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A mis compañeros y amigos del IFCA, especialmente Patricio y Belén, con quienes da
gusto compartir no sólo despacho, sino conversación y todo lo que lleva impĺıcita la amistad.
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A todos los buenos amigos que he ido haciendo en mi vida itinerante, especialmente a
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a gusto como en mi casa. Gracias a todos ellos, y sobre todo a Alberto, por todo lo bueno

que han aportado a mi vida en esta ciudad.

1http://www.ifca.unican.es/∼herranz/ricino.html

vii



viii
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Chapter 1

Introduction

The discovery of the cosmological background radiation was one of the milestones

in observational Cosmology during the XXth century. Together with the expan-

sion of the Universe, it constitutes the foundation stone of modern cosmological

models and the reference point of all theories that try to describe the origin and

evolution of the Universe as a whole. The study of cosmological background radi-

ation has profound implications in areas as diverse as Cosmology, particle physics

and Galactic and extragalactic Astronomy. The detection of the cosmic microwave

background (CMB) itself in 1964 and the discovery of its anisotropies (together

with the confirmation of the black body nature of its power spectrum) by the

COBE satellite in 1992 were the landmarks of Cosmology during the second half

of last century. Therefore, it is no surprising the extensive interest this topic has

generated during the last 40 years. Last decade, in particular, has seen an over-

whelming growth in the literature devoted to the CMB. At this very moment,

several experiments are been carried on in order to detect and analyze the CMB

radiation with unpreceded sensitivity and resolution. Yet more experiments are

in preparation for the near future, that will provide full-sky pictures in the mm

and sub-mm regime, both in intensity and polarization, leading to huge amounts

of data to be analyzed.

In this context, the development and testing of analysis techniques adapted

to the kind of data generated by CMB experiments is a pressing need. Some of

the problems to be resolved in any CMB experiments are: the choice of efficient

map-making and data representation algorithms, destriping, power spectrum and

1



2 Chapter 1. Introduction

higher moments estimation, denoising and the identification and separation of

the different physical components that constitute the CMB radiation (component

separation). Of all these problems, this work will focus in the last two points.

In this work different filtering techniques aiming at the detection of signals

embedded in CMB data are explored. These signals, such as extragalactic point

sources and galaxy clusters, can be considered as foregrounds that contaminate

the underlying CMB signal and, therefore, are needed to be removed from the

data. But, unlike instrumental noise, the two considered examples have scientific

relevance on themselves; what is a leftover from the point of view of CMB physics

can be extremely useful from the point of view of extragalactic Astronomy. Hence,

it is relevant to perform the separation as accurately and efficiently as possible. A

new technique, scale-adaptive filters, is presented in this thesis. The philosophy

of scale-adaptive filters is to maximize the probability of detection of a signal

with a known profile while paying maximum attention to its characteristic scale,

in order to avoid false detections. The performance of scale-adaptive filters will

be tested with worked examples and with one-dimensional and two-dimensional

realistic simulations of the future ESA’s Planck mission.

The layout of this thesis is as follows: in this first introductory section the

basic ideas on CMB theory and observations are briefly summarized. There also

a general description of filtering techniques is included. Chapter 2 introduces the

idea of scale-adaptive filter. A full derivation of the scale-adaptive filter formalism

can be found in Appendix A. As a first test, in Chapter 2 the scale-adaptive filter is

applied to simulated one-dimensional Gaussian sources embedded in artificial noise

and compared with the well-known Gaussian and Mexican Hat filters. Chapter 3

is devoted to the generalization of the scale-adaptive filters to 2D image processing

and more general spatial profiles. In particular, the chapter is focused on a filter

adapted to the multiquadric family of functions (that is a good approximation

of the real profile of galaxy clusters as they are seen at X-ray and microwave

wavelengths). Again, some simple simulations are presented.

