957			
		D	IANAS DE LA	S COLUMNAS	В-Е					
		DESPLAZ	AMIENTO		EL	IPSE DE ERR	OR			
PUNTO	dX	dY	Despl.	Acimut	σmax	σ min	Acimut			
	(mm)	(mm)	(mm)	(grad)	(mm)	(mm)	(grad)			
1E	-1,07	-2,96	3,15	222,0994	2,33	1,15	25,3646			
2E	-1,93	-3,09	3,65	235,6014	2,89	1,40	25,3572			
3E	-2,95	-3,54	4,60	244,2368	0,77	0,37	25,3752			
4 E	-3,94	-4,07	5,66	248,9603	1,94	0,95	25,5984			
5E	-1,12	-4,56	4,70	215,3159	5,31	2,05	12,1125			
6E	-3,13	-5,21	6,08	234,4818	1,20	0,59	25,4796			
7E	0,14	0,28	0,32	30,1702	0,93	0,50	35,7846			
7B	-1,79	-2,22	2,85	243,1039	0,35	0,18	47,6543			
6B	-5,68	-3,72	6,79	263,1300	2,41	1,16	38,4312			
5B	-5,25	-4,49	6,91	254,9820	3,10	1,50	38,4334			
4B	-6,04	-1,54	6,23	284,1079	0,52	0,18	-48,3348			
3B	-3,30	-3,46	4,78	248,5248	2,44	1,21	38,1644			
2B	-2,24	-4,10	4,67	231,9084	1,52	0,77	38,0753			
1B	-3,04	-0,50	3,08	289,7099	1,94	0,73	-48,1569			

Tabla Número IV.44.- Resumen de los desplazamientos y sus precisiones correspondientes calculados con el láser escáner.

Al igual que en las auscultaciones clásicas, los resultados obtenidos de los desplazamientos se pueden representar en gráficos por filas y columnas, tal y como los que se muestran a continuación, encontrándose el resto de figuras en el Anejo Número 7.

Figura Número IV.29.- Vista en planta de los desplazamientos y elipses de error de las dianas de la fila número 5 (Escáner).

Figura Número IV.30.- Vista en alzado de los desplazamientos de la columna C (Escáner).

3.- CONTRASTE DE RESULTADOS.

Una vez resuelta la auscultación por las distintas técnicas, en cuanto a instrumental, método de observación y cálculo, se plantea ahora la necesidad de contrastar los diferentes resultados obtenidos con el objeto de establecer si el instrumental y los métodos propuestos resuelven el problema planteado con los requerimientos de precisión marcados previamente. En esta línea, se propone un contraste de resultados por dos técnicas totalmente diferentes en cuanto a planteamiento, resolución y tipo de resultados obtenidos.

3.1.- CONTRASTE DE RESULTADOS NUMÉRICO Y GRÁFICO.

El primer contraste a llevar a cabo consiste en la comparación tanto numérica como gráfica de los resultados obtenidos, para las diferentes dianas que se han observado por las tres técnicas. Cabe reseñar que no es un método estadístico, pero permitirá en una primera aproximación ver el orden de magnitud de los resultados y, por tanto, establecer unas consideraciones visuales que dependiendo de la magnitud de las diferencias, permitirán establecer conclusiones iniciales que posteriormente se contrastarán con un método cuantitativo. En el Anejo Número 8, "*Contraste gráfico y numérico*", se muestran los resultados del desplazamiento y elipses de error para cada diana, agrupadas éstas por filas con el objeto de conseguir una representación lo más característica posible. En la siguiente tabla y gráficos se muestran a modo de ejemplo el contraste primero numérico y después gráfico de la fila número 4.

		Desplaz	amientos	Elipses de Error			
DIANA 4A	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σ min (mm)	Acimut (grad)
Ángulos	1,15	-1,50	1,89	158,5570	0,28	0,08	1,3872
Distancias	1,11	-1,57	1,93	160,8122			
Láser Escáner	2,18	-4,82	5,29	172,9846	2,19	0,90	-18,4878
DIANA 4D	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σ min (mm)	Acimut (grad)
Ángulos	0,77	-1,88	2,03	175,3354	0,19	0,08	13,1171
Distancias	0,62	-1,76	1,87	178,3681	0,05	0,02	-13,5636
Láser Escáner	-0,15	-4,38	4,38	202,2263	5,88	2,83	-13,5636
DIANA 4C	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σ min (mm)	Acimut (grad)
Ángulos	0,07	-2,31	2,31	198,1366	0,36	0,20	16,7579
Distancias	-0,18	-2,06	2,07	205,4814	0,39	0,19	10,9075
Láser Escáner	-1,19	-3,85	4,03	219,1441	3,64	1,74	10,9075
DIANA 4E	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σ min (mm)	Acimut (grad)
Ángulos	-0,62	-1,64	1,75	222,9638	0,34	0,17	26,1013
Distancias	-0,41	-1,42	1,48	217,7221	0,39	0,19	25,5984
Láser Escáner	-3,94	-4,07	5,66	248,9603	1,94	0,95	25,5984
DIANA 4B	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σ min (mm)	Acimut (grad)
Ángulos	-0,87	-1,15	1,44	241,1493	0,22	0,08	-49,2341
Distancias	-0,91	-1,29	1,58	239,1117	0,43	0,15	-48,3348
Láser Escáner	-6,04	-1,54	6,23	284,1079	0,52	0,18	-48,3348

Tabla Número IV.45.- Resultados de los desplazamientos y sus precisiones correspondientes a la fila 4.

Al igual que en el resto del documento, se representan en color azul los desplazamientos obtenidos el observable angular, en color rojo los desplazamientos con el observable distanciométrico y en color verde los desplazamientos con láser escáner.

Figura Número IV.31.- Desplazamientos en las tres técnicas de observación para las dianas de la fila 4.

Figura Número IV.32.- Desplazamientos y elipses de error en las tres técnicas de observación para las dianas de la fila 4.

