
sensors

Article

A Semantic-Enabled Platform for Realizing
an Interoperable Web of Things

Jorge Lanza 1, Luis Sánchez 1,* , David Gómez 2, Juan Ramón Santana 1 and Pablo Sotres 1

1 Network Planning and Mobile Communications Lab, University of Cantabria, 39012 Santander, Spain;
jlanza@tlmat.unican.es (J.L.); jrsantana@tlmat.unican.es (J.R.S.); psotres@tlmat.unican.es (P.S.)

2 Atos Research & Innovation, C/ Albarracín 25, 28037 Madrid, Spain; david.gomez@atos.net
* Correspondence: lsanchez@tlmat.unican.es; Tel.: +34-942-203-940

Received: 15 January 2019; Accepted: 14 February 2019; Published: 19 February 2019
����������
�������

Abstract: Nowadays, the Internet of Things (IoT) ecosystem is experiencing a lack of interoperability
across the multiple competing platforms that are available. Consequently, service providers can only
access vertical data silos that imply high costs and jeopardize their solutions market potential. It is
necessary to transform the current situation with competing non-interoperable IoT platforms into a
common ecosystem enabling the emergence of cross-platform, cross-standard, and cross-domain IoT
services and applications. This paper presents a platform that has been implemented for realizing
this vision. It leverages semantic web technologies to address the two key challenges in expanding
the IoT beyond product silos into web-scale open ecosystems: data interoperability and resources
identification and discovery. The paper provides extensive description of the proposed solution and
its implementation details. Regarding the implementation details, it is important to highlight that the
platform described in this paper is currently supporting the federation of eleven IoT deployments
(from heterogeneous application domains) with over 10,000 IoT devices overall which produce
hundreds of thousands of observations per day.

Keywords: interoperability; Web-of-Things; semantics; Internet-of-Things; registry

1. Introduction

The Internet of Things (IoT) is unanimously identified as one of the main technology enablers
for the development of future intelligent environments [1]. It is driving the digital transformation
of many different domains (e.g., mobility, environment, industry, healthcare, etc.) of our everyday
life. The IoT concept has attracted a lot of attention from the research and innovation community
for a number of years already [2–4]. One of the key drivers for this hype towards the IoT is its
applicability to a plethora of different application domains [5], like smart cities [6,7], e-health [8,9],
smart-environment [10,11], smart-home [12], or Industry 4.0 [13]. This is happening by realizing the
paradigm of more instrumented, interconnected, and intelligent scenarios, which are instrumented
through low-cost smart sensors and mobile devices that turn the workings of the physical world into
massive amounts of data points that can be measured. Interconnected so that different parts of a core
system, like networks, applications, and data centers, are joined and “speak” to each other, turning
data into information. Finally intelligent, with information being transformed into real-time actionable
insights at massive scale through the application of advanced analytics.

“Today, there are roughly 1.5 billion Internet-enabled PCs and over 1 billion Internet-enabled
smartphones. The present ‘Internet of PCs’ will move towards an ‘Internet of Things’ in which 50 to
100 billion devices will be connected to the Internet by 2020. Some estimations point to the fact that
in the same year, the amount of machine sessions will be 30 times higher than the number of mobile
person sessions” [14]. The IoT has drastically changed some of the key challenges that Future Internet

Sensors 2019, 19, 869; doi:10.3390/s19040869 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0136-3420
https://orcid.org/0000-0003-1374-2153
https://orcid.org/0000-0002-2881-3594
http://dx.doi.org/10.3390/s19040869
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/4/869?type=check_update&version=2

Sensors 2019, 19, 869 2 of 19

will have to address. Until recently, researchers have focused on devices and the communication
technologies used to access them. However, as it happened with nowadays Internet, most of the
revenue is projected to come from the services that can be provided using all these devices and
communication networks as a basis. While billions of devices are connecting to the Internet, as it
happened with “Internet of PCs”, the Web has emerged again as the paradigm to exploit the potential
of the myriad of connected devices in so-called cyber physical environments. The Web of Things
(WoT) paradigm is emerging with virtual representations of physical or abstract realities increasingly
accessible via web technologies. Achieving a new phase of exponential growth, comparable to the
earliest days of the Web, requires open markets, open standards, and the vision to imagine the potential
for this expanding WoT.

This paper describes the design and implementation of a solution to enable the WoT paradigm.
The so-called Semantic IoT Registry (IoT Registry at GitHub (https://github.com/tlmat-unican/fiesta-
iot-iot-registry)) consists on a semantic web-enabled repository that provides platform independent
APIs for application developers as well as the baseline for different platforms to interoperate with one
another. The approach taken is based upon semantically enriched metadata that describes the data
and interaction models exposed to applications. In this sense, it enables platforms to share the same
meaning when they share their data through the IoT Registry. This data is available as Linked Data on
Resource Description Framework (RDF) format through RESTful APIs. In addition to the support of
semantically enriched data, which is the basis for fulfilling the data interoperability requirement, the
IoT Registry enables the use of Uniform Resource Identifiers (URIs) as addresses for things serving as
proxies for physical and abstract entities. This latter aspect is of utmost importance for realizing the
infrastructure-agnostic scenario that a WoT comprising cross-domain platforms requires.

The IoT Registry is the base component underpinning the application development across
federated IoT data sources through the provision of Application Programming Interfaces (APIs)
to get and push data from any of the underlying IoT infrastructures. Thus, it is important to highlight
that the implementation details presented in this paper are the result of overcoming the challenges,
mainly in terms of heterogeneity and scalability, that the federation of eleven IoT deployments (from
heterogeneous application domains), with over 10,000 IoT devices overall which produce hundreds of
thousands of observations per day [15], poses on the implemented system.

The remainder of the article is structured as follows. Section 2 makes a non-exhaustive review of
relevant related work in the key research topics that underpin the IoT Registry. Section 3 introduces the
key design considerations that have been taken into account for the development of the IoT Registry.
The detailed description of the IoT Registry architecture and its functional building blocks is presented
in Section 4. Section 5 goes a level deeper and focus on the implementation details for the storage
and distribution of semantic data streams paying special attention to the solutions used to address
the challenges of scalability and resource abstraction. Finally, Section 6 concludes the document and
briefly discusses those open issues that shall be addressed in the future.

2. Related Work

2.1. Semantic IoT Interoperability

Currently fragmented IoT ecosystem is jeopardizing the development of global solutions.
The existing multiple parallel IoT platforms have to converge towards offering seamless, global,
and linked services to their users. It is necessary to implement solutions that are able to make the
already existing IoT infrastructures to collaborate in providing a common and portable way of offering
their data services. One of the aims of the platform described in this article is to support the automation
of the deployment of services/applications over heterogeneous IoT domains.

Semantic technologies will play a key role to align the descriptions of the various IoT entities from
various platforms. However, defining the abstraction level required for an IoT ontology is challenging.
Nowadays, there are plenty of initiatives that are specifying the models to represent IoT devices and the

https://github.com/tlmat-unican/fiesta-iot-iot-registry
https://github.com/tlmat-unican/fiesta-iot-iot-registry

Sensors 2019, 19, 869 3 of 19

ecosystem around them. Nonetheless, it is still difficult to find one that addresses all the requirements.
Probably, the most widely used ontology is the Semantic Sensor Network (SSN) Ontology [16] that
covers sensing, but does not take actuating or other realms of IoT into account. Moreover, this ontology
is very complex to use at its full extension and is typically used as a baseline reference. The IoT-Lite
ontology [17] uses the SSN as a basis and adds Architectural Reference Model (ARM) [18] key concepts
to provide a more holistic IoT model. The adopted solution within FIESTA-IoT has been to reuse these
generic ontologies and extend them wherever required to meet the requirements identified for the
federation of IoT testbeds.

Other works that are pursuing parallel objectives and are worth mentioning are OneM2M [19] or
IoT-O [20]. OneM2M, as an international partnership project of standardization bodies, is defining
a standard for M2M/IoT-communications. The actual release is lacking semantic description of
resources that will be addressed as one major point in the next release. The IoT-O ontology aims to
unify different ontologies in the IoT landscape and consists of eight different ontologies. It is actively
maintained and connected to other standardizations like OneM2M. While many similarities can be
found with the FIESTA-IoT ontology, geolocation of resources and observations is not addressed and
the virtual entity concept that is central for the IoT-A ARM is not properly covered. Moreover, to the
best of our knowledge no major IoT platforms have already adopted it for semantically handling
its resources and observations. Other ontologies are focusing on either specific subdomains, like
the Sensor Web for Autonomous Mission Operations (SWAMO) ontology [21], which concentrates
on marine interoperability or not specifically defined for the IoT domain like GoodRelations [22]
that is dealing with products but can be taken into account in the industrial IoT area. The Smart
Appliance REFerence (SAREF) ontology [23] is another initiative which is raising much attention as
enables semantic interoperability for smart appliances. It has been created in close interaction with
the industry, thus, fostering the future take up of the modeling defined. Still, it is centered on home
appliances that might make it fall short in other domains.

2.2. RDF Description and Validation

Semantics define a powerful take on how to shape, allot, catalogue, and share information.
Moreover, it is possible to construct a distributed database accessible from any Internet-connected
device by using URIs as identifiers and locators for the different pieces of information. However,
it is necessary to guarantee that all the information stored in this database complies with the rules
established in the ontology that underpins the semantic nature of that data. Otherwise, it would not be
of actual value, as it would be weighed down by issues related to data quality and consistency.

Recent approaches to validate RDF—the most common format for representing semantic
data—have been proposed. ShEx [24] and SHACL [25] are languages for describing RDF graph
structures so that it is possible to identify predicates and their associated cardinalities and data types.
Both of them have the same objective, to enable validating RDF data by using a high-level language.
Both define the notion of a shape, as the artifact to specify constraints on the topology of RDF nodes.
SHACL shapes are analogous to ShEx shape expressions, with the difference that links to data nodes
are expressed in SHACL by target declarations and in ShEx by shape maps. In most of the common
cases, it is possible to translate between ShEx and SHACL. The triples involving nodes in the graph
that must be validated have to comply with the defined shapes. If not matching, the RDF graph would
not be consistent with the semantic model that wants to be used.

