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Highlights 11 

• The method integrates laboratory analyses, numerical modelling and machine 12 

learning. 13 

• ANN configuration for predicting E. coli concentration in estuaries is 14 

determined. 15 

• ANNs are viable emulators of process-based models driven by highly variable 16 

forcing. 17 

• The longer forecasting, the greater the reduction in computational time using 18 

ANN. 19 

• Real-time management of bathing water quality is enabled by using ANNs. 20 

 21 

Abstract 22 

This study aims to provide a method for developing artificial neural networks in 23 

estuaries as emulators of process-based models to analyse bathing water quality and its 24 

variability over time and space. The methodology forecasts the concentration of faecal 25 
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indicator organisms, integrating the accuracy and reliability of field measurements, the 26 

spatial and temporal resolution of process-based modelling, and the decrease in 27 

computational costs by artificial neural networks whilst preserving the accuracy of 28 

results. Thus, the overall approach integrates a coupled hydrodynamic-bacteriological 29 

model previously calibrated with field data at the bathing sites into a low-order emulator 30 

by using artificial neural networks, which are trained by the process-based model 31 

outputs. The application of the method to the Eo Estuary, located on the northwestern 32 

coast of Spain, demonstrated that artificial neural networks are viable surrogates of 33 

highly nonlinear process-based models and highly variable forcings. The results showed 34 

that the process-based model and the neural networks conveniently reproduced the 35 

measurements of Escherichia coli (E. coli) concentrations, indicating a slightly better fit 36 

for the process-based model (R2=0.87) than for the neural networks (R2=0.83). This 37 

application also highlighted that during the model setup of both predictive tools, the 38 

computational time of the process-based approach was 0.78 times lower than that of the 39 

artificial neural networks (ANNs) approach due to the additional time spent on ANN 40 

development. Conversely, the computational costs of forecasting are considerably 41 

reduced by the neural networks compared with the process-based model, with a 42 

decrease in hours of 25, 600, 3900, and 31633 times for forecasting 1 h 1 day, 1 month 43 

and 1 bathing season, respectively. Therefore, the longer the forecasting period, the 44 

greater the reduction in computational time by artificial neural networks. 45 

 46 

Keywords 47 

Bathing water quality; Escherichia coli (E. coli); Hydrodynamic-bacteriological model; 48 

Machine learning; Eo Estuary 49 
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1. Introduction 51 

Estuarine water quality is strongly impacted by anthropogenic activities (García et al., 52 

2010; De los Ríos et al., 2016; Bárcena et al. 2017a). For instance, people are very 53 

concerned about bathing water quality since estuarine waters are used not only for 54 

recreational activities but also for others including transport and food production and as 55 

a repository for sewage and industrial waste (Bárcena et al. 2017b). Therefore, faecal 56 

pollution is one of the most relevant issues in the evaluation and management of 57 

estuarine water quality since it may cause socio-economic and environmental losses 58 

such as infections and diseases, beach degradation, or closures of shellfish-growing 59 

areas (de Brauwere et al., 2014). 60 

In Europe, Directive (2006/7/EC) sets the quality of bathing waters based on two faecal 61 

indicator organisms (FIOs): intestinal Enterococci (Enterococci) and Escherichia coli 62 

(E. coli). The limit values of E. coli for transitional waters are 250 E. coli/100 ml 63 

(excellent quality) and 500 E. coli/100 ml (good quality) based upon a 95th percentile 64 

evaluation and 500 E. coli/100 ml (sufficient quality) based upon a 90th percentile 65 

evaluation. Although laboratory analyses are the most accurate and reliable methods for 66 

evaluating water quality, they require between 24 and 48 h to provide results (Rompré 67 

et al., 2002); as a result, the public may be exposed to elevated FIO concentrations 68 

during the time required to produce an analytical result. Furthermore, these samples are 69 

usually collected either 8 h to 13 h, neglecting the influence of diurnal variation in FIO 70 

concentration (Boehm et al., 2002; Thoe et al., 2014). Thus, environmental managers 71 

are not able to evaluate faecal pollution variability over time. Although these issues 72 

could be overcome by increasing the temporal resolution and window of sampling, the 73 

time-consuming laboratory methods will continue to be a bottleneck for the rapid 74 

detection of critical conditions such as pollution events. 75 
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Therefore, real-time methods have been developed to monitor E. coli concentrations 76 

based on flow cytometry (Besmer et al., 2014), ATP assays (Vang et al., 2014), online 77 

optical sensors (Højris et al., 2016), or quantitative PCR (Walker et al., 2017). 78 

However, the current high costs associated with these methods are a drawback to their 79 

implementation at bathing sites for most health administrations. 80 

Process-based models have also been used to evaluate the spatial and temporal 81 

evolution of FIOs, considering the diurnal variation in FIO concentration (López et al., 82 

2013; Bedri et al., 2014; Wang et al., 2016; Huang et al., 2017). Notwithstanding the 83 

increase in computer power, process-based model complexity is also growing at the 84 

same rate, if not faster (Washington et al., 2009), suggesting that computational 85 

requirements will be an impediment to applications where a quick answer is required, 86 

e.g., the nowcasting of FIO concentrations for managing temporal closures of bathing 87 

sites. 88 

Accordingly, different techniques have been proposed in the last few years to overcome 89 

the large computational burden associated with process-based models, called dynamic 90 

emulation modelling (Castelletti et al., 2012). An emulator is a computationally 91 

efficient low-order model identified from the original large model and then used to 92 

replace it for computationally intensive applications. In the field of bathing water 93 

quality monitoring, data-based models such as ANNs may efficiently detect and analyse 94 

FIO concentrations and, hence, serve as surrogates for computationally demanding 95 

water quality models (Tufail et al., 2008; Shaw et al. 2017). Thus, ANNs may help 96 

reduce the computational costs of bathing water quality management, preserving the 97 

accuracy of results when large datasets are available for model fitting (van der Merwe et 98 

al., 2007; Maier et al., 2010; Shaw et al. 2017). ANNs have been used for nowcasting 99 

and forecasting of FIO concentrations in rivers (Chandramouli et al., 2007; Tufail et al., 100 
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2008; Motamarri and Boccelli, 2012), reservoirs (Mas and Ahlfeld, 2007), coastal areas 101 

(He and He, 2008; Thoe et al., 2012; Thoe et al., 2014; Zhang et al., 2015), and surface 102 

runoff (Kim et al., 2008; Kazemi Yazdi and Scholz, 2010). However, their application 103 

as emulators of process-based models in estuaries has not been widely investigated. 104 

Within this context, the main objective of this study is to develop a method to compute 105 

the spatial and temporal evolution of FIO concentrations in estuaries using ANNs 106 

trained by a calibrated hydrodynamic-bacteriological model. This method integrates the 107 

benefits of the three approaches used to calculate E. coli concentrations: (1) the 108 

accuracy and reliability of field measurements; (2) the spatial and temporal resolution of 109 

numerical modelling; and (3) the decrease in computational costs caused by ANNs 110 

accompanied by preserved accuracy of the results. 111 

 112 

2. Material and methods 113 

2.1. Study area and available data 114 

The Eo Estuary (see Fig. 1), located on the northwestern coast of Spain (43º28’33’N; 115 

7º00’03’W), is a shallow mesotidal system with a semidiurnal tidal range varying from 116 

1.2 m to 4.8 m (de Paz et al., 2008). This estuary has been historically divided into two 117 

regions. The first region, extending from the estuarine mouth to Vegadeo, presents an 118 

N-S alignment over a length of 9.9 km and an average width of 800 m (Flor et al., 119 

