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Abstract

This work tackles the problem of scheduling the charging of electric vehicles in
a real-world charging station subject to a set of physical constraints, with the
goal of minimising the total tardiness with respect to a desired departure date
given for each vehicle. We model a variant of the problem that incorporates
uncertainty in the charging times using fuzzy numbers. As solving method, we
propose a genetic algorithm with tailor-made operators, in particular, a new
chromosome evaluation method based on generating schedules from a priority
vector. Finally, an experimental study avails the proposed genetic algorithm
both in terms of algorithm convergence and quality of the obtained solutions.

Keywords: electric vehicle, charging station, scheduling, genetic algorithm,
fuzzy number, heuristic

1. Introduction

Perceived as futuristic prototypes not so long ago, electric vehicles (EVs)
and all the technology surrounding them have experimented an extraordinary
growth in the last years, to the point that now EVs are seen as a real alternative
to fossil-fuelled vehicles, producing an increasing impact on the economy and
the environment. Clearly, they reduce the dependency on petrol and promote
alternative more environmentally-friendly sources of energy. Also, they can
act as valuable distributed energy resources, smoothing intermittency due to
renewable energy sources and supporting grid-wide frequency stability (Kang
et al., 2013).

The use of EVs also presents several technological challenges, as deciding
the optimal locations of new vehicle charging stations You and Hsieh (2014)
or the development of smart systems that manage charging grids in order to
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optimally distribute and balance electricity consumption while satisfying EVs’
electricity demands. A great variety of problems arise depending, for instance,
on the charging infrastructure or the objectives to be satisfied (Rahman et al.,
2016). Recent reviews of methods and strategies to manage electricity grids and
schedule EVs charging can be found in Hernandez-Arauzo et al. (2015).

Here we consider a problem that consists in scheduling the charging of a
set of EVs taking into account the characteristics of a real-life charging station
described in Sedano et al. (2013). The station has been designed to be installed
in private car parks under simplicity and economy criteria. Each parking place
in the car park is owned by a particular user and has a charging point. Every
charging point is connected to one of the lines of a three-phase electric feeder,
with a centralised control that establishes the power available to the point at
any time. There are power constraints limiting the number of EVs that can
be simultaneously charging on one line. There is also a balance constraint that
limits the difference in active charging points between different lines. It is this
balance constraint that poses the most relevant difference with respect to other
charging models in the literature.

We will tackle a variant of the static scheduling problem for the charging
station presented by Hernandez-Arauzo et al. (2015). Their problem statement
assumes that the set of EVs that need to be charged within a planning horizon is
known in advance, together with the exact arrival time, desired departure time
and charging time of each EV. The goal is to provide a charging schedule for all
the EVs that is feasible in the sense that all technical constraints hold and such
that the total tardiness with respect to the desired departure times is minimised.
This static version of the problem is of great importance, since it constitutes
the basis for solving a dynamic and hence more realistic version. However, it
assumes that charging times are exactly known in advance, an assumption that
might be deemed as unrealistic. We thus propose in this work to narrow the gap
between the academic model and the real situation by incorporating uncertainty
into charging times.

We propose to model uncertain charging times using fuzzy sets. The use of
fuzzy sets to model uncertain durations in scheduling is well established. Among
others, Chanas and Kasperski (2001) minimise maximum lateness in a single
machine scheduling problem with fuzzy processing times using an extension
of Lawler’s algorithm, and the parallel machine scheduling problem with fuzzy
processing times is tackled in Balin (2011). We also find numerous works focused
on shop scheduling problems with fuzzy durations and, in particular, in the job
shop in its multiple variants Liu et al. (2015) Abdullah and Abdolrazzagh-
Nezhad (2014). Fuzzy random theory have been successfully used to model
imprecise parameters in real-life problems, such as a location-allocation problem
in a container freight station Zhong et al. (2015).

There are a few examples where fuzzy sets have also been used in problems
related with EV charging. However, they are mostly used to model preferences
or soft constraints and to perform multicriteria decision making, for instance,
to decide on the optimal site selection of EV charging stations in Guo and Zhao
(2015) or to coordinate EV charging in an electric grid in Hajforoosh et al.
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(2015). More related to our work, in Ansari et al. (2015) fuzzy sets model elec-
tricity market uncertainties with the aim of optimising the coordinated bidding
of EVs used as ancillary services in the electricity grid. To our knowledge, this
is the only proposal in the literature to use fuzzy sets to model uncertain pa-
rameters in problems related to EVs, making ours the first attempt to schedule
the charging of EV considering fuzzy times.

The remaining of this paper is organised as follows. Section 2 will provide
the necessary background on fuzzy numbers and a new result to handle fuzzy
charging times. Then, in Section 3 we will show how the use of triangular fuzzy
numbers to model charging times leads to a new formulation of the problem.
In Section 4 we will propose a first solving method for the resulting fuzzy prob-
lem. This is a genetic algorithm with indirect encoding, based on a competitive
method for the deterministic problem given in Garćıa-Álvarez et al. (2015), but
where some operators need to be adapted to the fuzzy setting. In particular,
the decoding operator will consist in a new purpose-built algorithm to obtain
feasible charging schedules from a priority vector. The resulting method will be
evaluated with an experimental study in Section 5. Finally, some conclusions
and perspectives for future work will be given in Section 6.

2. Uncertainty in charging times

In real-life problems it is frequent that different sources of uncertainty exist
and some input data are not precisely known; in our case, the time it will take
for an EV to charge is not exactly known in advance. Currently, crisp charging
times are estimated from available historical data, despite the low quality of
these data. The alternative of modelling these ill-known times instead with
probability distributions is not an option, since it would require to have more and
better data. Also, the resulting problem would be excessively complex from the
computational point of view. In cases such as this, fuzzy sets constitute a very
interesting alternative that may help building a tradeoff between the expressive
power and the computational difficulties of stochastic scheduling techniques
while tackling uncertainty (Dubois et al., 2003, 2008; Wong and Lai, 2011).

