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ABSTRACT: Magnetotactic bacteria synthesize a chain of
magnetic nanoparticles, called magnetosome chain, used to
align and swim along the geomagnetic field lines. In particular,
Magnetospirillum gryphiswaldense biomineralize magnetite, Fe3O4.
Growing this species in a Co-supplemented medium, Co-doped
magnetite is obtained, tailoring in this way the magnetic
properties of the magnetosome chain. Combining structural and
magnetic techniques such as transmission electron microscopy,
energy-dispersive x-ray spectroscopy, X-ray absorption near edge
structure, and X-ray magnetic circular dichroism, we determine
that ∼1% of Co2+ substitutes Fe2+ located in octahedral places in
the magnetite, thus increasing the coercive field. In the framework
of the Stoner−Wohlfarth model, we have analyzed the evolution of the hysteresis loops as a function of temperature determining
the different magnetic anisotropy contributions and their evolution with temperature. In contrast with the control magnetosome
chains, whose effective anisotropy is uniaxial in the whole temperature range from 300 to 5 K, the effective anisotropy of Co-
doped magnetosome chains changes appreciably with temperature, from uniaxial down to 150 K, through biaxial down to 100 K,
to triaxial below 100 K.

■ INTRODUCTION

Magnetotactic bacteria are microorganisms capable of aligning
in and navigating along the geomagnetic field lines thanks to
the chain of magnetic nanoparticles synthesized in their
interior. Such a chain behaves like a compass needle in the
presence of a magnetic field.1,2 Biomineralized magnetic
nanoparticles, the so-called magnetosomes, have attracted a
lot of scientific attention due to their exceptional properties
compared with artificially synthesized counterparts, such as
high chemical purity and crystallinity combined with the
presence of a biocompatible lipidic membrane surrounding the
magnetic nanoparticles. Hence these magnetosomes have been
proposed for different nanotechnological applications, espe-
cially in the field of biomedicine.3−8

Most magnetotactic bacteria synthesize pure magnetite,
Fe3O4. The shape, size, and composition of the magnetosomes
depend on the species of magnetotactic bacteria, which
introduces a high genetic control on their biomineralization.
For example, Magnetospirillum gryphiswaldense MSR-1 produce
magnetite cuboctahedral-shaped nanoparticles with an average
size diameter of ∼45 nm.
In the last years, several groups have proposed different

strategies, focused on either in vivo processes9−13 or in vitro
approaches,14−17 to tune the morphology, size, and composi-
tion of the magnetosomes to overcome the natural limitations
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imposed by the genetic control of the magnetosome synthesis.
One of the most promising approaches consists of modifying
the composition of the magnetosomes by doping them with
different elements. Magnetite, whose unit cell can be
represented as Fe8

3+[Fe2+Fe3+]16O32, presents an inverse spinel
structure and is essentially composed of Fe2+ ions in octahedral
sites and Fe3+ ions split between octahedral and tetrahedral
positions. The substitution of Fe2+ or Fe3+ cations by transition-
metal dopants in magnetite serves as a proven method to
change the magnetic properties of the magnetic nanoparticles.18

Although reports addressing the possibility of doping
magnetosomes with different metals date from the early
90s,19,20 the first laboratory-controlled doping of magneto-
somes in vivo was not performed until 2008 by Staniland et al.9

Since then, several groups have been able to dope magneto-
somes with elements like Mn, Co, and Cu.10−13 This opened
up the possibility of controlled doping of magnetosomes under
ambient conditions with a range of transition metals with the
aim of obtaining magnetite-based magnetic nanoparticles with
tunable properties for a wider range of applications. To this
respect, doping the magnetosomes with Co is especially
attractive to increase the magnetic coercivity and hence the
hardness of the magnetosomes while the magnetic moment
remains almost unaltered. In general, cobalt ferrite nano-
particles have attracted interest due to their large anisotropy
combined with other properties like high Curie temperatures
and good insulation, and they have been proposed as promising
candidates for biomedical applications such as magnetic
resonance imaging (MRI) and magnetic hyperthermia.21,22

Recently, cobalt-doped magnetosomes have been also tested,
with good results, in magnetic hyperthermia.13

