© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Accepted Manuscript

WATER
WA RESEARCH

"AJournal o the

Artificial neural networks as emulators of process-based models to analyse bathing
water quality in estuaries

Javier Garcia-Alba, Javier F. Barcena, Carlos Ugarteburu, Andrés Garcia

PII: S0043-1354(18)30992-8
DOI: https://doi.org/10.1016/j.watres.2018.11.063
Reference: WR 14270

To appearin:  Water Research

Received Date: 24 July 2018
Revised Date: 26 October 2018
Accepted Date: 21 November 2018

Please cite this article as: Garcia-Alba, J., Barcena, J.F., Ugarteburu, C., Garcia, A., Artificial neural
networks as emulators of process-based models to analyse bathing water quality in estuaries, Water
Research, https://doi.org/10.1016/j.watres.2018.11.063.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.watres.2018.11.063
https://doi.org/10.1016/j.watres.2018.11.063

Sea

Calibrated and validated (parameters)

Faecal

/R iver

discharge
Bathing site /_’{

discharge
Hydrodynamics & bathing water quality

Estuar
‘_’j Bathing site
 Faecal

I Process-based model: High computational cost for management

Hourly

concentrations at the study site

Outputs

evolution  of  FIOs|

Targets

Arquitecture

ANN Activation Training
persite  functions method

Hourly evolution of FIOs concentration at

bathing sites

Final ANN = Best fit between targets and

outputs

Model applications

Classification of bathing sites

Nowcasting of bathing water
quality

Daily planning of bathing sites

Early warning system for
temporal closures




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Artificial neural networks as emulators of process-based modelsto analyse bathing

water quality in estuaries

Javier Garcia-Alba, Javier F. BarceriaCarlos UgartebufyuAndrés Garcfa

'Environmental Hydraulics Institute “IHCantabria”, biversidad de Cantabria - Isabel Torres,

15, Parque Cientifico y Tecnolégico de Cantabr@)Bl, Santander, Spain.

“Corresponding author. E-mail addresses: garciajan@un.es (Javier Garcia-Alba);
barcenajf@unican.es (Javier F. Barcena); c.ugatiégdgmail.com (Carlos

Ugarteburu); garciagan@unican.es (Andrés Garcia).

Highlights

« The method integrates laboratory analyses, numemecaelling and machine
learning.

« ANN configuration for predictingE. coli concentration in estuaries is
determined.

* ANNSs are viable emulators of process-based modelerd by highly variable
forcing.

« The longer forecasting, the greater the reductiorcamputational time using
ANN.

* Real-time management of bathing water quality eoéed by using ANNSs.

Abstract
This study aims to provide a method for developartficial neural networks in
estuaries as emulators of process-based modetsalgsa bathing water quality and its

variability over time and space. The methodologgdasts the concentration of faecal
1
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indicator organisms, integrating the accuracy aidbility of field measurements, the
spatial and temporal resolution of process-basediettiog, and the decrease in
computational costs by artificial neural networksilgt preserving the accuracy of
results. Thus, the overall approach integratesupled hydrodynamic-bacteriological
model previously calibrated with field data at tathing sites into a low-order emulator
by using artificial neural networks, which are med by the process-based model
outputs. The application of the method to the Etu&y, located on the northwestern
coast of Spain, demonstrated that artificial neunatiworks are viable surrogates of
highly nonlinear process-based models and highlialbke forcings. The results showed
that the process-based model and the neural netwaohkveniently reproduced the
measurements @scherichia col(E. coli) concentrations, indicating a slightly better fit
for the process-based model’#R.87) than for the neural networks’*{R.83). This
application also highlighted that during the modetup of both predictive tools, the
computational time of the process-based approashOwa times lower than that of the
artificial neural networks (ANNs) approach due be &additional time spent on ANN
development. Conversely, the computational costdoofcasting are considerably
reduced by the neural networks compared with thecews-based model, with a
decrease in hours of 25, 600, 3900, and 31633 tiordsrecasting 1 h 1 day, 1 month
and 1 bathing season, respectively. Therefore,ldhger the forecasting period, the

greater the reduction in computational time byfiaréll neural networks.

Keywords
Bathing water qualityEscherichia coli(E. coli); Hydrodynamic-bacteriological model;

Machine learning; Eo Estuary
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1. Introduction

Estuarine water quality is strongly impacted byhampogenic activities (Garcia et al.,
2010; De los Rios et al., 2016; Barcena et al. 8D1For instance, people are very
concerned about bathing water quality since estaawaters are used not only for
recreational activities but also for others inchgliransport and food production and as
a repository for sewage and industrial waste (B@@oet al. 2017b). Therefore, faecal
pollution is one of the most relevant issues in é&waluation and management of
estuarine water quality since it may cause socomeaic and environmental losses
such as infections and diseases, beach degradatiatipsures of shellfish-growing
areas (de Brauwere et al., 2014).

In Europe, Directive (2006/7/EC) sets the qualitypathing waters based on two faecal
indicator organisms (FIQsintestinal Enterococc{Enterococd and Escherichia coli
(E. coli). The limit values ofE. coli for transitional waters are 250. col/100 ml
(excellent quality) and 508. coli100 ml (good quality) based upon a"9Bercentile
evaluation and 50. col/100 ml (sufficient quality) based upon a™@@ercentile
evaluation. Although laboratory analyses are thetraocurate and reliable methods for
evaluating water quality, they require between 84 48 h to provide results (Rompré
et al., 2002); as a result, the public may be exgppds elevated FIO concentrations
during the time required to produce an analytieautt. Furthermore, these samples are
usually collected either 8 h to 13 h, neglecting ithifluence of diurnal variation in FIO
concentration (Boehm et al., 2002; Thoe et al.,420Thus, environmental managers
are not able to evaluate faecal pollution variggpibver time. Although these issues
could be overcome by increasing the temporal réisolland window of sampling, the
time-consuming laboratory methods will continue i@ a bottleneck for the rapid

detection of critical conditions such as pollutmrents.
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Therefore, real-time methods have been developaddwitor E. coli concentrations
based on flow cytometry (Besmer et al., 2014), AgEBays (Vang et al., 2014), online
optical sensors (Hgjris et al.,, 2016), or quantieatPCR (Walker et al., 2017).
However, the current high costs associated witkehmethods are a drawback to their
implementation at bathing sites for most health iatstrations.

Process-based models have also been used to evdhmtspatial and temporal
evolution of FIOs, considering the diurnal variatim FIO concentration (Lopez et al.,
2013; Bedri et al., 2014; Wang et al., 2016; Huabh@l., 2017). Notwithstanding the
increase in computer power, process-based modepleaity is also growing at the
same rate, if not faster (Washington et al., 20@®iggesting that computational
requirements will be an impediment to applicatiovigere a quick answer is required,
e.g., the nowcasting of FIO concentrations for ngamgtemporal closures of bathing
sites.

Accordingly, different techniques have been prodasethe last few years to overcome
the large computational burden associated with ggedased models, called dynamic
emulation modelling (Castelletti et al., 2012). Amulator is a computationally
efficient low-order model identified from the onmwgil large model and then used to
replace it for computationally intensive applicaso In the field of bathing water
guality monitoring, data-based models such as ANIdy efficiently detect and analyse
FIO concentrations and, hence, serve as surrodatesomputationally demanding
water quality models (Tufail et al., 2008; Shawakt2017). Thus, ANNs may help
reduce the computational costs of bathing watelityuaanagement, preserving the
accuracy of results when large datasets are alail@abmodel fitting (van der Merwe et
al., 2007; Maier et al., 2010; Shaw et al. 201MNIN&S have been used for nowcasting

and forecasting of FIO concentrations in riversg@iramouli et al., 2007; Tufail et al.,
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2008; Motamarri and Boccelli, 2012), reservoirs Mad Ahlfeld, 2007), coastal areas
(He and He, 2008; Thoe et al., 2012; Thoe et @ll42Zhang et al., 2015), and surface
runoff (Kim et al., 2008; Kazemi Yazdi and Scha2f10). However, their application
as emulators of process-based models in estuasesdt been widely investigated.
Within this context, the main objective of this dyus to develop a method to compute
the spatial and temporal evolution of FIO concditdrs in estuaries using ANNs
trained by a calibrated hydrodynamic-bacteriologimadel. This method integrates the
benefits of the three approaches used to calclateoli concentrations: (1) the
accuracy and reliability of field measurements;tf@) spatial and temporal resolution of
numerical modelling; and (3) the decrease in coatpral costs caused by ANNs

accompanied by preserved accuracy of the results.