A fuzzy quantity q̃ is a fuzzy set on the reals R with membership function
µq̃ : R → [0, 1]. The α-cuts of a fuzzy quantity are given by q̃α = {r ∈ R :
µq̃(r) ≥ α}, α ∈ (0, 1], and its support is defined as q̃0 = {r ∈ R : µq̃(r) > 0}. A
fuzzy interval is a fuzzy quantity whose α-cuts are intervals (bounded or not)
and a fuzzy number m̃ is a fuzzy quantity with compact support and unique
modal value whose α-cuts are closed intervals, denoted m̃α = [mα,mα]. In our
context, a fuzzy interval is seen as a possibility distribution, representing more
or less likely possible values for a charging time.

Here we propose that each uncertain charging time be modelled using a
triangular fuzzy number or TFN, given by an interval [a1, a3] of possible values
(its support) and a unique modal value a2 ∈ [a1, a3] with µâ(a2) = 1. Hence,
a TFN â can be denoted â = (a1, a2, a3) and its membership value is given by
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the following equation:

µâ(x) =


x−a1
a2−a1 : a1 ≤ x ≤ a2
x−a3
a2−a3 : a2 < x ≤ a3
0 : x < a1 or a3 < x

(1)

Notice that any real number a ∈ R can be seen as a particular case of TFN
â = (a, a, a) with all its defining points equal to a.

2.1. Arithmetic of TFNs

To handle charging times given as TFNs, we need to be able to compute the
addition, substraction and maximum of two TFNs. In principle, the arithmetic
operations on TFNs can be obtained by extending the corresponding operations
on real numbers using the Extension Principle Dubois and Prade (1986). Both

the addition and the substraction of two TFNs â and b̂ are TFNs given by

â+ b̂ = (a1 + b1, a2 + b2, a3 + b3) (2)

â− b̂ = (a1 − b3, a2 − b2, a3 − b1) (3)

Regarding the maximum, computing the resulting expression is cumbersome,
if not intractable; also, the set of TFNs is not closed under this operation.
For the sake of simplicity and tractability of numerical calculations, it is fairly
common in the literature to approximate the maximum, either using a ranking
method, as it is done in Lei (2010), or by interpolation, following Fortemps
(1997), evaluating only the operation on the three defining points of each TFN,
that is:

max(â, b̂) ≈ maxI(â, b̂) = (max(a1, b1),max(a2, b2),max(a3, b3)). (4)

The approximation maxI has been widely used in the scheduling literature,
from earlier works such as (Fortemps, 1997; Kuroda and Wang, 1996) to more
recent ones (Palacios et al., 2015a; Wang et al., 2010), to mention but a few.
Additional arguments to support this approximation can be found in (Palacios
et al., 2017).

Unless otherwise stated and for the sake of a simpler notation, we shall
simply write max when referring to the interpolated maximum maxI .

2.2. Expected value

When working with fuzzy numbers, it is often useful in practice to obtain
their expected value, similarly to what is done with probability distributions in
stochastic settings. In particular, for a TFN â, its expected value is given by:

E[â] =
1

4
(a1 + 2a2 + a3). (5)

This expression is obtained following different approaches, among others as the
expected value of a fuzzy number based on random sets (Heilpern, 1992), as the
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generative expected value induced by the evidence â (Chanas and Nowakowski,
1988), as the centre of the mean value of â (Dubois and Prade, 1987) and as
the expected value of the so-called pignistic probability distribution that is the
centroid of the set of probabilities P(Πâ) dominated by the possibility measure
associated with â (Dubois, 2006).

Notice that, for a TFN â it is always the case that the expected value lies
in its support, that is, a1 ≤ E[â] ≤ a3. It is also easy to provide an alternative
expression for the expected value as follows:

E[â] = a2 +
(a3 − a2)− (a2 − a1)

4
. (6)

An added value of expected values is that they allow to compare fuzzy num-
bers. Indeed, no natural order exists in the set of fuzzy numbers, so numerous
ranking methods have been and keep being proposed in the literature (Brunelli
and Mezei, 2013). Several of these methods have been used in the field of fuzzy
scheduling (cf. (Abdullah and Abdolrazzagh-Nezhad, 2014; Dubois et al., 2003)).
In particular, the expected value defines an index-based ranking method, induc-
ing a total ordering ≤E in the set of TFNs (Fortemps, 1997), where for any two

TFNs â, b̂,
â ≤E b̂ if and only if E[â] ≤ E [̂b]. (7)

Notice that ≤E coincides with several other ranking methods from the literature
which are not based on expected values, as highlighted in (Palacios et al., 2015b).
Additionally, Brunelli and Mezei (2013) present a numerical study that suggests
that, for TFNs, the ranking based on the expected value is very similar to seven
more ranking methods, in the sense that the ordering they induce in a sample
of TFNs is strongly correlated.

Interestingly, it is also possible to establish a relationship between the rank-
ing method based on expected values and classical interval comparison in the
light of imprecise probabilities (Destercke and Couso, 2015; Dubois, 2011). In
particular, it comes down to using Hurwicz criterion for classical interval com-
parison on upper and lower expectations derived from A. This provides us with
an interpretation for comparisons based on ≤E as those corresponding to a
decision maker who keeps an equilibrium between pessimism and optimism.

2.3. Defining a TFN subject to a set of constraints

When scheduling the charge of EVs, we will need to determine fuzzy starting
times for the charging of each EV subject to a set of constraints. The following
result gives us a means to do so.

Theorem 1. Let e ∈ R be a number and ĉ = (c1, c2, c3) a TFN such that
E[ĉ] ≤ e. A TFN ŝ = (s1, s2, s3) satisfying:

E[ŝ] = e (R0)

ci ≤ si, i = 1, 2, 3 (R1,2,3)
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is given by the following expression:

if E[ĉ] = e, ŝ = ĉ;

if E[ĉ] < e, c3 − e ≤ e− c1, ŝ = (s1, s2, s3) where


s3 = max(e, c3),

s2 = max(e, c2),

s1 = 4e− 2s2 − s3;

(8)

if E[ĉ] < e, c3 − e > e− c1, ŝ = (s1, s2, s3) where


s1 = c1,

s3 = c3,

s2 = 1
2 (4e− s1 − s3).