We provide detailed experimental and theoretical findings
concerning the role of Co incorporation in the magnetic
properties of the magnetosome chain with special focus on the
magnetic anisotropy and its evolution with temperature. With
this aim, we make use of state-of-the-art structural and magnetic
characterization techniques such as transmission electron
microscopy (TEM) with energy-dispersive X-ray spectroscopy
(EDS), X-ray absorption near-edge structure (XANES), and X-
ray magnetic circular dichroism (XMCD). These techniques
evidence the incorporation of small amounts of Co2+ (∼1%) in
substitution of Fe2+ located in octahedral sites. DC magnetic
measurements reveal that the incorporation of Co2+ introduces
important changes in the coercive field of the hysteresis loop.
Modeling of hysteresis loops with a modified Stoner−
Wohlfarth approach sheds light on the different anisotropy
contributions and their dependence on temperature for
magnetosomes and Co-doped magnetosome chains. At the
same time, the evolution of the easy axis of magnetization is
determined as well.
Besides the basic interest of the study, a good knowledge of

the changes introduced by the Co in the magnetism of the
magnetosome chain is decisive for future biomedical
applications.

■ EXPERIMENTAL SECTION
Bacterial Strain and Growth Conditions. Magneto-

spirillum gryphiswaldense strain MSR-1 (DMSZ 6631) was
employed in this work. The strain was cultured in a flask
standard medium as described by Heyen and Schüler.23 The
medium was enriched with either iron or both iron and cobalt
just by adding either 100 μM of Fe(III)-citrate (control
magnetosomes) or 10 μM of Fe(III)-citrate and 100 μM of

Co(II)-citrate (Co-magnetosomes) to the growth medium.
Cultures were carried out in three-fourths 1 L bottles at 28 °C
without shaking for 120 h, when well-formed magnetosomes
are observed.
Two different types of samples were prepared. First, for

TEM-EDS and magnetic measurements the whole cells were
employed. The final cultures were collected and fixed in 2%
glutaraldehyde. Afterward, the cells were harvested by
centrifugation, washed three times in mQ water, and
concentrated up to 108 cell/mL.
Complementary XANES and XMCD measurements were

carried out using extracted magnetosomes to increase the
signal-to-noise ratio. Magnetosomes were isolated according to
the protocol described by Grünberg et al. with minor
modifications.24 Cells were collected by centrifugation,
suspended in 20 mM HEPES−4 mM EDTA (pH 7.4), and
disrupted using a French press (1.4 kbar). The lysated cells
were sonicated to promote the separation of magnetosomes
and centrifuged at 600g for 5 min to remove cell debris. Then,
magnetosomes were collected from the supernatant by
magnetic separation and rinsed 10 times with 10 mM
HEPES−200 mM NaCl (pH 7.4). Finally, the isolated
magnetosomes were redispersed in ultrapure water.

Transmission Electron Microscopy and Energy-Dis-
persive X-ray Spectroscopy. Electron microscopy was
performed on unstained cells adsorbed onto 300 mesh
carbon-coated copper grids. TEM images were obtained with
a JEOL JEM-1400 Plus electron microscope at an accelerating
voltage of 120 kV. The particle size distribution was analyzed
using a standard software for digital electron microscope image
processing, ImageJ.25 Similar samples were employed for the
EDS analysis, which was carried out in an FEI Tecnai F30
electron microscope at an accelerating voltage of 200 kV.

Magnetic Measurements. Magnetic characterization was
carried out on the whole cells obtained as described before. The
samples were freeze-dried and encapsulated in gelatin capsules.
Isothermal magnetization loops were measured at magnetic
fields between 4 and −4 T at different temperatures, with no
applied magnetic field in the cooling process on a cryogen-free
vibrating sample magnetometer from Cryogenic. The zero-
field-cooling/field-cooling (ZFC/FC) magnetization curves
were measured in a superconducting quantum interference
device magnetometer (Quantum Design MPMS-3): The
sample was cooled in the absence of any external field from
300 K to 5 K. At 5 K a fixed magnetic field of 5 mT was applied
and the magnetization was measured upon warming to 300 K
(ZFC). With the field still on, the sample was cooled to 5 K and
the magnetization was measured upon warming to 300 K (FC).

