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CHAPTER 3

Biparametric Scale Adaptive Filter:

1D approach

This chapter considers the problem of compact source detection on a Gaussian back-

ground. We make a one-dimensional treatment. Two relevant aspects of this problem

are considered: the design of the detector and the filtering of the data. Our detection

scheme is based on local maxima and it takes into account not only the amplitude but

also the curvature of the maxima. A Bayesian Neyman-Pearson test is used to define

the region of acceptance, that is given by a sufficient linear detector that is independent

on the amplitude distribution of the sources. We study how detection can be enhanced

by means of linear filters with a scaling parameter and compare some of them that

have been proposed in the literature (the Mexican Hat wavelet, the matched and the

scale-adaptive filters). We introduce a new filter, that depends on two free parameters

(biparametric scale-adaptive filter). The value of these two parameters can be deter-

mined, given the a priori pdf of the amplitudes of the sources, such that the filter opti-

mizes the performance of the detector in the sense that it gives the maximum number

of real detections once fixed the number density of spurious sources. The new filter

includes as particular cases the standard matched filter, the scale-adaptive filter and

the Mexican Hat wavelet. Then, by construction, the biparametric scale adaptive fil-

ter outperforms all the other considered filters (including the standard matched filter).

The combination of a detection scheme that includes information on the curvature and

a flexible filter that incorporates two free parameters (one of them a scaling) improves

significantly the number of detections in some interesting cases. In particular, for the

case of weak sources embedded in white noise the improvement with respect to the
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standard matched filter is of the order of 40%. Finally, an estimation of the amplitude

of the source (most probable value) is introduced and it is proven that such an estima-

tor is unbiased and it has maximum efficiency. We perform numerical simulations to

test these theoretical ideas in a practical example and conclude that the results of the

simulations agree with the analytical ones, see López-Caniego et al. [87].

3.1 Introduction

The detection, identification and removal of the extragalactic point sources (EPS) is fun-

damental for the study of the Cosmic Microwave Background Radiation (CMB) data

(Franceschini et al. [47], Toffolatti et al. [141], De Zotti et al. [31]). In particular, the

contribution of EPS is expected to be very relevant at the lower and higher frequency

channels of the future ESA Planck Mission [96, 115]).

The heterogeneous nature of the EPS that appear in CMB maps as well as their un-

known spatial distribution make difficult to separate them from the other physical

components (CMB, Galactic dust, synchrotron, etc) by means of statistical component

separation methods. Techniques based on the use of linear filters, however, are well-

suited for the task of detecting compact spikes on a background. Several techniques

based on different linear filters have been proposed in the literature: the Mexican Hat

Wavelet (MHW,Cayón et al. [19], Vielva et al. [144, 145]), the classic matched filter (MF,

Tegmark & de Oliveira-Costa [139]), the Adaptive Top Hat Filter (Chiang et al. [20])

and the scale-adaptive filter (SAF, Sanz, Herranz, & Martínez-Gónzalez [124]). A cer-

tain deal of controversy has appeared about which one, if any, of the previous filters is

optimal for the detection of point sources in CMB data.

In order to answer that question it is necessary to consider first a more fundamental is-

sue, the concept of detection itself. The detection process can be posed as follows: given

an observation, the problem is to decide whether or not a certain signal was present at

the input of the receiver. The decision is not obvious since the observation is corrupted

by a random process that we call ‘noise’ or ‘background’.

Formally, the decision is performed by choosing between two complementary hypothe-

ses: that the observed data is originated by the background alone (null hypothesis), and

the hypothesis that the observation corresponds to a combination of the background

and the signal. To decide, the detector should use the totality of the available informa-

tion in terms of the probabilities of both hypotheses given the data. The decision device

separates the space R of all possible observations in two disjoint subspaces, R∗ and

R−, so that if an observation y ∈ R− the null hypothesis is accepted, and if y ∈ R∗
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the null hypothesis is rejected, that is, a source is ‘detected’. Hence, we will call any

generic decision device of this type a detector.

Any detector can produce two kinds of errors: on the one hand, it can produce a false

alarm or spurious detection when an observation in which no source was present is as-

signed to the subspace R∗. The probability of this kind of error depends on the statis-

tical properties of the background and the choice of the detector. On the other hand, a

signal that is present in the observation can be missed by the detector (i.e. the obser-

vation is wrongly assigned to the subspace R−). This error is often referred to as false

dismissal. The probability of false dismissal depends on the statistical properties of the

background, the choice of the detector and the properties of the signal (for example, its

intensity). In general, it is not possible to decrease the incidence of both types of error

at the same time: one of them can be reduced at expense of increasing the other. The

goodness of a given detector must be established by taking into account the balance

between these two types of error.

The simplest example of detector, and one that has been exhaustively used in Astron-

omy, is thresholding. Thresholding considers that the space R of observations consists

of all the possible values of the measured intensity ξ (in the case of an astronomical

image) and subdivides this space into two simple regions R− ≡ {ξ ∈ R : ξ < ξ∗} and

R∗ ≡ {ξ ∈ R : ξ ≥ ξ∗}. The value ξ∗ is an arbitrarily chosen threshold that is often

expressed as a number of times the standard deviation of the background, ξ ∗ = ν∗σ0.

Thresholding works on the assumption that the probability of finding a value of ξ due

to the background decreases as the value of ξ increases. In the case of a Gaussian

background, this assumption has a very precise meaning and it allow us to control

straightforwardly the probability of occurrence of spurious detections simply by set-

ting a large enough threshold. However, this may lead to a very high probability of

false dismissals.

Unfortunately, in many cases the sources are very faint and this makes very difficult to

detect them: a high threshold means that the number of detections will be very small.

Here is where filtering enters in scene. The role of filtering is to transform the data

in such a way that a detector can perform better than before filtering. For example,

a filter can be designed to reduce the fluctuations of the background so that we can

safely use lower detection thresholds and, hopefully, increase the number of detections

without increasing the number of spurious detections. We remark that a filter is not

a detector: the decision device we call ‘detector’ can be applied after the application

of any imaginable filter, or even no filter at all, while the use of any filter without a

posterior detection criterion means nothing. However, the two different steps in the
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process (filtering and detection) are not independent. In the thresholding example,

the use of a filter that cancels most of the fluctuations in the background allows us to

change the detection threshold from its original high value to a lower one. Given an

adopted detector and a background, it is licit to ask which is the filter that creates the

most favorable conditions in the filtered background for the detector to perform. In

other words, the ‘optimality’ of a filter for detection depends on the type of detector

chosen which, in turn, depends on the specific goal that the observer has in mind: in

certain cases the observer will accept a relatively large number of spurious detections

in order to have a large number of true targets, whereas in other cases it could be more

important to be certain that the detections are all of them reliable, and so on.

For example, let us consider that we have chosen thresholding as our detection de-

vice. In that case, it is well known that the optimal linear filter is the matched filter.

It produces the maximum amplification of the signal with respect to the background

fluctuations, so that the threshold for a given probability of spurious detections is min-

imum, allowing the thresholding detector to find more sources than would be detected

if we filtered with any other linear filter. A sub-optimal approach is to select a priori a

filter and adapt its scale in order to produce a maximum amplification in a given back-

ground. Such is the case of the Mexican Hat Wavelet at the optimal scale (MHO, Vielva

et al. [144, 145]) and the Adaptive Top Hat Filter (ATHF, Chiang et al. [20]).

Thresholding has a number of advantages, among them the facts that it is straightfor-

ward, it has an obvious meaning in the case of Gaussian backgrounds, and it has been

successfully used for many years in many fields of science. However, it does not use

all the available information contained in the data to perform decisions. Therefore, one

can ask the following question: is it possible to devise a detector that uses additional

information apart from mere intensities and that produces better results than thresh-

olding? And, if so, which is the filter that optimizes the performance of such a detector?