2. Material and methods

2.1. Study area and available data

The Eo Estuary (see Fig. 1), located on the norskeve coast of Spain (43°28'33'N;
7°00'03'W), is a shallow mesotidal system with ang#urnal tidal range varying from
1.2 mto 4.8 m (de Paz et al., 2008). This esthas/been historically divided into two
regions. The first region, extending from the eshieamouth to Vegadeo, presents an
N-S alignment over a length of 9.9 km and an aweragith of 800 m (Flor et al.,
1993). The second region, extending from Vegade&da Tirso de Abres (FG1),
presents NNE-SSW alignment over a length of 4.5akith a width varying from 95 to
571 m (Flor et al., 1993). The Eo River Basin odesm catchment area of 819 km
with a length of 9 km. The freshwater inflow undeatural conditions varies from
approximately 0.6 to 425 s, with an annual average of 19.6¥smand ranging from

7.93 ni/s in summer to 39.67 s in winter (Piedracoba et al., 2005).
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Fig. 1. Map of the Eo River Basin and the Eo Estuardicating the locations of the
tidal gauges (TG1-TG4), monitoring points (MP1-MP3jlow gauge (FG1),
meteorological station (MS1), bathing water qualtyntrol points (BP1-BP4), and

faecal discharges (FD1-FD3), used in the setuhefpredictive tools. Bathymetry is
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also presented with a zoomed-in image of the canterinner areas of the Eo Estuary

(UTM projection ED50 30N).

At the study site, the water-related anthropic uses recreational (e.g., swimming,
sailing, and sun bathing) and economical (e.ghirp, aquaculture, and shellfishing),
and the bathing season occurs from Maytd September 30 Four beaches are
monitored to classify their bathing quality stafissregulated by Directive (2006/7/EC):
Rocas Blancas (BP1), Arnao (BP2), O Cargadeiro JB&&l Os Bloques (BP4). Due to
the villages settled around the Eo Estuary, threerces of faecal pollution were
discharged into the estuarine waters during thieifigseasons of 2013, 2014, and 2015
(see Fig. 1): (1) a wastewater treatment plant weithlogical treatment, collecting
sewage from Vegadeo (FD1); (2) a submarine outfathout water treatment,
collecting sewage from Castropol and Figueras (FC#)d (3) a breach in the
submarine outfall in place since 2010 (FD3), cdustig 24% of the FD2 flow. Dry
weather conditions prevail during bathing seasonsesmost of the rain is received
between October and April (del Rio et al., 2011Hug, storm runoff is mainly diverted
to FD1 and FD2 during the bathing seasons. Ther gib&ential flowing, land-based,
FIO sources (storm water discharges) are not ceraidin the present study as they
have no flow or very low flow during bathing seas@md are not believed to affect the
estuarine bathing water quality.

Regarding the available data, we retrieved inforomatrom five sources: (1) a field
survey (FLTQ, 1990); (2) the Automatic Informatiddystem of the Cantabrian

Hydrographic Confederation (SAl), available onlaehttp://www.chcantabrico.es; (3)

the Copernicus Marine Environment Monitoring Seef€CMEMS), available online at

http://marine.copernicus.eu; (4) the Meteorologi©diservation and Weather Forecast
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Service of Galicia (MeteoGalicia), available onlaewww.meteogalicia.es; and (5) the

Spanish Bathing Water Information System (NAYADEjyvailable online at

https://nayadeciudadano.msssi.es.

The field survey (FLTQ, 1990) took place from thE'20 the 2% of June 1990 and
included the following measurements (see Fig.)tiflal water levels at 4 points (TG1
to TG4), measured every 5 min with a tidal presgianege (Aanderaa WLR-5); (2) river
flows, temperatures, and salinities at 1 point (;Gfheasured every 2 h with an
electromagnetic flow meter (Flowmate model 200@ arimnimetric scale; (3) current
speeds and directions at the bottom at 3 points1l(MPMP3), measured every 5 min
with an automatic current meter (Aanderaa RCM48Y @) salinities and temperatures
at the bottom at 3 points (MP1 to MP3), measureses min with a CTD device.

From the other four sources, we retrieved data f&@h3 to 2015, including (1) the
daily time series of flow, salinity, and temperatat the river boundary, measured by
FG1; (2) the hourly time series of salinity and pemature at the sea boundaries,
modelled by the operational Iberian Biscay IridBlfIsystem of the CMEMS (Sotillo et
al., 2015); (3) the hourly time series of solariatidn at the surface, recorded by MS1,
and (4) theE. coli concentrations at the 4 monitoring stations, messby the
NAYADE (see Fig. 1): BP1 - 25 data, BP2 - 25 d&BR3 - 26 data, and BP4 - 24 data.
The method for the enumeration Bf coli was ISO 9308-1. This method is based on
membrane filtration, subsequent culture on a chgen@ coliform agar medium, and

calculation of the number of target organisms anghmple.

2.2. Predictivetools

2.2.1. Process-based model
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Our modelling approach was implemented in the BBlftopen-source modelling

framework (http://oss.deltares.nl/web/delft3d). sEirestuarine hydrodynamics were

derived from the hydrodynamic module Delft3D-FLOWegser et al., 2004). Second,
E. coli concentrations were computed by means of the gomhsnodule D-Water
Quality (Postma et al., 2003). This coupling hasrbepplied in other studies,
confirming its ability to simulate hydrodynamicsansport and mixing in complex
aquatic systems (Los et al., 2014; Wang et al.62Bbberts and Villegas, 2017).

In this work, the formulation proposed by Mancihb{8) was adopted to simulate the
bacterial mortality, assuming the following condiits: (1)E. coli was only present in
the water column, without accumulating in or resumgping from sediment; (Z. coli
did not grow in the water column; (8. coli mortality was included as a temperature-
dependent process, formulated based on first-didetics; and (4) th&. coli mortality
rate was enhanced by salinity and UV radiation n aalditive way. Accordingly,

mortality was calculated with Eq. (1) to Eq. (5).

CFdecay = Ky * Ccr (1)
Ku = (Kp + K) - K772 + Kg (2)
Ker = ke - Ca (3)
Ke = ke - DL - fuy - 1o S5 @

e=5 (5)

whereCFg.q, is the concentration @&. coliover time E. colim®days):K,, is the first-
order mortality rate (day3; C. is theE. coli concentrationE. colim®); K5 is the basic
mortality rate (dayd); K., is the chloride-dependent mortality rate (d3y< is the
temperature (°CX7 is the temperature-dependent mortality rateKy)is the radiation-

dependent mortality rate (da¥s k., is the chloride-dependent mortality constant
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(m¥g-days); C.; is the chloride concentration (g)nk,, is the radiation-dependent
mortality constant (8iW-days); DL is the day-length (daysf;,,, is the fraction of UV
light in visible light (-);I, is the daily solar radiation at the water surfasém?); ¢ is
the extinction of UV radiation (i); H is the water depth (m); arsh is the Secchi disk
depth (m).

2.2.2. Artificial neural networks

The basic structure of ANNSs is characterized byr thechitecture, activation functions,
and training algorithm. The ANN architecture cotssisf three layers (see Fig. 2): one
input layer, one hidden layer that is usually cosgzbof one layer but can be built up
with more sublayers (deep learning), and one ougyér (Khalil et al., 2011). Every
layer has several nodes that are responsible dosimitting the information from one
layer to the next layer, although neither latemairection within any layer nor feedback
connection is possible (arrows in Fig. 2).

