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CHAPTER 2

Modified Matched Filter

In this chapter we consider filters for the detection and extraction of compact sources

on a background. We make a one-dimensional treatment assuming that the sources

have a Gaussian profile whereas the background is modeled by an homogeneous and

isotropic Gaussian random field, characterized by a scale-free power spectrum. Local

peak detection is used after filtering. Then, a Bayesian Generalized Neyman-Pearson

test is used to define the region of acceptance that includes not only the amplification

but also the curvature of the sources and the a priori probability distribution function

of the sources. We search for an optimal filter between a family of Matched-type filters

(MTF) modifying the filtering scale such that it gives the maximum number of real

detections once fixed the number density of spurious sources. We have performed

numerical simulations to test theoretical ideas, see López-Caniego et al. [86].

2.1 Introduction

The detection of compact signals (sources) embedded in a background is a recurrent

problem in many fields of science. Some common examples in Astronomy are the

separation of individual stars in a crowded optical image, the identification of local

features (lines) in noisy one-dimensional spectra or the detection of faint extragalactic

objects in microwave frequencies.

Regarding the detection of point sources on maps of the cosmic microwave background

radiation (CMB), several techniques based on different linear filters have been pro-

posed in the literature: the Mexican Hat Wavelet (MHW Cayón et al. [19], Vielva et al.

[144, 145]), the classic matched filter (MF, Tegmark & de Oliveira-Costa [139]), the Adap-
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tive Top Hat Filter (ATHF, Chiang et al. [20]) and the scale-adaptive filter (SAF, Sanz et

al.[124], Herranz et al.[68, 69, 70]). A certain deal of controversy has appeared about

which one, if any, of the previous filters is optimal for the detection of point sources in

CMB data.

In order to answer that question it is necessary to consider first a more fundamental is-

sue, the concept of detection itself. The detection process can be posed as follows: given

an observation, the problem is to decide whether or not a certain signal was present at

the input of the receiver. The decision is not obvious since the observation is corrupted

by a random process that we call ‘noise’ or ‘background’.

Formally, the decision is performed by choosing between two complementary hypothe-

ses: that the observed data is originated by the background alone (null hypothesis), and

the hypothesis that the observation corresponds to a combination of the background

and the signal. To decide, the detector should use the totality of the available informa-

tion in terms of the probabilities of both hypotheses given the data. The decision device

separates the space R of all possible observations in two disjoint subspaces, R∗ and

R−, so that if an observation y ∈ R− the null hypothesis is accepted, and if y ∈ R∗

the null hypothesis is rejected, that is, a source is ‘detected’. Hence, we will call any

generic decision device of this type a detector.

Any detector can produce two kinds of errors: on the one hand, it can produce a false

alarm or spurious detection when an observation in which no source was present is as-

signed to the subspace R∗. The probability of this kind of error depends on the statis-

tical properties of the background and the choice of the detector. On the other hand,

a signal that is present in the observation can be missed by the detector (i. e. the ob-

servation is wrongly assigned to the subspace R−). This error is often referred as false

dismissal. The probability of false dismissal depends on the statistical properties of the

background, the choice of the detector and the properties of the signal (for example, its

intensity). In general, it is not possible to decrease the incidence of both types of error

at the same time: one of them can be reduced at expense of increasing the other. The

goodness of a given detector must be established by taking into account the balance

between these two types of error.

The most simple example of detector, and one that has been exhaustively used in As-

tronomy, is thresholding. Thresholding considers that the space R of observations con-

sists of all the possible values of the measured intensity ξ (in the case of an astronomical

image) and subdivides this space into two simple regions R− ≡ {ξ ∈ R : ξ < ξ∗} and

R∗ ≡ {ξ ∈ R : ξ ≥ ξ∗}. The value ξ∗ is an arbitrarily chosen threshold that is often

expressed as a number of times the standard deviation of the background, ξ ∗ = ν∗σ0.
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Thresholding works on the assumption that the probability of finding a value of ξ due

to the background decreases as the value of ξ increases. In the case of a Gaussian back-

ground, this assumption has a very precise meaning and it allows us to straightfor-

wardly control the probability of occurrence of spurious detections simply by setting

a large enough threshold. However, this may lead to a very high probability of false

dismissals.