Con la misma premisa que en la agrupación por filas se estructura también por columnas con el objeto de conseguir una representación gráfica que permita ser fácilmente interpretada y la determinación de errores sistemáticos más sencilla.

		Desplaz	amientos	Elipses de Error			
DIANA 7A	dX dY Despl. Acimut (mm) (mm) (mm) (grad)		Acimut (grad)	σ max (mm)	σ min (mm)	Acimut (grad)	
Ángulos	1,87	-2,13	2,83	154,0782	0,15	0,05	-18,6983
Distancias	1,65	-2,09	2,66	157,5303			
Láser Escáner							
DIANA 6A	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σ min (mm)	Acimut (grad)
Ángulos	1,34	-1,67	2,14	156,9246	0,31	0,09	-0,1194
Distancias							
Láser Escáner	5,22	-4,60	6,96	146,0091	3,79	1,52	-19,1279
DIANA 5A	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σ min (mm)	Acimut (grad)
Ángulos	1,23	-1,66	2,07	159,3829	0,37	0,10	0,2920
Distancias	1,30	-1,90	2,30	161,7750	0,42	0,17	-18,9706
Láser Escáner	5,30	-4,41	6,89	144,2241	2,32	0,94	-18,9706
DIANA 4A	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σmin (mm)	Acimut (grad)
Ángulos	1,15	-1,50	1,89	158,5570	0,28	0,08	1,3872
Distancias	1,11	-1,57	1,93	160,8122			
Láser Escáner	2,18	-4,82	5,29	172,9846	2,19	0,90	-18,4878
DIANA 3A	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σ min (mm)	Acimut (grad)
Ángulos	1,05	-1,32	1,68	157,2466	0,41	0,14	3,3666
Distancias	0,87	-1,31	1,57	162,8245			
Láser Escáner	3,88	-1,44	4,14	122,7144			
DIANA 2A	dX (mm)	dY (mm)	Despl. (mm)	Acimut (grad)	σ max (mm)	σmin (mm)	Acimut (grad)
Ángulos	-0,21	0,08	0,22	323,9650			
Distancias	0,56	-0,57	0,80	150,4797			
Láser Escáner	7,64	-0,40	7,65	103,3083	1,16	0,24	-13,7756

Tabla Número IV.46.- Resultados de los desplazamientos y sus precisiones correspondientes a la columna A.

Figura Número IV.33.- Desplazamientos obtenidos por las tres técnicas para las dianas de la columna A.

Es importante recordar que los contrastes gráficos y numéricos que se están realizando siguen siendo exclusivamente numéricos y no estadísticos, por lo que los resultados que se obtendrán serán de carácter orientativo, pero sin ningún tipo de cuantificación de la desviación de los resultados logrados por los diferentes métodos de observación y cálculo de los desplazamientos.

Hasta ahora se han mostrado los resultados obtenidos para todas las dianas, primero agrupadas por filas y después por columnas. A continuación se muestran los desplazamientos y las elipses de error de las dianas agrupadas por columnas, pero vistas en planta en vez de una sección vertical. El objeto de esta nueva representación de los desplazamientos es determinar si los desplazamientos son coherentes entre sí, y si las elipses de error son comparables para los diferentes métodos.

Por este motivo, las figuras que se muestran a continuación detallan para cada método existente en la determinación de los desplazamientos y sus correspondientes elipses de error, por un lado los propios desplazamientos obtenidos, tal y como se ha justificado anteriormente, vistos en planta y todas las filas en una única vista, y por otro lado los desplazamientos y sus elipses de error.

Figura Número IV.34.- Desplazamientos obtenidos con estación topográfica (Ángulos).

Figura Número IV.35.- Desplazamientos y elipses de error obtenidos con estación topográfica (Ángulos).

Figura Número IV.36.- Desplazamientos obtenidos con estación topográfica (Distancias).

Figura Número IV.37.- Desplazamientos y elipses de error obtenidos con estación topográfica (Distancias).

Figura Número IV.38.- Desplazamientos obtenidos con láser escáner (Distancias).

Figura Número IV.39.- Desplazamientos y elipses de error obtenidos con láser escáner (Distancias).

Observando las tablas de resultados y los gráficos, ubicados en el Anejo Número 8, "*Contraste gráfico y numérico*", se llega a las siguientes conclusiones analizando los resultados por filas:

- *Fila 7.* Los ángulos y distancias tienen desplazamientos muy parecidos y coherentes, mientras que el láser escáner no tiene parecidos en magnitud a los resultados anteriores, pero son incoherentes entre sí (no es factible que los desplazamientos tengas direcciones contradictorias). En cuanto a las elipses de error para los casos de ángulos y distancias son muy pequeñas, mientras que para el láser escáner son muy grandes y además incoherentes (el valor del desplazamiento es muchos casos es menor que las dimensiones de la propia elipse de error).
- Fila 6. Los ángulos y distancias tienen desplazamientos muy parecidos y coherentes, mientras que el láser escáner no tiene desplazamientos parecidos a los resultados anteriores (diferencias del orden de 3 milímetros) y además estos resultados son incoherentes, aunque menos que en la fila anterior, salvo la diana 6A. En cuanto a las elipses de error para los casos de ángulos y distancias, son muy pequeñas, mientras que para el láser escáner son

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

muy grandes y además incoherentes (el valor del desplazamiento es muchos casos es menor que las dimensiones de la propia elipse de error).