The functioning of the ANN is as follows: Each noutethe input layer supplies
information to every node in the hidden layer tlgiodhe “synapses”. A summation of
the contribution of each node in the input layepaesformed in each node of the hidden
layer by applying an activation function to transfiothe obtained value. Then, every
value of every node in the hidden layer is muléglby its weight and transmitted to the
output node, where another summation is performgdafiplying a new activation
function to obtain the final output (Wu et al., 201

ANNs need to be trained to assign weights accyraied, consequently, minimize
errors in the output results (Motamarri and Bo¢céld12). This task depends on the
training method and the ratio of the training sapsgalidation subset, and test subset to
the total dataT(:V:T): the training subset is used to estimate unknocwamnection

weights between neurons, the validation subsetsesl U0 assess the generalization

10



229

230

231
232

233

234

235

236

237

238

239

240

241

242

ability of the trained network, and the testing setbis used to decide whether early

termination is needed to avoid overfitting (Maieak, 2010).

Input
Variable;

Input
Variable,

Output
Variable

Input
Variable;

Input
Variable,

Input
Variableg

Hidden Layer

Input Layer Output Layer

Fig. 2. Schematic view of a feedforward neural mekwvith five nodes in the input
layer, three nodes in the hidden layer and one modee output layer. Synapses are

oriented from left to right.

2.3. Performance metrics of predictivetools

2.3.1. Evaluation of predictive tools

The predictive tools’ performance was evaluatedthyge error measurements. First,
bias was calculated as the difference between theehed results and the observed
values on a given date. Second, the coefficienetérmination (B was determined as
expressed in Eq. (6).

2 _ L Gi-R)?
k"= TN (Ri—R)? (6)

11
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where R; is the i-field data of the measurementS; is the i-model data of the
simulations (process-based or ANIR)js the average of the measurements,iaadhe
it" value from 1 to N measurements (laboratory ana)yses

Third, the error between the series was calculatgdg the model efficiency (CE),

developed by Nash and Sutcliffe (1970), as displageEq. (7).

_ I (Ri=S)?
=T ™

The CE ranges betweem and 1.0 (1.0 inclusive), with CE=1 being the optimalue.
Values between 0.0 and 1.0 are generally vieweaceasptable levels of performance,
whereas values <0.0 indicate that the mean obsewleéd is a better predictor than the
simulated value, which indicates unacceptable pedoce. Depending on the CE
value, the comparison is considered acceptabler(pbdCE<0.4, acceptable (-) if
0.4<CE<0.6, acceptable (convenient or good) iKEE<0.8, and acceptable (excellent)
if CE>0.8.

2.3.2. Accuracy of predictive tools for bathing araquality management

The contingency table (Table 1a) and its error itetfTable 1b) were employed to
assess the accuracy of predictive tools in predjcthe compliance with and/or
exceedance of the FIO concentrations at specifestiolds (Manzato, 2007; Bennett et
al., 2013; Bedri et al. 2016). Contingency tablstalelish the number of occurrences
where predictive tools have generated correct ptiedis (see Table la): (1) the
exceedance of specific values (hits); (2) the aerwes of correct negatives; (3) the
number of alarms missed by the model; and (4) theher of false alarms. Therefore,
an ideal model would have data in only the hits emdect negatives categories. Table
1b lists the error metrics of the contingency talded in the current study along with

their limits and ideal values.

12



Observed Exceedances

yes no

wl

3]

5 3 Hits False | Predicted
B> ) alarms yes

8

1

&5
= .
3 o Misses Corr.ect Predicted
3 negatives no

&

Observed | Observed
Total
yes no

a) Contingency table

Range of Ideal

Metric Formula Notes
values value
Accuracy Hits + Correct negatives 0l | It is heavily influcnced by the most
(fraction correct) Total ; commeon category, usually “no event™.
Bias score Hits + False alarms oo 1 Indicates if the model tends to under- (<1)
(frequency bias) Hits + Misses ) or over- (>1) cslimale.
g’irtorlilet]%ﬂit of Hits 0-1 | Sensitive to hits but ignores false alarms.
deteetion) Y Hits + Misses Good for rare events.
1:];ll!S(l:) allj?lrim Iﬂ]EC False alarms 0-1 0 Sensitive to false alarms but ignores
Sfals'(; getegt};:n) False alarms + Correct negatives ) misscs.
. . Weights equally the ability of the model
Success index l Nl - HItS. + Correct negatwes] 0-1 1 to correctly detect occurrences and non-
2 lHItS + Misses Total occurrences of events,
e . P Measures the fraction of observed cases
Threat score Hits + Correct negatives 0-1 1 that were correctly modelled. [t penalizes
Total both misscs and falsc alarms.
b) Error metrics
267 )
268 Table 1. (a): Contingency table to assess the acguof predictive tools for the
269 prediction of faecal indicator organism (FIO) comications. (b): Error metrics of the
270 contingency table (Source: Manzato, 2007; Benneil £2013; Bedri et al. 2016).
271
272 2.4. Methodology to develop artificial neural networks for the analysis of bathing
273 water quality in estuaries
274 The overall approach, illustrated in Fig. 3, inkgs a coupled hydrodynamic-
275 bacteriological model previously calibrated witkelfi data at the bathing sites into a
276 real-time framework by using ANNSs trained on thenewical model outputs (targets).
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Fig. 3. Overall methodological approach.

Since critical decisions must be made when

method (see Fig. 4).

devetppin ANN, we use a five-step

Setting the ANN Selecting th_e Al_\lN Determlnl_ng the Defining the final Validating the AI\_IN
> —»| transfer/activation (=  ANN training —»| accuracy to classify
architecture . ANN A
functions method bathing sites
9 g o o 9

Determination of the output
variable/s to set number of
output nodes (n,) = FIO
concentration at one location

Selection of activation
functions for water quality
management (Linear, Log-

Sigmoid, Tan-Sigmoid)

o

9

Determination of the input
variable/s driving output
variable/s in estuaries to set
number of input nodes (n;)

Combination of selected
activation functions for the
hidden and output layers
(activation cases)

°

Adjustment of the number of
hidden nodes (n;)
0.5n-2 £n,<2n#2 (node
cases)

Fig. 4. Schematic view of the proposed methodoltgydevelop artificial neural

Selection of the training
method (training cases)

°

Selection of the the ratio of
the training and validation
dataset (ratio cases)

°

Initial weights are generated
randomly to values close to
zero

°

Combination of key
parameters (node cases x
activation cases x training

cases X ratio cases)

Training of all ANNs

Application of the final ANN
to forecast the temporal
evolution of FIOs during

bathing seasons

8

8

Comparison of the outputs
and targets for every
developed ANN model (Bias,
R?, CE)

Classification of the bathing
site according to Directive
(2006/7/EC) by using the ANN
output

°

9

Selection of the number of
training epochs (n.) = min
(iterations) without changes

in the results

Selection of the Final ANN =

Best fit = min(Bias),
min(R2), min(CE)

networks to analyse bathing water quality critémiastuaries.

2.4.1. Setting the ANN architecture

14

Comparison of the
classification obtained by the
ANN with the reported
classification
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Since the ANN output is the evolution of FIO cornitation at one bathing site, the
number of nodes in the output,] is one.
Bearing in mind that ANN models will be emulatorsprocess-based models, ANN
inputs should be process-based model inputs, b@undary conditions, sinks and
sources. Thus, the input variables are hydrodyn#ongings, water constituents at open
boundaries, atmospheric forcings, and faecal digelsa and the number of nodes in the
input (1;) should therefore be determined from this prelamynselection based on site-
specific conditions.
The number of nodes in the hidden layey)(should be less than twieg (Motamarri
and Bocelli, 2012); we propose Eg. (8) tomsgt

05 n;—2<n,<2-n; +2 (8)
2.4.2. Selecting the ANN transfer/activation fuprcsi
Three different activation functions are widely dgéiang et al., 2013) for the transfer
between the input and hidden layg¢g)(and the hidden and output layefs)( (1) the
linear transfer function (Eq. (9)); (2) the log4sigid transfer function (Eg. (10)); and
(3) the tan-sigmoid transfer function (Eq. (11)er@rally, sigmoid functions are used

for pattern recognition, whereas linear functioreswased for fitting.

f(x) =x 9
9 =—= (10)
h(x) = Mz_zx -1 (11)

2.4.3. Determining the ANN training method

Several methods are used for training ANNs, with tevenberg-Marquardt method

(Hagan and Menhaj, 1994) and the backpropagatgoritim (Rumelhart et al., 1986)

being the most common. Additionally, the initial iglets are generated randomly to
obtain values close to zero, and the/: T ratio should be adjusted by trial and error
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(Wu et al., 2014). Lastly, the number of trainimgpehs f1,.) is decided based on trials
by observing the conditions under which ANN tragiand testing results are both
independent of the number of iterations (Tufaglet2008).