The IoT registry imposes RDF validation before storing the datasets that arrives from the
underlying IoT platforms. The solution adopted in the reference implementation of the IoT registry did
not make use of any of the aforementioned languages due to some practical reasons. Firstly, SHACL
recommendation only appeared on July 2017 [25], but the implementation of the IoT registry started
much before. The first works started on 2015, but they were only working drafts. Moreover, available
implementations, both for SHACL and ShEx, are under development. Secondly, the FIESTA-IoT
ontology, which was the one that we used for our reference implementation, did not have the shapes

Sensors 2019, 19, 869 4 of 19

graph that is necessary to apply SHACL or ShEx validators. Finally, yet critically important, we
preferred to address the validation process by directly applying SPARQL filtering in order to avoid
further delays, associated with the execution of shapes validation procedure and the evaluation of its
validation report, in the processing of incoming data.

2.3. Web of Things

The WoT emerges from applying web technologies to the IoT to access information and services
of physical objects. In WoT, each physical object possesses a digital counterpart. These objects are
built according to Representational state transfer (REST) architecture and accessed with HTTP protocol
via RESTful API. A Web Thing can have an HTML or JSON representation, REST API to access its
properties and actions, and an OWL-based semantic description.

W3C has recently launched the Web of Things Working Group [26] to develop initial standards for
the Web of Things. Its main aim is “to counter the fragmentation of the IoT”. They are still working on
defining the WoT architecture and the description of the WoT Thing, which should define a model and
representation for describing the metadata and interfaces of Things, where a Thing is the virtualization
of a physical entity that provides interactions to and participates in the WoT.

In parallel to this standardization effort, several projects and platforms have been developed
targeting the support of service provision based on the WoT paradigm. Paganelli et al. [27] present their
WoT-based platform for the development and provision of smart city services. Precision agriculture is
the application domain that benefits from the platform described by Foughali et al. [28]. While they
provide some of the solutions promised by the WoT, still do not address the IoT fragmentation as they
rely on proprietary modeling. Other works [29–31], instead, leverage semantic technologies to fulfill
the extendable modeling requirement. As we are proposing in this paper, we believe that this is the
necessary combination in order to fully develop the WoT concept into a running system. The key
novelty from the work presented in this paper is that previous works have not been implemented and
proven over real-world scenarios with federation of heterogeneous IoT infrastructures, as it is the case
of the platform presented in this paper.

2.4. RDF Streams

Annotating data following RDF principles is the first step for enabling interoperability. However,
it still necessary to access to this data so that services can be provided on the basis of the context
knowledge that it enables. IoT data is typically associated to the Big Data paradigm. However, it is not
only large in volume. An important difference between the IoT datasets compared to the conventional
ones is the quick changes in data and dynamicity of the environment.

Different RDF Stream Processing (RSP) systems have been proposed to enable querying over RDF
streams, in opposition to the typical static querying. Most of them are extensions of SPARQL that take
into account the dynamicity of the data that is being queried [32].

The solution implemented in the IoT Registry has some similarities with RSP but the key difference
is that IoT registry design considerations make it to be settled somehow in between the persistent
and transient data. Most of the time, only the latest knowledge about a dynamic system that is
being monitored is important. However, access to history is also necessary for some applications.
IoT Registry tries to provide a solution for both demands. This is, facilitate the access to the most
recent data but also enable access to relevant information in the past.

2.5. IoT Platforms Federation

The vision of integrating IoT platforms and associated silo applications is bound to several
scientific challenges, such as the need to aggregate and ensure the interoperability of data streams
stemming from them. The convergence of IoT with cloud computing is a key enabler for this integration
and interoperability. It facilitates the aggregation of multiple IoT data streams so that it is possible
to develop and deploy scalable, elastic, and reliable applications that are delivered on demand

Sensors 2019, 19, 869 5 of 19

according to a pay-as-you-go model. During the last 4–5 years several efforts towards IoT/Cloud
integration have been proposed [33,34] and a wide range of commercial systems (e.g., Xively [35] and
ThingsSpeak [36]) are available. These cloud infrastructures provide the means for aggregating data
streams and services from multiple IoT platforms. Moreover, other initiatives, such as Next Generation
Services Interface (NGSI) [37] promoted by Open Mobile Alliance (OMA) or Hyper/Cat [38], focus
on the homogenization of interfaces enabling web access to data produced by IoT deployments.
However, they are not sufficient for alleviating the fragmentation of IoT platforms. This is because
they emphasize on the syntactic interoperability (i.e., homogenizing data sources, interfaces, and
formats) rather than on the semantic interoperability of diverse IoT platforms, services, and data
streams. They intentionally enforce no rules about metadata naming. Use of a reference ontology is
one of the currently explored possibilities for having interoperable systems.

Some open source initiatives like Project Haystack [39], which aims at streamlining the access to
data from the IoT, or the IoT Toolkit [40], which has developed a set of tools for building multiprotocol
Internet of Things gateways and service gateways, are working on standardization of semantic data
models and web services. Their goal is making it easier to unlock value from the vast quantity of data
being generated by the smart devices that permeate our homes, buildings, factories, and cities. In this
sense, the differential aspect of the platform proposed in this paper is that it is taking a holistic approach,
considering the semantic federation of testbeds as a whole, vertically and horizontally integrated, and
independently of the environment (smart city, health, vehicles, etc.) they are controlling.

3. Semantic IoT Registry Design Considerations

In this section, we are reviewing the key requirements that have defined the main design
considerations that we have observed during the development of the Semantic IoT Registry. This review
is important in order to understand the design choices and the solution’s architecture and building
blocks, which are described in the next sections.

Interoperability: Frequently denoted as interworking, it characterizes the capacity of systems
to connect and interchange data. In the IoT domain, where many vendors will coexist, access to
information from diverse platforms is essential in order to not be trapped in vendor lock-in situations.
Interoperability entails for conversion between systems and sharing data via well-known interfaces
in order to facilitate its exploitation. Two, among the different options that can be considered, are
particularly interesting:

• To replicate IoT data, leveraging the existing knowledge on the existing platforms. With this option,
the response time would not be affected if new nodes were added. However, this solution requires
higher capacity, which could lead to scalability problems if the data set grows in an unbounded way.

• To discover and translate the IoT data in real time. In this option, the home IoT platforms are used
to retrieve the information, thus avoiding duplication, hence adapting not only the underlying
IoT data but also the operations allowed by the different interfaces. On the cons side, this would
introduce extra complexity and the increase in the overall system response time.

IoT data abstraction and integration: Data abstraction in IoT is related to the way in which the
physical world is represented and managed. It is necessary to have a set of concepts to properly describe
not only the IoT device itself but also the sensor observation and measurement data. Using semantic
descriptions, the IoT data can be homogeneously characterized. However, it is necessary to employ a
generic model that is capable of supporting the mapping among the used semantic models that might
exist in a cross-platform IoT integration scenario. Thus, the solution has to focus on a canonical set of
concepts that all IoT platforms can easily adopt. We opted for taking as reference the IoT Architecture
Reference Model (ARM) as defined in the IoT-A project [18]. The foremost aspect that this choice
implies is that the ontology that is used to regulate the semantic annotation of the testbeds’ resources
is only bound by the core concepts that compose the aforementioned ARM Domain and Information
Models. These core concepts are

Sensors 2019, 19, 869 6 of 19

• A Resource is a “Computational element that gives access to information about or actuation
capabilities on a Physical Entity” [18].

• An IoT service is a “Software component enabling interaction with IoT resources through a
well-defined interface” [18].

These concepts conform the baseline for representing the devices and overall IoT infrastructure.
However, there is still a major concept that is not tackled within the ARM models. This concept relates
to the actual data that is gathered by the devices and offered through the services that expose them.
It is called the Observation concept:

• An Observation is a “piece of information obtained after a sensing method has been used to
estimate or calculate a value of a physical property related to a Physical Entity.”

Data semantization: Besides the actual technologies used for exporting the data services, the main
feature that underpins our solution is the fact that the information is exchanged in a semantically
annotated format. The IoT Registry is not bound to any ontology in particular so its design is
fundamentally reusable and extendable. This means that while using a common ontology is necessary
to make it possible to seamlessly deal with data from different sources, the design of the IoT Registry
does not specify the ontology that has to be used. Additionally, from the data representation viewpoint,
a specific RDF representation formats (e.g., RDF/XML, JSON-LD, Turtle, etc.) should not be imposed.
Data consumers should be able to select their preferred format in every request. Thus, all of them must
be supported.

Cyberphysical Systems as a Service (CPSaaS): The value of IoT is on the ability to ease the access
to the services that the IoT devices embedded in our surroundings export. IoT is typically reduced
to the data that sensors can produce but it is not only that. IoT is an integral part of Cyberphysical
Systems (CPS) and vice versa. One of the key design considerations of the IoT Registry is that not only
data but also services have to be interoperable. The CPSaaS consideration relates precisely with the
ability to access the services exported by IoT and/or CPS platforms in an interoperable and platform
agnostic manner. Thus, it is necessary to guarantee that application developers, which are the ones that
at the end will consume those services through their applications, can use these services in the most
user-friendly manner. Nowadays, REST APIs are the de facto standard for exporting services. Thus, it
is required that access to datasets, data streams, and IoT Services in general is orchestrated through
REST-based interfaces. Additionally, the heterogeneity of the underlying infrastructure should be
hidden to the final data and service consumers. This way, the interoperability is something that the
platform has to guarantee but, at the same time, has to be simply offered to the end user. That is, they
will consume data and services based on their interest and necessities but without even knowing if it
comes from one or many different platforms.

