$\ \, \odot$ 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Collaborative meta-analyses and mega-analyses of magnetic resonance imaging data increase our knowledge about brain disorders

Reply to: New meta-analyses and mega-analyses of MRI findings in schizophrenia: do they really increase our knowledge about the nature of the disease process?

Theo GM van Erp^{1*}, Esther Walton², Derrek P Hibar^{3,4}, Lianne Schmaal^{5,6,7}, Wenhao Jiang⁸, David C Glahn^{9,10}, Godfrey D Pearlson^{9,10}, Nailin Yao^{9,10}, Masaki Fukunaga¹¹, Ryota Hashimoto^{12,13}, Naohiro Okada¹⁴, Hidenaga Yamamori¹³, Vincent P Clark^{15,16}, Bryon A Mueller²⁰, Sonja MC de Zwarte²¹, Roel A Ophoff^{21,22}, Neeltje EM van Haren^{21,116}, Ole A Andreassen^{17,23}, Tiril P Gurholt^{17,18}, Oliver Gruber^{28,29}, Bernd Kraemer^{28,29}, Anja Richter^{28,29}, Vince D Calhoun^{15,16}, Benedicto Crespo-Facorro^{31,32}, Roberto Roiz-Santiañez^{31,32}, Diana Tordesillas-Gutiérrez^{31,32,68}, Carmel Loughland^{47,49,115}, Stanley Catts³⁶, Janice M Fullerton^{38,39}, Melissa J Green^{34,38}, Frans Henskens^{40,123,47}, Assen Jablensky⁴¹, Bryan J Mowry^{42,43}, Christos Pantelis^{37,45}, Yann Quidé^{34,38}, Ulrich Schall^{46,47}, Rodney J Scott^{33,47}, Murray J Cairns^{33,47}, Marc Seal⁴⁸, Paul A Tooney^{33,47,49}, Paul E Rasser⁴⁹, Gavin Cooper⁴⁹, Cynthia Shannon Weickert^{34,38}, Thomas W Weickert^{34,38}, Elliot Hong⁵², Peter Kochunov⁵², Raquel E Gur⁵³, Ruben C Gur⁵³, Judith M Ford^{57,58}, Fabio Macciardi¹, Daniel H Mathalon^{57,58}, Steven G Potkin¹, Adrian Preda¹, Fengmei Fan⁶¹, Stefan Ehrlich^{66,67}, Margaret D King¹⁶, Lieuwe De Haan⁷⁰, Dick J Veltman⁷², Francesca Assogna^{73,74}, Nerisa Banaj⁷³, Pietro de Rossi^{73,75,76}, Mariangela Iorio⁷³, Fabrizio Piras^{73,74}, Gianfranco Spalletta^{73,77}, Edith Pomarol-Clotet^{78,79}, Sinead Kelly^{80,81}, Simone Ciufolini⁸³, Joaquim Radua^{19,78,79,83,119}, Robin Murray⁸³, Tiago Reis Marques⁸³, Andrew Simmons⁸³, Stefan Borgwardt⁸⁵, Fabienne Schönborn-Harrisberger⁸⁵, Anita Riecher-Rössler⁸⁵,