2.4.4. Defining the final ANN

The key parameters are combined to develop ses&dll models ¢, f, f,, training
methods, and’: V:T). Next, these models are trained, and the ANN rddplaying
the lowest error metric between outputs and tar@etal ANN) is chosen (Zou et al.,
2007).

2.4.5. Validating the ANN accuracy to classify laghsites

The final ANN model is applied to forecast FIO centations at the bathing site
during bathing seasons. Next, the ANN results &ssdied according to the standard
values set in Directive (2006/7/EC) and comparedhwihe official reported

classification.

2.5. Setup of predictivetoolsin the Eo Estuary

2.5.1. Setup of the process-based model

The Eo Estuary was represented horizontally usingDa rectangular mesh grid
composed of 332x640 grid cells with a horizontalbtation of 25x25 h 3 verticalo-
layers equally spaced along the water column, badbathymetry displayed in Fig. 1.
The hydrodynamic calibration was performed for peeiod between the 2iand 24" of
June 1990, including a spin-up period of 30 daysaltow the hydrodynamic and
thermohaline variables to interact and adjust tlewes. Once the hydrodynamic
module was calibrated, the hydrodynamics of the32@014, and 2015 bathing seasons
driven by the tidal action and river flows (see.F&i in the supplementary materials)

were simulated as required inputs for the watetityuaodule calibration. For a more
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337 detailed description of the hydrodynamic moduleuggetreaders are referred to the
338 supplementary materials.

339 Next, we implement the transport module in the sgn the same time step (6 s), the
340 same four open boundaries (see Fig. 1), and the spm-up period of 30 days used in
341 the hydrodynamic module setup (see the supplementaterials). The initial condition
342 was OE. col/100 ml in the whole model domain. Based on thelabie data at the sea
343 and river boundaries, the mean concentration ofethmeasurements was used as a
344 constant boundary condition, with 0 and 8BO0 col/100 ml at the sea and river
345 boundaries, respectively. Table 2 lists the pararsatsed in the calculation of tke

346 coli transport and mixing in the Eo Estuary.

Constant Value Units Source
DH, DV Time series s Hydrodynamic module
T Time series °C Hydrodynamic module
Ce Time series g/ Hydrodynamic module
I Time series W/th Meteorological station (MS1)
Ky 0.8 1/days Chapra (1997)
DL 1 days *
fuv 0.12 - Diffey (2002)
P 0.35 1/m FLTQ (1990); Eq. (5)
Kr 1.07 - This study (calibration)
krd 0.086 M/W-days This study (calibration)
ke 2-10* m’/g-days This study (calibration)

347 (*) Day-night variations are considered within the irradiation (I;).
348 Table 2. Model parameters used in the calculatfda. @oli transport and mixing.

349

350 Based on the data from Metcalf and Eddy, Inc. (2008a single day, the hourly flow
351 of three faecal discharges (FD1-FD3) was introdusee Fig. S2 in the supplementary
352 materials). The mean discharge flow (if/sh was 0.00347, 0.00524 and 0.00165 for
353 FD1, FD2 and FD3, respectively. The constant digghaoncentration (k. col/100

354 ml) was 16, 16 and 18 for FD1, FD2 and FD3, respectively. Finally, a stmt
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379

salinity and temperature of O psu and 17 °C, rdésmbg, were specified for the three

discharges.

2.5.2. Setup of the artificial neural network

ANNs were developed for BP1, BP2, BP3, and BP4tFihe output variable was the
E. coli concentration at every bathing site; thug,was set to one for every ANM;
was fixed by the process-based model inputs, witalae of 9 in the Eo Estuary: water
level, salinity and temperature at the sea boundiow and temperature at the river
boundary; solar radiation; and the flow of the éhfaecal discharges (FD1-FD3). Note
that the model inputs obtained with constant vailmere not included as input variables
in the ANN models, i.e., salinity at the river balany (see the supplementary materials)
and salinity, temperature aiid coli concentrations of faecal discharges (see subsectio
2.5.1). Following Eq. (8), 3, 7, 11, 15, or &P were selected (5 node cases). Second,
we combined the 3 activation functions, obtainingc@ivation cases. Third, 9 training
methods were tested: BFGS quasi-Newton backprojpagaesilient backpropagation,
scaled conjugate gradient backpropagation, corgugeadient backpropagation with
Powell-Beale restarts, Levenberg-Marquardt backggapon, conjugate gradient
backpropagation with Fletcher-Reeves updates, gatgugradient backpropagation
with Polak-Ribiére updates, one step secant baplgetion, and gradient descent with
momentum and adaptive learning rate backpropagakouarth, 3T:V: T ratios were
defined: 60:20:20, 70:15:15, and 80:10:10. Finatlye initial weights used were
generated randomly to obtain values close to zemdn; was set to 10for all ANN
models, based on previous trials.

For every bathing site, the combination of 5 nodses, 9 activation cases, 9 training

cases, and 3 ratio cases resulted in 1215 ANN rapddlese models were trained,
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validated and tested using the hourly evolutioi ofoli concentration computed by the
process-based model during the bathing season®1#, 2014, and 2015 as targets
(11019 modelled concentration measurements). Nextputs and targets were
compared by means of bias, CE, arfd Fhe best fits (final ANNs) were obtained with
15n,, a tan-sigmoid function for thg,, a log-sigmoid function for thg,, a Levenberg-

Marquardt backpropagation method, ari &: T ratio of 70:15:15.

3. Results

3.1. Hydrodynamics

The results provided by the hydrodynamic moduleewaympared with the available
measurements. For water levels, the bias rangegebat-0.04 and 0.10 m, and the CE
ranged between 0.98 and 0.99 (see Fig. S3 in {hy@ementary materials). For current
velocities, the bias ranged between 0.01 and 0/82and the CE ranged between 0.87
and 0.91 (see the left panels of Fig. S4 in theleupentary materials). For salinities,
the bias ranged between -0.39 and -0.29 psu, anGEhranged between 0.92 and 0.98
(see the right panels of Fig. S4 in the supplenmgntzaterials). Overall, these errors
confirmed that the hydrodynamic module satisfaljtoreproduced water circulation

and transport throughout the Eo Estuary.

3.2. Predictive tools

3.2.1. Evaluation of predictive tools

Fig. 5 shows scatter density plots for e coli concentrations between the outputs
provided by each final ANN model and the targetaudated by the process-based
model at BP1 (a), BP2 (b), BP3 (c), and BP4 (d)tier bathing seasons of 2013, 2014,

and 2015. The colorbar of Fig. 5 displays the ommnee probability of the scatter dots
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405 defined by theE. coli concentration of targets (process-based modelpatults (ANN

406 model).
407
10" 10*;
a) : b)
CE = 0.62 [CE=0.74 Probability
10°.BIAS = -4 E.coli/100ml 10" BIAS = -13 E.coli/100ml (%)
T R*=0.62 £ R*=0.75 :
g 10% e [ 3.5
3 i
10' 10“:— F 43
100 (] 1 2 3 4 100 0 1 ¥ ) 3 4 i ) 25
10 10 0 10 10 10 10 10 10 10
Target (E.coli/100ml) Target (E.coli100ml)
10" 10%
} 2
c) d)
CE=0.61 ICE=0.61
10°,BIAS = -21 E.coli/lQOmI mSEBIAS = -40 E.colif/100ml_, 15
E R'=0.55 T R'=058 |
2 107, 3 10% 1
B W
g 3 -
10't 10 ’
0
100 0 : 1 ‘ 2 . 3 4 10 0 1 ¥4 3 4
10 10 10 10 10 10 10 10 10 10
408 Target {E.colif100ml) Target (E.coli100ml)

409 Fig. 5. Performance of the final artificial neuradtworks (outputs) in emulatirtg. coli

410 concentrationsE. col/100 ml) computed by the process-based model (Brgé BP1
411 (a), BP2 (b), BP3 (c), and BP4 (d). The bia§,dhd CE magnitudes are also shown for
412 the four bathing sites (BP1-BP4). The colorbar shdwe occurrence probability of the
413 scatter dots defined by the coli concentration of targets (process-based model) and
414  outputs (ANN model).