Services Exportability: The challenges that IoT-enabled smart solutions face are very similar
among them. Hence, the context-aware, intelligent services that are meant to optimize the scenarios to
which they are applied are potentially beneficial to any of them regardless of its location (e.g., services
for improving the efficiency of the city and the well-being of its citizens are applicable to any city).
This is one of the key motivating factors for service providers and application developers to invest
resources in designing and implementing such services. Nonetheless, if deploying the same service
in different cities is not straightforward, the profit margins are put at risk due to the cost of tailoring
the service to the infrastructure and platform that is deployed in each city. Only if the same service or
application can be seamlessly used across cities, the full potential of IoT-based services will be reached.

Access to history: IoT is typically assumed to have just a stream nature. That is, only the current
situation is important. As new observations from one sensor arrive, the previous measurements can be
discarded. This is true in most of the cases but the value of accessing historical information cannot be
neglected. Combination of IoT datasets and BigData algorithms are used for critical applications that
are based on the identification of patterns, for which storage of historical records is fundamental.

Sensors 2019, 19, 869 7 of 19

Discoverability: It is not enough with setting the mechanisms to make data interoperable among
IoT Platforms, but it is also necessary to fetch this data from the repositories were it is stored. Due
to the huge variety of information and domains that can coexist, it is necessary to have an elastic
discovery environment that can exploit the richness of the semantic-enabled information stored.

Programmability: Creating the ecosystem is the necessary but not sufficient condition.
A fundamental risk of such ecosystem is that developers and platform providers might find the
ecosystem’s features unattractive. For the ecosystem to grow, developers must find it easy to interact
with the interfaces offered. Enabling REST-based interfaces guarantee that in both cases interactions
are straightforward.

4. Semantic IoT Registry Architecture

The IoT Registry is responsible of storing and managing the semantic descriptions that underlying
IoT infrastructures make available. Considering that aggregated stored data can be of a different
nature, the component must handle their differences while processing it homogeneously, to satisfy the
needs of external users requesting information. In that sense, we mainly consider two tightly bound
realms: the one related to the description of the resources belonging to the testbeds and the one related
to the observations or measurements constantly gathered by those devices. Both of them are filled with
semantic documents using the well-known RDF [41] serialization format. Thus, the core of the IoT
registry component is composed of a Triplestore Database (TDB) and a fully-fledged API that allows
the interplay with users.

In addition to the TDB, the IoT registry is composed of a data query endpoint supported by a
SPARQL engine, a manager that supervises IoT data registration and exposes the stored information
to authorized users using a REST API, and an access broker that securely proxies direct access to
registered resources. Figure 1 shows the internal architecture and the relationships between the
different building blocks.

Sensors 2019, 19, x 7 of 19

Discoverability: It is not enough with setting the mechanisms to make data interoperable
among IoT Platforms, but it is also necessary to fetch this data from the repositories were it is stored.
Due to the huge variety of information and domains that can coexist, it is necessary to have an elastic
discovery environment that can exploit the richness of the semantic-enabled information stored.

Programmability: Creating the ecosystem is the necessary but not sufficient condition. A
fundamental risk of such ecosystem is that developers and platform providers might find the
ecosystem’s features unattractive. For the ecosystem to grow, developers must find it easy to interact
with the interfaces offered. Enabling REST-based interfaces guarantee that in both cases interactions
are straightforward.

4. Semantic IoT Registry Architecture

The IoT Registry is responsible of storing and managing the semantic descriptions that
underlying IoT infrastructures make available. Considering that aggregated stored data can be of a
different nature, the component must handle their differences while processing it homogeneously,
to satisfy the needs of external users requesting information. In that sense, we mainly consider two
tightly bound realms: the one related to the description of the resources belonging to the testbeds
and the one related to the observations or measurements constantly gathered by those devices. Both
of them are filled with semantic documents using the well-known RDF [41] serialization format.
Thus, the core of the IoT registry component is composed of a Triplestore Database (TDB) and a
fully-fledged API that allows the interplay with users.

In addition to the TDB, the IoT registry is composed of a data query endpoint supported by a
SPARQL engine, a manager that supervises IoT data registration and exposes the stored information
to authorized users using a REST API, and an access broker that securely proxies direct access to
registered resources. Figure 1 shows the internal architecture and the relationships between the
different building blocks.

Figure 1. Internet of Things (IoT) registry functional architecture.

Although IoT Registry can run integrated within a more complex architecture [42], it can
operate in standalone mode, providing basic authenticated access.

 Resource Manager

REST API

Semantic
Data Storage

Resources

Observations

Testbeds

To IoT Platform

To data consumer

Register new
testbed/resource/observation

REST API
Semantic Data

Query endpoint

Semantic Document
Content Validator

Triplestore

Endpoints Resource Broker

URI Flattener

Named Graphs
Manager

Forward request towards
corresponding endpoint

SPARQL QueryEndpoint semantic
description

Figure 1. Internet of Things (IoT) registry functional architecture.

Sensors 2019, 19, 869 8 of 19

Although IoT Registry can run integrated within a more complex architecture [42], it can operate
in standalone mode, providing basic authenticated access.

In the following sections, we describe in detail the main insights achieved from the implementation
of these functional components, paying special attention to those features that make them suitable for
addressing the challenges and design consideration brought about previously.

4.1. Semantic Data Storage

Because of the canonical concepts that underpin the model for data abstraction and semantization,
the data stored at the IoT registry can be catalogued in two different, but closely interrelated, domains:
Firstly, the descriptions of the IoT devices that are deployed in the field and, on the other hand, the
measurements that they generate. The internal structure of the TDB follows a similar approach.

Before delving deeper into the TDB description, it is important to introduce the concept of Graph,
which is basic for semantics and key to understand the remainder of the paper. A semantic graph is
a network that represents semantic relationships between concepts, where the nodes of the network
are the vertices of the graph, which represent the concepts, and the links of the network are the edges
of the graph, which represent semantic relations between concepts. TDBs are said to store graphs
since they store RDF triplets consisting of two nodes (concepts) and one link (the relation among
them). When triplets containing nodes that were present in previously saved triplets are stored at
the TDB they extend the graph whether creating new relations (i.e., the two nodes in the triplet were
already in the graph) or introducing new concepts (i.e., one of the two nodes was not in the graph
before). Additionally, inner graphs can be configured in TDBs in order to optimize its performance.
These graphs focus on specific preconfigured concepts. This way, the information can be structured on
different realms so that operations (e.g., store and fetch) that only affect one of these realms can be
handled within the inner graph.

Based on the two identified realms, testbeds and its resources, and the observations collected
in Figure 2, we introduced the high-level organization of the TDB. The approach followed for the
IoT registry TDB considers two graphs, one for resources and another for observations’ descriptions.
This provides a basic structure to the information stored, making it possible to focus the target
when requesting or storing data. The dataset is also configured so that the default graph (named
as Global in Figure 2) is defined to be the union of the two. The identifier of the sensor that made
the observation is the link between the two realms. From the semantic point of view, the subjects
and objects related via the properties ssn:madeObservation and/or ssn:observedBy are ssn:Observation
and ssn:Sensor. As the sensor is referenced in both realms, the inference engine can establish the
required relationships. As it has been previously mentioned, the IoT Registry design is not bound
to any ontology; however, for the sake of clarity in the description we are using the concepts and
relations from the FIESTA-IoT ontology [43], which is the one that we employed for the reference
implementation that we have developed.

Sensors 2019, 19, x 8 of 19

In the following sections, we describe in detail the main insights achieved from the
implementation of these functional components, paying special attention to those features that make
them suitable for addressing the challenges and design consideration brought about previously.

4.1. Semantic Data Storage

Because of the canonical concepts that underpin the model for data abstraction and
semantization, the data stored at the IoT registry can be catalogued in two different, but closely
interrelated, domains: Firstly, the descriptions of the IoT devices that are deployed in the field and,
on the other hand, the measurements that they generate. The internal structure of the TDB follows a
similar approach.

Before delving deeper into the TDB description, it is important to introduce the concept of
Graph, which is basic for semantics and key to understand the remainder of the paper. A semantic
graph is a network that represents semantic relationships between concepts, where the nodes of the
network are the vertices of the graph, which represent the concepts, and the links of the network are
the edges of the graph, which represent semantic relations between concepts. TDBs are said to store
graphs since they store RDF triplets consisting of two nodes (concepts) and one link (the relation
among them). When triplets containing nodes that were present in previously saved triplets are
stored at the TDB they extend the graph whether creating new relations (i.e., the two nodes in the
triplet were already in the graph) or introducing new concepts (i.e., one of the two nodes was not in
the graph before). Additionally, inner graphs can be configured in TDBs in order to optimize its
performance. These graphs focus on specific preconfigured concepts. This way, the information can
be structured on different realms so that operations (e.g., store and fetch) that only affect one of these
realms can be handled within the inner graph.

Based on the two identified realms, testbeds and its resources, and the observations collected in
Figure 2, we introduced the high-level organization of the TDB. The approach followed for the IoT
registry TDB considers two graphs, one for resources and another for observations’ descriptions.
This provides a basic structure to the information stored, making it possible to focus the target when
requesting or storing data. The dataset is also configured so that the default graph (named as Global
in Figure 2) is defined to be the union of the two. The identifier of the sensor that made the
observation is the link between the two realms. From the semantic point of view, the subjects and
objects related via the properties ssn:madeObservation and/or ssn:observedBy are ssn:Observation and
ssn:Sensor. As the sensor is referenced in both realms, the inference engine can establish the required
relationships. As it has been previously mentioned, the IoT Registry design is not bound to any
ontology; however, for the sake of clarity in the description we are using the concepts and relations
from the FIESTA-IoT ontology [43], which is the one that we employed for the reference
implementation that we have developed.

Figure 2. IoT registry TDB internal structure.

Although this was a design decision, the experience from real usage of our reference
implementation has proven it was appropriate. Even when the users could always use the Global
graph so that both graphs are used seamlessly on-the-fly, it was quite straightforward for them to
direct their queries to only one domain. For example, they request either for a particular device’s
property (i.e., location, physical phenomenon, or just metadata) inquiring only the Resources graph,
or for the value and unit of measurement of an observation requiring information just from the

ssn:Sensor ssn:Observation
ssn:madeObservation

ssn:observedBy

Resources Observations

Global

Figure 2. IoT registry TDB internal structure.