- Fila 5. Los ángulos y distancias tienen desplazamientos muy parecidos y coherentes, mientras que el láser escáner no tiene desplazamientos parecidos a los resultados anteriores (diferencias del orden de 3 milímetros) y además estos resultados son incoherentes, aunque menos que en la fila anterior, salvo la diana 5C. En cuanto a las elipses de error, para los casos de ángulos y distancias son muy pequeñas, mientras que para el láser escáner son muy grandes y además incoherentes (el valor del desplazamiento es muchos casos es menor que las dimensiones de la propia elipse de error).
- Fila 4. Los ángulos y distancias tienen desplazamientos muy parecidos y coherentes, mientras que el láser escáner no tiene desplazamientos parecidos a los resultados anteriores (diferencias del orden de 3 milímetros) y además estos resultados son incoherentes, aunque menos que en la fila anterior, salvo la diana 4B. En cuanto a las elipses de error para los casos de ángulos y distancias son muy pequeñas, mientras que para el láser escáner son muy grandes y además incoherentes (el valor del desplazamiento es muchos casos es menor que las dimensiones de la propia elipse de error).
- Fila 3. Los ángulos y distancias tienen desplazamientos muy parecidos y coherentes, mientras que el láser escáner no tiene desplazamientos parecidos a los resultados anteriores (diferencias del orden de 2 milímetros) y además estos resultados son incoherentes, aunque menos que en la fila anterior, salvo la diana 3A y 3C. En cuanto a las elipses de error para los casos de ángulos y distancias son muy pequeñas, mientras que para el láser escáner son muy grandes y además incoherentes (el valor del desplazamiento es muchos casos es menor que las dimensiones de la propia elipse de error).
- Fila 2. Los ángulos y distancias tienen desplazamientos muy parecidos y coherentes, mientras que el láser escáner no tiene desplazamientos parecidos a los resultados anteriores (diferencias del orden de 2 milímetros) y además estos resultados son incoherentes, aunque menos que en la fila anterior, salvo la diana 2A. En cuanto a las elipses de error para los casos de ángulos y distancias son muy pequeñas, mientras que para el láser escáner son muy grandes y además incoherentes (el valor del desplazamiento en general, es menor que las dimensiones de la elipse de error).
- Fila 1. Los ángulos y distancias tienen desplazamientos muy parecidos y coherentes, mientras que el láser escáner no tiene desplazamientos parecidos en magnitud a los resultados anteriores, pero son incoherentes entre sí (no es factible que los desplazamientos tengas direcciones contradictorias). En cuanto a las elipses de error para los casos de ángulos y distancias son muy pequeñas, mientras que para el láser escáner son muy grandes y además incoherentes (el valor del desplazamiento en general, es menor que las dimensiones de la elipse de error).
- Fila 0. Los ángulos y distancias tienen desplazamientos muy parecidos y coherentes, mientras que el láser escáner no tiene desplazamientos parecidos a los resultados anteriores (diferencias del orden de 1 milímetro) y además estos resultados son incoherentes, aunque menos que en la fila anterior. En cuanto a las elipses de error para los casos de ángulos y distancias son muy pequeñas, mientras que para el láser escáner son muy grandes y además incoherentes (el valor del desplazamiento en general, es menor que las dimensiones de la propia elipse de error).

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

Si el análisis se realiza por columnas se puede llegar a las siguientes conclusiones:

- *Columna A.* Los resultados obtenidos con ángulos y distancias son muy parecidos, mientras que con el láser escáner las diferencias de resultados oscilan entre 1 y 2 milímetros, siendo además los resultados incoherentes.
- *Columna D.* Los resultados obtenidos con ángulos y distancias son muy parecidos, mientras que con el láser escáner las diferencias de resultados oscilan entre 1 y 2 milímetros, siendo además los resultados menos incoherentes.
- *Columna C.* Los resultados obtenidos con ángulos y distancias son muy parecidos, mientras que con el láser escáner las diferencias de resultados oscilan entre 2 y 4 milímetros, siendo además los resultados menos incoherentes.
- *Columna E.* Los resultados obtenidos con ángulos y distancias son muy parecidos, mientras que con el láser escáner las diferencias de resultados oscilan entre 2 y 4 milímetros, siendo además los resultados menos incoherentes.
- *Columna B.* Los resultados obtenidos con ángulos y distancias son muy parecidos, mientras que con el láser escáner las diferencias de resultados oscilan entre 3 y 5 milímetros, siendo además los resultados menos incoherentes.

Si el análisis se realiza a la vista de los desplazamientos obtenidos por columnas, se puede llegar a las siguientes conclusiones:

- *Observaciones angulares clásicas*. Los desplazamientos son coherentes con elipses de error pequeñas y con algún sistematismo producido posiblemente por la geometría de la propia observación.
- *Observaciones distanciométricas clásicas.* Los desplazamientos son coherentes con elipses de error pequeñas y con algún sistematismo producido posiblemente por la geometría de la propia observación.
- *Observaciones distanciométricas con Láser Escáner*. Los desplazamientos no son coherentes, con elipses de error relativamente grandes para las precisiones buscadas.

Aunando todos los resultados obtenidos y con los contrastes numérico y gráfico se pueden hacer las siguientes consideraciones:

- Los resultados obtenidos con las observaciones clásicas son muy parecidos para el caso de observar ángulos y distancias, siendo las diferencias menores de 1 milímetro y encajando, por tanto, en las precisiones exigidas. Las elipses de error son pequeñas y dentro del orden de magnitud de las precisiones exigidas, aunque se caracterizan por tener algún sistematismo generado posiblemente por la geometría de la observación.
- Los resultados obtenidos con el láser escáner son diferentes a los obtenidos con cualquiera de las dos técnicas clásicas, aproximadamente con diferencias del orden de entre 3 y 5 milímetros, siendo además contradictorios o incoherentes entres sí. Las elipses de error son grandes y fuera del orden de magnitud de las precisiones exigidas.

3.2.- CONTRASTE ESTADÍSTICO.

3.2.1.- ELECCIÓN DE LA TÉCNICA PATRÓN PARA EL CONTRASTE ESTADÍSTICO.