Proof. The definition of ŝ in (8) implies that R0 always holds. Let us now
prove that si ≥ ci, i = 1, 2, 3. We distinguish three cases depending on how ŝ is
defined in (8):

1. If E[ĉ] = e, it follows immediately since ŝ = ĉ.

2. If E[ĉ] < e and c3 − e ≤ e − c1, then, s3 = max(e, c3) ≥ c3 and s2 =
max(e, c2) ≥ c2. If e > c3, it turns out that s3 = s2 = s1 = e > c1.
If e ≤ c3 and therefore 0 ≤ c3 − e ≤ e − c1, we prove that s1 ≥ c1 by
distinguishing 2 subcases:

(a) If c2 < e, s2 = e and s3 = c3, so (8) together with the fact that
c3 − e ≤ e− c1 mean that:

s1 = 2e− c3 = e− (c3 − e) ≥ e− (e− c1) = c1.

(b) If e ≤ c2, s3 = c3 and s2 = c2. But since e = E[ŝ],

E[ŝ] = c2 +
(c3 − c2)− (c2 − s1)

4
= e ≤ c2,

if and only if
(c3 − c2)− (c2 − s1) ≤ 0,

or equivalently,
s1 ≥ c2 + c2 − c3.

But also E[ĉ] < e, that is:

E[ĉ] = c2 +
(c3 − c2)− (c2 − c1)

4
< e ≤ c2,

and therefore, c3 − c2 < c2 − c1, that is, c2 − c3 > c1 − c2. In
consequence,

s1 ≥ c2 + c2 − c3 > c2 + c1 − c2 = c1.
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3. If E[ĉ] < e and c3 − e > e− c1, then s1 = c1 y s3 = c3. Let us now show
that s2 ≥ c2. Indeed, E[ĉ] < e if and only if:

c2 <
4e− c1 − c3

2
.

but since c1 = s1, c3 = s3, by definition of ŝ:

s2 =
4e− c1 − c3

2
,

hence c2 < s2.

3. Problem Description

As mentioned earlier, our problem is motivated by a real charging station,
described in detail by Sedano et al. (2013). The station was designed to be
installed in a community car park consisting of privately-owned parking spaces .
Its general scheme is given in Figure 1. The charging grid is fed by a three-phase
electric power source, resulting in three so-called charging lines. Each parking
space has a charging point connected to one of the lines but the contracted
power limits the number of charging points that can be simultaneously fed on
each line. Additionally, due to legal and technical reasons, there must be a load
balance between different lines, so the power consumption (i.e. number of active
charging points) does not differ much from one line to another. The station is
controlled by a distributed system with a master agent per line controlling a
number of slaves. Each slave in turn controls two consecutive charging points on
the same line and is responsible for activating and deactivating them, as well as
recording asynchronous events such as the arrival of a new vehicle. The master
gathers information from the slaves and sends connection and disconnection
orders to them, after accessing the database where the vehicles’ data and the
charging schedule are stored.

When users park their vehicles in their own parking spaces they need to
provide a desired departure time. These values are used by the intelligent sys-
tem to schedule the charging of all vehicles within a time frame. As proposed
in Hernandez-Arauzo et al. (2015), we assume a simplified model of the problem
whereby a user never departs before the vehicle has finished charging, so the
objective is to minimise the tardiness of the charge completion time with respect
to the desired departure date given by the user.

3.1. Problem formulation

Following the general problem description, the Electric Vehicles Charging
Scheduling Problem with Fuzzy charging times or FuzEVCSP in short is formu-
lated as follows.

In an instance of the FuzEVCSP problem there are three charging lines
Li, 1 ≤ i ≤ 3. Each line Li has ni charging points and there is a maximum
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Figure 1: General structure of the charging station network and its components: (1) power
source, (2) three-phase electric power, (3) charging points, (4) masters, (5) server with
database, (6) communication RS 485, (7) communication TCP/IP, and (8) slaves.

number N > 0 of charging points that can be simultaneously active. Line Li
receives Mi electric vehicles vi1, . . . , viMi

between time 0 and a planning horizon
H. Each vehicle vij has an arrival time tij ≥ 0, an uncertain charging time
p̂ij > 0 (represented as a TFN) and a departure time dij by which the vehicle
should ideally be fully charged, representing the time when the driver wishes to
remove the vehicle. Here we assume that the arrival and departure times are
crisp times the user. Additionally, we assume that they are consistent with
charging times in the sense that dij ≥ tij + p3ij . The rationale here is that the
departure time should allow for the vehicle to be fully charged provided that it
starts charging as soon as it arrives, even if it takes the longest possible charging
time.

A feasible schedule is an assignment of charging starting times ŝtij to all
EVs vij , 1 ≤ i ≤ 3, 1 ≤ j ≤Mi such that the following constraints hold.

3.1.1. Constraints

Arrival time. All vehicles must start charging after their arrival time:

∀vij , st1ij ≥ tij (9)

No preemption. Once a vehicle starts charging, it cannot be disconnected before
it finishes charging. That is, if ĉij denotes the time when vij finishes charging,
it must be the case that:

∀vij , ĉij = ŝtij + p̂ij (10)

8



Maximum active charging points per line. The number of charging points that
are active on a line at any instant cannot exceed a given threshold N . define
the set of EVs that may be charging on the same line when vij starts charging
as:

Aij = {vik : ∃h ∈ {1, 2, 3} hik ≤hij ,max(, ) 6=}, (11)

and |Aij | denotes its cardinal, then the constraint can be expressed as follows:

∀vij , |Aij | ≤ N. (12)

Balance between lines. The load of active charging points must be evenly dis-
tributed among lines. Originally, for the deterministic problem, if Ni(t) denotes
the number of active charging points on line Li, Hernandez-Arauzo et al. (2015)
modelled this constraint using a threshold ∆ ∈ [0, 1] representing the maximum
imbalance between any two different lines Li and Lj , so that:

∀t ≥ 0, max
1≤i,j≤3

( |Ni(t)−Nj(t)|
N

)
≤ ∆. (13)

In a deterministic setting, we consider that a vehicle vij is charging at instant
t if stij ≤ t ≤ cij . We extend this concept to the fuzzy setting by taking t as a
TFN t̂ = (t, t, t), so the number of (expected) active charging points at instant
t ≥ 0 on line Li, 1 ≤ i ≤ 3, is defined as:

Ni(t) =

Mi∑
j=1

δij(t) (14)

where

δij(t) =

{
1 : if ŝtij ≤E t̂ ≤E ĉij

0 : otherwise.
(15)

Thus, this constraint refers now to the expected load balance (since Ni(t) is
defined in terms of expected values).