Although this was a design decision, the experience from real usage of our reference
implementation has proven it was appropriate. Even when the users could always use the Global graph
so that both graphs are used seamlessly on-the-fly, it was quite straightforward for them to direct their
queries to only one domain. For example, they request either for a particular device’s property (i.e.,

Sensors 2019, 19, 869 9 of 19

location, physical phenomenon, or just metadata) inquiring only the Resources graph, or for the value
and unit of measurement of an observation requiring information just from the Observations graph.
The solution adopted offers flexibility and optimization. Performance-wise, shrinking the size of the
targeted information reduces the expected response time. Consequently, queries should be adapted
and run on either graphs based on the required information, resulting on a better user experience.

Last but not least, it is important to highlight that the TDB can be deployed in a distributed
manner. This way, when queries are sent to the central IoT Registry, they will not only handle the
request with its local TDB, but also forward it to the remote semantic query endpoint. This distributed
mechanism avoids data replication and enables potential query parallelization, leading to a better
response time. It is important to note that all the semantic databases should have the information
modeled following the same ontology.

4.2. Resource Manager

The Resource Manager (RM) main objective is to supervise how IoT data is registered, that is,
how the underlying IoT platforms push their resources’ descriptions and the generated observations.
RM entry point is tightly coupled with the underlying IoT Registry semantic storage database structure,
as depending on the origin and nature of the data, the storage reference differs. Initially the RM has to
only choose between the resources or observations graphs.

RM registration endpoint is defined to be complaint with SPARQL 1.1 Graph Store HTTP
Protocol [44]. RDF documents structure is open and may include a great variety of information
(e.g., multiple resources’ and observations’ annotated descriptions, additional metadata like frequency,
availability, quality-related features, etc.). Thus, the first duty for the RM is to guarantee that documents
suit the minimum requirements. Therefore, RM must analyze and validate the annotated descriptions.
Firstly, the RM checks the compliance with the ontology that is used. It inspects the semantic content
to determine the type of data that is being registered and it verifies whether it includes the necessary
concepts according to the cardinality expressed in the ontology. In order to avoid delays, due to
internal queries, and to ease the process, the registration endpoint is defined as a REST API that
replicates the basic IoT Registry database structure. Thus, underlying platforms have to use the proper
endpoint when pushing new resources or observations.

Secondly, the RM substitutes the URIs of the triplets that arrive from the underlying platforms
replacing them by other URIs that are under a common namespace. These new URIs are also valid URLs
as they will be using the IoT Registry namespace. This way, the two conditions for the Cyberphysical
Systems as a Service design consideration are fulfilled. On the one hand, the RM detaches the
information from its originating platform, thus achieving the platform agnostic paradigm. On the
other hand, the WoT-paradigm is also enabled, as every concept in the stored graphs will have a
dereferenceable URL.

RM does not only forward the RDF documents submitted by the underlying platforms towards
the IoT Registry’s TDB but also exposes read endpoints for each of the semantic subjects within these
documents. On each URL, the semantic model of that node can be read. This model will contain the
nodes to which that particular node is connected and the relations to each of them. Following the
links referenced in the URIs of those neighbor nodes, it would be possible to progressively browse
through the entire semantic graph. This behavior extends the HATEOAS (Hypermedia as the Engine
of Application State) constraint of a REST API, but in this case applied to semantically described data.

Besides, IoT Registry, through the RM, also provides generic reading endpoints for retrieving the
list of IoT resources and observations IRIs. Furthermore, using query parameters it is possible to filter
out specific information (i.e., by phenomenon or unit of measurement). This RM endpoint aims at
enabling access to semantic information in a more familiar way for traditional web developers, hiding
the complexity of dealing with SPARQL queries.

Sensors 2019, 19, 869 10 of 19

Summarizing, the RM makes it possible to use standard HTTP and REST API procedures to access
the semantically annotated documents stored in IoT Registry, wrapping the internals and complex
semantic requests used between the RM and the TDB.

4.3. Semantic Data Query Endpoint

Taking into account that the IoT registry stores semantically annotated documents into a semantic
graph, it is essential that it provides an interface to make semantic queries. SPARQL is known to be the
most common and widely used RDF query language. For this reason, we chose to export the semantic
query functionality by enabling a direct SPARQL endpoint conformant with SPARQL protocol for
RDF [45].

The default endpoint operates on the Global graph, which merges both resources and their
gathered observations. Nevertheless, SPARQL queries can be limited to only one of the underlying
graphs by using other specific endpoints provided. The underlying methodology is based on the use
of FROM clause that allows to reference specific RDF datasets, instructing the SPARQL processor to
take the union of the triples from all referenced graphs as the scope of the SPARQL sentence execution.
As internal graphs structure and naming are not made publicly available, external users must use the
defined interfaces in order to successfully access the whole datasets.

IoT Registry restricts the execution of SPARQL queries willing to modify the stored content
(INSERT, UPDATE, or DELETE). As this endpoint is foreseen to be used by context information
consumers, this behavior does not limit the normal operation.

The IoT registry implements an additional functionality related to semantic data query. It provides
a repository of SPARQL queries. The queries stored can be static or they can be templates that allow
dynamic behavior of the query by assigning values to predefined variables. This repository is designed
with the purpose of sharing knowledge between users and smoothing the learning curve of using
the platform as a whole. In order to keep the system secure, protection to injection attacks has
been implemented.

As it has been described, the semantic data query endpoint extends the functionalities of the RM,
providing a more flexible interface towards IoT Registry’s TDB.

4.4. Resource Broker

The RDF datasets stored in IoT registry are mainly static semantic descriptions. SPARQL update
request are required in order to modify the triples. However, these documents can also include
metadata or references to external endpoints that complement the basic information or provide a more
updated version.

As it has been already introduced, an important aspect of the IoT modeling that we have followed
is that IoT devices can directly export their services. Every device can define multiple instances of the
class iot-lite:Service (iot-lite namespace is defined as http://purl.oclc.org/NET/UNIS/fiware/iot-lite#),
whose properties include a service endpoint (URL). For instance, this service can refer to the last
observation of the sensor, which will be directly accessible through the URL provided, or, for the case
of an actuator, it can refer to how to enable one of its functionalities. The Resource Broker (RB) is
the component in charge of enabling the access to IoT devices’ services while keeping the required
platform agnostic nature and homogenizing the way of accessing them for the end user also.

The RB is also relevant from a security point of view. Underlying platforms will delegate access
control to their sensors and actuators to the IoT Registry who, based on its own registered users and
groups, and the profiles and policies defined for them by agreement with the platform owner, will in
turn enable the path to the end device. The namespace transformation implemented by the RM also
applies to the services exported by IoT devices. Thus, RB will be acting like a proxy that intercepts any
request made to any IoT Registry endpoint URL, translates it to its original value and finally forwards
it to the corresponding platform endpoint. The RB will also transform the URIs and other relevant

http://purl.oclc.org/NET/UNIS/fiware/iot-lite#

Sensors 2019, 19, 869 11 of 19

values included in the reply. The process is carried out internally, so that it is completely transparent
for the end user.

5. Semantic IoT Registry Implementation Details

As it has been previously introduced, the IoT Registry is the cornerstone component within a
platform that is currently supporting the federation of eleven IoT different platforms [15]. In this sense,
besides the design considerations, it is critically important to describe in detail the implementation
path followed for some of the aforementioned design features. Moreover, the implementation details
depicted in this section are the result of challenging the developed system against scalability and
heterogeneity issues that only a federation with over 10,000 IoT devices that generates some hundreds
of thousands observations daily can demand.

5.1. URI Flatten Process

The Semantic Web is all about making links between datasets understandable not only by humans
but also by machines. When semantically describing entities, a unique identifier in the form of an URI
is usually assigned. However, it is not mandatory that this identifier is dereferenceable on the web.

This situation applies to the data supplied to the IoT Registry by the federated platforms.
To address this issue, the RM transforms original platforms’ URIs into URLs associated to a common
and dereferenceable namespace that can be referenced by any web application. We called this process
URI flattening. The procedure pursues a twofold objective: on the one hand, enabling web references
to semantic entities; and on the other hand, fulfilling the platform agnostic paradigm. The latter is
achieved by hiding the binding with the source platform when renaming the entity.

For the RB to properly proxy the queries to the services exported by the underlying IoT devices,
it was necessary for the process to be reversible. This is, to be able to go from the flattened URI to the
original one and vice versa. In order to avoid the potential delays when accessing a big look-up table
storing all the mappings, we implemented an algorithm based on symmetric cryptography. The flattened
URI results from ciphering the original URI for generating its corresponding flattened URL. This solution
allows us to quickly go from and back to the original URI by just knowing the secret key.

Figure 3 shows the process implemented within the RM for the transformation of the URIs for all
the nodes stored at the TDB graph database.

1. The original URI is prepended by a Cyclic Redundancy Check (CRC) or a short summary of
any hash function made over the original URI and an integer which represents the entity; and
the entity type, which is an identifier of the entity (e.g., testbed entities are represented with the
NodeType 0x03).

2. The resulting string is cyphered using AES-128 block-cypher and Base64 URL safe encoded.
3. The resulting string is appended to the corresponding common IoT namespace resulting in the

corresponding transformed URI.

The values prepended to the original URI are used not only for integrity check, but also to
randomize the beginning of the resource URL, so it is harder to determine the source testbed. Otherwise,
as we are using a block cypher mechanism, entities with the same namespace will have similar URLs.
In order to increase the randomness of the resulting URL, it is possible to include a salt also.