Para la ejecución del contraste estadístico se requiere definir cuál de las tres técnicas a contrastar es la más precisa y, por tanto, cuál de las tres será la tomada como patrón. En esta línea, el criterio utilizado para definir cuál es la más precisa, se apoya en la determinación de las elipses de error, tomándose como mejor técnica aquella cuyo valor medio de las áreas de las elipses obtenidas en cada técnica sea la más pequeña. Para ello se procede a calcular las áreas de las elipses mediante la expressión:

$$Area = \pi \cdot a \cdot b = \pi \cdot \sigma_{maz} \cdot \sigma_{min} \qquad [IV.122]$$

obteniéndose los valores que aparecen en la siguiente tabla:

Presa:		77-76			77-76			77-76				
Cohilla		Resultados Angulares			Resultados Distanciométricos			Resultados Láser Escáner				
		EL	IPSE DE	ERROR		EL	IPSE DE	ERROR	ELIPSE DE ERROR			
PUNTO	σn (m	nax m)	σmin (mm)	Área Elipse (mm ²)		σ max (mm)	σmin (mm)	Área Elipse (mm ²)	σ max (mm)	σmin (mm)	Área Elipse (mm ²)	
7A	0,	15	0,05	0,0252								
6A	0,3	31	0,09	0,0851					3,79	1,52	18,1501	
5A	0,3	37	0,10	0,1199		0,42	0,17	0,2239	2,32	0,94	6,8566	
4 A	0,2	28	0,08	0,0718					2,19	0,90	6,1959	
3A	0,4	41	0,14	0,1769	1							
2A	-	-							1,16	0,24	0,8788	
1A	-	-			1							
0A	-	-										
1D	0,0	01	0,00	0,0001					1,41	0,69	3,0723	
2D	0,2	23	0,10	0,0747					4,35	2,08	28,3504	
3D	0,2	23	0,09	0,0657		0,10	0,05	0,0155	4,37	2,08	28,6425	
4D	0,	19	0,08	0,0453		0,05	0,02	0,0038	5,88	2,83	52,2397	
5D	0,2	26	0,10	0,0840		0,04	0,02	0,0031	5,41	2,62	44,5758	
6D	0,4	40	0,16	0,2031		0,09	0,04	0,0112	4,65	2,26	32,9973	
7D	0,5	53	0,21	0,3562								
7C	0,3	33	0,16	0,1675		0,36	0,14	0,1593	1,05	0,55	1,8191	
6C	-	-										
5C	0,3	34	0,16	0,1723		0,37	0,18	0,2032	3,88	1,88	22,9592	
4C	0,3	36	0,20	0,2250		0,39	0,19	0,2256	3,64	1,74	19,9226	
3C	0,3	36	0,17	0,1878		0,15	0,07	0,0332	2,20	1,04	7,1842	
2C	0,2	29	0,13	0,1217		0,08	0,04	0,0102	2,88	1,35	12,2036	
1C	0,3	30	0,14	0,1303					2,99	1,42	13,3045	
0C	0,	16	0,08	0,0405		0,13	0,05	0,0224	2,75	1,31	11,3255	
1E	0,0)8	0,04	0,0114		0,31	0,15	0,1480	2,33	1,15	8,3929	
2 E	0,4	43	0,22	0,3005					2,89	1,40	12,7121	
3E	0,3	38	0,19	0,2330		0,50	0,24	0,3858	0,77	0,37	0,9109	
4E	0,3	34	0,17	0,1821		0,39	0,19	0,2288	1,94	0,95	5,7585	
5E	0,4	42 70	0,22	0,2855		0,39	0,19	0,2400	5,31	2,05	34,1615	
6E	0,5	50	0,26	0,4083		0,45	0,22	0,3174	1,20	0,59	2,2420	
7E	0,5	57	0,30	0,5315		0,73	0,36	0,8215	0,93	0,50	1,4686	

7B	0,27	0,14	0,1150				0,35	0,18	0,2028
6B	0,33	0,17	0,1750				2,41	1,16	8,7448
5B	0,16	0,08	0,0387	0,20	0,10	0,0592	3,10	1,50	14,6471
4B	0,22	0,08	0,0564	0,43	0,15	0,2073	0,52	0,18	0,2971
3B	0,36	0,13	0,1510				2,44	1,21	9,2811
2B	0,15	0,08	0,0397				1,52	0,77	3,6639
1B	0,13	0,05	0,0217	0,05	0,02	0,0034	1,94	0,73	4,4611

Tabla Número IV.47.- Valor de las áreas de las elipses de error para las diferentes técnicas de observación y cálculo.

Establecidas las diferentes áreas de las elipses de error para cada técnica, se obtiene como estimador de cada población la media de la muestra, es decir:

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 [IV.123]

A continuación, y como estimador de la varianza de cada población, la cuasi varianza de la muestra es decir:

$$S^{2} = \sum_{i=1}^{N} \frac{(x_{i} - \overline{X})^{2}}{N - 1}$$
 [IV.124]

A continuación, y como error medio cuadrático de la muestra o como estimador de la desviación típica de cada población:

$$e_c = \sqrt{\sum_{i=1}^{N} \frac{(x_i - \overline{X})^2}{N - 1}} = \sqrt{S^2}$$
 [IV.125]

Y para finalizar, como error medio cuadrático de la media:

$$e_c^{\mu} = \frac{e_c}{\sqrt{N}}$$
[IV.126]

Todos los resultados se pueden apreciar en la siguiente tabla resumen, en la que es fácilmente apreciable qué técnica de las tres es la más precisa y, por tanto, la que se empleará como patrón en el contraste estadístico.

ÁREA DE LAS ELIPSES (mm ²)									
Estación TopográficaEstación TopográficaLáser EscánerANGULOSDISTANCIASDISTANCIAS									
Tamaño de la Muestra	33	20	31						
Media Muestral	0,149	0,166	13,472						
Varianza Muestral	0,015	0,038	183,729						
Desviación Típica	0,120	0,190	13,334						
Error Media Muestral	0,021	0,042	2,395						

Tabla Número IV.48.- Contraste estadístico de los resultados obtenidos en las áreas de las elipses de error.
A la vista de los resultados obtenidos y mostrados en la tabla anterior, se puede determinar que todos los indicadores estadísticos arrojan que la técnica más precisa y, por tanto, la que se debe emplear como patrón en el contraste estadístico es la que se apoya en la observación angular clásica.