1993). The second region, extending from Vegadeo to San Tirso de Abres (FG1), 120 

presents NNE-SSW alignment over a length of 4.5 km and a width varying from 95 to 121 

571 m (Flor et al., 1993). The Eo River Basin occupies a catchment area of 819 km2 122 

with a length of 9 km. The freshwater inflow under natural conditions varies from 123 

approximately 0.6 to 425 m3/s, with an annual average of 19.61 m3/s and ranging from 124 

7.93 m3/s in summer to 39.67 m3/s in winter (Piedracoba et al., 2005). 125 
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 126 

Fig. 1. Map of the Eo River Basin and the Eo Estuary, indicating the locations of the 127 

tidal gauges (TG1-TG4), monitoring points (MP1-MP3), flow gauge (FG1), 128 

meteorological station (MS1), bathing water quality control points (BP1-BP4), and 129 

faecal discharges (FD1-FD3), used in the setup of the predictive tools. Bathymetry is 130 
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also presented with a zoomed-in image of the outer and inner areas of the Eo Estuary 131 

(UTM projection ED50 30N). 132 

 133 

At the study site, the water-related anthropic uses are recreational (e.g., swimming, 134 

sailing, and sun bathing) and economical (e.g., fishing, aquaculture, and shellfishing), 135 

and the bathing season occurs from May 1st to September 30th. Four beaches are 136 

monitored to classify their bathing quality status as regulated by Directive (2006/7/EC): 137 

Rocas Blancas (BP1), Arnao (BP2), O Cargadeiro (BP3), and Os Bloques (BP4). Due to 138 

the villages settled around the Eo Estuary, three sources of faecal pollution were 139 

discharged into the estuarine waters during the bathing seasons of 2013, 2014, and 2015 140 

(see Fig. 1): (1) a wastewater treatment plant with biological treatment, collecting 141 

sewage from Vegadeo (FD1); (2) a submarine outfall without water treatment, 142 

collecting sewage from Castropol and Figueras (FD2); and (3) a breach in the 143 

submarine outfall in place since 2010 (FD3), constituting 24% of the FD2 flow. Dry 144 

weather conditions prevail during bathing seasons since most of the rain is received 145 

between October and April (del Río et al., 2011). Thus, storm runoff is mainly diverted 146 

to FD1 and FD2 during the bathing seasons. The other potential flowing, land-based, 147 

FIO sources (storm water discharges) are not considered in the present study as they 148 

have no flow or very low flow during bathing seasons and are not believed to affect the 149 

estuarine bathing water quality. 150 

Regarding the available data, we retrieved information from five sources: (1) a field 151 

survey (FLTQ, 1990); (2) the Automatic Information System of the Cantabrian 152 

Hydrographic Confederation (SAI), available online at http://www.chcantabrico.es; (3) 153 

the Copernicus Marine Environment Monitoring Service (CMEMS), available online at 154 

http://marine.copernicus.eu; (4) the Meteorological Observation and Weather Forecast 155 
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Service of Galicia (MeteoGalicia), available online at www.meteogalicia.es; and (5) the 156 

Spanish Bathing Water Information System (NAYADE), available online at 157 

https://nayadeciudadano.msssi.es. 158 

The field survey (FLTQ, 1990) took place from the 21st to the 23rd of June 1990 and 159 

included the following measurements (see Fig. 1): (1) tidal water levels at 4 points (TG1 160 

to TG4), measured every 5 min with a tidal pressure gauge (Aanderaa WLR-5); (2) river 161 

flows, temperatures, and salinities at 1 point (FG1), measured every 2 h with an 162 

electromagnetic flow meter (Flowmate model 2000) and a limnimetric scale; (3) current 163 

speeds and directions at the bottom at 3 points (MP1 to MP3), measured every 5 min 164 

with an automatic current meter (Aanderaa RCM45); and (4) salinities and temperatures 165 

at the bottom at 3 points (MP1 to MP3), measured every 5 min with a CTD device. 166 

From the other four sources, we retrieved data from 2013 to 2015, including (1) the 167 

daily time series of flow, salinity, and temperature at the river boundary, measured by 168 

FG1; (2) the hourly time series of salinity and temperature at the sea boundaries, 169 

modelled by the operational Iberian Biscay Irish (IBI) system of the CMEMS (Sotillo et 170 

al., 2015); (3) the hourly time series of solar radiation at the surface, recorded by MS1; 171 

and (4) the E. coli concentrations at the 4 monitoring stations, measured by the 172 

NAYADE (see Fig. 1): BP1 - 25 data, BP2 - 25 data, BP3 - 26 data, and BP4 - 24 data. 173 

The method for the enumeration of E. coli was ISO 9308-1. This method is based on 174 

membrane filtration, subsequent culture on a chromogenic coliform agar medium, and 175 

calculation of the number of target organisms in the sample. 176 

 177 

2.2. Predictive tools 178 

2.2.1. Process-based model 179 
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Our modelling approach was implemented in the Delft3D open-source modelling 180 

framework (http://oss.deltares.nl/web/delft3d). First, estuarine hydrodynamics were 181 

derived from the hydrodynamic module Delft3D-FLOW (Lesser et al., 2004). Second, 182 

E. coli concentrations were computed by means of the transport module D-Water 183 

Quality (Postma et al., 2003). This coupling has been applied in other studies, 184 

confirming its ability to simulate hydrodynamics, transport and mixing in complex 185 

aquatic systems (Los et al., 2014; Wang et al., 2016; Roberts and Villegas, 2017). 186 

In this work, the formulation proposed by Mancini (1978) was adopted to simulate the 187 

bacterial mortality, assuming the following conditions: (1) E. coli was only present in 188 

the water column, without accumulating in or resuspending from sediment; (2) E. coli 189 

did not grow in the water column; (3) E. coli mortality was included as a temperature-190 

dependent process, formulated based on first-order kinetics; and (4) the E. coli mortality 191 

rate was enhanced by salinity and UV radiation in an additive way. Accordingly, 192 

mortality was calculated with Eq. (1) to Eq. (5). 193 

������� = 	
 · ��
      (1) 194 

	
 = �	� + 	��� · 	�
������ + 	�    (2) 195 

	�� = ��� · ���      (3) 196 

	� = ��� · �� · ��� · ��
 !��"#$%

&'
    (4) 197 

( = !.*

+,
       (5) 198 

where ������� is the concentration of E. coli over time (E. coli/m3
·days); 	
 is the first-199 

order mortality rate (days-1); ��
 is the E. coli concentration (E. coli/m3); 	� is the basic 200 

mortality rate (days-1); 	�� is the chloride-dependent mortality rate (days-1); - is the 201 

temperature (ºC); 	� is the temperature-dependent mortality rate (-); 	� is the radiation-202 

dependent mortality rate (days-1); ��� is the chloride-dependent mortality constant 203 
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(m3/g·days); ��� is the chloride concentration (g/m3); ��� is the radiation-dependent 204 

mortality constant (m2/W·days); �� is the day-length (days); ��� is the fraction of UV 205 

light in visible light (-); �� is the daily solar radiation at the water surface (W/m2); ( is 206 

the extinction of UV radiation (m-1); . is the water depth (m); and /� is the Secchi disk 207 

depth (m).  208 

2.2.2. Artificial neural networks 209 

The basic structure of ANNs is characterized by their architecture, activation functions, 210 

and training algorithm. The ANN architecture consists of three layers (see Fig. 2): one 211 

input layer, one hidden layer that is usually composed of one layer but can be built up 212 

with more sublayers (deep learning), and one output layer (Khalil et al., 2011). Every 213 

layer has several nodes that are responsible for transmitting the information from one 214 