Unfortunately, in many cases the sources are very faint and this makes very difficult to

detect them: a high threshold means that the number of detections will be very small.

Here is where filtering enters in scene. The role of filtering is to transform the data in

such a way that a detector can perform better than before filtering. For example, a filter

can be designed in order to reduce the fluctuations of the background so that we can

safely use lower detection thresholds and, hopefully, increase the number of detections

without increasing the number of spurious detections. We remark that a filter is not a

detector: the decision device we call ‘detector’ can be applied after the application of any

imaginable filter, or even no filter at all, while the use of any filter without a posterior

detection criterion means nothing. However, the two different steps in the process

(filtering and detection) are not independent. In the thresholding example, the use

of a filter that cancels most of the fluctuations in the background allows us to change

the detection threshold from its original high value to a lower one. Given an adopted

detector and a background, it is licit to ask which is the filter that creates the most

favorables conditions in the filtered background for the detector to perform. In other

words, the ‘optimality’ of a filter for detection depends on the type of detector chosen

which, in turn, depends on the specific goal the observer has in mind: in certain cases

the observer will accept a relatively large number of spurious detections in order to

have a large number of true targets, whereas in other cases it could be more important

to be certain that the detections are all of them reliable, and so on.

For example, let us consider that we have chosen thresholding as our detection de-

vice. In that case, it has been shown that the optimal linear filter is the matched filter.

It produces the maximum amplification of the signal with respect to the background

fluctuations, so that the threshold for a given probability of spurious detections is min-

imum, allowing the thresholding detector to find more sources than would be detected

if we filtered with any other filter. A sub-optimal approach, using only thresholding,

is to select a priori a filter and adapt its scale in order to produce a maximum ampli-

fication in a given background. Such is the case of the Mexican Hat Wavelet at the

optimum scale (MHO, Vielva et al.[144, 145]) and the Adaptive Top Hat Filter (ATHF,

Chiang et al.[20]).
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Thresholding has a number of advantages, among them the facts that it is straightfor-

ward, it has an obvious meaning in the case of Gaussian backgrounds, and it has been

successfully used for many years in many fields of science. It, however, does not use

all the available information contained in the data to perform decisions. The question

is then: is it possible to devise a detector that uses additional information apart from

mere intensities and that produces better results than thresholding? And, if so, which

is the filter that optimizes the performance of such a detector?

Let us focus on the case of one-dimensional data (such as stellar spectra, or time-

ordered scannings of the sky in CMB experiments) and linear filters. Data in a one-

dimensional array is entirely described by two quantities, namely the position in the

array (corresponding to the spatial or temporal coordinate, for simplicity we will refer

it as spatial information) and the value (intensity) at each position. Thresholding uses

only the intensity distribution to make the decision. Clearly, the inclusion of spatial in-

formation in a detector should be useful. For example, it could help to distinguish the

sources from fluctuations in the background with similar scale but a different shape. A

full description of this ‘spatial information’ should include the probability distribution

of events (both due to background and sources) in space, with all its infinite moments.

We will somewhat relax this demand of information assuming that the background

is homogeneous and isotropic, and asking at each point for some information about

the shape of the sources and the autocorrelation of the background (for example, the

curvature of the peaks).

In fact, even a simple filtering-and-thresholding scheme uses implicitly some degree

of spatial information. Both the MHO and the ATHF adapt to the scale at which the

contrast between sources and background produces the maximum amplification. The

MF includes as well the information on the profile of the sources in order to amplify

the structures whose shape correlates with the shape of the sources. SAF goes a step

further in constraining additionally the scale of the filter. Moreover, in most cases the

detection is performed not in all the points of the data but only in the peaks, that is, in

those points where the curvature is positive.