3.2.2.- ESTABLECIMIENTO DEL PARÁMETRO A CONTRASTAR.

Establecida la técnica de observación angular clásica como la más precisa, se tiene un vector que representa el desplazamiento determinado con esa técnica y que se pretende comparar con los obtenidos en las otras dos técnicas. Es decir, en primer lugar se hace un contraste que determine si las diferencias entre los desplazamientos obtenidos con los observables angulares y distanciométricos clásicos son admisibles, y posteriormente se hace otro contraste que establezca si las diferencias entre los vectores obtenidos con el observable angular clásico y las distancias del láser escáner son admisibles o no. Se entiende que a priori, el primero debiera ser admisible, ya que ambas técnicas se supone que tienen resultados parecidos, y el segundo es precisamente el objeto de este trabajo de investigación.

La primera necesidad que surge es, por tanto, determinar las diferencias entre los vectores resultantes en las diferentes técnicas dos a dos. Para ello se plantea una diferencia entre vectores que no tenga en cuenta sólo el módulo del desplazamiento, sino también la dirección de éste. Esto motiva que la diferencia entre desplazamientos se determine como la componente cuadrática de la diferencia de incrementos de coordenadas, tal y como se puede apreciar en la siguiente figura:

Figura Número IV.40.- Determinación del parámetro a contrastar entre dos desplazamientos.

En las dos tablas siguientes se pueden apreciar los resultados obtenidos para el cálculo de las diferencias entre los vectores desplazamiento obtenidos, en primer lugar con el observable angular y distanciométrico clásicos, y en segundo lugar con el observable angular clásico y las distancias del láser escáner.

Presa:	Cohilla	CONTRASTE: ESTACIÓN TOPOGRÁFICA-ÁNGULOS							Campaña:	77-76		
RESULTADOS ESTA			ESTAC	IÓ	N TOPO	GRÁFICA						
DIANAS DE PUNTERIA												
	Â	ÁNGULO	S		DI	STANCL	AS		DIFERENCIAS			
PUNTO	dX (mm)	dY (mm)	Despl. (mm)		dX (mm)	dY (mm)	Despl. (mm)		Diferencia Coord_X	Diferencia Coord_Y	Diferencia TOTAL	
7A	1,87	-2,13	2,83	1	1,65	-2,09	2,66		0,23	-0,04	0,23	
6A	1,34	-1,67	2,14									
5A	1,23	-1,66	2,07		1,30	-1,90	2,30		-0,07	0,24	0,25	
4 A	1,15	-1,50	1,89		1,11	-1,57	1,93		0,03	0,07	0,08	
3A	1,05	-1,32	1,68		0,87	-1,31	1,57		0,18	-0,01	0,18	
2A	-0,21	0,08	0,22		0,56	-0,57	0,80		-0,77	0,65	1,01	
1A												
0A												
1D	0,25	-0,27	0,37									
2D	0,31	-0,80	0,86									
3D	0,60	-1,59	1,70		0,42	-1,19	1,26		0,18	-0,40	0,44	
4D	0,77	-1,88	2,03		0,62	-1,76	1,87		0,15	-0,12	0,19	
5D	0,88	-2,34	2,50		0,95	-2,21	2,41		-0,07	-0,13	0,14	
6D	1,10	-2,80	3,00		0,98	-2,37	2,57		0,12	-0,42	0,44	
7D	1,21	-2,88	3,12		1,12	-2,75	2,96		0,09	-0,13	0,16	
7C	-0,34	-3,20	3,22		-0,04	-3,15	3,15		-0,30	-0,04	0,31	
6C	0,23	-3,29	3,30		0,22	-3,04	3,05		0,01	-0,25	0,25	
5C	-0,02	-2,42	2,42		-0,23	-2,39	2,40		0,20	-0,03	0,21	
4C	0,07	-2,31	2,31		-0,18	-2,06	2,07		0,25	-0,25	0,35	
3C	-0,06	-1,64	1,64	1	-0,05	-1,41	1,41		-0,01	-0,23	0,23	
2C	0,09	-1,21	1,21	1	-0,07	-1,06	1,06		0,16	-0,15	0,22	
1C	0,03	-0,67	0,67		0,11	-0,80	0,81		-0,08	0,13	0,15	
0C	0,14	0,24	0,28	4	-0,12	-0,23	0,26		0,27	0,47	0,54	
1E	-0,20	-0,32	0,38	-	-0,10	-0,48	0,49	-	-0,10	0,16	0,19	
2E	-0,37	-0,99	1,06	-	-0,25	-0,69	0,73	-	-0,12	-0,30	0,32	
3E 4E	-0,53	-1,32	1,43	-	-0,41	-1,31	1,38	-	-0,12	-0,01	0,12	
4E	-0,62	-1,64	1,/5	-	-0,41	-1,42	1,48	-	-0,21	-0,21	0,30	
SE CE	-0,80	-2,24	2,38	-	-0,60	-1,98	2,07	-	-0,20	-0,26	0,33	
7F	-0.92	-2,49	3.01		-0,74	-2,40	3.02	$\left \right $	0.05	-0,03	0.05	
7E 7B	-0,99	-2,84	2.67		-1,04	-2,85	5,02		0,05	-0,01	0,05	
6B	-1.03	-1.79	2,07		-1.33	-1.94	2.35	$\left \right $	0.30	0.15	0.33	
5B	-0.96	-1.47	1,76	1	-1.16	-1.76	2,11	1	0,21	0,28	0,35	
4B	-0,87	-1,15	1,44	1	-0,91	-1,29	1,58	1	0,04	0,14	0,15	
3B	-0,71	-0,93	1,17	1	-0,67	-1,04	1,23	1	-0,04	0,10	0,11	
2B	-0,34	-0,43	0,55	1	-0,44	-0,57	0,72	1	0,10	0,14	0,17	
1B	-0,15	-0,24	0,28		-0,30	-0,42	0,52	1	0,15	0,18	0,23	

Tabla Número IV.49.- Diferencias entre desplazamientos obtenidos mediante observables clásicos (Ángulos y Distancias).