layer to the next layer, although neither lateral connection within any layer nor feedback 215 

connection is possible (arrows in Fig. 2). 216 

The functioning of the ANN is as follows: Each node in the input layer supplies 217 

information to every node in the hidden layer through the “synapses”. A summation of 218 

the contribution of each node in the input layer is performed in each node of the hidden 219 

layer by applying an activation function to transform the obtained value. Then, every 220 

value of every node in the hidden layer is multiplied by its weight and transmitted to the 221 

output node, where another summation is performed by applying a new activation 222 

function to obtain the final output (Wu et al., 2014). 223 

ANNs need to be trained to assign weights accurately and, consequently, minimize 224 

errors in the output results (Motamarri and Bocelli, 2012). This task depends on the 225 

training method and the ratio of the training subset, validation subset, and test subset to 226 

the total data (-: 1: -): the training subset is used to estimate unknown connection 227 

weights between neurons, the validation subset is used to assess the generalization 228 
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ability of the trained network, and the testing subset is used to decide whether early 229 

termination is needed to avoid overfitting (Maier et al., 2010). 230 

 231 

Fig. 2. Schematic view of a feedforward neural network with five nodes in the input 232 

layer, three nodes in the hidden layer and one node in the output layer. Synapses are 233 

oriented from left to right. 234 

 235 

2.3. Performance metrics of predictive tools 236 

2.3.1. Evaluation of predictive tools 237 

The predictive tools’ performance was evaluated by three error measurements. First, 238 

bias was calculated as the difference between the modelled results and the observed 239 

values on a given date. Second, the coefficient of determination (R2) was determined as 240 

expressed in Eq. (6). 241 

2� =
∑ �+4��54�67

489
∑ ��4��54�67

489
     (6) 242 
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where 2;  is the <-field data of the measurements, /; is the <-model data of the 243 

simulations (process-based or ANN), 25 is the average of the measurements, and < is the 244 

<=> value from 1 to N measurements (laboratory analyses). 245 

Third, the error between the series was calculated using the model efficiency (CE), 246 

developed by Nash and Sutcliffe (1970), as displayed in Eq. (7). 247 

�? = 1 −
∑ ��4�+4�67

B89
∑ ��4��5�67

B89
      (7) 248 

The CE ranges between -∞ and 1.0 (1.0 inclusive), with CE=1 being the optimal value. 249 

Values between 0.0 and 1.0 are generally viewed as acceptable levels of performance, 250 

whereas values <0.0 indicate that the mean observed value is a better predictor than the 251 

simulated value, which indicates unacceptable performance. Depending on the CE 252 

value, the comparison is considered acceptable (poor) if CE<0.4, acceptable (-) if 253 

0.4≤CE<0.6, acceptable (convenient or good) if 0.6≤CE<0.8, and acceptable (excellent) 254 

if CE≥0.8. 255 

2.3.2. Accuracy of predictive tools for bathing water quality management 256 

The contingency table (Table 1a) and its error metrics (Table 1b) were employed to 257 

assess the accuracy of predictive tools in predicting the compliance with and/or 258 

exceedance of the FIO concentrations at specific thresholds (Manzato, 2007; Bennett et 259 

al., 2013; Bedri et al. 2016). Contingency tables establish the number of occurrences 260 

where predictive tools have generated correct predictions (see Table 1a): (1) the 261 

exceedance of specific values (hits); (2) the occurrences of correct negatives; (3) the 262 

number of alarms missed by the model; and (4) the number of false alarms. Therefore, 263 

an ideal model would have data in only the hits and correct negatives categories. Table 264 

1b lists the error metrics of the contingency table used in the current study along with 265 

their limits and ideal values. 266 
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 267 

Table 1. (a): Contingency table to assess the accuracy of predictive tools for the 268 

prediction of faecal indicator organism (FIO) concentrations. (b): Error metrics of the 269 

contingency table (Source: Manzato, 2007; Bennett et al., 2013; Bedri et al. 2016). 270 

 271 

2.4. Methodology to develop artificial neural networks for the analysis of bathing 272 

water quality in estuaries 273 

The overall approach, illustrated in Fig. 3, integrates a coupled hydrodynamic-274 

bacteriological model previously calibrated with field data at the bathing sites into a 275 

real-time framework by using ANNs trained on the numerical model outputs (targets). 276 
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 277 

Fig. 3. Overall methodological approach. 278 

 279 

Since critical decisions must be made when developing an ANN, we use a five-step 280 

method (see Fig. 4). 281 

 282 

Fig. 4. Schematic view of the proposed methodology to develop artificial neural 283 

networks to analyse bathing water quality criteria in estuaries. 284 

 285 

2.4.1. Setting the ANN architecture 286 
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Since the ANN output is the evolution of FIO concentration at one bathing site, the 287 

number of nodes in the output (CD) is one. 288 

Bearing in mind that ANN models will be emulators of process-based models, ANN 289 

inputs should be process-based model inputs, i.e., boundary conditions, sinks and 290 

sources. Thus, the input variables are hydrodynamic forcings, water constituents at open 291 

boundaries, atmospheric forcings, and faecal discharges, and the number of nodes in the 292 

input (C;) should therefore be determined from this preliminary selection based on site-293 

specific conditions. 294 

The number of nodes in the hidden layer (C>) should be less than twice C; (Motamarri 295 

and Bocelli, 2012); we propose Eq. (8) to set C> . 296 

0.5 ∙ C; − 2 ≤ C> ≤ 2 ∙ C; + 2    (8) 297 

2.4.2. Selecting the ANN transfer/activation functions 298 

Three different activation functions are widely used (Jiang et al., 2013) for the transfer 299 

between the input and hidden layer (�>) and the hidden and output layers (�D): (1) the 300 

linear transfer function (Eq. (9)); (2) the log-sigmoid transfer function (Eq. (10)); and 301 

(3) the tan-sigmoid transfer function (Eq. (11)). Generally, sigmoid functions are used 302 

for pattern recognition, whereas linear functions are used for fitting. 303 

��J� = J      (9) 304 

K�J� = !

!L�"M      (10) 305 

ℎ�J� = �

!L�"6M − 1     (11) 306 

2.4.3. Determining the ANN training method 307 

Several methods are used for training ANNs, with the Levenberg-Marquardt method 308 

(Hagan and Menhaj, 1994) and the backpropagation algorithm (Rumelhart et al., 1986) 309 

being the most common. Additionally, the initial weights are generated randomly to 310 

obtain values close to zero, and the -: 1: - ratio should be adjusted by trial and error 311 
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(Wu et al., 2014). Lastly, the number of training epochs (C�) is decided based on trials 312 

by observing the conditions under which ANN training and testing results are both 313 

independent of the number of iterations (Tufail et al., 2008). 314 

2.4.4. Defining the final ANN 315 

The key parameters are combined to develop several ANN models (C>, �>, �D, training 316 

methods, and -: 1: -). Next, these models are trained, and the ANN model displaying 317 

the lowest error metric between outputs and targets (final ANN) is chosen (Zou et al., 318 

2007). 319 

2.4.5. Validating the ANN accuracy to classify bathing sites 320 

The final ANN model is applied to forecast FIO concentrations at the bathing site 321 

during bathing seasons. Next, the ANN results are classified according to the standard 322 

values set in Directive (2006/7/EC) and compared with the official reported 323 

classification. 324 

 325 

2.5. Setup of predictive tools in the Eo Estuary 326 

2.5.1. Setup of the process-based model 327 

The Eo Estuary was represented horizontally using a 3D rectangular mesh grid 328 

composed of 332x640 grid cells with a horizontal resolution of 25x25 m2, 3 vertical σ-329 

layers equally spaced along the water column, and the bathymetry displayed in Fig. 1. 330 