Let us focus on the case of one-dimensional data (such as stellar spectra or time-ordered

scannings of the sky in CMB experiments) and linear filters. Data in a one-dimensional

array is entirely described by two quantities, namely the position in the array (corre-

sponding to the spatial or temporal coordinate, for simplicity we will refer it as spatial

information) and the value (intensity) at each position. Thresholding uses only the in-

tensity distribution to make the decision. Clearly, the inclusion of spatial information

in a detector should be useful. For example, it could help to distinguish the sources

from fluctuations in the background with similar scale but a different shape. A full

description of this ‘spatial information’ should include the probability distribution of

events (both due to background and sources) in space, with all its infinite moments.
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We will somewhat relax this demand of information assuming that the background is

homogeneous and isotropic, and asking at each point for some information about the

shape of the sources (e. g., the curvature of the peaks) and the autocorrelation of the

background.

In fact, even a simple filtering-and-thresholding scheme uses implicitly some degree

of spatial information. Both the MHO and the ATHF adapt to the scale at which the

contrast between sources and background produces the maximum amplification. The

MF includes as well the information on the profile of the sources in order to amplify

the structures whose shape correlates with the shape of the sources. SAF goes a step

further in constraining additionally the scale of the filter. Moreover, in most cases the

detection is performed not in all the points of the data but only in the peaks, that is, in

those points where the curvature is positive.

An example of detector that uses more information than simple thresholding is given

by the Neyman-Pearson decision rule:

L(xi) =
p(xi|H1)

p(xi|H0)
≥ L∗ (3.1.1)

where L(xi) is called the likelihood ratio, p(xi |H0) is the probability density function

(pdf) associated to the null hypothesis (i.e. there is no source) whereas p(x i|H1) is the

pdf corresponding to the alternative hypothesis (i.e. there is a source). x i are a set

of variables which are measured from the data (e.g. amplitude, curvature). L∗ is an

arbitrary constant, which defines the region of acceptance, and must be fixed using

some criterion.

In a recent work, Barreiro et al. [5] introduce a novel technique for the detection of

sources based on the study of the number density of maxima for the case of a Gaus-

sian background in the presence or absence of a source. In order to define the region

of acceptance the Neyman-Pearson decision rule is used with pdf’s associated to the

previous number densities and using the information of both the intensities ξ and the

curvatures κ of the peaks in a data set. In addition, L∗ is fixed by maximising the sig-

nificance, which is the weighted difference between the probabilities of having and not

having a source. In that work the performances of several filters (SAF, MF and MHW)

is compared in terms of their reliability, defined as the ratio between the number den-

sity of true detections over the number density of spurious detections. They find that,

on the basis of this quantity, the choice of the optimal filter depends on the statistical

properties of the background. For the case of backgrounds that can be described with

a power spectrum of the form P(q) ∝ q−γ, the SAF outperforms the other two filters

for the case 1 < γ ≤ 1.6, whereas in the range 0 ≤ γ ≤ 1 the MF is the most reliable.
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The MHW is the most reliable filter in this sense when γ > 1.6. However, the criterion

chosen to fix L∗ based on the significance does not necessarily leads to the optimal reli-

ability. Therefore, if we are considering the reliability as the main criterion to compare

filters, a different criterion for L∗, closely related to the number densities, must be used.

In a posterior work, Vio, Andreani, & Wamsteker [148], following the previous work,

adopt the same Neyman-Pearson decision rule, based on the pdf’s of maxima of the

background and background plus source, to define the region of acceptance. How-

ever, they propose to find L∗ by fixing the number density of spurious detections and

compare the number density of true detections for all the filters. In this case, the MF

outperforms the other two filters.

In the present work, our goal will also be to find an optimal filter that gives a maximum

number density of detections fixing a certain number density of spurious sources. In

order to define the detector, we will use a decision rule based on the Neyman-Pearson

test. We will consider some standard filters (MF, SAF and MH) introduced in the liter-

ature as well as a new filter that we call the Biparametric Scale Adaptive Filter (BSAF).

In all the filters appears in a natural way the scale of the source. We will modify such

a scale introducing an extra parameter. In fact, it has been shown by López-Caniego et

al. [86] that the standard Matched Filter can be improved under certain conditions by

filtering at a different scale from that of the source. The performance of the BSAF will

be compared with the other filters.

The overview of this chapter is as follows: In section 2, we introduce two useful quan-

tities: number of maxima in a Gaussian background in the absence and presence of a

local source. In section 3, we introduce the detection problem and define the region

of acceptance. In section 4, we introduce an estimator of the amplitude of the source

that is proven to be unbiased and maximum efficient. In section 5 and 6, we obtain

different analytical and numerical results regarding weak point sources and scale-free

background spectra and compare the performance of the new filter with other used in

the literature. We include a subsection dedicated to study the robustness of the method.

In section 7, we describe the simulations performed to test some theoretical aspects and

give the main results and finally, in section 8, we summarize the conclusions and ap-

plications of this work. Appendix A is a sketch to obtain a sufficient linear detector

whereas we obtain the linear unbiased and maximum efficient estimator in appendix

B.
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3.2 Background peaks and compact sources

3.2.1 The background

Let us assume a 1D background (e. g. one-dimensional scan on the celestial sphere

or time ordered data set) represented by a Gaussian random field ξ(x) with average

value 〈ξ(x)〉 = 0 and power spectrum P(q), q ≡ |Q|: 〈ξ(Q)ξ∗(Q′)〉 = P(q)δD(Q − Q′),

where ξ(Q) is the Fourier transform of ξ(x) and δD is the 1D Dirac distribution. The

distribution of maxima was studied by Rice (1954) in a pioneering article. The expected

number density of maxima per intervals (x, x + dx), (ν, ν + dν) and (κ, κ + dκ) is given

by

nb(ν, κ) =
nb κ

√

2π(1 − ρ2)
e
− ν2+κ2−2ρνκ

2(1−ρ2) , (3.2.1)

being nb the expected total number density of maxima (i.e. number of maxima per unit

interval dx)

nb ≡
1

2πθm
, ν ≡ ξ

σ0
, κ ≡ −ξ ′′

σ2
, (3.2.2)

θm ≡ σ1

σ2
, ρ ≡ σ2

1
σ0σ2

=
θm

θc
, θc ≡

σ0

σ1
,

where ν ∈ (−∞, ∞) and κ ∈ [0, ∞) represent the normalized field and curvature, re-

spectively. σ2
n is the moment of order 2n associated to the field. θc, θm are the coherence

scale of the field and maxima, respectively. As an example, figure 3.1 shows the val-

ues of the ratio nb(ν, κ)/nb for the case ρ = 0.7 (a typical value for the backgrounds

we are considering). In this case, the expected density of maxima has a peak around

ν ' 0.8 and κ ' 1.1, that is, most of the peaks appear at a relatively low threshold and

curvature, and the density of peaks decreases quickly for extreme values of ν and κ.

If the original field is linear-filtered with a circularly-symmetric filter Ψ(x; R, b), depen-

dent on 2 parameters (R defines a scaling whereas b defines a translation)

Ψ(x; R, b) =
1
R

ψ

( |x − b|
R

)

, (3.2.3)

we define the filtered field as

w(R, b) =
∫

dx ξ(x)Ψ(x; R, b). (3.2.4)

Then, the moment of order 2n of the linearly-filtered field is

σ2
n ≡ 2

∫ ∞

0
dq q2n P(q)ψ2(Rq), (3.2.5)

being P(q) the power spectrum of the unfiltered field and ψ(Rq) the Fourier transform

of the circularly-symmetric linear filter.
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Figure 3.1 Value of nb(ν, κ)/nb for ρ = 0.7.