Renata Smieskova⁸⁵, Kathryn I Alpert⁸⁶, Alessandro Bertolino⁸⁸, Aurora Bonvino⁸⁹, Annabella Di Giorgio⁸⁹, Emma Neilson⁹⁰, Andrew R Mayer¹⁶, Je-Yeon Yun^{93,94}, Dara M Cannon⁹⁵, Irina Lebedeva⁹⁶, Alexander S Tomyshev⁹⁶, Tolibjohn Akhadov⁹⁷, Vasily Kaleda⁹⁶, Helena Fatouros-Bergman⁹⁸, Lena Flyckt⁹⁸, Karolinska Schizophrenia Project (KaSP)⁹⁹, Pedro GP Rosa^{100,101}, Mauricio H Serpa^{100,101}, Marcus V Zanetti^{100,101}, Cyril Hoschl¹⁰², Antonin Skoch^{102,103}, Filip Spaniel¹⁰², David Tomecek^{102,120,121}, Andrew M McIntosh^{90,104}, Heather C Whalley⁹⁰, Christian Knöchel¹⁰⁶, Viola Oertel-Knöchel¹⁰⁶, Fleur M Howells¹⁰⁷, Dan J Stein^{107,108}, Henk S Temmingh¹⁰⁷, Anne Uhlmann^{107,109}, Carlos Lopez-Jaramillo¹¹⁰, Danai Dima^{111,112}, Joshua I Faskowitz³, Boris A Gutman¹²², Neda Jahanshad³, Paul M Thompson³, Jessica A Turner^{16,118}

¹Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA

²Medical Research Council Integrative Epidemiology Unit and Bristol Medical School, Population Health Sciences, University of Bristol, United Kingdom

³Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA

⁴Janssen Research & Development, San Diego, CA, USA

⁵Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia ⁶Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia ⁷Department of Psychiatry and Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands

⁸Department of Psychology, Georgia State University, Atlanta, GA, USA

- ⁹Department of Psychiatry, Yale University, New Haven, CT, USA
- ¹⁰Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
- ¹¹Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- ¹²Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
- ¹³Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
 ¹⁴Department of Neuropsychiatry, Graduate school of Medicine, The University of Tokyo,
 Bunkyo-ku, Tokyo, Japan
- ¹⁵University of New Mexico, Albuquerque, NM, USA
- ¹⁶Mind Research Network, Albuquerque, NM, USA
- ¹⁷Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- ¹⁸Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- ¹⁹Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
- ²⁰Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
- ²¹Department of Psychiatry and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- ²²University of California Los Angeles Center for Neurobehavioral Genetics, Los Angeles, CA,

USA

Australia

- ²³Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- ²⁸Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
- ²⁹Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry, Georg August University, Göttingen, Germany
- ³¹Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-Valdecilla Biomedical Research Institute, Marqués de Valdecilla Research Institute (IDIVAL), Santander, Spain
- ³²Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
 ³³School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW,
- ³⁴School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- ³⁶University of Queensland, Brisbane, QLD, Australia
- ³⁷Melbourne Neuropsychiatry Centre, University of Melbourne & Melbourne Health, Melbourne, VIC, Australia
- ³⁸Neuroscience Research Australia, Sydney, NSW, Australia
- ³⁹School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- ⁴⁰ Priority Research Center for Health Behaviour, The University of Newcastle, Newcastle,

NSW, Australia

- ⁴¹University of Western Australia, Perth, WA, Australia
- ⁴²Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- ⁴³Queensland Centre for Mental Health Research, The University of Queensland, Brisbane, QLD, Australia
- ⁴⁵Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
- ⁴⁶Priority Research Centres for Brain & Mental Health and Grow Up Well, The University of Newcastle, Newcastle, NSW, Australia
- ⁴⁷Hunter Medical Research Institute, Newcastle, NSW, Australia
- ⁴⁸Murdoch Children's Research Institute, Melbourne, VIC, Australia
- ⁴⁹Priority Research Centre for Brain & Mental Health, The University of Newcastle, Newcastle, NSW, Australia
- ⁵²Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
- ⁵³Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- ⁵⁷Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- ⁵⁸San Francisco VA Medical Center, San Francisco, CA, USA
- ⁶¹Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
- ⁶⁶Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany, Dresden, Germany
- ⁶⁷Massachusetts General Hospital/ Harvard Medical School, Athinoula A. Martinos Center for

Biomedical Imaging, Psychiatric Neuroimaging Research Program

⁶⁸Neuroimaging Unit.Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain

Dresden, Dresden, Germany

⁷⁰Department of psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

⁷²Department of Psychiatry, Vrije Universiteit Medical Center, Amsterdam, The Netherlands

⁷³Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy

⁷⁴Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome,

Italy

⁷⁵Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) Department,

Faculty of Medicine and Psychology, University "Sapienza" of Rome, Rome, Italy

⁷⁶Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy

⁷⁷Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Tx USA.