Presa:	Cohilla	CONTRASTE: ESTACIÓN TOPOGRÁFICA-ÁNGULOS							Campaña:	77-76		
RESULTADOS LASER ESCANER-DISTANCIAS												
DIANAS DE PUNTERIA												
	Ĩ	ÁNGULO	S		LÁS	ER ESCÁ	NER		DIFERENCIAS			
PUNTO	dX (mm)	dY (mm)	Despl. (mm)		dX (mm)	dY (mm)	Despl. (mm)		Diferencia Coord_X	Diferencia Coord_Y	Diferencia TOTAL	
7A	1,87	-2,13	2,83									
6A	1,34	-1,67	2,14		5,22	-4,60	6,96		-3,87	2,93	4,86	
5A	1,23	-1,66	2,07		5,30	-4,41	6,89		-4,07	2,75	4,91	
4 A	1,15	-1,50	1,89		2,18	-4,82	5,29		-1,03	3,32	3,48	
3A	1,05	-1,32	1,68		3,88	-1,44	4,14		-2,83	0,13	2,83	
2A	-0,21	0,08	0,22		7,64	-0,40	7,65		-7,84	0,48	7,86	
1A												
0A												
1D	0,25	-0,27	0,37		0,15	-1,38	1,39		0,10	1,11	1,11	
2D	0,31	-0,80	0,86		0,97	-2,17	2,38		-0,66	1,37	1,52	
3D	0,60	-1,59	1,70		0,85	-2,76	2,89		-0,25	1,17	1,20	
4D	0,77	-1,88	2,03		-0,15	-4,38	4,38		0,92	2,50	2,66	
5D	0,88	-2,34	2,50		1,29	-3,70	3,92		-0,41	1,36	1,42	
6D	1,10	-2,80	3,00		0,46	-3,03	3,07		0,64	0,24	0,68	
7D	1,21	-2,88	3,12		1,55	0,50	1,62		-0,34	-3,38	3,40	
7C	-0,34	-3,20	3,22		-1,26	1,59	2,02		0,91	-4,79	4,87	
6C	0,23	-3,29	3,30									
5C	-0,02	-2,42	2,42		-2,72	-3,92	4,77		2,69	1,49	3,08	
4C	0,07	-2,31	2,31		-1,19	-3,85	4,03		1,26	1,54	1,99	
3 C	-0,06	-1,64	1,64		-1,93	-2,60	3,24		1,88	0,96	2,10	
2C	0,09	-1,21	1,21		-0,19	-3,73	3,73		0,28	2,52	2,53	
1C	0,03	-0,67	0,67		-1,83	-1,47	2,34		1,86	0,80	2,03	
0C	0,14	0,24	0,28		0,54	-1,27	1,38		-0,40	1,51	1,56	
1E	-0,20	-0,32	0,38		-1,07	-2,96	3,15		0,87	2,63	2,77	
2 E	-0,37	-0,99	1,06		-1,93	-3,09	3,65		1,57	2,10	2,62	
3E	-0,53	-1,32	1,43		-2,95	-3,54	4,60		2,41	2,21	3,27	
4E	-0,62	-1,64	1,75		-3,94	-4,07	5,66	-	3,32	2,43	4,11	
5E	-0,80	-2,24	2,38		-1,12	-4,56	4,70		0,32	2,32	2,34	
6E 7E	-0,82	-2,49	2,62		-3,13	-5,21	6,08	-	2,32	2,72	3,57	
7E 7D	-0,99	-2,84	3,01		0,14	0,28	0,32	-	-1,13	-3,12	3,32	
/B	-1,40	-2,24	2,07		-1,/9	-2,22	2,83 6 70	-	0,55	-0,02	5.03	
UD 5R	-1,03	-1,79	2,07		-5,00	-3,72	6.01	-	4,05	3.01	5.05	
<u>4</u> R	-0.87	-1.15	1,70		-6.04	-1 54	6.23		5 17	0.39	5 18	
3R	-0.71	-0.93	1,17		-3,30	-3,46	4.78	1	2.59	2,53	3.62	
2B	-0.34	-0.43	0.55		-2.24	-4.10	4,67		1,90	3,67	4,13	
1B	-0,15	-0,24	0,28		-3,04	-0,50	3,08		2,89	0,25	2,90	

Tabla Número IV.50.- Diferencias entre desplazamientos obtenidos con ángulos clásicos y láser escáner.

3.2.3.- JUSTIFICACIÓN DEL MODELO Y CONTRASTE ESTADÍSTICO.

3.2.3.1.- JUSTIFICACIÓN DEL MODELO ESTADÍSTICO.

La mayor parte de los fenómenos que aparecen en la naturaleza involucran diferentes variables, y así se puede decir que muchos están regidos por el comportamiento de varias variables. Si X e Y son variables aleatorias (discretas o continuas), la distribución que el comportamiento conjunto supedita de ambas variables se conoce como distribución bivariable o conjunta, denominándose distribución multi-variante cuando se tienen más de dos variables.

El contraste objeto de la presente tesis doctoral persigue analizar un fenómeno: la diferencia entre dos vectores, por un lado el vector obtenido en base a las observaciones angulares clásicas y el vector obtenido en base a las observaciones distanciométricas clásicas y, por otro lado, y en segunda instancia, el vector obtenido en base a las observaciones angulares clásicas y el vector obtenido en base a las observaciones distanciométricas hechas con el láser escáner. En ambos casos la diferencia entre vectores, por ser éstos planimétricos, queda definida por una variación en la coordenada X y otra en la coordenada Y, lo que permite asegurar la dependencia del fenómeno de dos variables, que son normales e independientes entre sí, dado que son el fruto de mediciones realizadas en campo, por lo que además la distribución individual de cada una de ellas es normal. Esto justifica que para el caso objeto, la distribución a emplear en la ejecución de los contrastes de hipótesis se pueda considerar sin más una distribución normal bivariada.