3.2.2 The presence of a local source

Now, let us consider a Gaussian source (i.e. profile given by τ(x) = exp(−x2/2R2),

where R is the beam width) embedded in the previous background. Then, the expected

number density of maxima per intervals (x, x + dx), (ν, ν + dν) and (κ, κ + dκ), given a

source of amplitude A in such spatial interval, is given by Barreiro et al. [5]

n(ν, κ|νs) =
nb κ

√

2π(1 − ρ2)
×

e
− (ν−νs)2+(κ−κs)2−2ρ(ν−νs)(κ−κs)

2(1−ρ2) , (3.2.6)

where ν ∈ (−∞, ∞) and κ ∈ [0, ∞), νs = A/σ0 is the normalized amplitude of the

source and κs = −Aτ′′
ψ /σ2 is the normalized curvature of the filtered source. The last

expression can be obtained as

κs = νsys, ys ≡ −
θ2

mτ′′
ψ

ρ
, − τ′′

ψ = 2
∫ ∞

0
dq q2τ(q)ψ(Rq). (3.2.7)

We consider that the filter is normalized such that the amplitude of the source is the

same after linear filtering:
∫

dx τ(x)Ψ(x; R, b) = 1.
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3.3 The detection problem

We want to make a decision between filters based on detection. To make such a decision,

we will focus on the following two fundamental quantities: a) the number of spurious

sources which emerge after the filtering and detection processes and b) the number of

real sources detected. As seen in the previous section, these quantities are properties

of the Gaussian field and source that can be calculated through equations (3.2.1) and

(3.2.6). As we will see, the previous properties are not only related to the SNR gained in

the filtering process but depend on the filtered momenta to 4th-order (in the 1D case),

i.e. the amplification and the normalized curvature.

3.3.1 The region of acceptance

Let us consider a local peak in the 1D data set characterised by the normalized ampli-

tude and curvature (νs, κs). Let H0 : n.d. f . nb(ν, κ) represent the null hypothesis, i.e.

the local number density of background maxima, and H1 : n.d. f . n(ν, κ) represents the

alternative hypothesis, i.e. the local number density of maxima when there is a compact

source.

n(ν, κ) =
∫ ∞

0
dνs p(νs)n(ν, κ|νs). (3.3.1)

We have assumed a Bayesian approach: at a concrete pixel we get the number of source

detections weighting with the a priori probability p(νs), if the sources are spatially dis-

tributed as a Poissonian process.

Given the data (ν, κ), we can associate to any region R∗(ν, κ) two number densities n∗
b

and n∗

n∗
b =

∫

R∗
dν dκ nb(ν, κ), (3.3.2)

n∗ =
∫

R∗
dν dκ n(ν, κ). (3.3.3)

Then, n∗
b is the number density of spurious sources, i.e. due to the background, ex-

pected inside the region R∗(ν, κ), whereas n∗ is the number density of maxima ex-

pected in the same region of the (ν, κ) space in the presence of a local source. Here-

inafter, we will call it the number density of detections.

R∗ is called the acceptance region. We remark that in order to get the true number of

real source detections such a number must be multiplied by the probability to have a

source in a pixel in the original data set.
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We will assume a Bayesian Neyman-Pearson (BNP) decision rule using number densi-

ties instead of probabilities: the acceptance region R∗ is given by the highest number

density of detections n∗, for a given number density of spurious detections n∗
b . Such a

region is (criterion for detection)

L(ν, κ) ≡ n(ν, κ)

nb(ν, κ)
≥ L∗, (3.3.4)

where L∗ is a constant and L(ν, κ) defines the detector. Therefore, the decision rule is

expressed by the likelihood ratio: if L ≥ L∗ we decide that the signal is present, whereas

if L < L∗ we decide that the signal is absent. Note that the previous region is equivalent

to the one defined by the usual Neyman-Pearson test in terms of probabilities

p(ν, κ)

pb(ν, κ)
≥ L′

∗ (3.3.5)

where pb(ν, κ), p(ν, κ) are the pdf’s associated to the number densities given by equa-

tions (3.2.1) and (3.3.1) and, in order to compare different filters, the constant L ′
∗ must

be found by fixing the number density of spurious sources in the region of acceptance

n∗
b instead of the “false alarm” probability α ≡ n∗

b/nb.

It can be proved that the previous region of acceptance R∗ is equivalent to the sufficient

linear detector (see Appendix A)

R∗ : ϕ(ν, κ) ≥ ϕ∗, (3.3.6)

where ϕ∗ is a constant and ϕ is given by

ϕ(ν, κ) ≡ 1 − ρys

1 − ρ2 ν +
ys − ρ

1 − ρ2 κ (3.3.7)

We remark that the assumed criterion for detection leads to a linear detector ϕ (i.e.

linear dependence on the threshold ν and curvature κ). Moreover, this detector is inde-

pendent of the pdf of the source amplitudes.

3.3.2 Spurious sources and real detections

Once obtained the region of acceptance R∗ in the previous subsection, one can calculate

the number density of spurious sources and the number density of detections as given

by equation (3.3.2)

n∗
b =

nb

2

[

erfc

(

ϕ∗
√

1 − ρ2
√

2(1 − ρys)

)

+
√

2Myse−M2ϕ2
∗erfc

(

−
√

1 − ρ2

1 − ρys
ys Mϕ∗

)]

, (3.3.8)

66



CHAPTER 3: BIPARAMETRIC SCALE ADAPTIVE FILTER: 1D APPROACH

M ≡
√

1 − ρ2

2(1 − 2ρys + y2
s )

,

n∗ =
nb√
2π

1 − ρys

(µ + y2
s )
√

1 − ρ2
×

∫ ∞

ϕ∗
dϕI(ϕ)[1 + B(z)]e

− (1−ρ2)ϕ2

2(1−ρys)2 ,

where

z =
ys ϕ

1 − ρys

√

1 − ρ2

2(µ + y2
s )

,

B(z) =
√

πzez2
erfc(−z),

µ ≡ (1 − ρys)
2

1 − ρ2 ,

I(ϕ) =
∫ ∞

0
dνs p(νs)eνs ϕ− 1

2 ν2
s (µ+y2

s). (3.3.9)

Then, one can invert the equation for the number of spurious to get ϕ∗ = ϕ∗(
n∗

b
nb

; ρ, ys)

that allows to rewrite the equation for the number of detections as n∗ = g(n∗
b ; θm, ρ, ys),

that is a generalized “receiving operating curve”(R.O.C. in the signal processing jar-

gon).

3.4 The estimation of the amplitude of the source

The signal has an unknown parameter, the amplitude A, that has to be estimated

from the data (ν, κ). We shall assume that the most probable value of the distribution

n(ν, κ|νs) gives an estimation of the amplitude of the source (criterion for amplitude

estimation). The result ν̂s is given by the equation

ν̂s =
ϕ(ν, κ)

y2
s + µ

, (3.4.1)

where the function ϕ is given by equation (3.3.7). One can prove that such an estimation

gives a linear estimator that is unbiased and maximum efficient, i.e.

〈ν̂s〉 = ν, σ2
ν̂s

=
1

y2
s + µ

, (3.4.2)

67



CHAPTER 3: BIPARAMETRIC SCALE ADAPTIVE FILTER: 1D APPROACH

where 〈〉 denotes average value over realizations (see Appendix B). A confidence level

for the estimation of the amplitude of the source can also be obtained from the a poste-

riori p.d.f. p(νs |ν, κ) ∝ n(ν, κ|νs).

3.5 Analytical results

3.5.1 Filters

We will consider as an application the detection of compact sources characterised by a

Gaussian profile τ(x) = exp(−x2/2R2), and Fourier transform τ = R exp(−(qR)2/2)

though the extension to other profiles will be considered in the future. Such a profile is

physically and astronomically interesting because represents the convolution of a point

source (Dirac δ distribution) with a Gaussian beam.

The source profile above includes a “natural scale” R that characterises the source. This

is a fundamental scale that will appear in all the filters we will consider here. Practically

by definition, the standard MF and SAF operate on this scale, as well as the canonical

MHW at the scale of the source. However, it has been shown that changing the scale

at which the MHW and the MF filters the image can improve its performance in terms

of detection (López-Caniego et al. [86], Vielva et al. [144, 145]). Following this idea, we

will in the following introduce another degree of freedom in all the filters that allows us

to change their scale in a continuous way (much similar to the scaling of a continuous

wavelet). This degree of freedom is obtained by multiplying the scale R by a new

parameter α > 0. We will show that with this new parameter the improvement in the

results is significant.