3.1.2. Goal

The goal is to find a feasible solution minimising the total tardiness with
respect to departure dates, defined as follows:

T̂ =

3∑
i=1

Mi∑
j=1

max(0, ĉij − dij) (16)

Since the objective value T̂ is a TFN, solutions will be compared using ≤E .

4. Genetic Algorithm

Genetic algorithms or GAs in short are metaheuristic methods capable of
efficiently exploring large search spaces. They also allow to incorporate heuristic
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knowledge on the problem domain. Thus, they constitute solving methods for
scheduling problems that yield good quality solutions with reasonable compu-
tational effort (Talbi, 2009).

Here, we propose a GA based on that proposed by Garćıa-Álvarez et al.
(2015) for the deterministic version of the EV charging problem. This GA
starts from an initial population composed by a mixture of random and heuris-
tic individuals. It then evolves the initial population applying genetic operators
until a stopping criterion is met, more precisely, until a solution with null total
tardiness T̂ = 0 is found or after a given number maxiter of consecutive iter-
ations have passed without improving the fitness of the best individual in the
population. The pseudocode for this GA can be seen in Algorithm 1.

The GA uses an indirect encoding, so in order to build a solution it makes use
of a purpose-built schedule generation scheme that schedules the EV charging
according to the information coded in the chromosome. This decoding operator
has been newly designed for the problem at hand, while the remaining operators
have been adapted from the existing GA, taking into account the differences
between the deterministic and the fuzzy setting, as explained in the following
subsections.

Input A problem instance P
Output A schedule S for P

Generate the initial population;
while Termination criterion is not satisfied do

Group all chromosomes randomly in pairs;
Apply crossover operator to each pair with probability pX ;
Apply mutation operator to every offspring with probability pM ;
Evaluate new chromosomes;
Apply replacement strategy to pass chromosomes onto the next generation;

end while
return The schedule S from the best chromosome;

Algorithm 1: The genetic algorithm

4.1. Chromosome representation and evaluation

Chromosomes code solutions as a permutation of the set of EVs. To build
a charging schedule S from a permutation V , we need a schedule-generation
algorithm that assigns charging starting timeŝto all EVs based on the priority
vector represented by V . To this end, we propose here a schedule generation
scheme that takes into account the constraints and characteristics of the fuzzy
problem. The rationale is to sequentially assign to each EV the earliest possible
starting time such that the problem constraints as described in Section 3.1 hold
with respect to the already existing partial schedule.

The detailed procedure can be seen in Algorithm 2, where fuzz(ĉ, e) denotes
the TFN built from ĉ and e according to Theorem 1. This scheme divides every

10



Input A permutation V of the EVs
Output A schedule S of charging starting times for all EVs

Consider every line Li divided into N sublines lki : k = 1 . . . N ;
Initialise completion charging time on each subline ← 0
for all vehicle vij ∈ V do
//Select subline where vij can start charging the earliest

êst
k ← max(, tij), k = 1, . . . , N

k∗ ← arg min{E[êst
k
]}

//Find interval from stEij with balance between lines

stEij ← min{t ≥ E[êst
k∗

] : (13) holds in the interval [t, t+ p̂ij)}
//Move to the subline where keeping balance generates least idleness

k∗ ← arg max{E[êst
k
] : E[êst

k
] ≤ stEij}

//Assign charging starting time and update subline completion times

ŝtij ← fuzz(êst
k∗

, stEij)

ĉi
k∗ ← ŝtij + p̂ij

end for
return The schedule S

Algorithm 2: Schedule generation scheme

line Li into N virtual sublines lki , 1 ≤ k ≤ N , where N is the maximum number
of active charging points allowed per line. By doing so, the constraint in (12)
regarding the maximum number of active charging points holds immediately.
Then, charging starting times for all vehicles are assigned in the order in which
they appear in the input vector V . For a particular EV vij , its earliest possible

starting time on each subline lki , denoted êst
k
, is computed as the maximum

between its arrival time tij and the time ĉi
k when the last EV already scheduled

on that subline finishes charging. This guarantees that the first constraint in (9)
holds. The line with the smallest earliest possible starting time (according to
≤E) is selected as a candidate to schedule vij on that subline. However, before a
starting time can be assigned to vij , we need to ensure that the balance between
lines, as expressed in (13), holds with respect to the already scheduled EVs for
all the charging time . This might imply delaying the start of charging of vij
so its expected starting time coincides with an instant stEij posterior to the
expected value of its earliest possible starting time, with a big gap in between.
The schedule building scheme thus tries to find another subline where keeping
the balance generates the least idleness. It is only after this step that the
subline k∗ where vij should be charged is selected. The starting time is then
established as the fuzzy time that can be obtained from the earliest possible

starting time êst
k∗

on that subline and the earliest instant where balance holds
stEij , according to Theorem 1. Notice that, according to that result, E[] = stEij

(so balance holds) and = max(, êst
k∗

) (so the charging time is posterior to the
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EV’s arrival and the constraint regarding maximum number of active charging
points holds as well).

Let us illustrate this schedule-generation procedure with a toy problem where
a total of 6 EVs must be scheduled: four EVs {v11, v12, v13, v14} on line L1, one
EV {v21} on L2 and one EV {v31} on L3. The arrival time is 0 for every EV
except for v14, with t14 = 8. The charging times are given by p̂12 = p̂21 = p̂31 =
(4, 5, 6), p̂11 = (10, 11, 12), p̂13 = (14, 15, 17), and p̂14 = (5, 6, 7), and departure
times are d12 = d21 = d31 = 9, d11 = 11, and d13 = d14 = 20. The maximum
number of active charging points on every line is N = 3 and the maximum
imbalance threshold is ∆ = 2

3 , so at every instant there should be at most an
expected load difference of 2 EVs between any two lines.