Como ya se ha dicho anteriormente, esta distribución describe el comportamiento conjunto de dos variables gaussianas, X e Y, definiéndose por la expresión:

$$f(x,y) = \frac{1}{2\pi\sigma_x \sigma_y \sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 + \left(\frac{y-\mu_y}{\sigma_y}\right)^2 - 2\rho\left(\frac{x-\mu_x}{\sigma_x}\right)\left(\frac{y-\mu_y}{\sigma_y}\right)\right]\right\}$$
[IV.127]

Esta función define una superficie sobre el plano X-Y en lugar de una curva sobre el eje X, como sucede en las unidimensionales. En las distribuciones bivariadas la probabilidad corresponde geométricamente al volumen bajo esta superficie, siendo la condición que debe cumplir la distribución bivariada es:

$$\iint_{x \ y} f(x, y) dy dx = 1, \qquad f(x, y) \ge 0$$
 [IV.128]

La distribución normal bivariada tiene 5 parámetros: las dos medias y desviaciones estándar para las variables X e Y, y la correlación entre ellas, ρ . Las dos distribuciones marginales de las variables X e Y, es decir, las distribuciones invariadas f(x) y f(y), deben ser distribuciones gaussianas. Estas dos distribuciones marginales tienen parámetros μ_X , σ_X , y μ_Y , σ_Y , respectivamente.

En la siguiente figura se ilustra la forma general de la distribución normal bivariada. Tiene la forma de una protuberancia tridimensional, con propiedades que dependen de los 5 parámetros. La función presenta un máximo sobre el punto (μ_x, μ_y). Un incremento en σ_x alarga la distribución en la dirección X e incrementos de σ_y la alargan en la dirección Y. Para desviaciones estándar iguales y $\rho = 0$, precisamente el caso que se da en esta investigación, la distribución es axialmente simétrica alrededor del punto (μ_x, μ_y), y sus curvas de nivel son círculos concéntricos.

Figura Número IV.41.- Simulación de una distribución bivariable.

La función de probabilidad que permite calcular el volumen que hay debajo de la elipse o el círculo de radio definido por el nivel de confianza, en definitiva el valor esperado para el radio del círculo, (diferencia entre vectores en el caso objeto), a un determinado nivel de confianza, viene definida por la siguiente expresión [ABRA-72]:

$$\alpha = P\left\{ \left(\frac{X}{\sigma_x}\right)^2 + \left(\frac{Y}{\sigma_y}\right)^2 > a \right\} = \exp\left(\frac{-a^2}{2}\right)$$
[IV.129]

lo que permite identificar el parámetro "a", para los diferentes niveles de confianza que se pretenda establecer. Para el caso del 95% del nivel de confianza se obtiene:

$$\alpha = \exp\left(\frac{-a^2}{2}\right) \Rightarrow 0.05 = \exp\left(\frac{-a^2}{2}\right) \Rightarrow a_{0.05} = 2.4477 \qquad [IV.130]$$

Operando de forma análoga se puede obtener también el valor del parámetro, para un nivel de confianza del 99%.

$$\alpha = \exp\left(\frac{-a^2}{2}\right) \Rightarrow 0,01 = \exp\left(\frac{-a^2}{2}\right) \Rightarrow a_{0,01} = 3,0349$$
 [IV.131]

lo que permite volver a la expresión IV.129 y determinar el valor esperado para un determinado nivel de confianza. Otro procedimiento de trabajo en dicha ecuación, permite también establecer en base al conocimiento de la precisión "a priori" calcular la varianza y posteriormente el nivel de confianza o probabilidad de que se obtenga ese valor de la precisión. Cualquiera de los dos análisis debe obtener las mismas conclusiones, tal y como se puede apreciar en la aplicación de dicha expresión en el caso objeto de análisis en la presente investigación.

3.2.3.2.- CONTRASTE ENTRE LOS RESULTADOS OBTENIDOS MEDIANTE LA OBSERVACIÓN DE ÁNGULOS Y DISTANCIAS CON LA ESTACIÓN TOPOGRÁFICA.

El objeto de este análisis es certificar que la auscultación clásica, realizada con cualquiera de los dos observables clásicos (ángulos o distancias), goza de buena precisión y resultados prácticamente iguales. Esto justifica el objeto de este contraste, que aún no siendo el objetivo de la tesis, si que permite certificar la posibilidad de obtener resultados parecidos con diferentes métodos de resolución de auscultaciones.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.

Para resolver el contraste de hipótesis se hace necesario calcular, en base a los resultados de las diferencias de vectores establecidos en la tabla IV.49, valores estadísticos como son el tamaño de la muestra, el valor promedio, la varianza y la desviación, todos ellos descritos en el epígrafe anterior y cuyos resultados se muestran en la siguiente tabla:

CONTRA ESTACIÓN TOPOGR ESTACIÓN TOPOGRÁ	CONTRASTE: ESTACIÓN TOPOGRÁFICA-ÁNGULOS ESTACIÓN TOPOGRÁFICA-DISTANCIAS							
	ΔΧ	ΔΥ						
MUESTRA	31	31						
PROMEDIO	0,018	-0,010						
VARIANZA	0,045	0,058						
DESVIACIÓN	0,209	0,236						

Tabla Número IV.51.- Estadísticos de la diferencia de vectores obtenidos con ángulos y distancias clásicas.

A partir de la determinación de dichos valores se puede reconstruir gráficamente la distribución bivariada, tal y como se muestra a continuación:

Figura Número IV.42.- Distribución bivariable empleada en el contraste de los ángulos y distancias clásicas.