The Scale-adaptive Filter (SAF)

The idea of a scale-adaptive filter (or optimal pseudo-filter) has been recently intro-

duced by the authors [124]. By introducing a circularly-symmetric filter, Ψ(x; R, b), we

are going to express the conditions in order to obtain a scale-adaptive filter for the de-

tection of the source s(x) at the origin taking into account the fact that the source is char-

acterised by a single scale Ro. The following conditions are assumed: (1) 〈w(Ro, 0)〉 =

s(0) ≡ A, i.e. w(Ro, 0) is an unbiased estimator of the amplitude of the source; (2) the

variance of w(R, b) has a minimum at the scale Ro, i.e. it is an efficient estimator; (3)

w(R, b) has a maximum at (Ro, 0). Then, the filter satisfying these conditions is given

by [124].
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Figure 3.2 Different filters for the values of γ = 0 (lower panel) and γ = 1 (upper

panel). The filters represented in all cases are: the SAF (solid line), MF (dotted line),

MH (short dashed line) are shown for α = 1 and the BSAF (long dashed line) are given

for (α, c) = (0.3,−0.86) for γ = 0 and (α, c) = (0.4,−0.68) for γ = 1. Note that for

γ = 1 the SAF and the MF coincide
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ψSAF =
1

ac − b2
τ(q)
P(q)

[

b + c − (a + b)
dlnτ

dlnq

]

,

a ≡
∫

dq
τ2

P
, b ≡

∫

dq q
τ

P
dτ

dq
, c ≡

∫

dq q2 1
P

(

dτ

dq

)2

, (3.5.1)

Assuming a scale-free power spectrum, P(q) ∝ q−γ, and a Gaussian profile for the

source, the previous set of equations lead to the filter

ψ̃SAF = N(α)xγe−
1
2 x2
[

1 +
t

m2 x2
]

, x ≡ qαR,

m ≡ 1 + γ

2
, t ≡ 1 − γ

2
, ∆ ≡ 2α2

1 + α2 ,

N(α) =
α

∆mΓ(m)

1
1 + t

m ∆
, (3.5.2)

where we have modified the scale as αR.

In this case the filter parameters θm, ρ and the curvature of the source ys are given by

θm

αR
=

√

√

√

√

√

1 + t2

m + 2t
m2

(1 + m)
(

1 + t2

m + 2t(2+t)
m2

)

ρ =

√

m
1 + m

1 + t2

m + 2t
m2

√

(

1 + t2

m

) (

1 + t2

m + 2t(2+t)
m2

)

,

ys = H

√

√

√

√

1 + t2

m

m (1 + m)
(

1 + t2

m + 2t(2+t)
m2

) ,

H ≡ ∆
1 + t

m

1 + t
m ∆

m2 + t(1 + m)∆

m2 + t(1 + m)
(3.5.3)

Figure 3.2 shows the SAF for different values of the spectral index.
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The Matched Filter (MF)

If one removes condition (3) defining the SAF in the previous subsection, it is not diffi-

cult to find another type of filter after minimization of the variance (condition (2)) with

the constraint (1)

ψMF =
1
2a

τ(q)
P(q)

. (3.5.4)

This will be called matched filter as is usual in the literature. Note that in general the

matched and adaptive filters are different.

For the case of a Gaussian profile for the source and a scale-free power spectrum given

by P(q) ∝ q−γ, the previous formula leads to the following modified matched filter

ψ̃MF = N(α)xγe−
1
2 x2

, x ≡ qαR, (3.5.5)

N(α) =
α

∆mΓ(m)

where m is given by equation (3.5.2).

Figure 3.2 shows the MF for the case α = 1 (standard MF) and different values of the

spectral index γ = 0, 1. We remark that for γ = 1 the scale-adaptive filter and the

matched filter coincide, and for γ = 2 (not shown in the figure), the matched filter and

the Mexican Hat wavelet are equal.

For the MF the parameters θc, θm, ρ and the curvature of the source ys are given by

θm

αR
=

1√
1 + m

, ρ =

√

m
1 + m

, ys = ρ∆ (3.5.6)

We remark that the linear detector ϕ(ν, κ) is reduced to ϕ = ν for the standard Matched

Filter (α = 1). i.e. curvature does not affect the region of acceptance for such a filter.

The Mexican Hat Wavelet (MH)

The MH is defined to be proportional to the Laplacian of the Gaussian function: ψMH(x) ∝

(1 − x2)e−x2/2. Thus, in Fourier space

ψMH(x) =
2√
π

x2e−
1
2 x2

, x ≡ qR. (3.5.7)

In this case the filter parameters θm, θc, ρ and the curvature of the source ys are given

by
θm

R
=

1√
3 + t

, ρ =

√

2 + t
3 + t

, ys =
3/2

√

(2 + t)(3 + t)
. (3.5.8)
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We comment that the generalization of this type of wavelet for two dimensions has

been extensively used for point source detection in 2D images [19, 144]. As in the

previous cases, the MH is modified in the form

ψ̃MH = N(α)x2e−
1
2 x2

, x ≡ qαR, (3.5.9)

N(α) =
2α√

π∆3/2

For the MH the parameters θc, θm, ρ and the curvature of the source ys are given by

θm

αR
=

1√
3 + t

, ρ =

√

2 + t
3 + t

, ys =
3∆/2

√

(2 + t)(3 + t)
. (3.5.10)

Figure 3.2 shows the MH for different values of the spectral index.

The Biparametric Scale Adaptive Filter (BSAF)

If one removes condition (3) defining the SAF in subsection 5.1.1 and introduces the

condition (3), w(Ro, b) has a maximum in the filtered image at b = 0, i.e. 〈w ′′(Ro, 0)〉
< 0, it is not difficult to find another type of filter

ψ ∝
τ(q)
P(q)

(1 + c(qR)2), (3.5.11)

where c is an arbitrary constant that can be related to the curvature of the maximum.

We remark that the constrain 〈w′(Ro, 0)〉 = 0 is automatically satisfied for any circularly-

symmetric filter if the source profile has a maximum at the origin.

For the case of a scale-free spectrum, the filter is given by the parametrized equation

ψ̃BSAF =
α

2Jγ
xγe−

1
2 x2

(1 + cx2), x ≡ qαR. (3.5.12)

where we have modified the scale as αR. Hereinafter, we will call this new filter con-

taining two arbitrary parameters, α > 0 and c, the biparametric scale-adaptive filter

(BSAF).

A calculation of the different moments leads to

θm

αR
=

√

Gγ+2

Gγ+4
, ρ =

Gγ+2
√

GγGγ+4
, ys =

Jγ+2

Jγ

√

Gγ

Gγ+4
, (3.5.13)

where m and t are defined in equation (3.5.2) and Gγ and Jγ are given by

Gγ ≡ 1
2
[1 + 2mc + m(m + 1)c2]Γ(m), (3.5.14)
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Jγ(α) ≡ 1
2
[1 + mc∆]∆mΓ(m). (3.5.15)

Note that the BSAF contains all the other considered filters as particular cases: the MF

is recovered for c = 0, when c = t/m2 the BSAF defaults to the scale-adaptive filter

and, finally, the MH wavelet is obtained in the two cases: γ = 0, c � 1 and γ = 2,

c = 0.

3.5.2 A priori probability distributions p(νs)

We will test two different p.d.f. p(νs): a uniform distribution in the interval 0 ≤ ν ≤ νc

and a scale-free distribution with a lower and upper cut-off νi ≤ ν ≤ ν f . In particular,

we will especially focus on values for the cut-off’s that lead to distributions dominated

by weak sources. It is in this regime where sophisticated detection methods are needed,

since bright sources can be easily detected with simple techniques.