Figure 2 illustrates the scheduling procedure for the situation where the
algorithm’s input is the permutation (v11, v21, v31, v12, v13, v14) and all EVs have
been scheduled except for the last one v14. In order to schedule it, we search for
the subline k in L1 where v14 could start to charge the earliest, which turns out

to be l31, with êst
3

= (8, 8, 8) (Figure 2(a)). Then, we compute the first instant
stEij ≥ 8 after which balance between lines holds for the whole charging time of

v14, yielding stEij = 11 (Figure 2(b)). We then notice that v14 can be scheduled

from that instant on a different subline l21 (Figure 2(c)). Hence, the value for
ŝt14 is obtained from stE14 = 11 in such a way that the EV can start charging

after the earliest starting time on that subline êst2, that is, ŝt14 = (10, 11, 12).

4.2. Genetic operators

Except for the above decoding algorithm, the rest of the GA follows closely
the one proposed by Garćıa-Álvarez et al. (2015) for the deterministic version
of the problem. Let us briefly describe its main characteristics.

To generate an initial population both diverse and containing good individ-
uals, one third of the individuals are generated as random permutations and
each one of the other two thirds is generated by applying a stochastic version
of a different dispatching rule. The first rule, DDR (Due-Date Rule) orders EVs
in ascending order according to their departure time dij . The second rule, EST
(Earliest Starting Time) orders EVs in ascending order according to their ar-
rival time tij . The stochastic versions of both rules select the next EV to be
added to the chromosome by applying tournament to tourn randomly selected
individuals, where tourn is a parameter of the algorithm.

In the selection phase, all chromosomes are randomly paired. Then, crossover
is applied (with probability pX) to each pair in order to obtain two offspring,
which may be subject to mutation with probability pM . The replacement strat-
egy selects from each set of parents and offspring the best two individuals with
different fitness (i.e. expected tardiness) values. The goal is to maintain diver-
sity in the population. If both parents and both offspring all have the same
tardiness, then two of them are selected at random. Notice that this replace-
ment strategy has an elitism effect, since the best individual in a generation is
always equal to or better than the best individual in the previous generation.
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(a) Arrival of v14 to line L1 at t14 = 8. The
EV could be scheduled on the third subline
l31 with starting time 8̂ if no balance was re-
quired.
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(b) Balance holds only after stE14 = 11
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(c) v14 is finally scheduled on l21 with ŝt14 =
(10, 11, 12)

Figure 2: Example of schedule generation

Both crossover and mutation operators are those from (Garćıa-Álvarez et al.,
2015), adapted to handling fuzzy times. The crossover operator SBX (Starting-
time Based Crossover) was designed so offspring are likely to improve the ex-
pected tardiness value of their parents. The operator randomly selects an instant
t0, so the first offspring is generated by selecting from the first parent all EVs
that are expected to start charging before t0, while the remaining ones are rear-
ranged according to the second parent. The second offspring is created similarly,
with the first and second parent exchanging roles, that is, those EVs expected
to start earlier than t0 in the second parent pass onto the offspring in the same
relative order and the remaining EVs are re-ordered following the first parent.

Operator SBX is illustrated in Figure 3. Provided that the randomly selected
instant is t0 = 9, to generate the first offspring O1 we select from P1 all EVs that
are expected to start charging before t0, that is, those vij such that E[ŝij ] <
t0: 3, 7, 1, 8, 2, 4, 10 and 12. These EVs are inserted in O1 preserving their
relative order. The chromosome is later completed with the remaining EVs
(those expected to start after t0 in P1) in the same relative order as they appear
in P2, that is, 6, 5, 11, 9. The second offspring is obtained similarly.

The mutation operator mutates each line Li with probability pM . If line Li
is mutated, a random subset of consecutive EVs is selected on that line and
this set is then shuffled, re-ordering these EVs. Figure 4 shows an example of
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Parents
P1 3 7 1 8 2 4 6 5 10 9 12 11
P2 8 6 5 2 11 9 7 3 10 12 1 4

Expected charge starting times
E[S]1 0 0 0 0 0 7 10 10 0 10 7 11
E[S]2 0 10 0 0 7 0 0 5 9 12 0 7

Offspring
O1 3 7 1 8 2 4 10 12 6 5 11 9
O2 8 5 2 11 9 7 3 1 4 6 10 12

Figure 3: Example of crossover SBX. We highlight in red those vehicles with expected charge
starting time (also in red below) greater than or equal to t0 = 9 .

mutation, supposing that only line L2 is to be mutated. The random subset of
consecutive EVs on that line that is selected is 2, 6, 12. These are shuffled and
reinserted in the original chromosome in the same positions occupied by this
subset, but with the new relative order.

Initial chromosome
O1 3 7 1 8 2 4 6 5 10 9 12 11

Matrix representation Selected
vehicles

Shuffled
vehicles

L1 3 1 4 5
L2 8 2 6 12 11 ⇒ 2 6 12 ⇒ 6 12 2
L3 7 10 9

Mutated chromosome
O1 3 7 1 8 6 4 12 5 10 9 2 11

Figure 4: Example of mutation, where a random subset of consecutive EVs on line 2 (high-
lighted in red) is shuffled.

5. Experimental results

We now proceed to empirically evaluate the proposed method, which has
been implemented in C++ and run on a PC with a Xeon E5520 at 2.2Ghz
processor and 24Gb RAM running Linux (SL 6.0).

As benchmark instances, we take fuzzified versions of the problem instances
used in Hernandez-Arauzo et al. (2015), which are based on real data. We simu-
late uncertainty in charging times using the fuzzification method from Ghrayeb
(2003). In all cases, the charging station is supposed to be installed in a car park
with 180 parking spaces. The planning horizon is 1 day and there are different
profiles of arrival, charging and departure times based on real data. Instances
are divided in two groups: . Clearly, situations of imbalance between lines are
more likely to arise on instances of Type 2, something that the algorithm must
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take into account to build feasible schedules. Finally, we also consider different
values for the imbalance parameter ∆ ∈ {0.2, 0.4, 0.6, 0.8} and for the maximum
charging points on a line N ∈ {20, 30, 40}. In total there are 24 instances, one
per combination of Type, ∆ and N values.