X-ray Absorption Near-Edge Structure. XANES meas-
urements were performed on isolated magnetosomes. For these
measurements, extracted magnetosomes were freeze-dried and
thoroughly mixed with boron nitride; the resultant mixture was
compacted into 5 mm diameter pills.
The experiment was performed at room temperature and

atmospheric conditions at the branch A of BM25-Spline of the
ESRF synchrotron facility (France).26The monochromator
used in the experiments was a double crystal of Si(111). Fe
and Co foils were measured at the beginning and end of the
experiment for energy calibration. Under these conditions, the
edge position of the sample can be determined with an accuracy
of 0.3 eV. Measurements of Fe and Co foils, control
magnetosomes (Fe3O4), and a commercial reference of
CoFe2O4 (purchased from Sigma-Aldrich) were measured in
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transmission mode at the Fe (7112 eV) and Co (7709 eV) K-
edge, respectively. Co-doped magnetosome sample was
acquired in transmission mode at the Fe K-edge and in
fluorescence yield mode at the Co K-edge. From three to five
spectra were acquired for each sample and merged to improve
the signal-to-noise ratio. All of the data were treated by the
Athena software from the Iffefit package.27

X-ray Magnetic Circular Dichroism. Room-temperature
XMCD experiments were performed using the ALICE
station28,29 at the PM3 beamline of BESSY II in Berlin,
Germany. A drop of 5 μL of purified magnetosomes in aqueous
solution (20 μg/mL of Fe3O4) was deposited onto silicon
substrates. Data acquisition was done in total electron yield
(TEY) mode with the incoming circularly polarized (right
helicity) X-rays impinging at normal incidence with respect to
the sample surface. A magnetic field of ±0.27 T was applied

along the beam propagation direction. X-ray absorption spectra
(I) were obtained across the Fe L2,3 with a step size of 0.2 eV.
At each photon energy, data were acquired at magnetic
remanence after positive (I+) and negative (I−) magnetic fields
to yield the XMCD signal given by I+ − I−.

■ RESULTS AND DISCUSSION

Structural Characterization. Figure 1 displays representa-
tive TEM images, size distribution, and number of magneto-
somes per chain of control bacteria (top panel) and bacteria
grown in a Co-supplemented medium (bottom panel). Control
bacteria present uniformly sized magnetosomes except for
those located at both ends of the chains, which are slightly
smaller. This double size distribution is reflected in the
histogram where one of the distributions is centered at ⟨D⟩ =
47 nm with a standard deviation σ = 8 nm, with a majority of

Figure 1. Representative TEM images, size distribution, and number of magnetosomes per chain for the control (top panel) and Co-doped
magnetosomes (bottom panel).

Figure 2. EDS measurements performed on individual magnetosomes inside a bacterium grown in a Co-supplemented medium. (a) TEM image of
the analyzed magnetosomes chain within the cell. (b) EDS spectra of the 13 individual nanoparticles that have been analyzed. Dashed lines mark the
position of the X-ray emission lines of Fe and Co. (c) Example of the fit to three Gaussian functions. (d) Distribution of the atomic % Co fitted with
a Gaussian function.
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magnetosomes, while that corresponding to a lower fraction of
magnetosomes is centered at ⟨D⟩ = 22 nm (σ = 8 nm). The
average of magnetosomes per cell rounds to 20. Co-doped
magnetosomes do also present the double size-distribution, but
it is slightly shifted to lower values compared with the control
magnetosomes. In this case, the size distribution peaks in ⟨D⟩ =
40 nm (σ = 10 nm) and ⟨D⟩ = 15 nm (σ = 6 nm), respectively,
while the average magnetosomes per chain decreases to 13.
TEM images do not show any clear difference in the
morphology of the magnetosomes between both samples.
To estimate quantitatively the amount of Co incorporated

into the magnetosomes, we have carried out a chemical analysis
on the individual magnetosomes by means of EDS in TEM
mode. As shown in Figure 2a, 13 magnetosomes randomly
selected out of the 19 forming the chain have been analyzed,
and their corresponding EDS spectra are shown in Figure 2b.
The spectra show two main peaks. The one at lower energies
(∼6400 eV) corresponds to the Fe−Kα emission line, and the
one at higher energies (∼7060 eV) corresponds to the Fe−Kβ.
The Co−Kα emission line (at ∼6920 eV) introduces in the
spectra a slight asymmetry in the low-energy region close to
Fe−Kβ peak. We have fitted the spectra to three Gaussian
functions centered at the positions of the Fe−Kα, Fe−Kβ, and
Co−Kα emission lines (see Figure 2c) and estimated the atomic
percent of Co in the magnetosomes from the ratio of the
integrated areas of the Fe−Kα and Co−Kα peaks. The analysis
reveals that the atomic % Co is small, ranging between 0.9 and
1.5% from one particle to another and that the Co content
varies from particle to particle following a Gaussian distribution
(Figure 2d). Even though the Co incorporation is small, it
drastically changes the magnetic response, as will be shown