⁷⁸Fundación para la Investigación y Docencia Maria Angustias Giménez (FIDMAG) Germanes Hospitalaries Research Foundation, Barcelona, Spain

⁷⁹Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain

 $^{80}\mbox{Department}$ of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School,

Boston, MA, USA

- ⁸¹Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- ⁸³Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- ⁸⁵University of Basel Psychiatric Hospital, Basel, Switzerland
- ⁸⁶Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- ⁸⁸Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
- ⁸⁹ Istituto Di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- ⁹⁰Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- ⁹³Seoul National University Hospital, Seoul, Republic of Korea
- ⁹⁴Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- ⁹⁵Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, National Centre for Biomedical Engineering Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland.
- ⁹⁶Mental Health Research Center, Moscow, Russia
- ⁹⁷Children's Clinical and Research Institute of Emergency Surgery and Trauma, Moscow,

Russia

⁹⁸Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden

⁹⁹Members of the Karolinska Schizophrenia Project (KaSP) are listed at the end of the manuscript as collaborators

¹⁰⁰Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil

¹⁰¹Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil

¹⁰²National Institute of Mental Health, Klecany, Czech Republic

¹⁰³MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic

¹⁰⁴Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom

¹⁰⁶Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital
Frankfurt, Goethe University Frankfurt, Frankfurt, Germany

¹⁰⁷University of Cape Town Dept of Psychiatry, Groote Schuur Hospital (J2), Cape Town South Africa

¹⁰⁸Medical Research Council Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa

¹⁰⁹MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch

University, Cape Town, South Africa

¹¹⁰Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de

Antioquia, Medellin, Colombia

¹¹¹Department of Psychology, City, University of London, London, United Kingdom

¹¹²Department of Neuroimaging, IOPPN, King's College London, London, United Kingdom

¹¹⁵Hunter New England Local Health District, Newcastle, NSW, Australia

¹¹⁶Department of child and adolescent psychiatry/psychology, Erasmus Medical Centre,

Rotterdam, The Netherlands

¹¹⁸Imaging Genetics and Neuroinformatics Lab, Department of Psychology, Georgia State

University, Atlanta, GA, USA

¹¹⁹Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

¹²⁰Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic

¹²¹Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech

Republic

¹²²Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois

¹²³School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW,

Australia

Manuscript: 999 words

Number of tables: 0

Numer of figures: 0

9

Number of references: 28

*Corresponding Author:

Theo G.M. van Erp

Clinical Translational Neuroscience Laboratory

Department of Psychiatry and Human Behavior

School of Medicine

University of California Irvine

5251 California Avenue, Suite 240

Irvine, CA 92617

voice: (949) 824-3331

email: tvanerp@uci.edu

To the Editor:

In their letter to the editor, Vita and De Peri question whether new meta-analyses and mega-

analyses of magnetic resonance imaging (MRI) findings in schizophrenia increase our

knowledge about the nature of the disease process. In general, meta-analyses and mega-analyses

provide objective methods to critically summarize a body of evidence regarding a particular

question. As there had been no coordinated meta-analysis of cortical thickness and surface area

abnormalities in schizophrenia, it is our view that this new, collaboratively conducted meta-

analysis (1) contributes to our knowledge on this question and offers information on the cross-

10

site consistency of observed disease effects. Regional effects on cortical thickness and surface area can be difficult to summarize based on the traditional, literature-based, meta-analysis method, given the heterogeneity of analysis methods used in individual studies.