In a recent work, Barreiro et al. [5] propose a detection criterion based on the Neyman-

Pearson decision rule that uses the information of both the intensities ξ and the curva-

tures κ of the peaks in a data set. In that work the performances of several filters (SAF,

MF and MHW) is compared in terms of their reliability, defined as the ratio between

the probability density of true detections over the probability density of spurious de-

tections. They find that, on the basis of this quantity, the choice of the optimal filter

depends on the statistical properties of the background. For the case of backgrounds
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that can be described with a power spectrum of the form P(q) ∝ q−γ, the SAF outper-

forms the other two filters for the case 1 < γ ≤ 1.6, whereas in the range 0 ≤ γ ≤ 1 the

MF is the most reliable. The MHW is the most reliable filter in this sense when γ > 1.6.

The reliability, defined in the previous sense, could not be a valid measure of perfor-

mance of the filters, since it favors a situation in which the number of the detections is

very low in order to keep a ‘safe’ number of spurious detections. A different approach

can be used in which the number density of spurious detections (or, alternatively, of

true detections) is fixed for all the filters, and then the number density of true detections

(or spurious detections) is compared for all the filters. In this work, we first clearly de-

fine the goal of our experiment: fixed a certain number density of spurious detections,

to obtain the maximum possible true detections from the data. Note that this goal is

not universal: in other applications, an observer may desire to work on the basis of the

reliability described in Barreiro et al. [5], or define its own requirements. Once fixed the

goal, we will develop a detection criterion that corresponds to a Bayesian Generalized

Neyman-Pearson test. Then, a particular filter from the family of matched-type filters

(MTF) that optimizes the performance of the detector under the optimality conditions

set by our goal will be obtained. Finally, the performance of the optimal MTF will be

compared with the standard MF using simulations.

The overview of this chapter is as follows: In section 2, we introduce two useful quan-

tities: number of maxima in a Gaussian background in the absence and presence of a

local source. In section 3, we introduce the detection problem and define the region of

acceptance. In section 4, we obtain different analytical and numerical results regard-

ing point sources and scale-free background spectra and compare the performance of a

new family of matched-type filters. In section 5, we describe the numerical simulations

performed to test some theoretical aspects and give the main results. Finally, in section

6, we summarize the main results and applications of this work.

2.2 Background peaks and compact sources

2.2.1 The background

Let us assume a 1D background (e. g. one-dimensional scan on the celestial sphere

or time ordered data set) represented by a Gaussian random field ξ(x) with average

value 〈ξ(x)〉 = 0 and power spectrum P(q), q ≡ |Q|: 〈ξ(Q)ξ∗(Q′)〉 = P(q)δD(q − q′),

where ξ(Q) is the Fourier transform of ξ(x) and δD is the 1D Dirac distribution. The

distribution of maxima was studied by Rice[118] in a pioneer article. The expected

47



CHAPTER 2: MODIFIED MATCHED FILTER

number density of maxima per intervals (x, x + dx), (ν, ν + dν) and (κ, κ + dκ) is given

by

nb(ν, κ) =
nb κ

√

2π(1 − ρ2)
e
− ν2+κ2−2ρνκ

2(1−ρ2) , (2.2.1)

being nb the expected total number density of maxima (i. e. number of maxima per

unit interval dx)

nb ≡
1

2πθm
, ν ≡ ξ

σ0
, κ ≡ −ξ ′′

σ2
, (2.2.2)

θm ≡ σ1

σ2
, ρ ≡ σ2

1
σ0σ2

=
θm

θc
, θc ≡

σ0

σ1
,

where ν ∈ (−∞, ∞) and κ ∈ (0, ∞) represent the normalized field and curvature, re-

spectively. σ2
n is the moment of order 2n associated to the field. θc, θm are the coherence

scale of the field and maxima, respectively.

If the original field is linear-filtered with a circularly-symmetric filter Ψ(x; R, b), depen-

dent on 2 parameters (R defines a scaling whereas b defines a translation)

Ψ(x; R, b) =
1
R

ψ

( |x − b|
R

)

, (2.2.3)

we define the filtered field as

w(R, b) =
∫

dx ξ(x)Ψ(x; R, b). (2.2.4)

Then, the moment of order n of the linearly-filtered field is

σ2
n ≡ 2

∫ ∞

0
dq q2n P(q)ψ2(Rq), (2.2.5)

being P(q) the power spectrum of the unfiltered field and ψ(Rq) the Fourier transform

of the circularly-symmetric linear filter.