415

416 In the four ANNSs, the bias ranged between -4 aridE4colV100 ml (the minus sign

417 indicates that the output concentrations were @n#ian the target concentrations), the
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R? ranged between 0.55 and 0.75, and the CE rangededre 0.61 and 0.74. These
error metrics confirmed that the four ANN model§oséntly detected and calculated
the temporal evolution dE. coli concentrations, preserving the accuracy of theltes
A detailed examination by location revealed that best performance (yellow to green
dots in Fig. 5) was obtained at BP2, followed bylBBP4, and BP3.

Next, the results provided by the process-basedemadd the final ANNs were
compared with the available measurements at thelfathing sites during the bathing
seasons of 2013, 2014, and 2015 (see Figs. S5ar#b,S7 in the supplementary
materials, respectively). Fig. 6 shows the perfaroeaof the process-based (filled
markers) and ANN (unfilled markers) models in siatudg E. coli concentrations at
BP1 (squares), BP2 (circles), BP3 (diamonds), aRd Briangles) during the bathing

season of 2013 (red), 2014 (green), and 2015 (blue)
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Fig. 6. Performance of the process-based mod&dfiharkers) and the ANN models
(unfilled markers) in simulating. coli concentrationsH. colV100 ml) at BP1 (squares),
BP2 (circles), BP3 (diamonds), and BP4 (triangbhsjng the bathing season of 2013
(red), 2014 (green), and 2015 (blue). The bids,aRd CE magnitudes are also shown
for the four bathing sites (BP1-BP4) and considgrall the bathing seasons and

locations at the same time (global).

As displayed in Fig. 6, the global bias’, @nd CE were 2 andB®. coli100 ml, 0.87 and

0.83, and 0.80 and 0.76 for the process-based namdethe ANN model, respectively.
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440 These metrics indicate a slightly better fit foe fprocess-based model. Moreover, Fig. 6
441 summarizes the performance of both predictive t@tlghe four bathing sites. The
442 results showed that thE. coli concentrations at BP2 were excellently (CE>0.8)
443 predicted by both tools (R0.89). In the case of BP1, predictions were gddE>0.6)
444  for both tools (R=0.81), and at BP3 and BP4, tl® coli concentrations were
445  conveniently (CE>0.6) predicted by the process-thasedel (R>0.78) and acceptably
446 (CE>0.4) predicted by the ANN model %0.66). Therefore, these error metrics
447  confirm that the process-based model and the ANNeisatisfactorily reproduced the
448 evolution ofE. coli concentrations throughout the Eo Estuary, indicathe ability of
449 both predictive tools to model the mortality, trpog and mixing oE. coli.
450
451 3.2.2. Accuracy of predictive tools for bathing araquality management
452  The results provided by laboratory analyses, pbesed models or ANN models led
453 to a bathing water classification of “excellent litya at the 4 bathing sites (85
454 percentile < 25(. col/100 ml). Moreover, the $5percentile values of the datasets for
455 the laboratory analyses, the process-based mouktha ANN model were 98, 97, and
456 102E. col/100 ml at BP1; 232, 245, and 2E9col/100 ml at BP2; 118, 164, and 211
457 E. colV100 ml at BP3; and 110, 109, and ZD6&coli100 ml at BP4, respectively.
458 Table 3 lists the calculated error metrics of tbatmgency table to assess the accuracy
459 of the predictive tools in predicting the complieanwith or exceedance d&. coli
460 concentrations of 500, 250, 125, 50, ande250l¥100 ml.
Value =500 Value =250 Value = 125 Value=50 Value=25
Bathing Contingency E. coli/100 ml E. coli/100 ml E. coli/100 ml E. coli/100 ml E. coli/100 ml
site table (metrics) chggzsr ANN E;:gdes% ANN E;:gdes% ANN E;:gdes% ANN E;ggdessr ANN
BP1 Accuracy 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00
Bias score *) *) *) * * *) 1.00 1.00  1.00 1.00
Hit rate * *) *) * * *) 1.00 1.00  1.00 1.00
False alarm rate 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00
Success index (%) *) *) * * *) 0.92 092 092 0.92
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Threatscore (%) * 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00

BP2 Accuracy 1.00 1.00 0.88 0.88  0.96 1.00 0.96 092 096 0.84
Bias score * * 1.33 1.33  0.86 1.00  1.09 1.00 0.93 0.78
Hit rate * * 0.67 0.67  0.86 1.00  1.00 092 093 0.78
False alarm rate 0.00 0.00  0.09 0.09  0.00 0.00  0.07 0.08  0.00 0.00
Success index  (¥) * 0.73 0.73  0.79 0.88  0.76 0.70  0.67 0.53
Threatscore (%) * 0.88 0.88  0.96 1.00 0.96 092 096 0.84

BP3 Accuracy 1.00 1.00 0.96 096  0.88 096  0.77 092 0.88 0.96
Bias score * * 0.00 0.00  0.25 050  0.85 0.82  0.83 0.94
Hit rate * * 0.00 0.00 0.5 050  0.69 0.82 0.83 0.94
False alarm rate 0.00 0.00  0.00 0.00  0.00 0.00  0.15 0.00  0.00 0.00
Success index  (¥) * 0.48 0.48 055 071 056 0.68  0.56 0.62
Threat score () * 0.96 096 0.88 096  0.77 092 0.88 0.96

BP4 Accuracy 1.00 1.00  1.00 1.00 092 1.00  0.90 073 091 0.83
Bias score *) * 1.00 1.00 0.33 1.00 0.78 078  0.88 0.88
Hit rate * * 1.00 1.00  0.33 1.00 0.78 056  0.88 0.82
False alarm rate 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.15  0.00 0.17
Success index  (¥) * 0.98 0.98  0.60 098  0.67 053  0.57 0.52
Threat score * * 1.00 1.00 0.92 1.00 0.90 0.73 0.91 0.83

461 (*) Indeterminate form 0/0.

462 Table 3. Computed metrics for the assessment adidberacy of the predictive tools in

463 predicting compliance with/exceedance of Ehecoli values of 500, 250, 125, 50, and

464 25E. col/100 ml.

465

466 Regardless of the metric in Table 3 used, the ptigdi tools presented the following

467 pattern of performance: (1) the performances of fhedictive tools for any

468 concentration value was the same at BP1, with &esscindex of 0.92; (2) the

469 predictive tools exhibited the same performance tha values of 500 and 239B.

470 coli/200 ml, with a success index for the value of E5€ol/100 ml of 0.73, 0.48, and

471 0.98 at BP2, BP3, and BP4, respectively; (3) théNANodels performed better than the

472 process-based model for the value of B25ol¥100 ml, with a success index of the

473 process-based and ANN models of 0.79-0.88, 0.55-D.@nd 0.60-0.98 at BP2, BP3,

474 and BP4, respectively; and (4) the process-basatehperformed better than the ANN

475 models for low values (50 and 5 coli100 ml) at BP2 and BP4 and worse than these

476 models for low values at BP3. For instance, theassg index of the process-based and

477 the ANN models for the value of 3B col¥100 ml was 0.76-0.70, 0.56-0.68, and 0.67-
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0.53 at BP2, BP3, and BP4, respectively. Overalks¢ metrics indicated that the
process-based and ANN models satisfactorily predictthe compliance
with/exceedance dE. coli concentrations of 500, 250, 125, 50, andE2%oli100 ml

and, hence, adequately classified the bathing leiteged in the Eo Estuary.