After an initial parametric study, the algorithm parameters have been fixed
as follows: population size is 200 individuals, the stopping parameter of maxi-
mum number of non-improving iterations is set to maxiter = 25, crossover and
mutation probabilities are pX = 0.8 and pM = 0.1 respectively and tournament
size for the heuristic initial population is set to tourn = 8. All experiments cor-
respond to 30 runs of the GA on each instance, in order to obtain statistically
significant results.

5.1. Algorithm’s convergence

First, we analyse the GA’s evolution. To do so, we compare its results with
a heuristic algorithm without evolution that generates as many groups of 200
individuals as generations takes for the GA to converge. Each group is formed
by random individuals and individuals generated with the stochastic versions of
rules DDR and EST in the same proportion as in the initial population of the
GA. In order to make comparisons as fair as possible, this heuristic algorithm
applies elitism by always keeping the best solution found so far.

Figure 5 illustrates the convergence of the GA for the instance of Type 1
with ∆ = 0.2 and N = 20. This instance, the most constrained one of Type 1,
has been selected as representative of the remaining ones, as the GA and the
heuristic algorithm present a similar evolution pattern on all of them. The plot
corresponds to the evolution of the average population fitness (i.e., the average

of the expected total tardiness E[T̂ ]) across 30 runs both of the GA and the
heuristic algorithm. It is clear that the improvement with respect to the best
initial solution (the same for both methods) is greater with the GA (45.15% of
improvement) than with the heuristic algorithm (12.86%).
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Figure 5: Average fitness evolution for the GA (in blue) and a heuristic algorithm (in red)
on the instance of Type 1 with N = 20 and ∆ = 0.2.

15



5.2. Algorithm’s performance

To evaluate the GA’s performance, since the problem formulation is new to
this work and, hence, no other algorithms from the literature exist, we compare
the results obtained by the GA with those obtained by the described heuristic
algorithm, which essentially consists in applying random or heuristic schedul-
ing rules. The results are shown in Tables 1 to 4, and they correspond to
both algorithms running under equivalent conditions (equal number of evalu-
ated individuals). Each row of each table corresponds to one of the benchmark
instances, as indicated in the first two columns. For each instance, Tables 1
and 2 give the fuzzy tardiness T̂ together with its expected value E[T̂ ] of the
best solution found with each algorithm (columns 3,4 for the GA and 5,6 for the
heuristic method) for instances of Type 1 and Type 2 respectively. All tardiness
values are measured in hours. The last column corresponds to the improvement
(in percentage) of the GA with respect to the Heuristic. We can see that, on
Type 1 instances, this improvement ranges between 6.2% and slightly more than
69%, with an average improvement near 33%. In fact, an improvement below
10% only takes place for two instances and the average improvement across the
remaining instances is in fact greater than 40%. On instances of Type 2 the
improvement of the best solutions is more regular, with an average value of
21.42%. Tables 3 and 4 correspond to the average performance on instances of
Type 1 and Type 2 respectively. They contain the average expected tardiness
of the solution across 30 runs of the GA and the heuristic method together with
the standard deviation and the average CPU time (in seconds). The last column
reports the average improvement percentage values of the GA with respect to
the heuristic method. We can see that, regarding the average expected tardi-
ness, the GA is in average 40.52% better than heuristic algorithm on instances
of Type 1 and 21.38% better on instances of Type 2 (where the balance between
lines becomes more critical), presenting with average values a similar behaviour
to the best solution.

To complement the data on the tables, we have run some statistical tests.
First, we have run a Wilcoxon signed-rank test for matched samples on the av-
erage expected tardiness values obtained by each method across 30 runs on each
of the 24 instances. The test confirms that the GA outperforms the heuristic
algorithm with a p-value 9.702× 10−6.

Secondly, we have performed a more detailed analysis on an instance of
each type. We have chosen in each case that instance for which the average
percentage improvement of the GA with respect to the heuristic algorithm is
closest to the average value across all instances of that type, that is, instance
of Type 1 with N = 30 and ∆ = 0.4 and instance of Type 2 with N = 40
and ∆ = 0.4. For each instance, we have taken the expected tardiness results
obtained on the 30 runs of each algorithm and, after checking normality with
a Kolmogorov-Smirnoff test, we have run a t-test to compare both algorithms
leading to the same conclusion as above with p-values, 3.85× 10−65 for Type 1
and 3.35× 10−69 for Type 2. The corresponding boxplots for both instances, in
Figure 6, allow to visualise the superiority of the GA.
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Table 1: Best total tardiness values for the GA and the heuristic algorithm on instances of
Type 1.

Instance GA Heuristic

N ∆ Best T̂ E[T̂ ] Best T̂ E[T̂ ] % Impr.

20 0.2 (197.7, 278.3, 430.9) 296.3 (335.9, 407.3, 545.7) 424.1 30.12
0.4 (77.35, 126.3, 244.8) 143.7 (114.1, 165.2, 282.8) 181.8 20.97
0.6 (62.65, 109.9, 219.8) 125.5 (72.13, 118.6, 227.1) 134.1 6.38
0.8 (61.41, 109.6, 219.7) 125.1 (72.14, 118.6, 223.9) 133.3 6.19

30 0.2 (28.89, 49.37, 102.7) 57.61 (81.29, 110.3, 177.6) 119.9 51.96
0.4 (1.300, 8.333, 43.84) 15.45 (8.342, 17.43, 60.75) 25.99 40.54
0.6 (0.250, 6.616, 42.18) 13.91 (5.483, 12.96, 54.18) 21.39 34.97
0.8 (0.716, 6.633, 41.64) 13.90 (5.483, 12.96, 54.18) 21.39 35.01

40 0.2 (3.013, 8.470, 27.19) 11.78 (22.83, 34.46, 60.54) 38.07 69.05
0.4 (0, 0, 0) 0.00 (0, 0, 0) 0.00 -
0.6 (0, 0, 0) 0.00 (0, 0, 0) 0.00 -
0.8 (0, 0, 0) 0.00 (0, 0, 0) 0.00 -