2.2.2 The presence of a local source

Now, let us consider a Gaussian source (i. e. profile given by τ(x) = exp(−x2/2R2))

embedded in the previous background. Then, the expected number density of maxima

per intervals (x, x + dx), (ν, ν + dν) and (κ, κ + dκ), given a source of amplitude A in

such spatial interval, is given by (Barreiro et al. [5])

n(ν, κ|νs) =
nb κ

√

2π(1 − ρ2)
e
− (ν−νs)2+(κ−κs)2−2ρ(ν−νs)(κ−κs)

2(1−ρ2) , (2.2.6)

where ν ∈ (−∞, ∞) and κ ∈ (0, ∞), νs = A/σ0 is the normalized amplitude of the

source and κs = −Aτ′′
ψ /σ2 is the normalized curvature of the filtered source. The last
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expression can be obtained as

κs = νsys, ys ≡ − θ2
m
ρ

τ′′
ψ , − τ′′

ψ = 2
∫ ∞

0
dq q2τ(q)ψ(Rq). (2.2.7)

We consider that the filter is normalized such that the amplitude of the source is the

same after linear filtering:
∫

dx τ(x)Ψ(x; R, b) = 1.

2.3 The detection problem

We want to make a decision between filters based on detection. To make such a decision,

we will focus on the following two fundamental quantities: a) the number of spurious

sources which emerge after the filtering and detection processes and b) the number of

real sources detected. As seen in the previous section, these quantities are properties

of the Gaussian field and source that can be calculated through equations (2.2.1) and

(2.2.6). As we will see, the previous properties are not only related to the signal-to-

noise-ratio gained in the filtering process but depend on the filtered momenta to 4th-

order (in the 1D case), i. e. the amplification and the curvature of the source.

2.3.1 The region of acceptance

Let us consider a local peak in the 1D data set characterized by the normalized ampli-

tude and curvature (νs, κs). Let H0 : n.d. f . nb(ν, κ) ≡ n(ν, κ|0) represents the null hy-

pothesis, i. e. the local number density of background maxima, and H1 : n.d. f . n(ν, κ|νs)

represents the alternative hypothesis, i. e. the local number density of maxima when

there is a compact source with normalized amplitude and curvature (νs, κs = νsys).

Given the data (ν, κ), we can associate to any region R∗(ν, κ) two number densities n∗
b

and n∗

n∗
b =

∫

R∗
n(ν, κ|0)dν dκ, (2.3.1)

n∗ =
∫

p(νs)dνs

∫

R∗
n(ν, κ|νs)dν dκ. (2.3.2)

Then, n∗
b is the number density of spurious sources, i. e. due to the background, ex-

pected inside the region R∗(ν, κ), whereas n∗ is the number density of maxima ex-

pected in the same region of the (ν, κ) space in the presence of a local source. Here-

inafter, we will call it the number density of detections. We will assume a Bayesian ap-

proach: at a concrete pixel we get the number of source detections weighting with the

a priori probability p(νs). R∗ is called the acceptance region. We remark that in order to

get the true number of real source detections such a number must be multiplied by the

probability to have a source in a pixel in the original data set.
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We will assume a Bayesian Generalized Neyman-Pearson decision rule using number

densities instead of probabilities: the acceptance region R∗ giving the highest num-

ber density of detections n∗, for a given number density of spurious n∗
b , is the region

(criterion for detection)

L̃(ν, κ) ≡
∫ ∞

0
dνs p(νs)L(ν, κ|νs) ≡

∫ ∞

0 p(νs)n(ν, κ|νs)

n(ν, κ|0)
≥ L∗, (2.3.3)

where L∗ is a constant. The proof follows the same approach as for the standard

Neyman-Pearson test. Therefore, the decision rule is expressed by the likelihood ra-

tio: if L̃ ≥ L∗ we decide that the signal is present, whereas if L̃ < L∗ we decide that the

signal is absent.