The hydrodynamic calibration was performed for the period between the 21st and 24th of 331 

June 1990, including a spin-up period of 30 days to allow the hydrodynamic and 332 

thermohaline variables to interact and adjust themselves. Once the hydrodynamic 333 

module was calibrated, the hydrodynamics of the 2013, 2014, and 2015 bathing seasons 334 

driven by the tidal action and river flows (see Fig. S1 in the supplementary materials) 335 

were simulated as required inputs for the water quality module calibration. For a more 336 
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detailed description of the hydrodynamic module setup, readers are referred to the 337 

supplementary materials. 338 

Next, we implement the transport module in the same grid, the same time step (6 s), the 339 

same four open boundaries (see Fig. 1), and the same spin-up period of 30 days used in 340 

the hydrodynamic module setup (see the supplementary materials). The initial condition 341 

was 0 E. coli/100 ml in the whole model domain. Based on the available data at the sea 342 

and river boundaries, the mean concentration of these measurements was used as a 343 

constant boundary condition, with 0 and 850 E. coli/100 ml at the sea and river 344 

boundaries, respectively. Table 2 lists the parameters used in the calculation of the E. 345 

coli transport and mixing in the Eo Estuary. 346 

Constant Value Units Source 

�', �O  Time series m2/s Hydrodynamic module 

- Time series ºC Hydrodynamic module 

��� Time series g/m3 Hydrodynamic module 

�� Time series W/m2 Meteorological station (MS1) 

	� 0.8 1/days Chapra (1997) 

�� 1 days (*) 

��� 0.12 - Diffey (2002) 

( 0.35 1/m FLTQ (1990); Eq. (5) 

	�  1.07 - This study (calibration) 

��� 0.086 m2/W·days This study (calibration) 

���  2·10-4 m3/g·days This study (calibration) 

(*) Day-night variations are considered within the irradiation (��). 347 
Table 2. Model parameters used in the calculation of E. coli transport and mixing. 348 

 349 

Based on the data from Metcalf and Eddy, Inc. (2003) for a single day, the hourly flow 350 

of three faecal discharges (FD1-FD3) was introduced (see Fig. S2 in the supplementary 351 

materials). The mean discharge flow (in m3/s) was 0.00347, 0.00524 and 0.00165 for 352 

FD1, FD2 and FD3, respectively. The constant discharge concentration (in E. coli/100 353 

ml) was 106, 108 and 108 for FD1, FD2 and FD3, respectively. Finally, a constant 354 
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salinity and temperature of 0 psu and 17 ºC, respectively, were specified for the three 355 

discharges. 356 

 357 

2.5.2. Setup of the artificial neural network 358 

ANNs were developed for BP1, BP2, BP3, and BP4. First, the output variable was the 359 

E. coli concentration at every bathing site; thus, CD was set to one for every ANN. C; 360 

was fixed by the process-based model inputs, with a value of 9 in the Eo Estuary: water 361 

level, salinity and temperature at the sea boundary; flow and temperature at the river 362 

boundary; solar radiation; and the flow of the three faecal discharges (FD1-FD3). Note 363 

that the model inputs obtained with constant values were not included as input variables 364 

in the ANN models, i.e., salinity at the river boundary (see the supplementary materials) 365 

and salinity, temperature and E. coli concentrations of faecal discharges (see subsection 366 

2.5.1). Following Eq. (8), 3, 7, 11, 15, or 19 C> were selected (5 node cases). Second, 367 

we combined the 3 activation functions, obtaining 9 activation cases. Third, 9 training 368 

methods were tested: BFGS quasi-Newton backpropagation, resilient backpropagation, 369 

scaled conjugate gradient backpropagation, conjugate gradient backpropagation with 370 

Powell-Beale restarts, Levenberg-Marquardt backpropagation, conjugate gradient 371 

backpropagation with Fletcher-Reeves updates, conjugate gradient backpropagation 372 

with Polak-Ribiére updates, one step secant backpropagation, and gradient descent with 373 

momentum and adaptive learning rate backpropagation. Fourth, 3 -: 1: - ratios were 374 

defined: 60:20:20, 70:15:15, and 80:10:10. Finally, the initial weights used were 375 

generated randomly to obtain values close to zero, and C; was set to 103 for all ANN 376 

models, based on previous trials. 377 

For every bathing site, the combination of 5 node cases, 9 activation cases, 9 training 378 

cases, and 3 ratio cases resulted in 1215 ANN models. These models were trained, 379 
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validated and tested using the hourly evolution of E. coli concentration computed by the 380 

process-based model during the bathing seasons of 2013, 2014, and 2015 as targets 381 

(11019 modelled concentration measurements). Next, outputs and targets were 382 

compared by means of bias, CE, and R2. The best fits (final ANNs) were obtained with 383 

15 C>, a tan-sigmoid function for the �>, a log-sigmoid function for the �D, a Levenberg-384 

Marquardt backpropagation method, and a -: 1: - ratio of 70:15:15. 385 

 386 

3. Results 387 

3.1. Hydrodynamics 388 

The results provided by the hydrodynamic module were compared with the available 389 

measurements. For water levels, the bias ranged between -0.04 and 0.10 m, and the CE 390 

ranged between 0.98 and 0.99 (see Fig. S3 in the supplementary materials). For current 391 

velocities, the bias ranged between 0.01 and 0.02 m/s, and the CE ranged between 0.87 392 

and 0.91 (see the left panels of Fig. S4 in the supplementary materials). For salinities, 393 

the bias ranged between -0.39 and -0.29 psu, and the CE ranged between 0.92 and 0.98 394 

(see the right panels of Fig. S4 in the supplementary materials). Overall, these errors 395 

confirmed that the hydrodynamic module satisfactorily reproduced water circulation 396 

and transport throughout the Eo Estuary. 397 

 398 

3.2. Predictive tools 399 

3.2.1. Evaluation of predictive tools 400 

Fig. 5 shows scatter density plots for the E. coli concentrations between the outputs 401 

provided by each final ANN model and the targets simulated by the process-based 402 

model at BP1 (a), BP2 (b), BP3 (c), and BP4 (d) for the bathing seasons of 2013, 2014, 403 

and 2015. The colorbar of Fig. 5 displays the occurrence probability of the scatter dots 404 
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defined by the E. coli concentration of targets (process-based model) and outputs (ANN 405 

model). 406 

 407 

408 
Fig. 5. Performance of the final artificial neural networks (outputs) in emulating E. coli 409 

concentrations (E. coli/100 ml) computed by the process-based model (targets) at BP1 410 

(a), BP2 (b), BP3 (c), and BP4 (d). The bias, R2, and CE magnitudes are also shown for 411 

the four bathing sites (BP1-BP4). The colorbar shows the occurrence probability of the 412 

scatter dots defined by the E. coli concentration of targets (process-based model) and 413 

outputs (ANN model). 414 

 415 

In the four ANNs, the bias ranged between -4 and -40 E. coli/100 ml (the minus sign 416 

indicates that the output concentrations were smaller than the target concentrations), the 417 
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R2 ranged between 0.55 and 0.75, and the CE ranged between 0.61 and 0.74. These 418 

error metrics confirmed that the four ANN models efficiently detected and calculated 419 

the temporal evolution of E. coli concentrations, preserving the accuracy of the results. 420 