later. Unlike previous results on AMB-1,12 we have not found
any relationships between atomic % Co and the magnetosome
size or position of the particle in the chain.
The arrangement of the Co ions in the magnetite structure

has been investigated by using XANES. XANES is a very
powerful technique that allows us to accurately determine the
site occupancy of the Co cations in the spinel structure of the
magnetite. Note that magnetite is an inverse spinel where the
Fe ions occupy three different sites: 8 Fe2+ in octahedral sites
(Oh), 8 Fe3+ in tetrahedral (Ot) sites, and 8 Fe3+ in octahedral
(Oh) ones.
Figure 3a shows the Fe K-edge XANES spectra of the control

and Co-doped magnetosomes. As previously reported,30 the
control sample accurately follows the spectrum expected for a
high-quality magnetite standard. Co-doped magnetosomes
display a very similar spectrum, consistent with the low Co
content previously estimated from EDS measurements (∼1%),
which leaves the local environment around the Fe atoms
practically unperturbed. The comparison with the Fe K-edge
XANES spectrum of commercial CoFe2O4 shows that, apart
from differences in the intensity above the edge, the main
changes expected from the Co doping should appear at the
edge energy (see the inset of Figure 3a). In fact, the position of
the edge energy is very sensitive to the oxidation state of the
absorbing atom. CoFe2O4 is an almost inverse spinel with an
inversion degree of >80%,31 where the Co2+ substitutes the
Fe2+ ions at octahedral sites. As a consequence, the oxidation
state of the Fe ions in magnetite (Fe2+ and Fe3+) is lower than
that in CoFe2O4 (mostly Fe3+), explaining the shift up of the
energy edge of CoFe2O4 ≈ 1.7 eV toward higher energies. In
our case, a 1% content of Co would mean an energy edge shift

Figure 3. XANES spectra comparison (a) at Fe K-edge of control magnetosomes (pure magnetite), cobalt ferrite (CoFe2O4), and Co-doped
magnetosomes and (b) at Co K-edge of CoFe2O4 and Co-doped magnetosomes. The inset in panel a shows the pre-edge region. X-ray absorption
spectra (XAS) at Fe L2,3-edges of (c) control magnetosomes and (d) Co-doped magnetosomes acquired at magnetic remanence after positive (I+)
and negative (I−) magnetic fields. Spectra have been normalized by the peak intensity at the L3-edge of the nonmagnetic contribution to the XAS,
that is, (I+ + I−)/2. Magnetic contribution, I+ − I−, gives the XMCD signal presented in panel e, where the best linear combination fits have been
superimposed. A second-degree polynomial background was subtracted from the experimental XMCD curves to account for a preexisting time-
dependent background.
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of 0.02 eV, which is undetectable because it is below the energy
resolution (0.3 eV).
On the contrary, XANES on the Co K-edge probes the local

environment of Co atoms in doped magnetosomes. As shown
in Figure 3b, the spectrum is comparable to that of CoFe2O4.
The edge position is the same in both cases, revealing that the
oxidation state of the Co atoms in the Co doped magneto-
somes is Co2+, and the absence of a pre-edge peak strongly
suggests a predominant octahedral coordination for these Co2+

ions.32

These results have been confirmed by XMCD experiments at
the Fe L2,3-edges. Figure 3c,d shows the normalized absorption
spectra at the Fe L2,3-edges of the control and Co-doped
magnetosomes. As shown in Figure 3e, the resulting L3 XMCD
spectrum of the control magnetosomes consists of three main
components related to the three different iron occupations of
magnetite. The sign of the magnetic dichroism for each
component is defined by the direction of its magnetic moment.
Because Fe2+ and Fe3+ in octahedral places are aligned
ferromagnetically, negative intensities are obtained for both,
while for Fe3+ placed in tetrahedral sites, coupled antiferro-
magnetically with the Fe3+ in octahedral sites, the peak shows a
positive intensity. By comparing XMCD data with theoretical
spectra for each individual component,33,34 the site occupancies
of the Fe cations have been determined. The best linear
combination fits obtained from the three theoretical
components already mentioned between 706.0 and 711.3 eV
have been superimposed in Figure 3e. For the control
magnetosomes, the fit results give a ratio of FeOh