The Enhancing Neuro Imaging Genetics through Meta Analysis (ENIGMA) approach of collaboratively conducting meta-analyses offers additional benefits. First, ENIGMA's publicly available methods lend themselves well to independent replication of imaging findings (2, 3), which is crucial given the 'crisis of replication' in neuroscience (4–6). Second, use of the same quality assurance, image processing, and statistical analysis methods across samples within and across ENIGMA working groups, minimizes method-related heterogeneity and offers the potential for straightforward cross-disorder comparisons (7–11). Third, use of similar meta-analytic methods across worldwide samples has generated imaging and genetics findings with sample sizes beyond the scope of any individual laboratory or consortium studying a single disorder (12–15).

Vita and De Peri repeat one of the study weaknesses already listed in the discussion, namely that possible group differences in lateralization were not examined. This question is under investigation by the ENIGMA Laterality Working Group, which is currently examining healthy and disordered brain laterality (16, 17). ENIGMA coordinates publication efforts across working groups in order to avoid overlap. Moreover, numerous ENIGMA studies make important contributions showing between-disorder brain differences without addressing laterality.

Vita and De Peri also mention that the meta-analysis does not address possible differential longitudinal trajectories between individuals with schizophrenia and healthy volunteers, which is also correct as this cross-sectional meta-analysis did not aim to examine

longitudinal trajectories. There are ongoing efforts by the ENIGMA Plasticity Working Group to study genetic influences on individual differences in longitudinal brain changes (18). We agree that further investigation of questions regarding longitudinal trajectories of brain changes across the lifespan, especially prior to illness onset, e.g., in adolescents at clinical high risk for psychosis, as well as after a first psychotic episode, will provide valuable information with regard to schizophrenia pathogenesis and several such analyses are planned or already ongoing.

Vita and De Peri further state that the meta-analysis does not add relevant information about the effects of antipsychotic medication on brain morphology but qualify that the reported findings seem compatible with findings from longitudinal MRI studies that suggest different effects of first versus second-generation antipsychotic treatments on cortical gray matter changes. We point out that prior meta-analyses did not dissociate effects of antipsychotic treatments on cortical surface area versus cortical thickness, whose product constitutes gray matter volume, and that the consistency of findings is important in the light of reports on non-replication in neuroscience.

The comment that "the supposed huge statistical power of mega-analyses of MRI findings in schizophrenia may be undermined by the large variation of data obtained by different centers in disparate conditions" is incorrect. First, Van Erp et al. (2018) is a meta-analysis and not a mega-analysis, which like any other meta-analysis, summarizes within-sample effects. In fact, joint meta-analyses tend to reduce method-related variation when compared to literature-based meta-analyses because similar analysis methods are applied across samples. Second, multiple imaging genetics meta-analyses replicate common genetic variants associated with measures of brain structure and find a greater number of common variants associated with these measures when additional independent samples are added (19–21). These findings suggest

increased power as brain imaging data from independent samples are added. Finally, the suggestion that mega-analyses of MRI data are undermined by between site variation is not borne out by the facts. Research from a decade ago showed the feasibility and the additional power gained by pooling legacy structural imaging data (22). More recent studies show that meta-analyses and mega-analyses of structural imaging data, whether from prospective multiscanner or independent samples, yield significant and very similar findings (23–25). Each analysis method has strengths, weaknesses, and pitfalls. Hence researchers must consider whether to conduct a meta-analysis, a mega-analysis, or both, to answer a particular question.

The suggestion that meta-analyses and mega-analyses are not hypothesis-driven approaches is also incorrect. All published ENIGMA Schizophrenia Working Group meta-analyses list their hypotheses at the end of their introductions (1, 2, 26–28). Of note, nowhere in the manuscript do we state that "meta-analyses provide better evidence than large, well designed, hypothesis-driven, high-quality individual trials". On the contrary, all findings from meta-analyses depend on the quality of the studies on which they are based. Even so, meta-analyses can offer additional safeguards against false positive findings generated by individual studies with small or highly heterogeneous samples by taking into account each sample's error terms. We do agree that missing data for known or supposed significant moderators can be an issue. However, this is a criticism of all analyses of scientific data, rather than of our study specifically.