A detailed examination by location revealed that the best performance (yellow to green 421 

dots in Fig. 5) was obtained at BP2, followed by BP1, BP4, and BP3. 422 

Next, the results provided by the process-based model and the final ANNs were 423 

compared with the available measurements at the four bathing sites during the bathing 424 

seasons of 2013, 2014, and 2015 (see Figs. S5, S6, and S7 in the supplementary 425 

materials, respectively). Fig. 6 shows the performance of the process-based (filled 426 

markers) and ANN (unfilled markers) models in simulating E. coli concentrations at 427 

BP1 (squares), BP2 (circles), BP3 (diamonds), and BP4 (triangles) during the bathing 428 

season of 2013 (red), 2014 (green), and 2015 (blue). 429 
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 430 

Fig. 6. Performance of the process-based model (filled markers) and the ANN models 431 

(unfilled markers) in simulating E. coli concentrations (E. coli/100 ml) at BP1 (squares), 432 

BP2 (circles), BP3 (diamonds), and BP4 (triangles) during the bathing season of 2013 433 

(red), 2014 (green), and 2015 (blue). The bias, R2, and CE magnitudes are also shown 434 

for the four bathing sites (BP1-BP4) and considering all the bathing seasons and 435 

locations at the same time (global). 436 

 437 

As displayed in Fig. 6, the global bias, R2, and CE were 2 and 9 E. coli/100 ml, 0.87 and 438 

0.83, and 0.80 and 0.76 for the process-based model and the ANN model, respectively. 439 
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These metrics indicate a slightly better fit for the process-based model. Moreover, Fig. 6 440 

summarizes the performance of both predictive tools at the four bathing sites. The 441 

results showed that the E. coli concentrations at BP2 were excellently (CE>0.8) 442 

predicted by both tools (R2>0.89). In the case of BP1, predictions were good (CE>0.6) 443 

for both tools (R2=0.81), and at BP3 and BP4, the E. coli concentrations were 444 

conveniently (CE>0.6) predicted by the process-based model (R2>0.78) and acceptably 445 

(CE>0.4) predicted by the ANN model (R2>0.66). Therefore, these error metrics 446 

confirm that the process-based model and the ANN model satisfactorily reproduced the 447 

evolution of E. coli concentrations throughout the Eo Estuary, indicating the ability of 448 

both predictive tools to model the mortality, transport and mixing of E. coli. 449 

 450 

3.2.2. Accuracy of predictive tools for bathing water quality management 451 

The results provided by laboratory analyses, process-based models or ANN models led 452 

to a bathing water classification of “excellent quality” at the 4 bathing sites (95th 453 

percentile < 250 E. coli/100 ml). Moreover, the 95th percentile values of the datasets for 454 

the laboratory analyses, the process-based model, and the ANN model were 98, 97, and 455 

102 E. coli/100 ml at BP1; 232, 245, and 249 E. coli/100 ml at BP2; 118, 164, and 211 456 

E. coli/100 ml at BP3; and 110, 109, and 206 E. coli/100 ml at BP4, respectively. 457 

Table 3 lists the calculated error metrics of the contingency table to assess the accuracy 458 

of the predictive tools in predicting the compliance with or exceedance of E. coli 459 

concentrations of 500, 250, 125, 50, and 25 E. coli/100 ml. 460 

Bathing 
site 

Contingency 
table (metrics) 

Value = 500 
E. coli/100 ml 

Value = 250 
E. coli/100 ml 

Value = 125 
E. coli/100 ml 

Value = 50 
E. coli/100 ml 

Value = 25 
E. coli/100 ml 

Process- 
based 

ANN 
Process- 
based 

ANN 
Process- 
based 

ANN 
Process- 
based 

ANN 
Process- 
based 

ANN 

BP1 Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 Bias score (*) (*) (*) (*) (*) (*) 1.00 1.00 1.00 1.00 

 Hit rate (*) (*) (*) (*) (*) (*) 1.00 1.00 1.00 1.00 

 False alarm rate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Success index (*) (*) (*) (*) (*) (*) 0.92 0.92 0.92 0.92 
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 Threat score (*) (*) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

BP2 Accuracy 1.00 1.00 0.88 0.88 0.96 1.00 0.96 0.92 0.96 0.84 

 Bias score (*) (*) 1.33 1.33 0.86 1.00 1.09 1.00 0.93 0.78 

 Hit rate (*) (*) 0.67 0.67 0.86 1.00 1.00 0.92 0.93 0.78 

 False alarm rate 0.00 0.00 0.09 0.09 0.00 0.00 0.07 0.08 0.00 0.00 

 Success index (*) (*) 0.73 0.73 0.79 0.88 0.76 0.70 0.67 0.53 

 Threat score (*) (*) 0.88 0.88 0.96 1.00 0.96 0.92 0.96 0.84 

BP3 Accuracy 1.00 1.00 0.96 0.96 0.88 0.96 0.77 0.92 0.88 0.96 

 Bias score (*) (*) 0.00 0.00 0.25 0.50 0.85 0.82 0.83 0.94 

 Hit rate (*) (*) 0.00 0.00 0.25 0.50 0.69 0.82 0.83 0.94 

 False alarm rate 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 

 Success index (*) (*) 0.48 0.48 0.55 0.71 0.56 0.68 0.56 0.62 

 Threat score (*) (*) 0.96 0.96 0.88 0.96 0.77 0.92 0.88 0.96 

BP4 Accuracy 1.00 1.00 1.00 1.00 0.92 1.00 0.90 0.73 0.91 0.83 

 Bias score (*) (*) 1.00 1.00 0.33 1.00 0.78 0.78 0.88 0.88 

 Hit rate (*) (*) 1.00 1.00 0.33 1.00 0.78 0.56 0.88 0.82 

 False alarm rate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.17 

 Success index (*) (*) 0.98 0.98 0.60 0.98 0.67 0.53 0.57 0.52 

 Threat score (*) (*) 1.00 1.00 0.92 1.00 0.90 0.73 0.91 0.83 
(*) Indeterminate form 0/0. 461 
Table 3. Computed metrics for the assessment of the accuracy of the predictive tools in 462 

predicting compliance with/exceedance of the E. coli values of 500, 250, 125, 50, and 463 

25 E. coli/100 ml. 464 

 465 

Regardless of the metric in Table 3 used, the predictive tools presented the following 466 

pattern of performance: (1) the performances of the predictive tools for any 467 

concentration value was the same at BP1, with a success index of 0.92; (2) the 468 

predictive tools exhibited the same performance for the values of 500 and 250 E. 469 

coli/100 ml, with a success index for the value of 250 E.coli/100 ml of 0.73, 0.48, and 470 

0.98 at BP2, BP3, and BP4, respectively; (3) the ANN models performed better than the 471 

process-based model for the value of 125 E. coli/100 ml, with a success index of the 472 

process-based and ANN models of 0.79-0.88, 0.55-0.0.71, and 0.60-0.98 at BP2, BP3, 473 

and BP4, respectively; and (4) the process-based model performed better than the ANN 474 

models for low values (50 and 25 E. coli/100 ml) at BP2 and BP4 and worse than these 475 

models for low values at BP3. For instance, the success index of the process-based and 476 

the ANN models for the value of 50 E. coli/100 ml was 0.76-0.70, 0.56-0.68, and 0.67-477 
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0.53 at BP2, BP3, and BP4, respectively. Overall, these metrics indicated that the 478 

process-based and ANN models satisfactorily predicted the compliance 479 

with/exceedance of E. coli concentrations of 500, 250, 125, 50, and 25 E. coli/100 ml 480 

and, hence, adequately classified the bathing sites located in the Eo Estuary. 481 

 482 

3.3. Configuration and computational trade-off of artificial neural networks 483 

The final ANN configuration was obtained with 15 C>, a tan-sigmoid function for the 484 