3.3. Configuration and computational trade-off of artificial neural networks

The final ANN configuration was obtained with 13, a tan-sigmoid function for the
fn, a log-sigmoid function for th§,, a Levenberg-Marquardt backpropagation method,
and aT:V:T ratio of 70:15:15. Table 4 summarizes the conigon of ANN models

developed in other studies, including the predidt&d, n; ny, fi, f,, training method,

ne, T:V:T, andR?.

Study FIO®) m my  fal™) o) 1AM a mver R
Chandramouli et Back- " .. )

al. (2007) FC 7 9 Log Log | pagation () 751510 063094
Mas and Ahlfeld Levenberg- . ok
(2007) FC 6 16  Tan Tan o 100 64:16:20  (*

Kim et al. (2008) EC 3 1 Tan Tan Ef(‘)cpkégation 510° 72:8:20 0.90-0.96
He and He (2008) TC 7 3 () () ?ﬁ)cpk;gaﬂon () 56:24:20  0.79

He and He (2008) FC 12 6 () () ?;Cpka-gation (**) 56:24:20 0.82

He and He (2008) EN 7 8 () () Ef(‘)cpkégation (%) 56:24:20  0.86
Tufail et al. (2008) EC 2 4 Log Log Ef(‘)cpkégation 10 80:20:(**) 0.58-0.73
Kazemi Yazdi and Levenberg- .

Scholz (2010) EN 4 8 Tan Tan Marquardt 16 65:15:20 0.15-0.80
Keeratipibul et al. Back- " P

(2011) EC 6 5 Tan Log propagation (***)  70:30:(***) 0.72

Thoe et al. (2012) FC 7 5 Log  Lin V%iiidﬁg:n‘lifﬁﬁqmw 6022020  0.29-0.75
Motamarri and . Levenberg- 99:1 (leave- ,,.
Boccelli, (2012) b 5 6 Tan Lin Marquardt 10° one-out) )
Thoe et al. (2014) FC 12 5 Log Lin dGégg;T 210 60:2020  0.38-0.58
Zhang et al. (2015) FC 14 (%) () () ?ﬁ)cpk;gaﬂon (% 60:2020  0.68

This study (2018) EC 9 15  Tan Log "Mea‘L’requ‘f;f(rj?' 10°  70:15:15  0.55-0.75

(*) FC: Faecal coliform, TC: Total coliform, EC: E. coli, EN: Intestinal enterococci.
(**) Log: Log-sigmoid, Tan: Tan-sigmoid, Lin: Linear.
(***) Non-specified in the study.
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Table 4. Review of previous research predictingdaedicator organisms (FIOs) with
multilayer feedforward networks consisting of omgut layer, one hidden layer, and

one output layer.

As displayed in Table 4, ANN models were appliegtedict FC (50%), EC (29%), EN
(14%), and TC (7%) concentrations. The ratio betwggandn; (n;:n;) ranged from
0.33 to 2.66, with a mean value of 1.17. Fgrthe log-sigmoid, tan-sigmoid and linear
functions were used 4, 6, and 0 times, respectiMalyhe case of, these functions
were used 4, 3, and 3 times, respectively. Backgmation was the most commonly
used training method (56%), followed by the Levegkdarquardt (28%) and gradient
descent methods (16%), ranged between iGnd 510% with the most commonly
used value being $q72%). Regarding™: V: T, the studies considered a range of the
total data available from 56% to 80% for trainifrgm 1% to 30% for validation, and
from 0% to 20% for testing. Based on these ratibs, mean value of:V:T was
67:18:15. Finally, the Rvaried between 0.15 and 0.94, with a mean vale6s.

All simulations were executed on a desktop machvitd an Intel Core i7-3770 3.4
GHz, 64-bit, and 16 GB RAM. Fig. 7 displays the qutational times to simulate.
coli concentrations by the process-based and ANN appesa In Fig. 7, note that
Forecasting: 1 h, Forecasting: 1 day, Forecasfingonth, and Forecasting: 1 bathing
season refer to the simulation times.

The process-based model calibration was the fiegt ®r both approaches, requiring
336 and 168 h for the calibration of hydrodynaméasd water quality modules,
respectively. The second step was applied onlyw/énANN approach, requiring 144 h
for the development of ANN models. At this stepthb@approaches were ready to

forecast FIO concentrations, with computationaletn§in hours) of the process-based
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531

and ANN models for 1 h, 1 day, 1 month and 1 baflseason of 0.25 and 0.01, 6 and

0.01, 78 and 0.02, and 0.03 and 949, respectively.

A
. Hydrodynamic model calibration
o~ 1000 — —
\q—; . Water quality model calibration
E D ANN development
= 100 —
- |:| Forecasting: 1 h
g l:] Forecasting: 1day
10 —
-‘g | D Forecasting: 1 month
©
g D Forecasting: 1 bathing season
= 1 —
Q.
Qo
() 0.1
0 >

Process-based ANN

Fig. 7. Computational times used to simulate Fl@cemtrations by the process-based
model and by the ANN model using the proposed nustlogy. Note that Forecasting:
1 h, Forecasting: 1 day, Forecasting: 1 month,Fardcasting: 1 bathing season refer to

the simulation times.

4. Discussion

4.1. Performance of predictivetools

While the results indicate thdE. coli prediction using the process-based model
throughout the Eo Estuary is reasonably accuratgnsistencies between measured
and predictecE. coli concentrations may still occur because the redqumemerical
precision is subject to the uncertainties in Fl@rmaration methods, the complicated

relationships and processes related to FIO evaluttbe impact of the changing
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environment on FIO concentrations, and/or the maaeluracy limits (Boehm, 2007,
Gronewold and Wolpert, 2008; Shaw et al. 2017).

Since the ANN models were trained by means of tbegss-based model outputs, their
predictions were slightly worse because they wdse hiased by the process-based
model errors (see Fig. 6). In this regard, the ANModels mostly
underestimated/overestimatéd coli concentrations compared with the process-based
model for magnitudes higher/lower than a specifitug because the neural network
approach smoothed the results provided by the psaoased model (see Figs. S5 to S7
in the supplementary materials). For instande, coli concentrations were
underestimated/overestimated for magnitudes hilgivegf than 20, 80, 50, and I
coli/100 ml at BP1, BP2, BP3, and BP4, respectivele (Bi. 5). This effect was
generated by the kernel of the network consistifignanlinear relationships that
prioritized larger weights for the values with agter frequency of input data because
the networks were designed to minimize statisecedrs.

Moreover, predictions were better in BP2 than il BBP3 and BP4 because this beach
is the most influenced by hydrodynamics, i.e., atlee processes were more
significant than diffusion and reaction procesddwe factors that may influence these
differences are the discharge locations and bemstibns related to the main estuarine
water inflows and outflows. The three dischargeslacated in the main channel close
to the eastern margin, such that faecal pollut®transported by the main estuarine
water flows along the main channel until it reactiesadjacent coastal area (advection).
Thus,E. colilevels presented higher values with less varigtal the main channel and
were higher at the eastern margin than at the westargin. In other estuarine areas
such as tidal flats or the western margin, diffasprocesses become significant for

transporting faecal pollution due to lateral disp@n with respect to the main flow
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direction; as a result, the. coli levels presented lower values with more variapilit
Lastly, the coastal areas outside the estuaryaliedlthe lowesE. coli concentrations
because the reaction processes are significaheitransport of faecal pollution due to
the greater distance to the discharge locations¢chwimcreases the travel time and,
subsequently, the bacterial mortality.