Uniform distribution

In this case,

p(νs) =
1
νc

, νs ∈ [0, νc ]. (3.5.16)

This allows to obtain

I(ϕ) =

√

π

2
eh2

νc
√

y2
s + µ

[

erf(h) + erf
(

νc√
2

√

y2
s + µ − h

)]

,

h ≡ ϕ
√

2(y2
s + µ)

. (3.5.17)

We will consider a cut-off in the amplitude of the sources such that νc = 2 after filtering

with he standard MF. Note that this correspond to different thresholds for the rest of

the filters.

Scale-free distribution with lower and upper cut-off

In this case,

p(νs) = Nν
−β
s , ν ∈ [νi , ν f ], β 6= 1, (3.5.18)

where the normalization constant N and I(ϕ) are

N =
β − 1

ν
1−β
i

1

1 −
(

νi
ν f

)β−1 (3.5.19)
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I(ϕ) = N
∫ ν f

νi

dν ν−βeν[ϕ− ν
2 (µ+ys)2]. (3.5.20)

We will consider νi ' 0.5 and ν f ' 3 after filtering with the standard MF and the

corresponding thresholds for the other filters.

3.6 Numerical results

We explore the parameter space α, R and γ fixing the number density of spurious

sources to levels of n∗
b = 0.01 − 0.05. We want to find the optimal filter in the sense

of maximum number of detections. We use two different distributions of sources to

show the robustness of the method, a Uniform distribution and a Scale-free distribu-

tion. In both cases, we obtain similar results: we find an optimal filter that significantly

improves the standard MF, SAF and MH for different values of the spectral index in the

interval 0 ≤ γ ≤ 1. We have also studied the performance of the filters for 1 < γ ≤ 2

and have found no significant improvement of the BSAF with respect to the standard

MF. Therefore, we do not include a detailed study of these cases in the results.

The BSAF has an additional degree of freedom, the parameter c, as it appears in equa-

tion (3.5.12). Note that the BSAF and the SAF are not the same filter. The parameter

c in the BSAF can take any positive or negative value, while the coefficient t/m2, for

the SAF, is a known function of γ. We remark that, by construction, the BSAF always

outperforms the other considered filters or, in the worst case, defaults to the best of

them.

3.6.1 Uniform distribution

We use a uniform distribution of sources with amplitudes in the interval A ∈ [0, 2]σ0 ,

where σ0 is the zero-order moment of the linearly-filtered map with the standard MF,

i.e. ν ∈ [0, 2]. It is clear that the corresponding upper limit for ν in the original signal is

below 2, therefore, we are considering the detection of weak sources.

In figures 3.3 and 3.4 we plot n∗, the number density of detections, as a function of α

for the cases γ = 0 and γ = 0.5 for the case R = 3, and n∗
b = 0.05, where R is given in

pixel units.

For the case γ = 0, (shown in figure 3.3), n∗ rapidly increases as α decreases for the

BSAF as compared with the other filters. For the MF and BSAF we find a maximum at

α ' 0.2. This scale is a compromise between minimising the effect of the background
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Figure 3.3 Uniform distribution. The expected number density of detections n∗ as a

function of the filter parameter α for γ = 0 for the BSAF (where c has been obtained by

maximising the number of detections for each value of α), MF, SAF and MH filters. We

consider the case R = 3, n∗
b = 0.05 and νc = 2.
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Figure 3.4 Uniform distribution. The expected number density of detections n∗ as a

function of the filter parameter α for γ = 0.5 for the BSAF, MF, SAF and MH filters. We

consider the case R = 3, n∗
b = 0.05 and νc = 2. As in the previous figure the parameter

c of the BSAF has been determined by maximising the number of detections for each

value of α.
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Figure 3.5 Uniform distribution. The expected number density of detections n∗ as a

function of the filter parameter α for γ = 1.5 for the BSAF, MF, SAF and MH filters. We

consider the case R = 3, n∗
b = 0.05 and νc = 2. As in the previous figure the parameter

c of the BSAF has been determined by maximising the number of detections for each

value of α.
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R n∗
b γ α c n∗

BSAF n∗
MF RD[%]

2 0.01 0 0.4 -0.69 0.0860 0.0824 4.4

2 0.03 0 0.4 -0.68 0.1493 0.1311 13.9

0.5 0.4 -0.59 0.1512 0.1474 2.5

2 0.05 0 0.4 -0.70 0.1900 0.1575 22

0.5 0.4 -0.59 0.1935 0.1783 9

3 0.01 0 0.3 -0.86 0.0784 0.0658 19.1

3 0.03 0 0.3 -0.86 0.1282 0.1013 26.5

0.5 0.3 -0.73 0.1242 0.1145 8.4

3 0.05 0 0.3 -0.86 0.1654 0.1186 39.4

0.5 0.3 -0.75 0.1616 0.1352 19.5

1 0.4 -0.58 0.1582 0.1487 6.3

Table 3.1 Uniform distribution. Number density of detections n∗ for the standard

MF(α = 1) and the BSAF with optimal values of c and α. RD means relative differ-

ence in number densities in percentage. RD ≡ 100(−1 + n∗
BSAF/n∗

MF).

and amplifying the source. One can proven theoretically, that n∗ converges to the value

n∗
b when α → 0, as can be seen in the figures.

For completeness, we show the results for all the values of α. However, in practice, it

does not make sense to filter at scales significantly smaller than the size of the pixel,

which corresponds to αR ' 1. Therefore, in the following, the results will be given

taking into account only those values of α >∼ R−1. The improvement in n∗ for α = 0.3

is of the order 40% compared with the standard Matched Filter (α = 1). If we compare

with the MF at α = 0.3, the improvement is of ' 20%.

In figure 3.4, with γ = 0.5, the BSAF at α = 0.3 again improves significantly the stan-

dard MF. In particular, the difference between both filters is of the order of 25%.

As γ increases, the improvement of the BSAF with respect to the standard MF de-

creases. In fact, for values of 1 < γ ≤ 2 they produce very similar results. As an

example, we give the number of detections achieved for each filter for the case γ = 1.5,

n∗
b = 0.05 and R = 3 in Fig. 3.5. It can be seen that the maximum number of detections

is found approximately for the standard MF. However, we would like to point out that

the SAF and MH wavelet at the optimal scale give the same number of detections as

the standard MF. These results show the importance of filtering at scales αR instead of

the usual scale of the source.

In table 3.1, we present some examples of the number density of detections for the
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BSAF and for the standard MF (α = 1). We calculate n∗ for R = 2 and R = 3, with n∗
b in

the interval 0.01 - 0.05 and values of γ = 0, 0.5, 1 (we give in the table only those cases

where the BSAF improves at least a few per cent the standard MF). The values of α and

c for the BSAF are found as the ones that maximise n∗ in each case.

When looking at this table, it can be seen how the number density of detections in-

creases when we increase n∗
b , as expected. Most important, the relative difference be-

tween the BSAF and the standard MF also increases when we increase R. In general, we

find that if R is larger, the BSAF will behave better. But there is a limit to this, because

the total number of spurious detections nb, which is a function of R, is involved in the

calculation of ϕ∗, and if n∗
b is too large, we can not solve for ϕ in the implicit equation

(3.3.2).

In the previous case, the sources were very weak (A ∈ [0, 2]σ0). For completeness,

we have tested a uniform distribution with a mixture of weak and bright sources with

amplitudes in the interval A ∈ [0, 5]σ0 , R = 3 pixels and n∗
b = 0.05. For γ = 0 we

find that the optimal values of the parameters for the BSAF are c = −0.79 and α =

0.3. The behaviour is similar to the one found in the weak sources case, although the

improvement of the BSAF versus the MF is lower. In particular, the BSAF improves '
21% the standard MF (α = 1), as compared to the 40% improvement for weak sources.

It is interesting to note that for the same values of the parameters for the case with

A ∈ [0, 2]σ0 , the optimal values of α and c are very similar in both cases, which is an

indication of the robustness of the technique.