Finally, let us notice that the tardiness values on all tables reflect how the
difficulty of an instance depends on the (un)even load of EVs on each line Li
and on the values of the parameters N and ∆. As expected, it is easier to find
good solutions (with low total tardiness) for instances of Type 1, where the load
on all lines is even, than on problems of Type 2, with uneven loads. It is also
clear that problems with a low number of active charging points per line N and
strong balance restriction, represented by low values of ∆, are harder to solve.
In fact, at the extreme case we find two pathological instances, both with very
uneven loads, a small proportion of active charging points per line and under
a very strict load balance constraint. These are two instances of Type 2, where
the first line L1 supports 60% of the demand, with 108 EVs, 30% (54 EVs)
of the demand falls on the second line L2 and only 10% (18 EVs) falls on the
third line L3. Additionally, these two instances have a small threshold for the
maximum number of active charging points N = 20 and N = 30 (respectively,
33% and 50% of the 60 points available in each line) and a very strict balance
constraint with maximum expected imbalance threshold ∆ = 0.2. As a result,
once the EVs (only 18) that go to the third line L3 finish charging, the number
of EVs that can be expected to be charging at any instant on any of the other
two lines is limited to only 4 or 6 (with N = 20 and N = 30 respectively). This
creates a bottleneck and the subsequent delays on the first and second lines, this
being specially problematic for L1, where a total of 90 EVs must be charged. As
mentioned above, these instances are pathological and cannot be expected to be
solved to satisfaction. They pose instead extreme cases that serve as a challenge
for any solving methods that may be proposed for the problem at hand.
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Table 2: Best total tardiness values for the GA and the heuristic algorithm on instances of
Type 2.

Instance GA Heuristic

N ∆ Best T̂ E[T̂ ] Best T̂ E[T̂ ] % Impr.

20 0.2 (4481, 4644, 4896) 4666 (5350, 5514, 5757) 5534 15.67
0.4 (1560, 1707, 1949) 1731 (1961, 2117, 2350) 2137 19.00
0.6 (701.9, 836.1, 1056) 857.7 (935.2, 1037, 1210) 1054 18.70
0.8 (372.4, 489.9, 691.1) 510.8 (487.0, 592.4, 778.7) 612.6 16.61

30 0.2 (2473, 2667, 2967) 2694 (3019, 3180, 3418) 3199 15.81
0.4 (681.2, 804.5, 1000) 822.7 (909.9, 1007, 1174) 1024 19.71
0.6 (177.5, 252.2, 394.9) 269.2 (270.4, 341.1, 478.9) 357.9 24.78
0.8 (43.95, 81.29, 182.4) 97.24 (68.12, 114.8, 216.8) 128.6 24.43

40 0.2 (1564, 1705, 1931) 1726 (1961, 2117, 2350) 2137 19.20
0.4 (302.6, 385.0, 531.6) 401.0 (412.5, 501.3, 652.6) 516.9 22.41
0.6 (28.84, 64.54, 153.3) 77.81 (58.15, 100.2, 187.7) 111.6 30.29
0.8 (0.299, 6.307, 57.50) 17.60 (3.506, 15.04, 67.64) 25.30 30.43

6. Conclusions

We have tackled the problem of scheduling the charging of EVs on a real-
world charging station. The schedule must take into account some technical
constraints of the system, while simultaneously minimise a total tardiness ob-
jective function. This work constitutes a first approach to incorporating uncer-
tainty to the problem, to narrow the gap between the model and the real-world
situation. In particular, we have considered uncertain charging times modelled
as triangular fuzzy numbers. This has resulted in a new formulation of the
problem, based on the deterministic one, but with considerable changes, for
instance, in the translation of the constraints. Additionally, to solve the result-
ing problem we have proposed a GA based on a previous algorithm with good
performance in the deterministic version. Although the general scheme remains
the same, some operators, such as crossover, have had to be adapted to handle
fuzzy numbers and a new decoding operator has been proposed, consisting on
a purpose-built schedule builder. Finally, we have presented an experimental
study on new benchmark fuzzy instances inspired in real-world data that show
the correct convergence of the GA as well as its good performance. Additionally,
the benchmark instances will be made openly available to the research commu-
nity on the web, to encourage future advancements on solving this problem.

This constitutes the first approach to the charging problem with uncertainty
and as such opens many lines for future research. First, we would like to es-
tablish links between the constraint formulations and possibility theory which,
in turn, may suggest new and better schedule-building algorithms. It is also
possible to give alternative formulations for some constraints in the uncertain
setting, in particular, for the balance between lines. Regarding the solving
method, it could be improved by combining the GA with local search, which
would require defining good neighbourhood structures and efficient neighbour
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Table 3: Average expected tardiness of the GA and the heuristic algorithm on instances of
Type 1.

Instance GA Heuristic
N ∆ Avg.±SD CPU(s) Avg.±SD CPU(s) % Impr.

20 0.2 336.0±12.17 40 458.5±7.17 194 29.91
0.4 149.4±1.39 50 192.3±2.30 199 21.50
0.6 129.3±0.91 51 137.6±0.66 201 7.00
0.8 127.1±0.46 55 134.9±0.40 201 6.19

30 0.2 77.74±4.74 54 144.8±5.13 199 52.61
0.4 17.33±0.46 35 27.29±0.36 206 38.51
0.6 17.21±0.71 29 23.08±0.36 206 34.04
0.8 16.66±0.60 30 23.08±0.36 206 34.73

40 0.2 19.41±2.09 44 45.26±2.18 202 64.00
0.4 0.091±0.03 9 0.137±0.03 206 69.03
0.6 0.091±0.04 8 0.133±0.03 206 64.33
0.8 0.091±0.04 8 0.133±0.03 206 64.33

evaluation methods. Another interesting perspective, as considered in Burdett
and Kozan (2015), is to consider the robustness of the obtained solutions, ei-
ther as an objective function to optimise, either as a criterion to compare the
fuzzy solutions and the deterministic ones. Finally, we aim at incorporating new
features that make the problem closer to the real-life situation, such as having
variable energy costs depending on the time of the day.
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Table 4: Average expected tardiness of the GA and the heuristic algorithm on instances of
Type 2.

Instance GA Heuristic
N ∆ Avg.±SD CPU(s) Avg.±SD CPU(s) % Impr.