First, BP2 is located in the main channel at th&exa margin and close to FD2 (the
major faecal discharge in the estuary). Due tddhation of this point, the evolution of
E. coliconcentrations presented higher values with lagghility than that at BP1, BP3
and BP4, increasing the accuracy of both predidibats. Second, BP3 and BP4 are
located outside the main channel at the westerrgimand close to FD2 and FDS3,
respectively. Due to the locations of these pois,evolution oE. coli concentrations
presented lower values with more variability theattat BP2, decreasing the accuracy
of both predictive tools. Finally, BP1 is locatedthe adjacent western coastal area,
outside the estuary. Due to the location of thisnipothe evolution ofE. coli
concentrations presented the lowest values and/ésbility than that at BP3 and BP4
and more than that at BP2, leading to a betterracguwof both predictive tools at this
point than at BP3 and BP4 and a worse accuracyahBr2.

One way to minimize the impact of imprecise andalde data quality is to categorize
data into overlapping groups and frequencies thge hmeaning relative to the system
under study rather than focusing on predicting eceig concentration (Chandramouli
et al., 2007). Thus, we used a contingency tablaragrror metric to calculate the
accuracy of predictive tools for bathing water gyahanagement. For tHe. coli value

of 500 at BP1, BP2, BP3 and BP4, the performanckeotti predictive tools was the
same because this performance is heavily influetgethe most common category,

namely, “correct negative” (see Table 1), due ®dbncentration measurements always
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being below this threshold. This performance was albserved at BP1 for tle coli
values of 250 and 125. The ANN models performedebehan the process-based
model for intermediate values and worse for lowueal because the neural network
approach smoothed the results.

Efforts are currently underway to expand this metiogy to include a neural network
approach using deep learning (Schmidhuber, 201d)sidering the real-time flow,
salinity, temperature and. coli concentration of faecal discharges (Bravo et28l1,7),
including the effect of other forcings such as wamtt/or waves (Dunn et al., 2014),
and taking into account the effect of extreme eventh as those produced after heavy

rain or due to a failure in the sewer system.

4.2. Configuration and computational trade-off of artificial neural networks

The application of ANNs to the Eo Estuary preseritere was in accordance with the
ANN configurations proposed in other studies. Qoalf ANN configuration confirmed
the tendency to develop ANN models withrgnn; ratio higher than 1 and the validity
of the proposed Eq. (8) as an indicator of theablgt range for trials with,;. Moreover,
our review suggests that the best configuratiorpfedicting FIOs with ANNs might be
structured with a 1rg,:n;<2 ratio, a tan-sigmoid function for th&, a log-sigmoid
function for thef, the Levenberg-Marquardt method, & 1), and aT:V:T ratio of
67:18:15. However, it should be emphasized thatethe not a predefined ANN
configuration that ensures the best approximatfdheoutputs for the targets.
Although ANN models need to be trained and validatehich is a time-consuming
process, one of the most valuable characterisfic&NINs is their ability to perform
long-term forecasting with computational times tihatrely exceed one minute. For

instance, this study highlighted that during thedelsetup of both predictive tools, the
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computational time used by the process-based agiprevas 0.78 times smaller than
that used by the ANN approach due to the addititine spent on ANN development
(see Fig. 7). Conversely, the computational codgtdocecasting are considerably
reduced by the ANN models compared with the prebased model, with decreases of
25, 600, 3900, and 31633 times for forecasting 1 lilay, 1 month and 1 bathing
season, respectively. Thus, the longer the forexpperiod, the greater the reduction in
computational time by ANN models.

Therefore, both approaches have advantages fareliff purposes. The value of the
ANN model presented here is that it is very quickmplement and can be used for
nowcasting of bathing water quality, whereas a ggedbased model can be used to
investigate processes that govern the levelg.ofoli in the estuary. Once the ANN
model is trained and validated, it can be easilgduby bathing water managers to
identify potential risks for users, support deaisinaking tasks and allow

administrations to promote preventive managemeiareac

5. Conclusions

The proposed methodology forecasts FIO concent&tf@g. coli in this study) and
classifies bathing sites for any period, integigitihe benefits of laboratory analyses,
numerical modelling, and machine learning. Our gtddmonstrated that the proposed
method allows the evolution of FIO concentratiamb¢ calculated for any period at the
bathing sites, optimizing the trade-off between patational cost and the result
accuracy of conventional process-based models atatditiven models. Thus, ANN
models are viable emulators of highly nonlinearcpss-based models driven by highly
variable forcings. However, surrogate validity adesof the training region is difficult

to evaluate and should be further researched.
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FIO concentrations were the focus here, but thénatetould be adapted to address the
concentration of other water constituents suchadal tissolved oxygen, nutrients,
suspended sediments, heavy metals, organic midubgais, and/or microplastics or to
predict FIO concentrations in shellfish, with thienaof protecting consumers from
faeces-contaminated shellfish.

From a technical perspective, the ANN models hava&rang predictive ability for
nonlinear systems and can enhance the overalbilélfaand applicability of process-
based models. From the operational perspectivantpeementation of ANN models is
highly efficient at a very low cost compared to ihglementation of process-based
models (see subsection 3.3). This capability i@darly useful in scenarios where on-
the-spot decisions are needed (e.g., temporaryreas a bathing site), for which the
use of complex and detailed process-based modaldeaumbersome. Thus, ANN
models could be applied in early warning systenusttie public to minimize contact
with bathing waters impacted by high faecal leglaily planning of bathing sites).
Nevertheless, the accuracy of river flows and melegical forecasts must be

considered for any temporal horizon.
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Fig. 1. Map of the Eo River Basin and the Eo Estuardicating the locations of the
tidal gauges (TG1-TG4), monitoring points (MP1-MP3flow gauge (FG1),
meteorological station (MS1), bathing water qualttyntrol points (BP1-BP4), and
faecal discharges (FD1-FD3) used in the setup efpifedictive tools. Bathymetry is
also presented with a zoomed-in image of the canterinner areas of the Eo Estuary
(UTM projection ED50 30N).

Fig. 2. Schematic view of a feedforward neural mekwvith five nodes in the input
layer, three nodes in the hidden layer and one modee output layer. Synapses are
oriented from left to right.

Fig. 3. Overall methodological approach.

Fig. 4. Schematic view of the proposed methodoltgydevelop artificial neural
networks to analyse bathing water quality critémiastuaries.

Fig. 5. Performance of the final artificial neuratworks (outputs) in emulatirig. coli
concentrationsE. col/100 ml) computed by the process-based model (&rge BP1
(a), BP2 (b), BP3 (c), and BP4 (d). The bia§,dhd CE magnitudes are also shown for
the four bathing sites (BP1-BP4). The colorbar shtive occurrence probability of the
scatter dots defined by the coli concentration of targets (process-based model) and
outputs (ANN model).

Fig. 6. Performance of the process-based mod&dfiharkers) and the ANN models
(unfilled markers) in simulating th&. coli concentrationsE. colV100 ml) at BP1
(squares), BP2 (circles), BP3 (diamonds), and Bffah@les) during the bathing season
of 2013 (red), 2014 (green), and 2015 (blue). Tias,t¥, and CE magnitudes are also
shown for the four bathing sites (BP1-BP4) and merég all the bathing seasons and

locations at the same time (global).
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Fig. 7. Computational times required to simulat® Floncentrations by the process-
based model and by the ANN model using the propasethodology. Note that

Forecasting: 1 h, Forecasting: 1 day, Forecasfingonth, and Forecasting: 1 bathing
season refer to the simulation times.

Table 1. (a): Contingency table used to assessdberacy of predictive tools for the
prediction of faecal indicator organism (FIO) comications. (b): Error metrics of the

contingency table (Source: Manzato, 2007; Benriett £2013; Bedri et al. 2016).

Table 2. Model parameters used in the calculatfd. @oli transport and mixing.

Table 3. Computed metrics for the assessment adi¢heracy of the predictive tools in
predicting compliance with/exceedance of Ehecoli values of 500, 250, 125, 50, and
25E. colV100 ml.