Once we have assumed the previous decision rule for detection, the region of accep-

tance R∗ is given by L̃(ν, κ) ≥ L∗ or equivalently by the sufficient linear detector

R∗ : ϕ(ν, κ) ≥ ϕ∗, (2.3.4)

where ϕ∗ is a constant and ϕ is given by

ϕ(ν, κ) ≡ 1 − ρys

1 − ρ2 ν +
ys − ρ

1 − ρ2 κ, µ ≡ (1 − ρys)
2

1 − ρ2 . (2.3.5)

We remark that the assumed criterion for detection leads to a linear detector ϕ (i. e.

linear dependence on the threshold ν and curvature κ).

2.3.2 Spurious sources and real detections

Once obtained the region of acceptance R∗ in the previous subsection, one can calculate

the number density of spurious sources and the number density of detections as given

by equations (2.3.1) and (2.3.2).

n∗
b =

nb

2

[

erfc

(

ϕ∗
√

1 − ρ2
√

2(1 − ρys)

)

+
√

2Hyse−H2ϕ2
∗erfc

(

−
√

1 − ρ2

1 − ρys
ysHϕ∗

)]

,

H =

√

1 − ρ2

2(1 − 2ρys + y2
s )

, (2.3.6)

n∗ =
nb√
2π

1 − ρys

(µ + y2
s )
√

1 − ρ

∫ ∞

ϕ∗
dϕI(ϕ)[1 + B(z)]e

− (1−ρ2)ϕ2

2(1−ρys)2 , (2.3.7)

z =
ys ϕ

1 − ρys

√

1 − ρ2

2(µ + y2
s )

, I(ϕ) =
∫ ∞

0
dνs p(νs)eνs ϕ− 1

2 ν2
s (µ+y2

s), B(x) ≡
√

πxex2
erfc(−x).

(2.3.8)

Then, one can invert the equation for the number of spurious to get ϕ∗ = ϕ∗(
n∗

b
nb

; ρ, ys)

that allows to rewrite the equation for the number of detections as n∗ = g(n∗
b ; θm, ρ, ys).
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2.4 Analytical and Numerical results

2.4.1 Point sources

We will considerer as application the detection of compact sources characterized by

a Gaussian profile τ(x) = exp(−x2/2R2), though the extension to other profiles will

be considered in the future. Such a profile is physically and astronomically interest-

ing because represents the convolution of a point source (Dirac δ distribution) with a

Gaussian beam.

2.4.2 The Matched Filter (MF)

By introducing a circularly-symmetric filter, Ψ(x; R, b), we are going to express the con-

ditions in order to obtain a matched filter for the detection of the source s(x) at the

origin taking into account the fact that the source is characterized by a single scale Ro.

The following conditions are assumed: (1) 〈w(Ro, 0)〉 = s(0) ≡ A, i. e. w(Ro, 0) is

an unbiased estimator of the amplitude of the source; (2) the variance of w(R, b) has a

minimum at the scale Ro, i. e. it is an efficient estimator

ψ̃MF =
1
2a

τ(q)
P(q)

. (2.4.1)

This will be called matched filter as is usual in the literature.

For the case of a Gaussian profile for the source and a scale-free power spectrum given

by P(q) ∝ q−γ, the previous formula leads to the following matched filter

ψ̃MF =
1

Γ(m)
xγe−

1
2 x2

, x ≡ qR, m ≡ 1 + γ

2
. (2.4.2)

For the MF the parameters θc, θm, ρ and the curvature of the source ys are given by

θm

R
=

1√
1 + m

, ρ =

√

m
1 + m

, ys = ρ. (2.4.3)

We remark that the linear detector ϕ(ν, κ) is reduced to

ϕ = ν, (2.4.4)

i.e. the curvature does not affect the region of acceptance for the MF and the sufficient

detector ϕ reduces to the plain thresholding detector.
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2.4.3 The family of Matched-type filters (MTF)

Let us modify the filtering scale as αR to introduce a family of Matched-type filters. In

particular, if we consider the white noise case (γ = 0), this family is given by

ψ̃MTF =
1√
π

√

1 + α2

2
e−

1
2 (αRq)2

. (2.4.5)

Therefore, this family allows one to filter at scales different from the one of the source.