Finally, we respectfully disagree with the statement by Vita and De Peri "that the time has come for applying really new approaches to the study of the nature of the disease process underlying schizophrenia, rather than promoting redundant research on mega-databases which may even dilute or confuse established knowledge". We believe there is value both in the relatively new approach of large-scale collaborative research on costly, already collected data, as

well as applying other innovative approaches and experimentation in adequately powered samples. We believe that most scientists who contribute to ENIGMA or other consortia as well as the funding agencies who promote large-scale data sharing and analysis recognize that both approaches make valuable contributions to the field.

ACKNOWLEDGMENTS AND DISCLOSURES

The ENIGMA project is in part supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (Grant No. U54EB020403). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Author contributions are as follows: TGMvE wrote the first draft of the manuscript and all authors contributed edits and approved the contents of the manuscript. TGMvE has had a research contract with Otsuka Pharmaceutical. AP has served as a consultant for Boehringer Ingelheim. The remaining authors report no biomedical financial interests or potential conflicts of interest. Members of the Karolinska Schizophrenia Project (KaSP) include: Lars Farde¹, Lena Flyckt¹, Göran Engberg², Sophie Erhardt², Helena Fatouros-Bergman¹, Simon Cervenka¹, Lilly Schwieler², Fredrik Piehl³, Ingrid Agartz^{1,4,5}, Karin Collste¹, Pauliina Victorsson¹, Anna Malmqvist², Mikael Hedberg², Funda Orhan². ¹Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm County Council, Stockholm, Sweden; ²Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; ³Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; ⁴NORMENT, KG Jebsen Centre for Psychosis Research,

Division of Mental Health and Addiction, University of Oslo, Oslo, Norway; ⁵Department of Psychiatry Research, Diakonhjemmet Hospital, Oslo, Norway.

REFERENCES

- van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, et al. (2018): Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics through Meta Analysis (ENIGMA) Consortium. Biol Psychiatry. doi: 10.1016/j.biopsych.2018.04.023.
- van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al.
 (2016): Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and
 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 21: 585.
- 3. Okada N, Fukunaga M, Yamashita F, Koshiyama D, Yamamori H, Ohi K, *et al.* (2016):

 Abnormal asymmetries in subcortical brain volume in schizophrenia. *Mol Psychiatry*. 21: 1460–1466.
- 4. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò MR (2013):

 Power failure: why small sample size undermines the reliability of neuroscience. *Nat Rev Neurosci*. 14: 365–376.
- Ioannidis JPA (2017): Acknowledging and Overcoming Nonreproducibility in Basic and Preclinical Research. *JAMA*. 317: 1019–1020.
- 6. Dumas-Mallet E, Button KS, Boraud T, Gonon F, Munafò MR (2017): Low statistical power in biomedical science: a review of three human research domains. *R Soc Open Sci.* 4: 160254.
- 7. Hibar DP, Westlye LT, van Erp TGM, Rasmussen J, Leonardo CD, Faskowitz J, et al. (2016):

- Subcortical volumetric abnormalities in bipolar disorder. *Mol Psychiatry*. 21: 1710–1716.
- 8. Schmaal L, Veltman DJ, van Erp TGM, Sämann PG, Frodl T, Jahanshad N, *et al.* (2016): Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. *Mol Psychiatry*. 21: 806–812.
- 9. Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, *et al.* (2018):

 Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the

 ENIGMA Bipolar Disorder Working Group. *Mol Psychiatry*. 23: 932–942.
- 10. Schmaal L, Hibar DP, Sämann PG, Hall GB, Baune BT, Jahanshad N, et al. (2017): Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry. 22: 900–909.
- 11. Sun D, Ching CRK, Lin A, Forsyth JK, Kushan L, Vajdi A, et al. (2018): Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: Convergence with idiopathic psychosis and effects of deletion size. Mol Psychiatry. doi: 10.1038/s41380-018-0078-5.
- 12. Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, *et al.* (2012): Identification of common variants associated with human hippocampal and intracranial volumes. *Nat Genet.* 44: 552–561.
- 13. Bis JC, DeCarli C, Smith AV, van der Lijn F, Crivello F, Fornage M, *et al.* (2012): Common variants at 12q14 and 12q24 are associated with hippocampal volume. *Nat Genet*. 44: 545–551.
- Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivières S, Jahanshad N, et al.
 (2015): Common genetic variants influence human subcortical brain structures. *Nature*.
 520: 224–229.