2+ :FeTh
3+:FeOh

3+

of 0.98(4):1.00(5):1.07(5), close to the expected ratio for
stoichiometric magnetite (1:1:1). In contrast, for Co-doped
magnetosomes the fit gives a ratio of 0.85(4):1.00(5):1.19(6).
The significant decrease of 4% in the FeOh

2+ peak intensity, even
evident at a first glance, indicates that the Co2+ ions are
substituting the octahedral Fe2+ ions. The percentage of Co
estimated by XMCD (4%) is significantly higher than the one
obtained from the EDS analysis (1%). This discrepancy is
attributed to the short probing depth (3−5 nm) of the XMCD
measurements, performed in TEY mode, and suggests a higher
cobalt concentration on the surface of magnetosomes than in
the core.
Therefore, according to XANES and XMCD, the low Co

content of the Co-doped magnetosomes barely alters the
inverse spinel structure. The Co ions are mostly incorporated as
Co2+ in octahedral sites by substituting Fe2+. These results
agree with previous ones reported in the References section.9,12

Magnetic Measurements. The incorporation of Co into
the magnetosome structure modifies the magnetic properties,
and hereafter we will analyze those changes. As previously
indicated, all of the measurements were carried out on the
whole bacteria and hence on magnetosomes arranged in chains.
Figure 4 shows the zero-field cooling/field cooling (ZFC/

FC) curves of the control and Co-doped magnetosome chains.
Control magnetosome chains present a marked irreversibility in
the whole studied temperature range, with the blocking
temperature being above 300 K as expected due to the large
size of the magnetosomes. The ZFC curve displays a sharp
transition at TV = 107 K corresponding to the well-known
Verwey transition, a cubic-to-monoclinic crystallographic phase
transition characteristic of magnetite. The Verwey transition
occurs at lower temperatures in magnetosomes than in bulk
magnetite (∼120 K), as previously observed.35−37 The fact that
the Verwey transition is so abrupt reflects the good

stoichiometry of the biomineralized magnetite. At 30 K the
ZFC presents a shoulder attributed to the ordering of electron
spins in magnetite at low temperature.38−40 The Verwey
transition is also observed in the FC curve and in its derivative
(see inset Figure 4), but in this case the magnetization
decreases only slightly below TV and remains constant down to
5 K. In the FC curve the low-temperature transition is absent.
As in the control, the ZFC/FC curves of Co-doped

magnetosome chains show clear irreversibility, but the shape
of the curves is markedly different. In the ZFC curve a wide
maximum stands out at ∼150 K. The Verwey transition is only
barely discerned at 100 K, and the low-temperature transition is
almost vanished. On the contrary, the FC magnetization
increases monotonically as the temperature decreases until it
reaches a plateau below the Verwey transition (100 K),
identified as the point at which the derivative of the FC curve
becomes null (see inset in Figure 4).
The M(H) loops of the control and Co-doped magnetosome

chains performed at 300, 110, and 30 K are shown in Figure
5a−c. At 300 K the M(H) loops overlap, but as the temperature

Figure 4. ZFC/FC curves at 50 mT of the control and Co-doped
magnetosome chains. The inset displays the derivative of FC for both
samples. Black and red arrows highlight the Verwey transition in
control and Co-doped magnetosomes, respectively.

Figure 5. Hysteresis loops of the control and Co-doped magnetosome
chains measured at (a) 300, (b) 110, and (c) 30 K. Continuous lines
correspond to the simulated loops considering the anisotropy
constants shown in Figure 6. (d) Coercive field (μ0Hc) and (e)
reduced remanence magnetization (Mr/Ms) comparison as a function
of temperature. Continuous lines correspond to the values obtained
from the simulation considering the anisotropy constants shown in
Figure 6. The black arrow in panel d marks the Verwey transition (TV)
of the control magnetosomes.
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decreases clear differences in the shape of the loops arise. These
differences between the control and Co-doped magnetosome
chains can be easily tracked in the plots of the coercive field
(μ0Hc) and reduced remanence (Mr/Ms) versus temperature
shown in Figure 5d,e.
In the control magnetosome chains, the coercivity is nearly

constant from 300 K down to TV with μ0Hc ≈ 22 mT. Below
TV, the coercivity increases steeply up to 50 mT at the low-
temperature transition occurring at 30 K, after which the slope
increases again to 73 mT at 5 K. Conversely, the Mr/Ms value
remains fairly constant between 0.44 and 0.49 throughout the
whole temperature range. These values around 0.5 indicate that
randomly oriented magnetosome chains behave like uniaxial
magnetic domains in the framework of the Stoner−Wohlfarth
model,41 as will be discussed in the following.
Despite the low Co content, the magnetic response of the