Obviously, for α = 1 the usual MF is recovered.

The parameters characterizing the background and source are in this case modified in

the following way

ρ(α) = ρ(α = 1), θm(α) = αθm(α = 1), ys(α) =
2α2

1 + α2 ys(α = 1), (2.4.6)

ν(α) =

√

2α

1 + α2 ν(α = 1), κ(α) = α2

√

2α

1 + α2 κ(α = 1). (2.4.7)

2.4.4 Uniform distribution of point sources

In this case,

p(νs) =
1
νc

, ν ∈ [0, νc]. (2.4.8)

This allows one to obtain

I(ϕ) =

√

π

2
eu2

νc
√

y2
s + µ

[

erf(u) + erf
(

νc√
2

√

y2
s + µ − u

)]

, u ≡ ϕ
√

2(y2
s + µ)

. (2.4.9)

2.4.5 Theoretical results

Hereinafter, we shall consider the case of white noise (γ = 0) for the background

and a uniform distribution for the point sources in an interval ν ∈ [0, νc ]. νc has been

chosen to produce a threshold of 2 for the filtered field using the standard MF. The

corresponding thresholds for the MMF can be easily obtained using equation (2.4.7).

We would like to point out that this reflects a situation where we want to detect very

weak sources, which were below the 1σ level in the original unfiltered map.

The region of acceptance R∗ is defined by the sufficient linear detector ϕ. Let us con-

sider equation (2.3.6), giving the number density of spurious, then one can invert to

get ϕ∗(n∗
b). In Fig. 2.1 we show some results for the cases R=3, n∗

b = 0.05 and R=4,

n∗
b = 0.03. The two panels on the left correspond to the first case and the ones on the

right to the second one. The top figures show the expected number density of detec-

tions versus the α parameter of the filter. It is interesting to remark that such a number
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Figure 2.1 The expected number density of detections (top panels) and the relative ratio

to the standard MF (bottom panels) are given for the MTF for different values of the

α parameter. Two cases are considered: R = 3, n∗
b = 0.05 (left figures) and R = 4,

n∗
b = 0.03 (right figures).

decreases with α. In fact, the largest number of detections are obtained for α ' 0.3

which corresponds approximately to filter at the pixel scale. The relative ratio to the

standard MF defined as r = (n∗(α)/n∗(α = 1) − 1) × 100 is shown in the bottom pan-

els. For the first case, the ratio takes values up to ' 10 per cent whereas for the second

it goes up to ' 5 per cent. These results clearly indicate that, under certain condi-

tions, the standard MF can be improved by simply modifying the scale of the filter. We

remark the importance of the curvature defining the acceptance regions for the MTF.

2.5 Numerical simulations: Results

2.5.1 The simulations

In order to test the previous ideas, we have simulated a set of one-dimensional images

containing a Gaussian background characterized by a white noise power spectrum

(γ = 0) and point sources distributed in intensity following an uniform distribution

such as in eq. (24). Since we are interested in detecting very faint sources, we set the
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upper-limit threshold cut νc = 2 with respect to the MF. Specifically, we simulated a set

of images with 4096 pixels each, with white noise dispersion unity (background image)

and then added a source with a Gaussian profile of FWHM=7 pixels, i.e. R = 3, at the

central pixel of each image (background+source image). The size of the image is such

that the addition of the source does not modify the previous dispersion in a significant

way. Then, each image was filtered with the MTF given by equation (2.4.5).