�>, a log-sigmoid function for the �D, a Levenberg-Marquardt backpropagation method, 485 

and a -: 1: - ratio of 70:15:15. Table 4 summarizes the configuration of ANN models 486 

developed in other studies, including the predicted FIO, C; , C>, �>, �D, training method, 487 

C�, -: 1: -, and 2�. 488 

Study FIO(*) PQ PR SR(**) ST(**) 
Training 
method 

PU V: W: V XY 

Chandramouli et 
al. (2007) 

FC 7 9 Log Log 
Back-
propagation 

(***) 75:15:10 0.63-0.94 

Mas and Ahlfeld 
(2007) 

FC 6 16 Tan Tan 
Levenberg-
Marquardt 

103 64:16:20 (***) 

Kim et al. (2008) EC 3 1 Tan Tan 
Back-
propagation 

5·104 72:8:20 0.90-0.96 

He and He (2008) TC 7 3 (***) (***) 
Back-
propagation 

(***) 56:24:20 0.79 

He and He (2008) FC 12 6 (***) (***) 
Back-
propagation 

(***) 56:24:20 0.82 

He and He (2008) EN 7 8 (***) (***) 
Back-
propagation 

(***) 56:24:20 0.86 

Tufail et al. (2008) EC 2 4 Log Log 
Back-
propagation 

104 80:20:(***) 0.58-0.73 

Kazemi Yazdi and 
Scholz (2010) 

EN 4 8 Tan Tan 
Levenberg-
Marquardt 

103 65:15:20 0.15-0.80 

Keeratipibul et al. 
(2011) 

EC 6 5 Tan Log 
Back-
propagation 

(***) 70:30:(***) 0.72 

Thoe et al. (2012) FC 7 5 Log Lin 
Gradient descent 
with momentum 

103 60:20:20 0.29-0.75 

Motamarri and 
Boccelli, (2012) 

FC 5 6 Tan Lin 
Levenberg-
Marquardt 

103 
99:1 (leave-
one-out) 

(***) 

Thoe et al. (2014) FC 12 5 Log Lin 
Gradient- 
descent  

2·104 60:20:20 0.38-0.58 

Zhang et al. (2015) FC 14 (***) (***) (***) 
Back-
propagation 

(***) 60:20:20 0.68 

This study (2018) EC 9 15 Tan Log 
Levenberg-
Marquardt 

103 70:15:15 0.55-0.75 

(*) FC: Faecal coliform, TC: Total coliform, EC: E. coli, EN: Intestinal enterococci. 489 
(**) Log: Log-sigmoid, Tan: Tan-sigmoid, Lin: Linear. 490 
(***) Non-specified in the study. 491 
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Table 4. Review of previous research predicting faecal indicator organisms (FIOs) with 492 

multilayer feedforward networks consisting of one input layer, one hidden layer, and 493 

one output layer. 494 

 495 

As displayed in Table 4, ANN models were applied to predict FC (50%), EC (29%), EN 496 

(14%), and TC (7%) concentrations. The ratio between C>  and C; (C>: C;) ranged from 497 

0.33 to 2.66, with a mean value of 1.17. For �>, the log-sigmoid, tan-sigmoid and linear 498 

functions were used 4, 6, and 0 times, respectively. In the case of �D , these functions 499 

were used 4, 3, and 3 times, respectively. Back-propagation was the most commonly 500 

used training method (56%), followed by the Levenberg-Marquardt (28%) and gradient 501 

descent methods (16%). C� ranged between 103 and 5·104, with the most commonly 502 

used value being 103 (72%). Regarding -: 1: -, the studies considered a range of the 503 

total data available from 56% to 80% for training, from 1% to 30% for validation, and 504 

from 0% to 20% for testing. Based on these ratios, the mean value of -: 1: - was 505 

67:18:15. Finally, the R2 varied between 0.15 and 0.94, with a mean value of 0.68. 506 

All simulations were executed on a desktop machine with an Intel Core i7-3770 3.4 507 

GHz, 64-bit, and 16 GB RAM. Fig. 7 displays the computational times to simulate E. 508 

coli concentrations by the process-based and ANN approaches. In Fig. 7, note that 509 

Forecasting: 1 h, Forecasting: 1 day, Forecasting: 1 month, and Forecasting: 1 bathing 510 

season refer to the simulation times. 511 

The process-based model calibration was the first step for both approaches, requiring 512 

336 and 168 h for the calibration of hydrodynamics and water quality modules, 513 

respectively. The second step was applied only in the ANN approach, requiring 144 h 514 

for the development of ANN models. At this step, both approaches were ready to 515 

forecast FIO concentrations, with computational times (in hours) of the process-based 516 
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and ANN models for 1 h, 1 day, 1 month and 1 bathing season of 0.25 and 0.01, 6 and 517 

0.01, 78 and 0.02, and 0.03 and 949, respectively. 518 

 519 

Fig. 7. Computational times used to simulate FIO concentrations by the process-based 520 

model and by the ANN model using the proposed methodology. Note that Forecasting: 521 

1 h, Forecasting: 1 day, Forecasting: 1 month, and Forecasting: 1 bathing season refer to 522 

the simulation times. 523 

 524 

4. Discussion 525 

4.1. Performance of predictive tools 526 

While the results indicate that E. coli prediction using the process-based model 527 

throughout the Eo Estuary is reasonably accurate, inconsistencies between measured 528 

and predicted E. coli concentrations may still occur because the required numerical 529 

precision is subject to the uncertainties in FIO enumeration methods, the complicated 530 

relationships and processes related to FIO evolution, the impact of the changing 531 
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environment on FIO concentrations, and/or the model accuracy limits (Boehm, 2007; 532 

Gronewold and Wolpert, 2008; Shaw et al. 2017). 533 

Since the ANN models were trained by means of the process-based model outputs, their 534 

predictions were slightly worse because they were also biased by the process-based 535 

model errors (see Fig. 6). In this regard, the ANN models mostly 536 

underestimated/overestimated E. coli concentrations compared with the process-based 537 

model for magnitudes higher/lower than a specific value because the neural network 538 

approach smoothed the results provided by the process-based model (see Figs. S5 to S7 539 

in the supplementary materials). For instance, E. coli concentrations were 540 

underestimated/overestimated for magnitudes higher/lower than 20, 80, 50, and 90 E. 541 

coli/100 ml at BP1, BP2, BP3, and BP4, respectively (see Fig. 5). This effect was 542 

generated by the kernel of the network consisting of nonlinear relationships that 543 

prioritized larger weights for the values with a higher frequency of input data because 544 

the networks were designed to minimize statistical errors. 545 

Moreover, predictions were better in BP2 than in BP1, BP3 and BP4 because this beach 546 

is the most influenced by hydrodynamics, i.e., advection processes were more 547 

significant than diffusion and reaction processes. The factors that may influence these 548 

differences are the discharge locations and beach locations related to the main estuarine 549 

water inflows and outflows. The three discharges are located in the main channel close 550 

to the eastern margin, such that faecal pollution is transported by the main estuarine 551 

water flows along the main channel until it reaches the adjacent coastal area (advection). 552 

Thus, E. coli levels presented higher values with less variability at the main channel and 553 

were higher at the eastern margin than at the western margin. In other estuarine areas 554 

such as tidal flats or the western margin, diffusion processes become significant for 555 

transporting faecal pollution due to lateral dispersion with respect to the main flow 556 
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direction; as a result, the E. coli levels presented lower values with more variability. 557 