Figure 3.6 shows the relative difference in the number of detections, with respect to the

standard MF, as a function of the spectral index γ for the different filters. At each point

the optimal scale (and parameter c in the case of BSAF) has been used. We remark that

for the interesting case of white noise a 40% of detections is gained with respect to the

standard MF.

3.6.2 Scale-free distribution

For comparison purposes we use a Scale-free power-law distribution of sources with

β = 0.5 and amplitudes in the interval A ∈ [0.5, 3]σ0 , where σ0 is the zero-order mo-

ment obtained from the map filtering with the standard MF. It is clear that the corre-

sponding upper limit for ν in the original signal is below 3, therefore, we are consider-

ing the detection of weak sources. We will show that the results are comparable to the

ones obtained for the previous distribution.

In figures 3.7 and 3.8, we plot n∗, the number density of detections, as a function of
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Figure 3.6 Uniform distribution. Relative difference in the number of detections, with

respect to the standard MF, as a function of the spectral index γ.
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α for the cases γ = 0 and γ = 0.5, where R = 3 and n∗
b = 0.05. In figure 3.7, n∗ is

significantly higher for the BSAF compared with the other filters at certain values of α.

In this case, the improvement of the BSAF at α = 0.3 compared with the standard MF

is ' 42%. If we compare with the MF at α = 0.3, the improvement is ' 33%. In figure

3.8, with γ = 0.5, an improvement of ' 20% is obtained for the BSAF at α = 0.3 with

respect to the standard MF.

As in the uniform distribution case, the BSAF gives very similar results to the MF in

the range 1 < γ ≤ 2. In figure 3.9 we show the results for γ = 1.5, n∗
b = 0.05 and R = 3.

Again we see that the optimal BSAF defaults to the standard MF.

In table 3.2, we show the number density of detections for the BSAF and for the stan-

dard MF (α = 1) for R = 2 and R = 3, with n∗
b ranging from 0.01 to 0.05, and for values

of γ = 0, 0.5, 1 (we only include the results for those cases where the relative difference

between the BSAF and standard MF is at least a few per cent). We also give the optimal

values of c and α where the BSAF performs better (taking into account the constraint

αR of the order of 1 or greater).

Other values of β ∈ [2.2, 2.5] have an intrinsic interest for astronomy, because they

describe the distribution of compact sources in the sky at microwave wavelengths. We

have explored these numbers (for γ = 0, n∗
b = 0.05, R = 3) and the improvement of the

BSAF (with optimal values of α = 0.3 and c = −0.86) versus the standard MF is still

significant and of the order ' 35%.

To test the robustness of the method, we have also considered a scale-free distribution

of bright sources with A ∈ [0.5, 5]σ0 , for β = 0.5 and the same parameters as in the

previous paragraph. In this case, the improvement is of the order of 25%, with optimal

parameters for the BSAF of α = 0.3 and c = −0.76. Moreover, we have also tested the

performance of the filters for a scale-free distribution of bright sources with A ∈ [3, 5]σ0 ,

where σ0 is the dispersion of the standard MF for the same case as before (γ = 0,

n∗
b = 0.05, R = 3). We explored the parameter space of (c, α), looking for the best filter

regarding detection. We find that, for this distribution, the optimal parameters for the

BSAF are c = 0 and α = 1, that correspond to the standard MF. Therefore, we conclude

that for this case the BSAF defaults to the standard MF.

We would like to point out that for all the amplitude pdf’s that we have considered

(except for the one dominated by bright sources), the optimal parameters for the BSAF

are similar for a given set of γ, R and n∗
b . This suggests that possible uncertainties in the

knowledge of the pdf of the amplitude of the sources (provided we are not dominated

by bright sources) will only marginally affect the estimation of the filter parameters

and therefore the detections.
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Figure 3.7 Scale-free distribution. The expected number density of detections n∗ as a

function of the filter parameter α for γ = 0 for the BSAF (using the optimal values of

c), MF, SAF and MH filters. We consider the case R = 3, n∗
b = 0.05, νi = 0.5, ν f = 3 and

β = 0.5.
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Figure 3.8 Scale-free distribution. The expected number density of detections n∗ as a

function of the filter parameter α for γ = 0.5 for the BSAF (using the optimal values of

c), MF, SAF and MH filters. We consider the case R = 3, n∗
b = 0.05, νi = 0.5, ν f = 3 and

β = 0.5.
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Figure 3.9 Scale-free distribution. The expected number density of detections n∗ as a

function of the filter parameter α for γ = 1.5 for the BSAF (using the optimal values of

c), MF, SAF and MH filters. We consider the case R = 3, n∗
b = 0.05, νi = 0.5, ν f = 3 and

β = 0.5.
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Figure 3.10 Scale-free distribution. Relative difference in the number of detections, with

respect to the standard MF, as a function of the spectral index γ.
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R n∗
b γ α c n∗

BSAF n∗
MF RD[%]

2 0.01 0 0.4 -0.66 0.1659 0.1590 8.2

2 0.03 0 0.4 -0.68 0.2376 0.2089 23.2

0.5 0.4 -0.56 0.2451 0.2432 28

2 0.05 0 0.4 -0.68 0.2772 0.2311 32.8

0.5 0.4 -0.57 0.2873 0.2705 11.6

3 0.01 0 0.3 -0.83 0.1336 0.1180 13.2

3 0.03 0 0.3 -0.83 0.1975 0.1512 30.6

0.5 0.3 -0.71 0.1937 0.1767 9.6

3 0.05 0 0.3 -0.81 0.2335 0.1639 42.5

0.5 0.3 -0.70 0.2321 0.1928 20.4

1 0.3 -0.62 0.2271 0.2169 4.7

Table 3.2 Scale-free distribution. Number density of detections n∗ for the standard

MF(α=1) and the BSAF with optimal values of c and α. RD ≡ 100(−1 + n∗
BSAF/n∗

MF).

Figure 3.10 shows the relative difference in the number of detections, with respect to

the standard MF, as a function of the spectral index γ for the different filters. At each

point the optimal scale (and parameter c in the case of BSAF) has been used. We remark

that for the interesting case of white noise more than a 40% of detections is gained with

respect to the standard MF.

3.6.3 On the robustness of the filters

The filters considered here depend on a number of parameters (α in the case of SAF, MF

and MH and α and c in the case of BSAF) that must be determined in order to get the

maximum number of detections for a fixed number of spurious detections. While for a

given filter the region of acceptance is explicitly independent of the source distribution,

the methodology presented here for the estimation of the optimal filter parameters

depends on some assumed parameters of the source distribution (namely β, νi and

ν f ) and the noise power spectrum (γ). A full study of the robustness of the method

for all the filters is out of the scope of this work. However, we have considered some

interesting cases as tests of the robustness of the method.

In order to ascertain to what extent the uncertainties in the β parameter of the source

distribution affects the determination of the optimal filter parameters, we repeated our

calculations using wrong assumptions on its value. An interesting case corresponds
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to assume that the source distribution is uniform when it is scale-free and vice versa.

Tables 3.1 and 3.2 show that both uniform and scale-free distributions lead to similar

values of the optimal α and c parameters. If we use the optimal (α, c) that were obtained

for the uniform distribution in the scale-free distribution with β = 0.5 the differences

in the number of detections are very small (lower than 0.1%). The same happens in the

opposite case.

Regarding the cut-offs, we observed that the qualitative behaviour of the filters is pre-

served even when the lower-limit is changed. The change of the upper-limit is not

interesting since bright sources are always detected by all the filters. The shape of the

α − n∗ curves is unchanged. The position of the maxima does not change significantly,

whereas the relative performances of the filters varies smoothly with the amplitude of

the sources, and therefore changing the cut-offs leads only to a global change in the

number of detections (amplitude of the curves) for all the filters.

We conclude that the uncertainty in the knowledge of the source distribution is not a

critical issue in the cases we considered.