For consistency, all the relevant quantities needed for the detection were estimated di-

rectly from the images. The observables are the amplitude and curvature of the maxima

as well as the moments σ2
n . From these observed quantities, it is possible to calculate

the parameters ρ and ys of the filtered images and, therefore, the value of the sufficient

detector ϕ (see equation 2.3.5) for each peak. The value ϕ∗ that defines the acceptance

region can be obtained from the images as well following a very simple procedure. For

any background maxima in the image, the detector ϕ is calculated. Then all the values

of ϕ are sorted. Once we fix the number of spurious sources n∗
b , the value of ϕ∗ is given

by the ϕ above which the number of maxima found corresponds to n∗
b . Once defined

the acceptance region, we can proceed to apply the detector to any maxima where the

existence of a source is suspected. In our simulations, we looked at the central pixel of

the images were the sources were introduced and applied the detection criterion every

time a maximum was found in that pixel.

2.5.2 Results

The results of the simulations are shown in figure 2.2 for the case R = 3, n∗
b=0.05, where

we represent the number of detections n∗ vs. the α parameter of the filter. The dot-

ted line represents the result obtained from the simulations whereas the solid line is

the theoretical result. We have done five simulations for each α value to estimate the

error bars. In order to have 10000 images with a maximum of the background in the

central pixel, for each of the simulations we generate between ' 50000 and ' 150000

realizations (depending on α). The two numbers reflect the fact that for lower α the

same n∗
b is achieved with a smaller number of realizations. We remark the agreement

between the two results and also that ' 10 per cent more sources are found filtering at

the pixel scale (α ' 0.3) than with the standard MF (α = 1). Therefore, we have shown

that in conditions of white noise and for weak sources it is possible to outperform the

number of detections given by the MF using the detection criterion presented here and

an appropriate MTF. This clearly suggests the use of other optimal filters under certain

conditions, different from the MF, from the practical point of view, for the detection of

weak sources.
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Figure 2.2 Number density of detections for the case R = 3, n∗
b = 0.05 for different val-

ues of the α parameter. The solid line represents the expected theoretical value whereas

the dotted line is obtained through the numerical simulations.

This methodology is optimal for weak sources embedded in white noise. Regarding

bright sources, the amplification plays a major role as compared to curvature entering

the acceptance region. Therefore, the use of the MF is well justified in this case.

Regarding the behavior of the detector with respect to the scale R, we found that if

R is very low the sources become more and more point-like and they are more easily

mistaken with the fluctuations of the background. Therefore, in these cases the cur-

vature does not help to distinguish among them and the detector tends again to the

thresholding case which favors the use of the MF.

2.6 Conclusions

The detection of compact sources on a background is a relevant problem for many

fields, in particular for Astronomy. Several detection techniques based on the use of

linear filters thresholding-based detectors are standard. Here, we have considered an

approach to the problem of detector design based on a Bayesian generalization of the

Neyman-Pearson rule that includes a priori information of the source distribution and

the number densities of maxima (background and background plus source) to define
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the acceptance region.

Our approach based on maxima includes both the amplitude and the curvature. There-

fore, the chances of detection do not depend only on the amplification of the sources

produced by the filtering but also on the filtered momenta up to the fourth order. This

determines in a strong way the designing of the linear filters that are used to help the

detection. We have applied our technique to a family of matched-type filters (MTF) by

modifying the scale of the standard matched filter. We considered the very interesting

case of white noise to represent the background. As an example, we have considered

a uniform distribution of sources in the interval 0 ≤ ν ≤ 2 in the filtered field, i.e.

weak sources. We have shown that the curvature plays an important role defining the

acceptance region and we have proven that the number of detections in the case of a

filter with a scale similar to the pixel size beats the number of detections in the case of

the standard MF. This result has been tested with numerical simulations for a uniform

distribution and white noise.

The ideas presented in this work can be generalized: application to other profiles (e.

g. multiquadrics, exponential) and non-Gaussian backgrounds is physically and as-

tronomically interesting. The extension to include several images (multi-frequency) is

relevant. The generalization to two-dimensional data sets (plane and spherical maps)

and nD images is also very interesting. Finally the application of our method to other

fields is without any doubt. We are currently doing research in some of these topics.
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