Lastly, the coastal areas outside the estuary displayed the lowest E. coli concentrations 558 

because the reaction processes are significant in the transport of faecal pollution due to 559 

the greater distance to the discharge locations, which increases the travel time and, 560 

subsequently, the bacterial mortality. 561 

First, BP2 is located in the main channel at the eastern margin and close to FD2 (the 562 

major faecal discharge in the estuary). Due to the location of this point, the evolution of 563 

E. coli concentrations presented higher values with less variability than that at BP1, BP3 564 

and BP4, increasing the accuracy of both predictive tools. Second, BP3 and BP4 are 565 

located outside the main channel at the western margin and close to FD2 and FD3, 566 

respectively. Due to the locations of these points, the evolution of E. coli concentrations 567 

presented lower values with more variability than that at BP2, decreasing the accuracy 568 

of both predictive tools. Finally, BP1 is located at the adjacent western coastal area, 569 

outside the estuary. Due to the location of this point, the evolution of E. coli 570 

concentrations presented the lowest values and less variability than that at BP3 and BP4 571 

and more than that at BP2, leading to a better accuracy of both predictive tools at this 572 

point than at BP3 and BP4 and a worse accuracy than at BP2. 573 

One way to minimize the impact of imprecise and variable data quality is to categorize 574 

data into overlapping groups and frequencies that have meaning relative to the system 575 

under study rather than focusing on predicting a specific concentration (Chandramouli 576 

et al., 2007). Thus, we used a contingency table as an error metric to calculate the 577 

accuracy of predictive tools for bathing water quality management. For the E. coli value 578 

of 500 at BP1, BP2, BP3 and BP4, the performance of both predictive tools was the 579 

same because this performance is heavily influenced by the most common category, 580 

namely, “correct negative” (see Table 1), due to the concentration measurements always 581 
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being below this threshold. This performance was also observed at BP1 for the E. coli 582 

values of 250 and 125. The ANN models performed better than the process-based 583 

model for intermediate values and worse for low values because the neural network 584 

approach smoothed the results. 585 

Efforts are currently underway to expand this methodology to include a neural network 586 

approach using deep learning (Schmidhuber, 2015), considering the real-time flow, 587 

salinity, temperature and E. coli concentration of faecal discharges (Bravo et al., 2017), 588 

including the effect of other forcings such as wind and/or waves (Dunn et al., 2014), 589 

and taking into account the effect of extreme events such as those produced after heavy 590 

rain or due to a failure in the sewer system. 591 

 592 

4.2. Configuration and computational trade-off of artificial neural networks 593 

The application of ANNs to the Eo Estuary presented here was in accordance with the 594 

ANN configurations proposed in other studies. Our final ANN configuration confirmed 595 

the tendency to develop ANN models with an C>: C; ratio higher than 1 and the validity 596 

of the proposed Eq. (8) as an indicator of the suitable range for trials with C>. Moreover, 597 

our review suggests that the best configuration for predicting FIOs with ANNs might be 598 

structured with a 1<C>: C;<2 ratio, a tan-sigmoid function for the �>, a log-sigmoid 599 

function for the �D , the Levenberg-Marquardt method, a 103 C�, and a -: 1: - ratio of 600 

67:18:15. However, it should be emphasized that there is not a predefined ANN 601 

configuration that ensures the best approximation of the outputs for the targets. 602 

Although ANN models need to be trained and validated, which is a time-consuming 603 

process, one of the most valuable characteristics of ANNs is their ability to perform 604 

long-term forecasting with computational times that barely exceed one minute. For 605 

instance, this study highlighted that during the model setup of both predictive tools, the 606 
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computational time used by the process-based approach was 0.78 times smaller than 607 

that used by the ANN approach due to the additional time spent on ANN development 608 

(see Fig. 7). Conversely, the computational costs of forecasting are considerably 609 

reduced by the ANN models compared with the process-based model, with decreases of 610 

25, 600, 3900, and 31633 times for forecasting 1 h, 1 day, 1 month and 1 bathing 611 

season, respectively. Thus, the longer the forecasting period, the greater the reduction in 612 

computational time by ANN models. 613 

Therefore, both approaches have advantages for different purposes. The value of the 614 

ANN model presented here is that it is very quick to implement and can be used for 615 

nowcasting of bathing water quality, whereas a process-based model can be used to 616 

investigate processes that govern the levels of E. coli in the estuary. Once the ANN 617 

model is trained and validated, it can be easily used by bathing water managers to 618 

identify potential risks for users, support decision-making tasks and allow 619 

administrations to promote preventive management actions. 620 

 621 

5. Conclusions 622 

The proposed methodology forecasts FIO concentrations (E. coli in this study) and 623 

classifies bathing sites for any period, integrating the benefits of laboratory analyses, 624 

numerical modelling, and machine learning. Our study demonstrated that the proposed 625 

method allows the evolution of FIO concentrations to be calculated for any period at the 626 

bathing sites, optimizing the trade-off between computational cost and the result 627 

accuracy of conventional process-based models and data-driven models. Thus, ANN 628 

models are viable emulators of highly nonlinear process-based models driven by highly 629 

variable forcings. However, surrogate validity outside of the training region is difficult 630 

to evaluate and should be further researched. 631 
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FIO concentrations were the focus here, but the method could be adapted to address the 632 

concentration of other water constituents such as total dissolved oxygen, nutrients, 633 

suspended sediments, heavy metals, organic micropollutants, and/or microplastics or to 634 

predict FIO concentrations in shellfish, with the aim of protecting consumers from 635 

faeces-contaminated shellfish. 636 

From a technical perspective, the ANN models have a strong predictive ability for 637 

nonlinear systems and can enhance the overall reliability and applicability of process-638 

based models. From the operational perspective, the implementation of ANN models is 639 

highly efficient at a very low cost compared to the implementation of process-based 640 

models (see subsection 3.3). This capability is particularly useful in scenarios where on-641 

the-spot decisions are needed (e.g., temporary closure of a bathing site), for which the 642 

use of complex and detailed process-based models can be cumbersome. Thus, ANN 643 

models could be applied in early warning systems for the public to minimize contact 644 

with bathing waters impacted by high faecal levels (daily planning of bathing sites). 645 

Nevertheless, the accuracy of river flows and meteorological forecasts must be 646 

considered for any temporal horizon. 647 
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Fig. 1. Map of the Eo River Basin and the Eo Estuary, indicating the locations of the 849 

tidal gauges (TG1-TG4), monitoring points (MP1-MP3), flow gauge (FG1), 850 

meteorological station (MS1), bathing water quality control points (BP1-BP4), and 851 

faecal discharges (FD1-FD3) used in the setup of the predictive tools. Bathymetry is 852 

also presented with a zoomed-in image of the outer and inner areas of the Eo Estuary 853 

(UTM projection ED50 30N). 854 

Fig. 2. Schematic view of a feedforward neural network with five nodes in the input 855 

layer, three nodes in the hidden layer and one node in the output layer. Synapses are 856 

oriented from left to right. 857 

Fig. 3. Overall methodological approach. 858 

Fig. 4. Schematic view of the proposed methodology to develop artificial neural 859 

networks to analyse bathing water quality criteria in estuaries. 860 

Fig. 5. Performance of the final artificial neural networks (outputs) in emulating E. coli 861 

concentrations (E. coli/100 ml) computed by the process-based model (targets) at BP1 862 

(a), BP2 (b), BP3 (c), and BP4 (d). The bias, R2, and CE magnitudes are also shown for 863 

the four bathing sites (BP1-BP4). The colorbar shows the occurrence probability of the 864 

scatter dots defined by the E. coli concentration of targets (process-based model) and 865 

outputs (ANN model). 866 

Fig. 6. Performance of the process-based model (filled markers) and the ANN models 867 