Co-doped magnetosome chains changes significantly. Regard-
ing μ0Hc, instead of two well-defined kinks as those found in
the control sample, here a progressive increase takes place as
the temperature decreases, moderately down to ∼150 K and
steeply after that point down to 5 K. The coercive field at 300 K
(20 mT) is coincident with the value found for the control
magnetosomes, but at lower temperatures it becomes
consistently higher, up to 60% higher than the coercive field
of the control sample. The reduced remanence is nearly
constant from 300 K down to 150 K at ∼0.45, similarly to the
control magnetosomes, but increases notably up to Mr/Ms =
0.65 at 30 K and drops steeply afterward, down to 0.53 at 5 K.
Magnetic Model. To understand the observed features in

the magnetic measurements caused by the Co2+ incorporation
into the magnetosomes structure and, in particular, its role in
the effective anisotropy, we have carried out numerical
simulations of the magnetization dynamics of the magneto-
somes at different temperatures by using an approach based on
the Stoner−Wohlfarth model with some pertinent modifica-
tions.42−44 All of the data analysis has been performed
considering a unique magnetic phase.
In this framework, magnetosome chains have been

considered as a collection of independent magnetic dipoles,
where the equilibrium orientation of each magnetic dipole is
calculated by minimizing the single dipole energy density E that
is calculated as the sum of three contributions:45−48 (i) the
magnetocrystalline anisotropy energy (Ec); (ii) an effective
uniaxial anisotropy term arising from the competition between

the magnetosome shape anisotropy and the dipolar interactions
between magnetosomes in the chain (Euni); and (iii) the
Zeeman energy term (EZ).
In spherical coordinates, considering the ⟨100⟩ crystallo-

graphic directions as the reference system (Figure 6a), the first
term of the single dipole energy density is the cubic
magnetocrystalline energy given by

θ φ θ φ θ= +E K( , ) [sin ( ) sin ( ) sin (2 )/4]c c
4 2 2

(1)

where Kc is the cubic anisotropy constant and θ and φ are the
polar and azimuthal angles, respectively, of the magnetic
moment (whose direction is given by the unit vector um̂).
The second term is an effective uniaxial anisotropy

contribution along the u ̂uni axis that results from the
competition of the shape anisotropy of the magnetosomes
and the interparticle dipolar interactions between nearest
neighbors in the chain

θ φ = − ̂ · ̂E K u u( , ) [1 ( ) ]muni uni uni
2

(2)

where Kuni is the uniaxial anisotropy constant. The justification
for the representation of the interaction energy as a uniaxial
anisotropy term lies in recent small-angle neutron scattering
experiments, which reveal that the chain is composed of single-
domain particles whose magnetic moments rotate coherently.48

The direction of the uniaxial axis uûni would point along the
chain axis if only the dipolar interactions were present. The
chain axis is one of the magnetosome ⟨111⟩ axes (see Figure
6a) because it is well known that magnetosomes arrange along
the chain with their hexagonal faces toward each other.49,50

However, the shape anisotropy, an important contribution due
to the strongly faceted structure of the magnetosomes, seems to
point away from the chain axis,51 and, in fact, our simulations
improve considerably when the uniaxial easy axis is tilted 25°
out of the chain axis toward the ⟨110⟩ directions; see Figure
6a.48

The third term is the Zeeman energy in an external magnetic
field μ0H⃗

θ φ μ= − ̂ · ̂E MH u u( , ) ( )mZ 0 H (3)

where ûH represents the external magnetic field unit vector.
The single dipole energy density E is thus given by

θ φ = + +E E E E( , ) c uni Z (4)