- 15. Grasby KL, Jahanshad N, Painter JN, Bralten J, Hibar DP, Lind PA, *et al.* (2018): The genetic architecture of the human cerebral cortex. *BioRxiv*. doi: 10.1101/399402.
- 16. Guadalupe T, Mathias SR, vanErp TGM, Whelan CD, Zwiers MP, Abe Y, et al. (2017): Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging Behav. 11: 1497–1514.
- 17. Kong X-Z, Mathias SR, Guadalupe T, ENIGMA Laterality Working Group, Glahn DC, Franke B, *et al.* (2018): Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. *Proc Natl Acad Sci U S A*. 115: E5154–E5163.
- 18. Brouwer RM, Panizzon MS, Glahn DC, Hibar DP, Hua X, Jahanshad N, et al. (2017): Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group. Hum Brain Mapp. 38: 4444–4458.
- 19. Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, *et al.* (2012): Identification of common variants associated with human hippocampal and intracranial volumes. *Nat Genet*. 44: 552–561.
- 20. Bis JC, DeCarli C, Smith AV, van der Lijn F, Crivello F, Fornage M, *et al.* (2012): Common variants at 12q14 and 12q24 are associated with hippocampal volume. *Nat Genet*. 44: 545–551.
- Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivières S, Jahanshad N, et al.
 (2015): Common genetic variants influence human subcortical brain structures. *Nature*.
 520: 224–229.
- 22. Fennema-Notestine C, Gamst AC, Quinn BT, Pacheco J, Jernigan TL, Thal L, *et al.* (2007): Feasibility of multi-site clinical structural neuroimaging studies of aging using legacy data.

- *Neuroinformatics*. 5: 235–245.
- 23. Boedhoe PSW, Schmaal L, Abe Y, Ameis SH, Arnold PD, Batistuzzo MC, *et al.* (2017): Distinct Subcortical Volume Alterations in Pediatric and Adult OCD: A Worldwide Meta-and Mega-Analysis. *Am J Psychiatry*. 174: 60–69.
- 24. van Erp TGM, Greve DN, Rasmussen J, Turner J, Calhoun VD, Young S, *et al.* (2014): A multi-scanner study of subcortical brain volume abnormalities in schizophrenia. *Psychiatry Res.* 222: 10–16.
- 25. Segall JM, Turner JA, van Erp TGM, White T, Bockholt HJ, Gollub RL, et al. (2009):
 Voxel-based morphometric multisite collaborative study on schizophrenia. Schizophr Bull.
 35: 82–95.
- 26. Kelly S, Jahanshad N, Zalesky A, Kochunov P, Agartz I, Alloza C, *et al.* (2018): Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. *Mol Psychiatry*. 23: 1261–1269.
- 27. Walton E, Hibar DP, van Erp TGM, Potkin SG, Roiz-Santiañez R, Crespo-Facorro B, *et al.* (2017): Positive symptoms associate with cortical thinning in the superior temporal gyrus via the ENIGMA Schizophrenia consortium. *Acta Psychiatr Scand.* 135: 439–447.
- 28. Walton E, Hibar DP, van Erp TGM, Potkin SG, Roiz-Santiañez R, Crespo-Facorro B, *et al.* (2018): Prefrontal cortical thinning links to negative symptoms in schizophrenia via the ENIGMA consortium. *Psychol Med.* 48: 82–94.