A more delicate issue is the one that appears when one assumes a γ parameter that is

very different from the true one. In that case the shape of the filters changes dramat-

ically (except in the case of the MH whose shape is independent of γ) and this may

lead to wrong results. However, note that there are very well established techniques to

estimate the power spectrum. Albeit in this academic case we consider power law-type

backgrounds, it is straightforward to apply the method to any kind of power spectrum

that can be present in the data.

As an example, we considered a case where the background corresponds to a true value

γt = 0.5 whereas the filters have been constructed with a wrong γw = 0.6, that is, a

20% error in the determination of γ. The resulting α − n∗ curves can be observed in

figure 3.11.

The behaviour of the BSAF, the MF and the SAF is qualitatively similar to the case

where the noise power spectrum is perfectly known, but the performance of the three

filters is poorer. The MH curve is identical to the ideal case since the shape of the filter

does not depend on γ. The BSAF still outperforms all the other filters, although the

improvement in the number of detections with respect to the MF slightly decreases.
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Figure 3.11 Filter performances when the γ parameter of the background is poorly

known. A uniform distribution is considered. The true value of the background power

spectrum index is γt = 0.5 whereas the filters hasve been constructed with a wrong

γw = 0.6. Note how the figure compares with figure 3.4.
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3.7 Simulations

3.7.1 The simulations

To further test these ideas, we generate a set of one-dimensional images containing a

Gaussian background characterised by a white noise power spectrum (γ=0) to see how

our theoretical framework works in a practical example. First, we study the properties

of the maxima of the background alone, and second we add point sources and study

the performance of the BNP detector after filtering with the different filters considered

in the previous sections.

The different simulations are performed as follows. The images contain a number

N = 4096 pixels, big enough so that the addition of a single source does not modify

significantly the dispersion of the images. The background is generated with disper-

sion σ0 = 1 (in arbitrary units); the sources that we consider for this example had a

characteristic scale R = 3 pixels. The images filtered with a standard MF for this scale

(R = 3, α = 1) have dispersion σMF
0 ' 0.43. Since we are interested in the detection of

weak sources, we add point sources distributed in intensity following a uniform distri-

bution in the interval ν ∈ [0, 2] with respect to the standard MF. In terms of amplitudes,

this corresponds to a distribution A ∈ [0, 0.86], where A = νσMF
0 .

Given any simulation, it is possible to obtain the momenta σ0, σ1 and σ2 directly from

the image and, therefore, the quantities ρ, ys needed to know the value of the linear de-

tector ϕ. For every maximum in the image, it is possible as well to measure directly its

amplitude A and curvature κ. The curvature is easily obtained by Fourier transform-

ing the image, multiplying by q2 and going back to real space. This gives the value of

−ξ ′′ at each point and κ is obtained dividing by σ2. For each considered filter, it is in

principle possible to calculate the critical value ϕ∗ that defines the acceptance region

using eq. (16) just as we did in the previous sections, and hence to proceed with the

BNP decision rule. Instead, since we are dealing with simulations of real data we will

follow a fully empirical approach.

The argument goes as follows. We fix the number density of spurious detections,

i.e., the number of maxima of the background that could be classified as "sources"

by our detection criterion. Then we simulate a set of images corresponding only to

background and filter them with the filter under study. We focus on the background

maxima and try to determine the value of ϕ∗ that makes the BNP rule to produce the

specified number of spurious detections. For each filter, we analyse, let us say, 50000

noise realisations and focus on what happens in a certain pixel (we choose the central

pixel of the simulation in order to avoid border effects). For every realisation, we check
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if there is a maximum at this position or not. If a maximum is present, the value of

ϕ is calculated. All the values of ϕ obtained in that way are sorted into descending

numbers (large to small). The value of ϕ∗ is then given by the ϕ corresponding to the

r-th element (r = n∗
b Ntot) of the sorted list (that is, ϕ∗ is the value of ϕ so that there are

n∗
b Ntot background maxima with ϕ ≥ ϕ∗). For this example, we considered n∗

b = 0.05

and therefore n∗
b Ntot = 2500.

After the estimation of ϕ∗, we add a source with a Gaussian profile of dispersion R = 3

pixels at the central position (pixel N/2 + 1) of the background image and we filter

with the considered filters respectively. All the relevant quantities needed for the de-

tection are estimated directly from the images. We proceed to apply the detector to any

maxima where the existence of a source is suspected at the pixel we are considering. Fi-

nally, n∗, for each of the filters, will be the number of sources with an estimated ϕ ≥ ϕ∗

divided by the total number of realizations Ntot.

This procedure to obtain ϕ∗ requires some cpu time, but the results, shown in figure

(3.12), reveal the good agreement between the theoretical expected values and the sim-

ulations.

If we use the theoretical value of ϕ∗, instead of obtaining it from the simulations, we

can reduce the computation time, but the improvement of the BSAF versus the MF

may be reduced by a factor some times as large as 2. This can be explained by the

fact that the effect of the pixel is not considered in the theoretical calculations. This

affects specially the BSAF constructed with negative values of c, because they are more

extense in Fourier space and therefore remove less power at small scales.

We have theoretically tested different values of n∗
b , νc, γ, R and α. We have performed

numerical simulations for the most favorable case, assuming a uniform distribution

with νc = 2, where the BSAF outperforms the standard MF. This corresponds to the

case n∗
b = 0.05, R = 3 and γ = 0. In the figure 3.12 we present the results from the

simulations for this case and the comparison with the theoretical calculations. For the

sake of simplicity, we give the results only for the BSAF and the MF since the other two

filters (SAF and MH) perform worse in the considered case.

The lines in this plot show the theoretical results for each filter, the triangles the result

from the simulations for the BSAF and the squares the results for the MF. We concen-

trate on the BSAF, which corresponds to the dot-dash line. As we mentioned in pre-

vious sections, the BSAF significantly improves the standard MF for γ = 0. We have

done five simulations, each one of them generated with ' 50000 − 60000 realizations,

5000 of them containing a maximum of the background in the central pixel. We have

obtained ϕ∗ and used it to estimate the number of detections. The simulations follow

90



CHAPTER 3: BIPARAMETRIC SCALE ADAPTIVE FILTER: 1D APPROACH

Figure 3.12 Expected number density of detections versus the filter parameter α for the

BSAF and MF. The solid and dot-dash lines represent the theoretical number density n∗

and the squares and triangle are the results from the simulations for νc = 2, n∗
b = 0.05

R=3 and γ = 0, for the MF and the BSAF respectively.
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the theoretical results well. In the region where α ' 0.3, there is a small deviation from

theory which we believe is related to the fact that we are close to the scale of the pixel,

but still, significantly close to the expected theoretical value.

In order to test how the finite pixel size affects the previous results, we repeated the the-

oretical calculations introducing a cut-off in our integrals at qmax = π, corresponding

to the limiting sampling frequency (inverse pixel units) in Fourier space. The results

for the considered source scale (R=3 pixel) and different noise power spectra (γ = 0,

0.5, 1.5), for n∗
b = 0.05, show that the cut-off does not significantly change the pre-

dicted number of detections for α values ≥ 0.3. The differences appear at the 1% level,

decreasing the number of detections as it was expected and approaching to the simu-

lated values. This leaves a 5% of discrepancy between the theoretical and the simulated

value for the BSAF and α = 0.3 (pixel scale) that we believe is due to further discretiza-

tion effects, affecting for example the estimation of curvatures. This discrepancy level

is lower for the MF case.

3.7.2 The estimation of the amplitude of the source

We can estimate the amplitude of a source using the unbiased and maximum efficient

estimator from equation (3.4.1) and then compare it with the amplitude that we have

randomly generated. In figure 3.13, we plot the real amplitude versus the estimated

one for the BSAF (top panels) and the MF (bottom panels).

In the left panels, we have simulated a uniform distribution of sources A ∈ [0, 2]σ0 .