20 0.2 4777±24.00 186 5658±30.41 194 15.60
0.4 1801±14.58 145 2203±15.55 198 19.10
0.6 896.7±8.47 111 1085±6.93 200 18.66
0.8 528.5±4.39 88 631.5±4.78 201 16.56

30 0.2 2772±20.60 173 3343±29.70 196 16.95
0.4 859.9±9.24 122 1055±6.43 202 19.44
0.6 279.6±2.53 54 370.8±3.30 207 24.85
0.8 104.9±1.97 40 136.5±1.87 208 23.50

40 0.2 1794±15.12 148 2186±12.29 198 18.54
0.4 415.4±3.69 92 532.6±4.17 205 21.87
0.6 83.86±1.57 42 118.3±1.65 210 30.63
0.8 20.74±0.69 40 28.19±0.62 210 30.80
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Figure 6: Boxplot for the results of 30 runs of GA and the heuristic algorithm on two
representative instances.
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Appendix A.

It is possible to model our problem using an alternative ILP formulation,
using the notation summarised in Table A.5, with auxiliary decision variables
αijt, βijt and δijt to model the constraint of balance between lines represented
in (15), and γijk, ρijk and εijk to model the set of overlapping vehicles defined
in (11), used in the constraint of maximum active charging points per line. For
the experimental results, the time horizon |H| has been calculated as |H| =∑
i,j p

3
ij + maxi,j{tij}, which provides an upper bound on the total completion

time.

Table A.5: Notation used in the ILP formulation for problem parameters

Parameters
i ∈ {1, 2, 3} charging lines
j ∈Mi number of vehicles arriving at each line
l ∈ {1, 2, 3} components of a TFN
N maximum number of charging points that can

be active simultaneously
vij vehicle that arrives at jth order to line i
tij arrival time of vehicle vij
p̂ij fuzzy processing time of vehicle vij
dij departure time of the vehicle given by driver
∆ maximum load imbalance between any two lines
M a sufficiently large number for disjunctive con-

straints
taken as 2× |H| in experiments

t ∈ H discrete time periods within a horizon H
Decision variables

T̂ij = (T 1
ij , T

2
ij , T

3
ij) fuzzy tardiness of vehicle vij , T

l
ij ∈ Z

ŝtij = (st1ij , st
2
ij , st

3
ij) fuzzy charging starting time for vehicle vij ,

stlij ∈ Z
αijt binary variable, equal to 1 if vij is expected to

have started charging before time t
βijt binary variable, equal to 1 if vij is expected to

continue charging after time t
δijt binary variable, equal to 1 if vij is expected to

be charging at time t
γijk binary variable, equal to 1 if vik might have

started charging before vij starts charging
ρijk binary variable, equal to 1 if vik might finish

charging after vij starts charging
εijk binary variable, equal to 1 if vik might be charg-

ing when vij starts charging

21



min
ŝt,T̂ ,α,β,δ,γ,ρ,ε

∑
i,j

T 1
ij + 2T 2

ij + T 3
ij

4

s.t.

T lij ≥ stlij + plij − di,j ∀i, j, l (A.1)

t−
(st1ij + 2st2ij + st3ij)

4
+ 1 ≤Mαijt ∀i, j, t (A.2)

st1ij + 2st2ij + st3ij
4

− t ≤M(1− αijt) ∀i, j, t (A.3)

t−
(st1ij + 2st2ij + st3ij + p1ij + 2p2ij + p3ij)

4
≤M(1− βijt) ∀i, j, t

(A.4)

st1ij + 2st2ij + st3ij + p1ij + 2p2ij + p3ij
4

− t+ 1 ≤Mβijt ∀i, j, t
(A.5)

δijt = αijt + βijt − 1 ∀i, j, t (A.6)∑
j∈Mi

δijt −
∑
j∈Mi′

δi′jt ≤ ∆N ∀i, i′ ∈ {1, 2, 3},∀t (A.7)

st1ij ≥ tij ∀i, j (A.8)

stlij − stlik + 1 ≤Mγijk ∀i,∀j, k ∈Mi,∀l (A.9)

stlik + plik − stlij ≤Mρijk ∀i,∀j, k ∈Mi,∀l (A.10)

εijk = γijk + ρijk − 1 ∀i,∀j, k ∈Mi (A.11)∑
k∈Mi

εijk ≤ N ∀i, j (A.12)

0 ≤ st1ij ≤ st2ij ≤ st3ij ∀i, j (A.13)

0 ≤ T 1
ij ≤ T 2

ij ≤ T 3
ij ∀i, j (A.14)

αijt, βijt, δijt ∈ {0, 1} ∀i, j, t (A.15)

γijk, ρijk, εijk ∈ {0, 1} ∀i,∀j, k ∈Mi (A.16)

stlij , T
l
ij ∈ Z ∀i, j, l (A.17)

Regarding the constraints in the ILP model, (A.1) corresponds to minimising
the tardiness of each vehicle, as implicitly defined in (16). (A.2) and (A.3) ensure
that αijt takes value 1 if time t ≥ E[ŝtij ] and 0 otherwise; similarly, (A.4) and

(A.5) ensure that βijt takes value 1 if time t ≤ E[ŝtij + p̂ij ] (i.e. t ≤ E[ĉij ])
and 0 otherwise and (A.6) causes δijt to be 1 if αijt and βijt are both 1, and 0
otherwise (notice that it cannot be -1 since α and β cannot be both 0 at the same
time). In consequence, (A.7) ensures that the load imbalance between any two
lines does not exceed ∆ (constraint (13) in the original model). Constraint (A.8)
is the same as (9) for the EV’s arrival time. (A.9) ensures that γijk takes value
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1 if vehicle vik might have started charging before vehicle vij and 0 otherwise,
while (A.10) ensures that ρijk takes value 1 if vehicle vik might be still charging
when vehicle vij starts charging and 0 otherwise. Thus, (A.11) causes εijk to
take value 1 if vehicles vik and vij might be charging simultaneously, so (A.12)
ensures that there cannot be more than N vehicles charging at the same time
on the same line when vehicle vij might start charging. This corresponds to
the constraint of maximum active charging points per line modelled by (11)
and (12). Finally, (A.13) and (A.14) ensure the right order of the three TFN
components and nonnegativity, (A.15) and (A.16) model integrality constraints
of binary variables and (A.17) states that stlij and T lij are all integer variables.
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