Para establecer la precisión a diferentes niveles de confianza, se hace necesario trabajar con las varianzas. En este caso, como en todas las distribuciones bivariadas, existen dos, una para la variable X y otra para la variable Y. Si las diferencias entre ambas no son importantes se puede trabajar con la media aritmética, y si se quiere ser estricto, se puede trabajar con la mayor de las dos, garantizándose en todo momento estar del lado de la seguridad, cosa habitual en topografía. Una vez establecidos los parámetros de la distribución para los diferentes niveles de confianza y teniendo las varianzas, la determinación de la precisión para dichos niveles de confianza se determina mediante la siguiente expresión:

$$r_{95\%} = a_{0.05} \cdot \sigma = 2,4477 \cdot \sqrt{0,058} = 0,59 mm.$$
 [IV.132]

$$r_{99\%} = a_{0.01} \cdot \sigma = 3,0349 \cdot \sqrt{0,058} = 0,73mm.$$
 [IV.133]

lo que permite establecer, que tanto para el 95% como para el 99%, la diferencia media entre los vectores es de 0,59 y 0,73 milímetros, respectivamente, lo que encaja perfectamente dentro de la precisión marcada para este tipo de trabajos y valida cualquiera de los dos métodos para la resolución de auscultaciones.

Invirtiendo el problema, se establece ahora para la precisión marcada en las auscultaciones geodésicas, el procedimiento que permite calcular la probabilidad de que el valor resultante sea inferior.

$$a \cdot \sigma = 1 \text{ milímetro} \Rightarrow a = \frac{1}{\sigma} = \frac{1}{\sqrt{0.058}} = 4,1523$$
 [IV.134]

$$\alpha = \exp\left(\frac{-a^2}{2}\right) = \exp\left(\frac{-4,1523^2}{2}\right) = 0,0002 \Longrightarrow 99,98\%$$
 [IV.135]

lo que supone que sólo existe un 0,02% de probabilidad de que la diferencia entre los vectores sea mayor de 1 milímetro, ratificando nuevamente la validación de estos métodos para la ejecución de auscultaciones con precisión 1 milímetro.

3.2.3.3.- CONTRASTE ENTRE LOS RESULTADOS OBTENIDOS MEDIANTE LA OBSERVACIÓN DE ÁNGULOS CON ESTACIÓN Y DISTANCIAS CON EL ESCÁNER.

Este contraste responde al objeto real de la tesis, ya que con él se determina el valor medio de las variaciones, en definitiva la diferencia entre los vectores obtenidos con la observación angular clásica y distanciométrica del láser escáner, para unos niveles de confianza dados. Por tanto, éste es el método con el que se certifica si realmente las observaciones realizadas con el láser escáner son aprovechables o no para la resolución de auscultaciones, ya que el método angular clásico ha sido sobradamente chequeado, tanto con el péndulo como con el observable distanciométrico de la propia estación topográfica.

Para la resolución del contraste se hace necesario calcular nuevamente, en base a los resultados de las diferencias de vectores establecidos en la tabla IV.50, valores estadísticos como son el tamaño de la muestra, el valor promedio, la varianza y la desviación, todos ellos descritos en el epígrafe anterior y cuyos resultados se muestran en la siguiente tabla:

CONTRASTE: ESTACIÓN TOPOGRÁFICA-ÁNGULOS LÁSER ESCÁNER-DISTANCIAS								
	ΔX	ΔΥ						
MUESTRA	33	33						
PROMEDIO	0,616	1,244						
VARIANZA	6,903	3,610						
DESVIACIÓN	2,587	1,871						

Tabla Número IV.52.- Estadísticos de la diferencia de vectores obtenidos con ángulos clásicos y láser escáner.

Igualmente, con los valores obtenidos en la tabla anterior se puede representar gráficamente la distribución bivariada:

Figura Número IV.43.- Distribución bivariable empleada en el contraste de los ángulos clásicos y distancias del escáner.

Para establecer la precisión a diferentes niveles de confianza, se hace necesario nuevamente elegir la varianza más representativa de las dos variables. Al igual que en el caso anterior se asume la mayor de ambas como la más representativa, con el objeto de estar del lado de la seguridad. Una vez establecidos los parámetros de la distribución para los diferentes niveles de confianza y teniendo las varianzas, la determinación de la precisión para los diferentes niveles de confianza se determina mediante la siguiente expresión:

$$r_{95\%} = a_{0.05} \cdot \sigma = 2,4477 \cdot \sqrt{6,903} = 6,43mm.$$
 [IV.136]

$$r_{99\%} = a_{0,01} \cdot \sigma = 3,0349 \cdot \sqrt{6,903} = 7,97 mm.$$
 [IV.137]

permitiendo establecer, que tanto para el 95% como para el 99% la diferencia media entre los vectores es de 6,43 y 7,97 milímetros, respectivamente, lo que sitúa esta diferencia fuera de la precisión marcada para este tipo de trabajos, y por tanto, invalidando el método de observación y el instrumento para la resolución de auscultaciones geodésicas.

Invirtiendo nuevamente el problema se establece ahora para la precisión marcada en las auscultaciones el procedimiento que permite calcular la probabilidad de que el valor resultante sea inferior:

$$a \cdot \sigma = 1 \text{ milímetro} \Rightarrow a = \frac{1}{\sigma} = \frac{1}{\sqrt{6,903}} = 0,3806$$
 [IV.138]

$$\alpha = \exp\left(\frac{-a^2}{2}\right) = \exp\left(\frac{-0,3806^2}{2}\right) = 0,9301 \Rightarrow 6,99\%$$
 [IV.139]

demostrando que sólo existe un 6,99% de probabilidad de que la diferencia entre los vectores sea menor de 1 milímetro, lo que nuevamente vuelve a invalidar el método de observación con láser escáner para la ejecución de auscultaciones con precisión 1 milímetro.

Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.