Figure 6. (a) Schematic representation of an individual magnetosome where x, y, and z conform the coordinate axes selected in the simulations
coincident to ⟨100⟩ directions. Uniaxial axis (red direction) forms 25° with the ⟨111⟩ direction. Temperature evolution of the anisotropy constants
for (b) control magnetosomes and (c) Co-doped magnetosomes. Red dots correspond to the uniaxial anisotropy constant (Kuni) and blue ones
represent the cubic magnetocrystalline anisotropy constant (Kc).
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The hysteresis loops have then been calculated following a
dynamical approach in which the single-domain magnetization
can switch between the available energy minima states, at a rate

determined by a Boltzmann factor − Δ( )( )exp V E
k TB

, where V is

the particle volume and ΔE is the energy barrier between each
pair of minima states, as well-explained in refs 42−44. In each
simulation, Kc and Kuni have been adjusted at each temperature
to achieve the best match between experiment and theory. As
shown in Figure 5a−c, the proposed model accurately
reproduces the experimental hysteresis loops and the thermal
evolution of the coercivity and reduced remanence (Figure
5d,e) for both the control and the Co-doped magnetosomes.
The thermal evolution obtained for Kc and Kuni for the

control magnetosomes is shown in Figure 6b. From 300 K
down to the Verwey temperature TV, the evolution of Kc
reproduces the values and trend reported for bulk monocrystal-
line magnetite (at 300 K, Kc = −11 kJ/m3).52 On the contrary,
Kuni remains constant (11 to 12 kJ/m3) down to TV, as
expected, because shape anisotropy and the strength of
magnetic interactions depend only slightly on temperature in
this range of temperatures. Below TV, the magnetocrystalline
anisotropy changes from cubic to essentially uniaxial along the
⟨100⟩ directions of the original cubic spinel structure.
Therefore, below TV, the effective anisotropy is purely uniaxial
(eq 2) and results from the competition between the
magnetocrystalline uniaxial anisotropy and the shape and
interaction contribution. The resulting uniaxial anisotropy
constant Kuni increases substantially from 11 to 12 kJ/m3 at
TV to 37 kJ/m3 at 5 K, as previously observed.53

In the Co-doped magnetosomes, a large positive contribution
to the cubic magnetocrystalline energy is observed as expected
from previous works in Co-substituted magnetite.52,53 In these
calculations, a Gaussian distribution of the cubic anisotropy
constant Kc has been introduced to account for the EDS results,
from which the atomic % Co rounds 1% and varies from
particle to particle following a Gaussian distribution (Figure
2d). The mean magnetocrystalline anisotropy constant ⟨Kc⟩
changes substantially, appearing strongly dependent on
temperature. Both the observed temperature dependence and
the obtained anisotropy values of Kc agree with the results
found in the bibliography considering a concentration of 1%
Co:52,54,55 Kc is positive in the entire temperature range,
meaning that unlike in magnetite, the magnetocrystalline easy
axes are the ⟨100⟩, and Kc increases considerably from a value
of 8 kJ/m3 at 300 K to 78 kJ/m3 at 30 K. On the contrary, Kuni
shows a similar trend as the one observed for the control
magnetosomes. This is not surprising given the origin of this
uniaxial anisotropy contribution because Co doping does not
introduce any change in the magnetosome shape and
arrangement in the chains, as revealed by TEM.
The implications of the anisotropy constant values in the

effective easy axes are reflected in the zero-field energy surfaces
plotted in Figure 7 (and Movies S1−S6) at selected
temperatures. For the control magnetosomes, at 300 K (see
Figure 7a) the energy surface shows one single minimum,
meaning that the effective anisotropy is uniaxial. The position
of this minimum defines the direction of the corresponding
easy axis, which in this case is (θ = 74°, φ = 45°). Thus even
though the cubic magnetocrystalline contribution (Ec)
corresponding to a negative Kc (⟨111⟩ easy axes) is well
distinguished in the shape of the energy surface at 300 K, it
definitely plays a minor role in the overall energy, and its main

contribution is to tilt slightly the direction of the uniaxial term
set at (θ = 80°, φ = 45°).
At 110 K (Figure 7b), when Kc ≈ 0, the energy surface

resembles a toroid that is flattened along the [001] direction. It
is thus nearly a pure uniaxial anisotropy, and the corresponding
effective easy axis is coincident with the uniaxial easy axis set for
the uniaxial term in eq 2 (θ = 80°, φ = 45°). This term
dominates the overall energy down to 30 K (Figure 7c), where
an almost perfect uniaxial symmetry is observed.
The effective uniaxial anisotropy observed in the control

magnetosomes during the whole temperature range studied is
in agreement with the observed reduced remanence values
close to ∼0.5 (Figure 5e), as expected for randomly oriented
uniaxial magnetic domains in the framework of the Stoner−
Wohlfarth model.41