Table 1 includes one example of the transformation process. The procedure is applied before
storing triples in the TDB to instances of classes, either subjects or objects of the RDF statements, but
also to some specific literals, based on the related property. In this sense, we mainly consider the
modification of literals whose value is a URL or a direct reference to an exported service. For example,
instances of iot-lite:Service class can define a property iot-lite:endpoint, which is defined as xsd:anyURI,
and usually it is a URL where the corresponding service is available. This is closely related to the RB
functionality introduced above.

Sensors 2019, 19, 869 12 of 19Sensors 2019, 19, x 12 of 19

Figure 3. Uniform resource identifier (URI) transformation algorithm.

Table 1. URI flattening process example.

Testbed FIESTA-IoT URL
Original IRI http://api.smartsantander.eu#SmartSantanderTestbed
Entity type 0x03 (Testbed)

CRC 0x50A32758

IoT Registry URL
https://platform.fiesta-iot.eu/iotregistry/api/testbeds/kscYbDJBhbywRuRSS
OsucfEhrY1lTb5LF6bYBh36pTbvKDqUIfDkS7WeB9ryaC7l-C9ZExZYLwiyu

w8wAKjZpQ==

Therefore, the RM has to analyze all the triples posted by testbeds in order to identify classes
instances and, for FIESTA-IoT specific case, iot-lite:endpoint references. Implementation-wise, we can
rely on several SPARQL queries and the subsequent generation of the new semantic model.
However, we have opted to take advantage of Jena functionalities, especially those related with
OntModel, as it provides a better integration and coding experience. Figure 4 shows the pseudocode
of the procedure.

Figure 4. Transformation procedure pseudocode.

Original IRINode TypeCRC

FIESTA-IoT Linkable Namespace

AES-128 CBC

Base64 URL safe encoding

Flattened identifier

Flattened and linkable IRI

+

procedure AdaptEntity(rdfInput)
 ontModel ← new model based on FIESTA-IoT ontology and rdfInput
 newModel ← new empty plain model
 foreach statement in input
 s ← subject from statement
 p ← predicate from statement
 o ← object from statement

 if s is class then
 next statement
 end if

 ns ← flatten and anonymize s
 if (o is instance or (o is literal and o is xsd:anyURI)) then
 no ← flatten and anonymize o
 end if

 newStatement ← new statement from (ns, p, no)
 add newStatement to newModel
 end foreach
 return newModel
end procedure

Figure 3. Uniform resource identifier (URI) transformation algorithm.

Table 1. URI flattening process example.

Testbed FIESTA-IoT URL

Original IRI http://api.smartsantander.eu#SmartSantanderTestbed
Entity type 0x03 (Testbed)

CRC 0x50A32758

IoT Registry
URL

https://platform.fiesta-iot.eu/iotregistry/api/testbeds/
kscYbDJBhbywRuRSSOsucfEhrY1lTb5LF6bYBh36pTbvKDqUIfDkS7WeB9ryaC7l-

C9ZExZYLwiyuw8wAKjZpQ==

Therefore, the RM has to analyze all the triples posted by testbeds in order to identify classes
instances and, for FIESTA-IoT specific case, iot-lite:endpoint references. Implementation-wise, we can
rely on several SPARQL queries and the subsequent generation of the new semantic model. However,
we have opted to take advantage of Jena functionalities, especially those related with OntModel, as it
provides a better integration and coding experience. Figure 4 shows the pseudocode of the procedure.

Sensors 2019, 19, x 12 of 19

Figure 3. Uniform resource identifier (URI) transformation algorithm.

Table 1. URI flattening process example.

Testbed FIESTA-IoT URL
Original IRI http://api.smartsantander.eu#SmartSantanderTestbed
Entity type 0x03 (Testbed)

CRC 0x50A32758

IoT Registry URL
https://platform.fiesta-iot.eu/iotregistry/api/testbeds/kscYbDJBhbywRuRSS
OsucfEhrY1lTb5LF6bYBh36pTbvKDqUIfDkS7WeB9ryaC7l-C9ZExZYLwiyu

w8wAKjZpQ==

Therefore, the RM has to analyze all the triples posted by testbeds in order to identify classes
instances and, for FIESTA-IoT specific case, iot-lite:endpoint references. Implementation-wise, we can
rely on several SPARQL queries and the subsequent generation of the new semantic model.
However, we have opted to take advantage of Jena functionalities, especially those related with
OntModel, as it provides a better integration and coding experience. Figure 4 shows the pseudocode
of the procedure.

Figure 4. Transformation procedure pseudocode.

Original IRINode TypeCRC

FIESTA-IoT Linkable Namespace

AES-128 CBC

Base64 URL safe encoding

Flattened identifier

Flattened and linkable IRI

+

procedure AdaptEntity(rdfInput)
 ontModel ← new model based on FIESTA-IoT ontology and rdfInput
 newModel ← new empty plain model
 foreach statement in input
 s ← subject from statement
 p ← predicate from statement
 o ← object from statement

 if s is class then
 next statement
 end if

 ns ← flatten and anonymize s
 if (o is instance or (o is literal and o is xsd:anyURI)) then
 no ← flatten and anonymize o
 end if

 newStatement ← new statement from (ns, p, no)
 add newStatement to newModel
 end foreach
 return newModel
end procedure

Figure 4. Transformation procedure pseudocode.

http://api.smartsantander.eu#SmartSantanderTestbed
https://platform.fiesta-iot.eu/iotregistry/api/testbeds/kscYbDJBhbywRuRSSOsucfEhrY1lTb5LF6bYBh36pTbvKDqUIfDkS7WeB9ryaC7l-C9ZExZYLwiyuw8wAKjZpQ==
https://platform.fiesta-iot.eu/iotregistry/api/testbeds/kscYbDJBhbywRuRSSOsucfEhrY1lTb5LF6bYBh36pTbvKDqUIfDkS7WeB9ryaC7l-C9ZExZYLwiyuw8wAKjZpQ==
https://platform.fiesta-iot.eu/iotregistry/api/testbeds/kscYbDJBhbywRuRSSOsucfEhrY1lTb5LF6bYBh36pTbvKDqUIfDkS7WeB9ryaC7l-C9ZExZYLwiyuw8wAKjZpQ==

Sensors 2019, 19, 869 13 of 19

The main premise of the procedure is that every subject has to be dereferenceable unless it is a
class definition. It does not matter whether it is blank or named node. Then, when we iterate over each
RDF statement of the semantic document, we transform every subject following the previous premise.
Besides, for every object we check whether the value is a reference to a class, to a class instance or to a
URL literal and perform the same operation.

In order to be able to achieve this, we initially generate an OntModel from the original posted
RDF document. We use this new model to check or infer the nature of each RDF statement subject and
object. We also filter some properties and cache IRIs in order to reduce the inference request and speed
up the process. The properties that are filtered are those

5.2. Semantic Document Content Validation

A particularly interesting aspect of using semantics is the ability to validate not only syntactically
but also semantically the data [46]. However, even if the IoT registry could be guaranteed that documents
posted by the underlying IoT infrastructures to respect the ontology employed, this is not enough to
completely prevent from the injection of graph inconsistencies that might lead to the storage of loose
data. RDF documents are quite flexible in terms of the data they include. For instance, registering a
resource description that does not include the proper bond with its associated platform, or an observation
not including a reference to the node that was generated it or its value and unit of measurement, will
make the information provided not fully useful. Syntactically and semantically, these two examples can
perfectly pass the filter but they would still lead to nodes in the graph that are not properly bound
to the WoT. Even if the generator is willing to provide the full description, but as two separate and
independent RDF documents, IoT registry cannot take the risk of not receiving one of the pieces.

In order to avoid this, the IoT registry carries out an additional validation step, in this case, for
making sure that the resource(s) or observation(s) do carry all the information required for describing
a resource or recording a measurement from a sensor appropriately. To do this, the module runs
internally several queries that will check not only that it contains all the mandatory nodes for a resource
description or an observation graph, but also that the required properties are present (as stated by the
properties’ cardinality at the ontology definition).

As a single RDF document can contain more than one resource or observation, it is important that
the process implemented checks for every resource or observation reference in the RDF description.

As it has been previously mentioned, we have used the FIESTA-IoT ontology [43] as the basis
for the reference implementation that we have developed. In this sense, we consider that a resource
description must include a bond to the IoT platform to which it belongs, its location, and the measured
phenomenon along with its unit of measurement. Similarly, an observation description must consist of,
at least, its value, unit and quantity kind, the location, and timestamp when it was generated and a link
to the sensor. Additional information might be interesting to have, but this enumeration is considered
the bare minimum to accept a RDF description.

Figure 5 shows an example of a minimal document validation SPARQL. This SPARQL query
is applied to the RDF document posted, and no interaction with IoT registry’s TDB is required.
The outcome of the execution of the SPARQL sentence is a list of resources whose description meets
the minimum set of information as defined by the FIESTA-IoT ontology. Besides, another SPARQL
query extracts the list of linked resources within the RDF document; both lists must match. Otherwise,
it would mean that the RDF document is including invalid descriptions. Once this first check is
passed, it is verified that the deployments or IoT platforms associated are already registered in the
TDB. Initially, and based on the semantic approach taken, it could seem that the simplest way this
can be done is through the execution of another SPARQL request on the TDB. However, in order to
minimize the amount of time spent on the validation procedure and reduce the amount of tasks run
on the TDB, we have taken an alternative path. As the list of underlying platforms registered can be
considered quite static and not very large, we can keep it either in memory or in a relational database.
Then, matching the presence of platforms in both lists is straightforward.

Sensors 2019, 19, 869 14 of 19

Sensors 2019, 19, x 14 of 19

Figure 5. Example of minimal document validation for a resource

This way, the content validation process for resource registration is done as a fully separate
process, without interfering in the read and write operations on the TDB or the IoT registry’s
SPARQL execution engine. The same approach is applied for observations implementing the
required adaptations in the process. Particularly, modifying the SPARQL query and testing that the
associated resources are already registered.

Upon execution of the content validation procedure, and considering that the answer is not
empty, we can assert that the information is valid and we can proceed to store it into the TDB.
Otherwise, the full document is rejected, informing the user about the resources or observations that
are not properly described.