(unfilled markers) in simulating the E. coli concentrations (E. coli/100 ml) at BP1 868 

(squares), BP2 (circles), BP3 (diamonds), and BP4 (triangles) during the bathing season 869 

of 2013 (red), 2014 (green), and 2015 (blue). The bias, R2, and CE magnitudes are also 870 

shown for the four bathing sites (BP1-BP4) and considering all the bathing seasons and 871 

locations at the same time (global). 872 
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Fig. 7. Computational times required to simulate FIO concentrations by the process-873 

based model and by the ANN model using the proposed methodology. Note that 874 

Forecasting: 1 h, Forecasting: 1 day, Forecasting: 1 month, and Forecasting: 1 bathing 875 

season refer to the simulation times. 876 

Table 1. (a): Contingency table used to assess the accuracy of predictive tools for the 877 

prediction of faecal indicator organism (FIO) concentrations. (b): Error metrics of the 878 

contingency table (Source: Manzato, 2007; Bennett et al., 2013; Bedri et al. 2016). 879 

Table 2. Model parameters used in the calculation of E. coli transport and mixing. 880 

Table 3. Computed metrics for the assessment of the accuracy of the predictive tools in 881 

predicting compliance with/exceedance of the E. coli values of 500, 250, 125, 50, and 882 

25 E. coli/100 ml. 883 

Table 4. Review of previous research predicting faecal indicator organisms (FIOs) with 884 

multilayer feedforward networks consisting of one input layer, one hidden layer, and 885 

one output layer. 886 
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Constant Value Units Source 

��, ��  Time series m2/s Hydrodynamic module 

� Time series ºC Hydrodynamic module 

��� Time series g/m3 Hydrodynamic module 

�	 Time series W/m2 Meteorological station (MS1) 


� 0.8 1/days Chapra (1997) 

�� 1 days (*) 


�� 0.12 - Diffey (2002) 

� 0.35 1/m FLTQ (1990); Eq. (5) 


�  1.07 - This study (calibration) 

��� 0.086 m2/W·days This study (calibration) 

���  2·10-4 m3/g·days This study (calibration) 

(*) Day-night variations are considered within the irradiation (�	). 
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Bathing 
site 

Contingency 
table (metrics) 

Value = 500 
E. coli/100 ml 

Value = 250 
E. coli/100 ml 

Value = 125 
E. coli/100 ml 

Value = 50 
E. coli/100 ml 

Value = 25 
E. coli/100 ml 

Process- 
based 

ANN 
Process- 
based 

ANN 
Process- 
based 

ANN 
Process- 
based 

ANN 
Process- 
based 

ANN 

BP1 Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 Bias score (*) (*) (*) (*) (*) (*) 1.00 1.00 1.00 1.00 

 Hit rate (*) (*) (*) (*) (*) (*) 1.00 1.00 1.00 1.00 

 False alarm rate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Success index (*) (*) (*) (*) (*) (*) 0.92 0.92 0.92 0.92 

 Threat score (*) (*) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

BP2 Accuracy 1.00 1.00 0.88 0.88 0.96 1.00 0.96 0.92 0.96 0.84 

 Bias score (*) (*) 1.33 1.33 0.86 1.00 1.09 1.00 0.93 0.78 

 Hit rate (*) (*) 0.67 0.67 0.86 1.00 1.00 0.92 0.93 0.78 

 False alarm rate 0.00 0.00 0.09 0.09 0.00 0.00 0.07 0.08 0.00 0.00 

 Success index (*) (*) 0.73 0.73 0.79 0.88 0.76 0.70 0.67 0.53 

 Threat score (*) (*) 0.88 0.88 0.96 1.00 0.96 0.92 0.96 0.84 

BP3 Accuracy 1.00 1.00 0.96 0.96 0.88 0.96 0.77 0.92 0.88 0.96 

 Bias score (*) (*) 0.00 0.00 0.25 0.50 0.85 0.82 0.83 0.94 

 Hit rate (*) (*) 0.00 0.00 0.25 0.50 0.69 0.82 0.83 0.94 

 False alarm rate 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 

 Success index (*) (*) 0.48 0.48 0.55 0.71 0.56 0.68 0.56 0.62 

 Threat score (*) (*) 0.96 0.96 0.88 0.96 0.77 0.92 0.88 0.96 

BP4 Accuracy 1.00 1.00 1.00 1.00 0.92 1.00 0.90 0.73 0.91 0.83 

 Bias score (*) (*) 1.00 1.00 0.33 1.00 0.78 0.78 0.88 0.88 

 Hit rate (*) (*) 1.00 1.00 0.33 1.00 0.78 0.56 0.88 0.82 

 False alarm rate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.17 

 Success index (*) (*) 0.98 0.98 0.60 0.98 0.67 0.53 0.57 0.52 

 Threat score (*) (*) 1.00 1.00 0.92 1.00 0.90 0.73 0.91 0.83 
(*) Indeterminate form 0/0. 
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Study FIO(*) �� �� ��(**) ��(**) 
Training 
method �� �: 	: � 
� 

Chandramouli et 
al. (2007) 

FC 7 9 Log Log 
Back-
propagation 

(***) 75:15:10 0.63-0.94 

Mas and Ahlfeld 
(2007) 

FC 6 16 Tan Tan 
Levenberg-
Marquardt 

103 64:16:20 (***) 

Kim et al. (2008) EC 3 1 Tan Tan 
Back-
propagation 

5·104 72:8:20 0.90-0.96 

He and He (2008) TC 7 3 (***) (***) 
Back-
propagation 

(***) 56:24:20 0.79 

He and He (2008) FC 12 6 (***) (***) 
Back-
propagation 

(***) 56:24:20 0.82 

He and He (2008) EN 7 8 (***) (***) 
Back-
propagation 

(***) 56:24:20 0.86 

Tufail et al. (2008) EC 2 4 Log Log 
Back-
propagation 

104 80:20:(***) 0.58-0.73 

Kazemi Yazdi and 
Scholz (2010) 

EN 4 8 Tan Tan 
Levenberg-
Marquardt 

103 65:15:20 0.15-0.80 

Keeratipibul et al. 
(2011) 

EC 6 5 Tan Log 
Back-
propagation 

(***) 70:30:(***) 0.72 

Thoe et al. (2012) FC 7 5 Log Lin 
Gradient-descent 
with momentum 

103 60:20:20 0.29-0.75 

Motamarri and 
Boccelli, (2012) 

FC 5 6 Tan Lin 
Levenberg-
Marquardt 

103 
99:1 (leave-
one-out) 

(***) 

Thoe et al. (2014) FC 12 5 Log Lin 
Gradient- 
descent  

2·104 60:20:20 0.38-0.58 

Zhang et al. (2015) FC 14 (***) (***) (***) 
Back-
propagation 

(***) 60:20:20 0.68 

This study (2018) EC 9 15 Tan Log 
Levenberg-
Marquardt 

103 70:15:15 0.55-0.75 

(*) FC: Faecal coliform, TC: Total coliform, EC: E. coli, EN: Intestinal enterococci. 

 (**) Log: Log-sigmoid, Tan: Tan-sigmoid, Lin: Linear. 

(***) Non-specified in the study. 
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• The method integrates laboratory analyses, numerical modelling and machine 

learning. 

• ANN configuration for predicting E. coli concentration in estuaries is 

determined. 

• ANNs are viable emulators of process-based models driven by highly variable 

forcing. 

• The longer forecasting, the greater the reduction in computational time using 

ANN. 

• Real-time management of bathing water quality is enabled by using ANNs. 
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