On the contrary, a different scenario is observed in the Co-
doped magnetosomes, as shown in Figure 7d−f (Movies S4−
S6). At 300 K the energy shows a single minimum,
corresponding to an effective easy axis along the direction (θ
= 82°, φ = 45°), only slightly tilted with respect to the uniaxial
term set at (θ = 80°, φ = 45°). The cubic magnetocrystalline
contribution to the energy is only reflected as a slight flattening
of the energy surface at the [001] axis. As the temperature
decreases, the ratio of ⟨Kc⟩/Ku increases, and as a consequence
the contribution of the magnetocrystalline cubic anisotropy to
the total energy acquires an increasingly more important role,
and the system evolves from showing one (300 K) to two (110
K) to finally three (30 K) effective easy axes. For 0 ≤ ⟨Kc⟩/Ku
≤ 1 there is a single easy axis, although with a nontoroidal
symmetry. For 1 < ⟨Kc⟩/Ku ≤ 1.63 there are two equivalent

Figure 7. Zero-field energy landscapes at 300, 110, and 30 K of the
control (a−c) and Co-doped magnetosomes (d−f) obtained from the
simulations explained in the text. The blue arrows represent the
effective easy axes, whose directions are given by (θ, φ), where θ is the
polar angle and φ is the azimuthal angle. A detailed view of the energy
landscapes can be found in the Supporting Information (Movies S1−
S6).
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easy axes close to axes [100] and [010], and above 1.63 there
are three easy axes, two of them equivalent (now even closer to
[100] and [010]) and the third nearly coincident with [001].
Crossing points are located at ∼150 K (from uniaxial to biaxial)
and at 100 K (from biaxial to triaxial). This is consistent with
the reduced remanence increasing above 0.5 below 150 K
because below this point the anisotropy is no longer uniaxial.
Finally, below 30 K the reduced remnant magnetization

decreases remarkably from 0.65 at 30 K to near 0.5 at 5 K, as
observed in Figure 5e, and the hysteresis loops are no longer
well reproduced following the same model, as sketched in
Figure 6a, where uniaxial anisotropy has been assumed to keep
an angle of 25° with the ⟨111⟩ toward ⟨110⟩. Below 30 K the
experimental loops can be accurately reproduced only if the
uniaxial contribution undergoes a reorientation of ∼15° toward
directions [001] or [100] in the sketch of Figure 6a. This
reorientation is accompanied by a slight decrease in the cubic
anisotropy constant, as shown in Figure 6c. The underlying
physical mechanism behind this effect remains unclear for us. A
definite fact, however, is that the reorientation cannot be
related to either shape anisotropy or to dipolar interaction
effects but instead should be linked to the Co-doped magnetite
phase itself. Additional insight provided by electronic transfer
property measurements or more precise structural determi-
nation could shed light on this matter.

■ CONCLUSIONS

From the combination of structural and magnetic techniques
we have observed that a low Co atomic percent (1%),
incorporated as Co2+ substituting Fe2+ into the magnetosome
structure, adds a large positive contribution to the magneto-
crystalline anisotropy of magnetosomes. This magnetocrystal-
line anisotropy is strongly dependent on temperature and
competes with a uniaxial anisotropy that results from the shape
anisotropy of the magnetosome and the dipolar interactions
between them in the chain. On the basis of the slightly
modified Stoner−Wohlfarth model and considering the
different anisotropy contributions, we have been able to
accurately reproduce the magnetic behavior of the control
and Co-doped magnetosome chains and have determined the
direction of the easy axes of the magnetization as a function of
the temperature. In contrast with the control magnetosome
chains, whose effective anisotropy is uniaxial in the whole
temperature range, the effective anisotropy of Co-doped
magnetosome chains changes appreciably with temperature,
from uniaxial from 300 to 150 K, to biaxial down to 100 K and
triaxial below 100 K. Further research effort should focus on the
electronic state of the Co-doped magnetosomes at very low
temperatures.
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Hansen, M. F.; Varoń, M.; Frandsen, C.; Pankhurst, Q. A. On the
‘centre of gravity’ method for measuring the composition of
magnetite/maghemite mixtures, or the stoichiometry of magnetite-
maghemite solid solutions, via 57 Fe Mössbauer spectroscopy. J. Phys.
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