It is worth mentioning that this process introduces a non-negligible computational overhead, as
every request implies the execution of an internal SPARQL query. However, we consider that the
benefit outweighs the expected registration delay as we have control over the data really stored and
its usefulness. What is more, as described, it runs as a fully independent feature, not jeopardizing
TDB performance.

5.3. TDB Organization Evaluation

IoT registry’s triplestore stores semantic information that is grouped in two realms, resources
and their observations, and as such, the TDB is organized. The dataset was divided in two named
graphs keeping the IoT devices and the observations that they generate in two independent graphs
that were only logically linked through the IoT device identifier.

It is clear that the difference in size between these two graphs can become large. The Resources
graph is almost static since underlying platforms only have to register their assets once, at the very
beginning, with small one-time updates when incorporating new resources. However, as long as
sensors keep pushing data, the Observations graph will never stop growing, becoming difficult to
handle.

Using one large graph for all the observations would make that even the simplest SPARQL
queries had scalability problems. Thus, in order to mitigate the effect of Observations graph growth
and to improve system performance, we came up with a solution that consists on splitting the graph
into a number of subgraphs. Even though technically speaking, the IoT registry keeps saving all the
observations into the TDB, the usage of various and independent named graphs can hold the
information isolated when it comes to process SPARQL queries. This way, the system will have to
seek into a portion of the dataset, limited to only selected graphs.

PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>
PREFIX iot-lite: <http://purl.oclc.org/NET/UNIS/fiware/iot-lite#>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT ?entity ?deployment
WHERE {
 ?platform geo:location ?location .
 ?location geo:lat ?lat .
 ?location geo:long ?long .

 # ssn:Devices
 {
 ?entity ssn:hasDeployment ?deployment .
 ?entity ssn:onPlatform ?platform .
 }
 UNION
 # ssn:SensingDevices
 {
 ?device ssn:hasDeployment ?deployment .
 ?device ssn:hasSubSystem ?entity .
 ?device ssn:onPlatform ?platform .
 }

 ?entity iot-lite:hasQuantityKind ?qk .
 ?entity iot-lite:hasUnit ?qu .
}

Figure 5. Example of minimal document validation for a resource.

This way, the content validation process for resource registration is done as a fully separate process,
without interfering in the read and write operations on the TDB or the IoT registry’s SPARQL execution
engine. The same approach is applied for observations implementing the required adaptations in
the process. Particularly, modifying the SPARQL query and testing that the associated resources are
already registered.

Upon execution of the content validation procedure, and considering that the answer is not empty,
we can assert that the information is valid and we can proceed to store it into the TDB. Otherwise,
the full document is rejected, informing the user about the resources or observations that are not
properly described.

It is worth mentioning that this process introduces a non-negligible computational overhead, as
every request implies the execution of an internal SPARQL query. However, we consider that the
benefit outweighs the expected registration delay as we have control over the data really stored and
its usefulness. What is more, as described, it runs as a fully independent feature, not jeopardizing
TDB performance.

5.3. TDB Organization Evaluation

IoT registry’s triplestore stores semantic information that is grouped in two realms, resources and
their observations, and as such, the TDB is organized. The dataset was divided in two named graphs
keeping the IoT devices and the observations that they generate in two independent graphs that were
only logically linked through the IoT device identifier.

It is clear that the difference in size between these two graphs can become large. The Resources
graph is almost static since underlying platforms only have to register their assets once, at the very
beginning, with small one-time updates when incorporating new resources. However, as long as sensors
keep pushing data, the Observations graph will never stop growing, becoming difficult to handle.

Using one large graph for all the observations would make that even the simplest SPARQL queries
had scalability problems. Thus, in order to mitigate the effect of Observations graph growth and
to improve system performance, we came up with a solution that consists on splitting the graph
into a number of subgraphs. Even though technically speaking, the IoT registry keeps saving all
the observations into the TDB, the usage of various and independent named graphs can hold the
information isolated when it comes to process SPARQL queries. This way, the system will have to seek
into a portion of the dataset, limited to only selected graphs.

Sensors 2019, 19, 869 15 of 19

Figure 6 depicts the proposed solution. We graphically represent, first in Figure 6a, how
observations (represented as bubbles) are stored into either a standalone graph or, on the other
hand, in Figure 6b, sliced into various subgraphs, whose name can include indexing information that
helps on accessing the stored information.

Sensors 2019, 19, x 15 of 19

Figure 6 depicts the proposed solution. We graphically represent, first in Figure 6a, how
observations (represented as bubbles) are stored into either a standalone graph or, on the other
hand, in Figure 6b, sliced into various subgraphs, whose name can include indexing information
that helps on accessing the stored information.

(a) Single observations graph

(b) Multiple observations graphs

Figure 6. Single- vs. multi-observation graphs.

In our case, we consider time as the basis for the generation of new subgraphs. Another option
would have been grouping the observations by resource, but this would only have helped when
fetching information from one specific sensor. However, typically information is requested per
location and period. The subgraph’s creation time is appended to graph name to create a unique
subgraph identifier. These subgraphs are created periodically and the interval between two
consecutive graphs is fixed and preconfigured. For instance, a name like observations:201803151316
corresponds to the subgraph created at 2018/03/15 13:16 UTC. This graph will store all observations
posted to IoT Registry from that time on during the fixed interval.

From the end user standpoint, the existence of multiple subgraphs is mostly hidden. The REST
API that gives access to RM and Semantic data query engine includes two query parameters (from
and to) to set the time constraints of the underlying query, that is, to define the FROM statements to
be included to the SPARQL queries. By fixing these parameters, the consumer of context information
stored at the IoT Registry can directly specify the time interval they want to focus on, instead of
having to perform an exhaustive search onto the whole TDB. If none of these parameters is present,
then the query is only solved against the observations stored in the latest subgraph.

Figure 7 presents the reduction in the total number of RDF statements per graph of the
proposed solution. Following the previous example, where a SPARQL query to retrieve
observations in a specific time interval would search into the whole graph (see Figure 7a), with the
implemented configuration, the IoT registry only attach graphs observations-Ti-1, observations-Ti, and
observations-Ti+1 to the process (Figure 7b), significantly reducing the time and complexity of the
search.

(a) Single graph growth

(b) Multiple graph growth

Figure 7. Single- vs. multi-observation graph(s) operation.

It is important to note that it is not possible to guarantee that all observations stored in a
time-based subgraph have been taken in the corresponding period, as the observations are stored as
per time of arrival not as per generation time. This latter approach would imply that the timestamp
included in its semantic description would be checked and it would introduce some non-negligible
delay in the observation processing time. Hence, the correspondence between the observation’s time
and subgraphs’ name is highly dependent on underlying platforms good practices. Data consumers

Ti-1 Ti Ti+1 Ti+n time

Observations

Ti-1 Ti Ti+1 Ti+n timeTi+n-1

Ti-1 Ti Ti+1 Ti+n timeTi+n-1

nu
m

be
r o

f n
od

es

Ti-1 Ti Ti+1 Ti+n timeTi+n-1

nu
m

be
r o

f n
od

es from to

Figure 6. Single- vs. multi-observation graphs.

In our case, we consider time as the basis for the generation of new subgraphs. Another option
would have been grouping the observations by resource, but this would only have helped when
fetching information from one specific sensor. However, typically information is requested per location
and period. The subgraph’s creation time is appended to graph name to create a unique subgraph
identifier. These subgraphs are created periodically and the interval between two consecutive graphs
is fixed and preconfigured. For instance, a name like observations:201803151316 corresponds to the
subgraph created at 2018/03/15 13:16 UTC. This graph will store all observations posted to IoT
Registry from that time on during the fixed interval.

From the end user standpoint, the existence of multiple subgraphs is mostly hidden. The REST
API that gives access to RM and Semantic data query engine includes two query parameters (from and
to) to set the time constraints of the underlying query, that is, to define the FROM statements to be
included to the SPARQL queries. By fixing these parameters, the consumer of context information
stored at the IoT Registry can directly specify the time interval they want to focus on, instead of having
to perform an exhaustive search onto the whole TDB. If none of these parameters is present, then the
query is only solved against the observations stored in the latest subgraph.

Figure 7 presents the reduction in the total number of RDF statements per graph of the proposed
solution. Following the previous example, where a SPARQL query to retrieve observations in a specific
time interval would search into the whole graph (see Figure 7a), with the implemented configuration,
the IoT registry only attach graphs observations-Ti−1, observations-Ti, and observations-Ti+1 to the process
(Figure 7b), significantly reducing the time and complexity of the search.

Sensors 2019, 19, x 15 of 19

Figure 6 depicts the proposed solution. We graphically represent, first in Figure 6a, how
observations (represented as bubbles) are stored into either a standalone graph or, on the other
hand, in Figure 6b, sliced into various subgraphs, whose name can include indexing information
that helps on accessing the stored information.

(a) Single observations graph

(b) Multiple observations graphs

Figure 6. Single- vs. multi-observation graphs.

In our case, we consider time as the basis for the generation of new subgraphs. Another option
would have been grouping the observations by resource, but this would only have helped when
fetching information from one specific sensor. However, typically information is requested per
location and period. The subgraph’s creation time is appended to graph name to create a unique
subgraph identifier. These subgraphs are created periodically and the interval between two
consecutive graphs is fixed and preconfigured. For instance, a name like observations:201803151316
corresponds to the subgraph created at 2018/03/15 13:16 UTC. This graph will store all observations
posted to IoT Registry from that time on during the fixed interval.

From the end user standpoint, the existence of multiple subgraphs is mostly hidden. The REST
API that gives access to RM and Semantic data query engine includes two query parameters (from
and to) to set the time constraints of the underlying query, that is, to define the FROM statements to
be included to the SPARQL queries. By fixing these parameters, the consumer of context information
stored at the IoT Registry can directly specify the time interval they want to focus on, instead of
having to perform an exhaustive search onto the whole TDB. If none of these parameters is present,
then the query is only solved against the observations stored in the latest subgraph.