The parameters used for these simulations are n∗
b = 0.05, γ = 0. The points and the

error bars are calculated as the average and the dispersion of the detected sources that

fall in each of the amplitude bins from a total of ' 10000 detected sources. We find

a similar positive bias in the determination of the amplitude for the BSAF (α = 0.3,

c = −0.86) and MF (α = 0.3). However, the error bars corresponding to the BSAF are

slightly smaller than those of the MF.

In the right panels, we give the results for a uniform distribution of sources with

A ∈ [0, 5]σ0. We find that the BSAF (α = 0.3, c = −0.79) is unbiased for bright sources

(see figure (3.13)), as compared to the MF (α = 1). The BSAF, with α = 0.3, is optimal

regarding both detection and estimation, whereas the standard MF is biased regarding

estimation for this distribution. As before, the points and the error bars are calculated

as the average and the dispersion of the detected sources that fall in each of the am-

plitude bins from a total of ' 20000 detected sources. The parameters used for these

simulations are n∗
b = 0.05 and γ = 0.
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Figure 3.13 Real amplitudes versus Estimated amplitudes. For all four cases, the sim-

ulations have been done using a uniform distribution with cut-off’s A ∈ [0, 2]σ0 and

A ∈ [0, 5]σ0 for the left and right panels, respectively. We have also assumed n∗
b = 0.05

and γ = 0.
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The fact that sources with small amplitudes are significantly affected by a positive bias

can be explained taking into account that these sources are more easily detected if they

lie over a positive contribution of the background. This contributes systematically to

the overestimation of the amplitude. We would like to point out that this estimator

produces appreciably better results than a naive estimation using directly the measured

values at the maxima.

3.8 Conclusions

Nowadays, the detection of compact sources on a background is a relevant problem

in many fields of science. A number of detection techniques use linear filters and

thresholding-based detectors. Our approach to the problem of detector design is dif-

ferent. We use a Bayesian Neyman-Pearson rule that takes into account a priori infor-

mation of the distribution of sources and the number density of maxima to define the

acceptance region.

Our approach is based on maxima and includes information of both the curvature and

the amplitude. The standard methods use the amplification of the sources produced

by filtering. In our case, we take adventage not only of the amplification but also of

the spatial information: the curvature of the background is different from that of the

sources, and we use this to improve our detection rule. This information is contained

in the momenta of the filtered field up to fourth order. The background is modelled

by an homogeneous and isotropic Gaussian random field, characterized by a scale-free

power spectrum P(q) ∝ q−γ, γ ≥ 0.

We design a new filter that we call BSAF in such a way that the use of our improved

detection rule based on amplification and curvature on the filtered field will increase

the number of detections for a fixed number of spurious sources. We generalize the

functional form of this filter, as well as other standard filters, and introduce another

degree of freedom, α, that allows us to filter at any scale, including that of the source

R. We have shown the benefits of filtering at scales smaller than R, which significantly

improves the number of detections.

As an example, we have considered two different distributions of sources. A uniform

distribution in the interval ν ∈ [0, 2] in the filtered field, and a scale-free power law

distribution in the interval ν ∈ [0.5, 3], i.e. weak sources. The BSAF has proven to be

significantly better than the standard MF, the SAF and MH wavelet in certain cases. In

particular, the improvement in the number of detections of the BSAF at α = 0.3 with

respect to the standard MF is ' 40% for γ = 0, n∗
b = 0.05 and R = 3. We have also
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tested the performance of the filters for a mixture of weak, intermediate and bright

sources. For a uniform distribution with A ∈ [0, 5]σ0 and for a scale-free distribution

with A ∈ [0.5, 5]σ0 , the BSAF also improves the MF. However, for a scale-free distribu-

tion with A ∈ [3, 5]σ0 , i.e., dominated by bright sources, we find that the optimal BSAF

defaults to the standard MF, which gives the maximum number of detections in this

case.

By construction, the BSAF gives in any case the best performance among the consid-

ered filters: the SAF and the MF are particular cases of the BSAF and the strategy we

follow, i.e. maximization of the detections, guarantees that the parameters of the BSAF

will default to the best possible filter in each case. Therefore, the number density of

detections obtained with the BSAF will be at least equal to the best of the other three

filters, and in some cases superior. In some other cases, however, the gain is small

and it is justified to use an analitically simpler filter. We also remark that the BSAF is

equivalent to the MH in some particular cases.

Our results suggest that, from the practical point of view, one could use the BSAF when

0 <∼ γ <∼ 1 since, in this range, clearly improves the number of detections with respect

to the other filters. However, for γ >∼ 1.0 the usage of the MH is justified due to its

robustness in its functional form and it gives approximately the number of detections

obtained either with the BSAF or MF.

For all the studied cases of sources distributions (except for the one dominated by

bright sources) and fixing the values of γ, n∗
b and R, we find that the optimal parameters

of the BSAF are only weakly dependent on the distribution of the sources.

We have done some simple tests in order to study the robustness of the method when

the knowledge about the source pdf and/or the background spectral index is not per-

fect. We find that the values of the optimal filter parameters vary slightly when we

assume that the source distribution is uniform when it is scale-free and vice versa. The

uncertainties in the cut-off values of the source pdf slightly affect the number of de-

tections, but in a similar way for all the filters, and therefore the relative behaviour of

the filters do not change. Errors in the estimation of the spectral index γ reduces the

efectiveness of the BSAF, but it still outperforms the other filters. All of this indicates

that our detection scheme is robust against uncertainties in the knowledge of the distri-

bution of the sources and spectral index. An extensive study of the robustness of filters

is out of the scope of this work.

To test the validity of our results in a practical example, we have tested our ideas with

simulations for the uniform distribution (using n∗
b = 0.05, R = 3, γ = 0) and find that

the results follow the expected theoretical values.
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Regarding source estimation, we propose a linear estimator which is unbiased and of

maximum efficiency, that we have also tested with simulations.

The ideas presented in this work can be generalized: application to other profiles (e.g.

multiquadrics, exponential) and non-Gaussian backgrounds is physically and astro-

nomically interesting. The extension to include several images (multi-frequency) is

relevant. The generalization to two-dimensional data sets (flat maps and the sphere)

and nD images is also very interesting. Finally the application of our method to other

fields is without any doubt. We are currently doing research in some of these topics.

3.9 Appendix A

The ratio L(ν, κ|νs) ≡ n(ν, κ|νs)/nb(ν, κ) can be explicitly written as

L(ν, κ|νs) = eϕνs− 1
2 (µ+y2

s)ν2
s , (3.9.1)

and taking into account the Bayesian criterion for detection

Ł(ν, κ) ≡
∫ ∞

0
dνs p(νs)L(ν, κ|νs) ≥ L∗, (3.9.2)

where L∗ is a constant. By differentiating the previous equation with respect to ϕ

∂L
∂ϕ

=
∫ ∞

0
dνs p(νs)νseϕν̂s− 1

2 (µ+y2
s )ν̂2

s ≥ 0. (3.9.3)

Therefore, Ł(ν, κ) ≥ L∗ is equivalent to ϕ ≥ ϕ∗, where ϕ∗ is a constant, i.e. ϕ(ν, κ)

given by equation (3.3.7) is a sufficient linear detector.

3.10 Appendix B

Let us assume a linear estimator combination of the normalized amplitude ν and nor-

malized curvature κ with the constrain

ν̂s = Aν + Bκ. (3.10.1)

If the estimator is unbiased, i.e. 〈ν̂s〉 = νs, taking into account that 〈ν〉 = νs and 〈κ〉 =

νsys, we obtain the constrain

A + Bys = 1. (3.10.2)

On the other hand, the variance is given by

σ2
ν̂s

= A2 + B2 + 2ρAB, (3.10.3)
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taking into account that σ2
ν = σ2

κ = 1, 〈νκ〉 = ρ + ysν
2
s . By minimizing the previous

expression with the constrain (3.10.2), one obtains

A =
1

y2
s + µ

1 − ρys

1 − ρ2 , B =
1

y2
s + µ

ys − ρ

1 − ρ2 , (3.10.4)

i.e. ν̂s = ϕ/(y2
s + µ).
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