Table 4. Review of previous research predictingdaendicator organisms (FIOs) with

multilayer feedforward networks consisting of omgut layer, one hidden layer, and

one output layer.
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Total
yes no
a) Contingency table
. Range of Ideal
Metric Formula geo 2" Notes
values value
Accuracy Hits + Correct negatives 0-1 | It is heavily influenced by the most
(fraction correct) Total common category, usually “no event”.
Bias score Hits + False alarms 0o | Indicates if the model tends to under- (<1)
(frequency bias) Hits + Misses or over- (>1) estimate.
Hitrate Hits Sensitive to hits but ignores false alarms.
(Probability of _— 0-1 1 af
detection) Hits + Misses Good for rare events.
False alarm rate False alarms Sensitive to false alarms but ignores
(Probability of Fal ] , n m - 0 misses
false detection) alse alarms + Correct negatives .
. 1 Hits Correct negatives Weights equally the ability of the model
Success index — - [— - 0-1 1 to correctly detect occurrences and non-
2 lHits + Misses Total occurrences of events.
. . Measures the fraction of observed cases
Hits + Correct negatives .
Threat score ! gatt 0-1 1 that were correctly modelled. It penalizes

Total

both misses and false alarms.

b) Error metrics



Constant Value Units Source

DH, DV Time series s Hydrodynamic module
T Time series °C Hydrodynamic module
CCl Time series g/th Hydrodynamic module
I Time series W/ith Meteorological station (MS1)
Kp 0.8 1/days Chapra (1997)
DL 1 days *
fuv 0.12 - Diffey (2002)
€ 0.35 1/m FLTQ (1990); Eq. (5)
Kr 1.07 - This study (calibration)
krd 0.086 M/W-days This study (calibration)
ke 2-10* m’/g-days This study (calibration)

(*) Day-night variations are considered within the irradiation (I;).



Value = 500 Value = 250 Value = 125 Value=50 Value=25
Bathing Contingency E. coli/100 ml E. coli/100 ml E. coli/100 ml E. coli/100 ml E. coli/100 ml
site table (metrics) Pg;gzsr ANN E;:gdessr ANN E;:gdessr ANN E;:gdessr ANN E;ggdessr ANN
BP1 Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bias score *) *) *) ™*) *) ™* 1.00 1.00 1.00 1.00
Hit rate *) *) *) *) *) *) 1.00 1.00  1.00 1.00
Falseaarmrate  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Successindex (%) *) *) *) *) *) 0.92 092 092 0.92
Threat score *) *) 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00
BP2 Accuracy 1.00 1.00 0.88 0.88 0.96 1.00 0.96 0.92 0.96 0.84
Bias score *) *) 1.33 133 0.86 1.00 1.09 1.00 0.93 0.78
Hit rate *) *) 0.67 0.67 0.86 1.00 1.00 0.92 0.93 0.78
Faseadarmrate 0.00 0.00 0.09 0.09 0.00 0.00 0.07 0.08 0.00 0.00
Success index *) *) 0.73 0.73 0.79 0.88 0.76 0.70 0.67 0.53
Threat score *) *) 0.88 0.88 0.96 1.00 0.96 0.92 0.96 0.84
BP3 Accuracy 1.00 1.00 0.96 0.96 0.88 0.96 0.77 0.92 0.88 0.96
Bias score *) *) 0.00 000 025 050 085 082 083 0.94
Hit rate *) *) 0.00 0.00 0.25 0.50 0.69 0.82 0.83 0.94
Faseadarmrate 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00
Success index *) *) 0.48 0.48 0.55 0.71 0.56 0.68 0.56 0.62
Threat score *) *) 0.96 0.96 0.88 0.96 0.77 0.92 0.88 0.96
BP4 Accuracy 1.00 1.00 1.00 1.00 0.92 1.00 0.90 0.73 0.91 0.83
Bias score *) *) 1.00 1.00 0.33 1.00 0.78 0.78 0.88 0.88
Hit rate *) *) 1.00 1.00 0.33 1.00 0.78 0.56 0.88 0.82
Falseadarmrate  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.17
Success index *) *) 0.98 0.98 0.60 0.98 0.67 0.53 0.57 0.52
Threat score *) *) 1.00 1.00 0.92 1.00 0.90 0.73 0.91 0.83

(*) Indeterminate form 0/0.



Training

Study FIO) m my  ful™) fol™) oo n, T:V:T R
gh?ggg;m” & 7 9 Log Log ?gcgg o (***) 751510  0.63-0.94
('\ggf)?')“d Anlfdd o 6 16  Tan Tan LM?EL%%_ 10° 641620  (***)
Kimetal.(2008) EC 3 1 Tan  Ten ggcgg o 510 72:8:20 0.90-0.96
Heand He (2008) TC 7 3 (*%) (%) ?gcr';g o (***) 56:2420  0.79
Heand He (2008)  FC 12 6 (*%) (%) ?gcp';g o (***) 56:24:20  0.82
Heand He (2008) EN 7 8 (*%) (%) Eraocgg o (***) 56:24:20  0.86
Tufail et dl. (2008) EC 2 4 Log  Log ggcgg o 10 80:20:(***)  0.58-0.73
gcaﬁ;”;i(goalz(‘;)i ad gy 4 8 T Tan kf!ﬁéﬁt;%? 10° 651520  0.15-0.80
é%elrf;ipib”'e‘a" EC 6 5 Tan  Log ?gcgg dion | (F%) T030.(*%) 072
Thoeetd. (2012) FC 7 5 Log  Lin S{fﬁﬁ%‘jﬁe’n}t 10° 602020  0.29-0.75
I e s o T wn lEmer g Blee
Thoeetd. (2014) FC 12 5 Log  Lin degéne{“‘ 210° 60:20:20  0.38-058
Zhangetd. (2015) FC 14 (*%%)  (FF*) () ?gcr';g o (***) 60:20:20  0.68
Thisstudy (2018) EC 9 15 Tan Log mﬁlﬁ% 10°  70:1515  0.55-0.75

(*) FC: Faecal coliform, TC: Total coliform, EC: E. coli, EN: Intestinal enterococci.
(**) Log: Log-sigmoid, Tan: Tan-sigmoid, Lin: Linear.

(***) Non-specified in the study.
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Setting the ANN Selecting th.e AI_\IN Determlnl.ng the Defining the final Validating the ANN
> —-» transfer/activation |=»|  ANN training |=» —»| accuracy to classify
architecture . ANN A
functions method bathing sites
o o £ £ 9

Determination of the output
variable/s to set number of
output nodes (n,) 2 FIO
concentration at one location

Selection of activation
functions for water quality
management (Linear, Log-

Sigmoid, Tan-Sigmoid)

o

g

Determination of the input
variable/s driving output
variable/s in estuaries to set
number of input nodes (n;)

Combination of selected
activation functions for the
hidden and output layers
(activation cases)

o

Adjustment of the number of
hidden nodes (n;,)
0.5n:-2 <n,<2n#+2 (node
cases)

Selection of the training
method (training cases)

o

Selection of the the ratio of
the training and validation
dataset (ratio cases)

9

Initial weights are generated
randomly to values close to
zero

o

Selection of the number of

training epochs (n.) = min

(iterations) without changes
in the results

Combination of key
parameters (node cases x
activation cases x training

cases X ratio cases)

Training of all ANNs

Application of the final ANN
to forecast the temporal
evolution of FIOs during

bathing seasons

o

o

Comparison of the outputs
and targets for every
developed ANN model (Bias,
R2, CE)

Classification of the bathing
site according to Directive
(2006/7/EC) by using the ANN
output

o

o

Selection of the Final ANN =

Best fit = min(Bias),
min(R2), min(CE)

Comparison of the
classification obtained by the
ANN with the reported
classification
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The method integrates laboratory analyses, numerical modelling and machine
learning.

ANN configuration for predicting E. coli concentration in estuaries is
determined.

ANNSs are viable emulators of process-based models driven by highly variable
forcing.

The longer forecasting, the greater the reduction in computational time using
ANN.

Real -time management of bathing water quality is enabled by using ANNS.
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