Figure 7 presents the reduction in the total number of RDF statements per graph of the
proposed solution. Following the previous example, where a SPARQL query to retrieve
observations in a specific time interval would search into the whole graph (see Figure 7a), with the
implemented configuration, the IoT registry only attach graphs observations-Ti-1, observations-Ti, and
observations-Ti+1 to the process (Figure 7b), significantly reducing the time and complexity of the
search.

(a) Single graph growth

(b) Multiple graph growth

Figure 7. Single- vs. multi-observation graph(s) operation.

It is important to note that it is not possible to guarantee that all observations stored in a
time-based subgraph have been taken in the corresponding period, as the observations are stored as
per time of arrival not as per generation time. This latter approach would imply that the timestamp
included in its semantic description would be checked and it would introduce some non-negligible
delay in the observation processing time. Hence, the correspondence between the observation’s time
and subgraphs’ name is highly dependent on underlying platforms good practices. Data consumers

Ti-1 Ti Ti+1 Ti+n time

Observations

Ti-1 Ti Ti+1 Ti+n timeTi+n-1

Ti-1 Ti Ti+1 Ti+n timeTi+n-1

nu
m

be
r o

f n
od

es

Ti-1 Ti Ti+1 Ti+n timeTi+n-1

nu
m

be
r o

f n
od

es from to

Figure 7. Single- vs. multi-observation graph(s) operation.

It is important to note that it is not possible to guarantee that all observations stored in a time-based
subgraph have been taken in the corresponding period, as the observations are stored as per time of
arrival not as per generation time. This latter approach would imply that the timestamp included
in its semantic description would be checked and it would introduce some non-negligible delay in

Sensors 2019, 19, 869 16 of 19

the observation processing time. Hence, the correspondence between the observation’s time and
subgraphs’ name is highly dependent on underlying platforms good practices. Data consumers have
to take into account this potential lack of synchronization between the interval included in the request
and actual timestamps of the measurements.

Summarizing, thanks to the configuration described, the system experiences various
improvements that, altogether, lead to a better overall performance:

1. Since most of the queries address recent data, (i.e., typically only last values are of interest due to the
stream nature of IoT) the reduction in size of the target graph enables a much more agile response.
Thus, with respect to an end user, the quality of service, and experience is significantly enhanced.

2. Extrapolating to a general point of view, operations on reduced datasets mean less computational
load. As a number of users will be interacting with the platform at the same time, the shorter
the time dedicated per request, the higher the number of requests that can be processed without
saturating the system.

3. Access to historical data is still possible for those data consumers that require information
beyond the most recent context data. For those users, the capacity to sequentially query against
consecutive time intervals allows them avoiding queries that would result excessively heavy if
made over the compounded period.

6. Conclusions and Open Issues

Internet of Things testbed deployments have been growing at an incredible pace over the last
few years, although ontologies and access tools are not yet fully standardized for IoT resources.
Therefore, each testbed provides its own solution to access them. In this paper, we have presented
the IoT Registry—an enabler of the Semantic Web of Things—which address data access problematic
across heterogeneous IoT testbeds, providing a common semantic-aware homogenous access to
their resources.

The IoT registry is a fully-fledged warehouse that stores all the data injected by different testbeds
that belong to the FIESTA-IoT federation [15]. On top of this repository-like behavior, it provides
several means of access for experimenters to collect testbed’s data, where all resource descriptions and
observations are provided in a testbed agnostic approach. Upon the scalability issues brought about by
the huge amount of data pushed by these IoT testbeds (tens of thousands of observations per day), we
have introduced a solution that with a simple-yet-effective time-slicing approach, the overall system
performance is maintained below acceptable margins [42].

Among the future steps envisioned, we plan to carry out a thorough assessment on all IoT
Registry’s operations in order to characterize its behavior. Furthermore, we would also like to compare
its performance with that of other mainstream platforms, such as FIWARE and OneM2M, which are
called to stand out as the future references for IoT and M2M. Additionally, some policy has to be
settled for long-term historical datasets and at some point, this data should not be available through
the IoT Registry but on another kind of platforms (more oriented to Big Data than to WoT). Even when
the IoT Registry implementation described in this paper has been running from beginning of 2017 till
the end of 2018 and, during this period, it has been able to support several experiments (FIESTA-IoT
Project Experiments (http://fiesta-iot.eu/index.php/fiesta-experiments/)) on different application
domains, from scalability and usability point of view, it is not appropriate to store data at the IoT
Registry forever. During the IoT Registry aforementioned operation time (almost two years), disk
space was not a particularly challenging aspect, since storage space is quite cheap at the cloud, and,
precisely, the solutions that we have implemented have allowed reasonably good behavior even under
complex real scenario.

Author Contributions: Conceptualization, J.L. and L.S.; Methodology, J.L. and L.S.; Software, J.L.; Validation,
D.G., and J.L.; investigation, J.L. and D.G. Resources, J.R.S. and P.S.; Writing—Original Draft Preparation, D.G.,
J.L. and L.S.; Writing—Review and Editing, L.S. and J.R.S.; Supervision, L.S.; Funding Acquisition, L.S.

http://fiesta-iot.eu/index.php/fiesta-experiments/

Sensors 2019, 19, 869 17 of 19

Funding: This work was partially funded by the European project Federated Interoperable Semantic IoT/cloud Testbeds
and Applications (FIESTA-IoT) from the European Union’s Horizon 2020 Programme with the Grant Agreement No.
CNECT-ICT-643943 and, in part, by the Spanish Government by means of the Project ADVICE “Dynamic Provisioning
of Connectivity in High Density 5G Wireless Scenarios” under Grant TEC2015-71329-C2-1-R.

Acknowledgments: The authors would like to thank the FIESTA-IoT consortium for the fruitful discussions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Niyato, D.; Maso, M.; Kim, D.I.; Xhafa, A.; Zorzi, M.; Dutta, A. Practical Perspectives on IoT in 5G Networks:
From Theory to Industrial Challenges and Business Opportunities. IEEE Commun. Mag. 2017, 55, 68–69.
[CrossRef]

2. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805.
[CrossRef]

3. Rachedi, A.; Rehmani, M.H.; Cherkaoui, S.; Rodrigues, J.J.P.C. IEEE Access Special Section Editorial:
The Plethora of Research in Internet of Things (IoT). IEEE Access 2016, 4, 9575–9579. [CrossRef]

4. Ibarra-Esquer, J.; González-Navarro, F.; Flores-Rios, B.; Burtseva, L.; Astorga-Vargas, M.; Ibarra-Esquer, J.E.;
González-Navarro, F.F.; Flores-Rios, B.L.; Burtseva, L.; Astorga-Vargas, M.A. Tracking the Evolution of the
Internet of Things Concept Across Different Application Domains. Sensors 2017, 17, 1379. [CrossRef]

5. Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives:
Some stylised facts. Cities 2014, 38, 25–36. [CrossRef]

6. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet
Things J. 2014, 1, 22–32. [CrossRef]

7. Mehmood, Y.; Ahmad, F.; Yaqoob, I.; Adnane, A.; Imran, M.; Guizani, S. Internet-of-Things-Based Smart
Cities: Recent Advances and Challenges. IEEE Commun. Mag. 2017, 55, 16–24. [CrossRef]

8. Riazul Islam, S.M.; Kwak, D.; Humaun Kabir, M.D.; Hossain, M.; Kwak, K.-S. The Internet of Things for
Health Care: A Comprehensive Survey. IEEE Access 2015, 3, 678–708. [CrossRef]

9. Elsts, A.; Fafoutis, X.; Woznowski, P.; Tonkin, E.; Oikonomou, G.; Piechocki, R.; Craddock, I. Enabling
Healthcare in Smart Homes: The SPHERE IoT Network Infrastructure. IEEE Commun. Mag. 2018, 56,
164–170. [CrossRef]

10. Trasviña-Moreno, C.; Blasco, R.; Marco, Á.; Casas, R.; Trasviña-Castro, A.; Trasviña-Moreno, C.A.; Blasco, R.;
Marco, Á.; Casas, R.; Trasviña-Castro, A. Unmanned Aerial Vehicle Based Wireless Sensor Network for
Marine-Coastal Environment Monitoring. Sensors 2017, 17, 460. [CrossRef]

11. Brewster, C.; Roussaki, I.; Kalatzis, N.; Doolin, K.; Ellis, K. IoT in Agriculture: Designing a Europe-Wide
Large-Scale Pilot. IEEE Commun. Mag. 2017, 55, 26–33. [CrossRef]

12. Majumder, S.; Aghayi, E.; Noferesti, M.; Memarzadeh-Tehran, H.; Mondal, T.; Pang, Z.; Deen, M.;
Majumder, S.; Aghayi, E.; Noferesti, M.; et al. Smart Homes for Elderly Healthcare—Recent Advances and
Research Challenges. Sensors 2017, 17, 2496. [CrossRef] [PubMed]

13. Chen, B.; Wan, J.; Shu, L.; Li, P.; Mukherjee, M.; Yin, B. Smart Factory of Industry 4.0: Key Technologies,
Application Case, and Challenges. IEEE Access 2018, 6, 6505–6519. [CrossRef]

14. Sundmaeker, H.; Guillemin, P.; Friess, P.; Woelfflé, S. Vision and challenges for realising the Internet of
Things. Clust. Eur. Res. Proj. Internet Things Eur. Comm. 2010, 3, 34–36.

15. Sánchez, L.; Lanza, J.; Santana, J.; Agarwal, R.; Raverdy, P.-G.; Elsaleh, T.; Fathy, Y.; Jeong, S.; Dadoukis, A.;
Korakis, T.; et al. Federation of Internet of Things Testbeds for the Realization of a Semantically-Enabled
Multi-Domain Data Marketplace. Sensors 2018, 18, 3375. [CrossRef] [PubMed]

16. Semantic Sensor Network Ontology. Available online: https://www.w3.org/TR/vocab-ssn/ (accessed on
10 May 2018).

17. Bermudez-Edo, M.; Elsaleh, T.; Barnaghi, P.; Taylor, K. IoT-Lite: A Lightweight Semantic Model for the
Internet of Things. In Proceedings of the Intl IEEE Conferences on Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data
Computing, Internet of People, and Smart World Congress, Toulouse, France, 18–21 July 2016; pp. 90–97.

http://dx.doi.org/10.1109/MCOM.2017.7842414
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/ACCESS.2016.2647499
http://dx.doi.org/10.3390/s17061379
http://dx.doi.org/10.1016/j.cities.2013.12.010
http://dx.doi.org/10.1109/JIOT.2014.2306328
http://dx.doi.org/10.1109/MCOM.2017.1600514
http://dx.doi.org/10.1109/ACCESS.2015.2437951
http://dx.doi.org/10.1109/MCOM.2017.1700791
http://dx.doi.org/10.3390/s17030460
http://dx.doi.org/10.1109/MCOM.2017.1600528
http://dx.doi.org/10.3390/s17112496
http://www.ncbi.nlm.nih.gov/pubmed/29088123
http://dx.doi.org/10.1109/ACCESS.2017.2783682
http://dx.doi.org/10.3390/s18103375
http://www.ncbi.nlm.nih.gov/pubmed/30308942
https://www.w3.org/TR/vocab-ssn/

Sensors 2019, 19, 869 18 of 19

18. Bassi, A.; Bauer, M.; Fiedler, M.; Kramp, T.; Van Kranenburg, R.; Lange, S.; Meissner, S. Enabling Things to
Talk; Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., Meissner, S., Eds.; Springer:
Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-40402-3.

19. Swetina, J.; Lu, G.; Jacobs, P.; Ennesser, F.; Song, J. Toward a standardized common M2M service layer
platform: Introduction to oneM2M. IEEE Wirel. Commun. 2014, 21, 20–26. [CrossRef]

20. Alaya, M.B.; Medjiah, S.; Monteil, T.; Drira, K. Toward semantic interoperability in oneM2M architecture.
IEEE Commun. Mag. 2015, 53, 35–41. [CrossRef]

21. Witt, K.J.; Stanley, J.; Smithbauer, D.; Mandl, D.; Ly, V.; Underbrink, A.; Metheny, M. Enabling Sensor Webs
by Utilizing SWAMO for Autonomous Operations. In Proceedings of the8th annual NASA Earth Science
Technology Conference (ESTC2008), College Park, MD, USA, 24–26 June 2008; pp. 263–270.

22. Hepp, M. GoodRelations: An Ontology for Describing Products and Services Offers on the Web. In Knowledge
Engineering: Practice and Patterns; Springer: Berlin/Heidelberg, Germany, 2008; pp. 329–346.

23. Daniele, L.; den Hartog, F.; Roes, J. Created in Close Interaction with the Industry: The Smart Appliances
REFerence (SAREF) Ontology. In International Workshop Formal Ontologies Meet Industries; Springer: Cham,
Switzerland, 2015; pp. 100–112.

24. Prud’hommeaux, E.; Labra Gayo, J.E.; Solbrig, H. Shape expressions. In Proceedings of the 10th International
Conference on Semantic Systems—SEM ’14; ACM Press: New York, NY, USA, 2014; pp. 32–40.

25. Knublauch, H.; Kontokostas, D. Shapes Constraint Language (SHACL), W3C Recommendation 20 July 2017.
Available online: https://www.w3.org/TR/shacl/ (accessed on 7 February 2019).

26. Web of Things at W3C. Available online: https://www.w3.org/WoT/ (accessed on 10 May 2018).
27. Paganelli, F.; Turchi, S.; Giuli, D. A Web of Things Framework for RESTful Applications and Its

Experimentation in a Smart City. IEEE Syst. J. 2016, 10, 1412–1423. [CrossRef]
28. Karim, F.; Karim, F.; Frihida, A. Monitoring system using web of things in precision agriculture. Procedia

Comput. Sci. 2017, 110, 402–409. [CrossRef]
29. Keppmann, F.L.; Maleshkova, M.; Harth, A. Semantic Technologies for Realising Decentralised Applications

for the Web of Things. In Proceedings of the 2016 21st International Conference on Engineering of Complex
Computer Systems (ICECCS), Dubai, UAE, 6–8 November 2016; pp. 71–80.

30. Nagib, A.M.; Hamza, H.S. SIGHTED: A Framework for Semantic Integration of Heterogeneous Sensor Data
on the Internet of Things. Procedia Comput. Sci. 2016, 83, 529–536. [CrossRef]

31. Wu, Z.; Xu, Y.; Zhang, C.; Yang, Y.; Ji, Y. Towards Semantic Web of Things: From Manual to Semi-automatic
Semantic Annotation on Web of Things. In Proceedings of the 2016 International Conference on Big Data
Computing and Communications, Shenyang, China, 29–31 July 2016; pp. 295–308.

32. Dell’Aglio, D.; Calbimonte, J.-P.; Della Valle, E.; Corcho, O. Towards a Unified Language for RDF Stream
Query Processing. In International Semantic Web Conference; Springer: Cham, Switzerland, 2015; pp. 353–363.

33. Alamri, A.; Ansari, W.S.; Hassan, M.M.; Hossain, M.S.; Alelaiwi, A.; Hossain, M.A. A Survey on Sensor-Cloud:
Architecture, Applications, and Approaches. Int. J. Distrib. Sens. Netw. 2013, 9, 917923. [CrossRef]

34. Ullah, S.; Rodrigues, J.J.P.C.; Khan, F.A.; Verikoukis, C.; Zhu, Z. Protocols and Architectures for Next-Generation
Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2014, 10, 705470. [CrossRef]

35. Xively. Available online: https://xively.com (accessed on 10 May 2018).
36. ThingSpeak. Available online: https://thingspeak.com/ (accessed on 10 May 2018).
37. NGSI Context Management, Candidate Version 1.0. Available online: http://technical.openmobilealliance.

org/Technical/release_program/docs/NGSI/V1_0-20101207-C/OMA-TS-NGSI_Context_Management-
V1_0-20100803-C.pdf (accessed on 10 May 2018).

38. Hypercat 3.00 Specification. Available online: http://www.hypercat.io/uploads/1/2/4/4/12443814/
hypercat_specification_3.00rc1-2016-02-23.pdf (accessed on 10 May 2018).

39. Project Haystack. Available online: https://project-haystack.org/ (accessed on 10 May 2018).
40. IoT Toolkit, Tools for the Open Source Internet of Things. Available online: http://iot-toolkit.com (accessed

on 10 May 2018).
41. RDF Schema. Available online: https://www.w3.org/TR/2014/REC-rdf-schema-20140225/ (accessed on

10 May 2018).
42. Lanza, J.; Sanchez, L.; Santana, J.R.; Agarwal, R.; Kefalakis, N.; Grace, P.; Elsaleh, T.; Zhao, M.; Tragos, E.;

Nguyen, H.; et al. Experimentation as a Service over Semantically Interoperable Internet of Things Testbeds.
IEEE Access 2018, 6, 51607–51625. [CrossRef]

http://dx.doi.org/10.1109/MWC.2014.6845045
http://dx.doi.org/10.1109/MCOM.2015.7355582
https://www.w3.org/TR/shacl/
https://www.w3.org/WoT/
http://dx.doi.org/10.1109/JSYST.2014.2354835
http://dx.doi.org/10.1016/j.procs.2017.06.083
http://dx.doi.org/10.1016/j.procs.2016.04.251
http://dx.doi.org/10.1155/2013/917923
http://dx.doi.org/10.1155/2014/705470
https://xively.com
https://thingspeak.com/
http://technical.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20101207-C/OMA-TS-NGSI_Context_Management-V1_0-20100803-C.pdf
http://technical.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20101207-C/OMA-TS-NGSI_Context_Management-V1_0-20100803-C.pdf
http://technical.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20101207-C/OMA-TS-NGSI_Context_Management-V1_0-20100803-C.pdf
http://www.hypercat.io/uploads/1/2/4/4/12443814/hypercat_specification_3.00rc1-2016-02-23.pdf
http://www.hypercat.io/uploads/1/2/4/4/12443814/hypercat_specification_3.00rc1-2016-02-23.pdf
https://project-haystack.org/
http://iot-toolkit.com
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://dx.doi.org/10.1109/ACCESS.2018.2867452

Sensors 2019, 19, 869 19 of 19

43. Agarwal, R.; Fernandez, D.G.; Elsaleh, T.; Gyrard, A.; Lanza, J.; Sanchez, L.; Georgantas, N.; Issarny, V.
Unified IoT ontology to enable interoperability and federation of testbeds. In Proceedings of the IEEE 3rd
World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 70–75.

44. SPARQL 1.1 Graph Store HTTP Protocol. Available online: https://www.w3.org/TR/sparql11-http-rdf-update/
(accessed on 10 May 2018).

45. Clark, K.G.; Grant, K.; Torres, E. SPARQL Protocol for RDF. Available online: http://www.w3.org/TR/rdf-
sparql-protocol/ (accessed on 10 May 2018).

46. Zhao, M.; Kefalakis, N.; Grace, P.; Soldatos, J.; Le-Gall, F.; Cousin, P. Towards an Interoperability Certification
Method for Semantic Federated Experimental IoT Testbeds. In International Conference on Testbeds and Research
Infrastructures; Springer: Cham, Switzerland, 2017; pp. 103–113.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/rdf-sparql-protocol/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Semantic IoT Interoperability
	RDF Description and Validation
	Web of Things
	RDF Streams
	IoT Platforms Federation

	Semantic IoT Registry Design Considerations
	Semantic IoT Registry Architecture
	Semantic Data Storage
	Resource Manager
	Semantic Data Query Endpoint
	Resource Broker

	Semantic IoT Registry Implementation Details
	URI Flatten Process
	Semantic Document Content Validation
	TDB Organization Evaluation

	Conclusions and Open Issues
	References