Chapters 4 and 5 apply scale-adaptive filters to more sophisticated, realistic

simulations. The simulations accurately reproduce the conditions of the incoming

data produced by the future ESA’s Planck mission. Planck has the highest sensi-

tivity, resolution and sky coverage of all the experiments scheduled for a near future
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and therefore is the ideal testing battlefield for an analysis technique. In Chapter 4

the scale-adaptive filter is applied to unidimensional arrays of data corresponding

to a 6-month scan of one of the 30 GHz Planck detectors.

Chapter 5 presents a further generalization of filtering techniques in the case

where information from different frequency channels is available and the frequency

response of the signal to be detected is known (multifiltering). An immediate

application of multifiltering is the detection of galaxy clusters through the Sunyaev-

Zel’dovich effect. Using multifiltering, the clusters are detected in a robust fashion,

directly from the data, assuming only a previous knowledge about the shape of the

clusters.

Finally, Chapter 6 shows a brief review of the conclusions of this thesis and the

prospective work and projects. A summary of this thesis in Spanish is included in

Appendix B.

1.1 The Cosmic Microwave Background Radia-

tion

The cosmic microwave background (CMB) is a weak, uniform radiation that per-

meates the Universe and arrives to the Earth from all directions. The existence of

a cosmic background radiation was predicted in 1948 by Gamow and his collab-

orators when studying the synthesis of light elements in the primordial Universe.

In the framework of the Big Bang, these elements formed when the Universe was

much denser and hotter than in the present. Gamow predicted the existence of

a relic radiation of about 5K (Gamow 1948a,b, Alpher & Herman 1948). The

Princeton group made a similar prediction (Dicke et al. 1965) and were prepar-

ing a radiometer to detect this residual of the ‘primeval fireball’ just before its

actual discovery by Penzias & Wilson in 1964 (Penzias & Wilson 1965). Penzias

and Wilson, while working for the Bell Company in the construction of a new

detector, found with their horn antenna an excess of noise with a temperature of

∼ 3K coming from all directions and without daily or seasonal variation. After

discarding all possible sources of artificial contamination as origin of this noise,

they considered its astronomical nature. Soon it was interpreted as the radiation

predicted by Gamow and his collaborators.
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Two facts are the most conspicuous about this radiation: in first place, its

electromagnetic spectrum corresponds exactly with a black body at To = 2.73K,

and in second place, its radiation shows an extraordinary homogeneity and isotropy.

As far as we know, only processes produced by a system in thermal equilibrium

can produce radiation following the black body law. The isotropy of the CMB

radiation tell us about a process that involves all the observed Universe as a whole.

This suggests a cosmological origin of the CMB; it could be easily explained if the

Universe went through a phase of thermal equilibrium in the past. This is precisely

what Big Bang models had predicted, and this is why the discovery of CMB was

so crucial to the acceptance of these models.

CMB isotropy is not perfect. Very small fluctuations (‘anisotropies’) are present

at different angular scales. As we will see, the statistical properties of the aniso-

tropies are determined by the cosmological model. Therefore, CMB anisotropies

are very useful. This is so mainly because they are small. For a given cosmologi-

cal model, this allows to calculate the anisotropies using only linear perturbation

theory. This means that if we were able to measure CMB anisotropies with a

precision of few percent, we would be able to determine cosmological parameters

with a precision of the same order.

The homogeneity of the CMB contrasts with the clumpy Universe in which we

live in the present, full of non-linear structures such as galaxies, clusters of galaxies

and voids. How the Universe has evolved from an almost featureless state to its

present form is one of the most challenging questions we can formulate. In § 1.1.3

we will see how phenomena at intermediate redshifts can leave an imprint on CMB

anisotropies and how such imprint can help to improve the knowledge about the

evolutionary Universe.

1.1.1 The origin of the CMB

After the Big Bang the Universe was extremely hot and dense. Under the con-

ditions of pressure and temperature that reigned in that stage, the matter was

totally ionised and the baryons and the photons were tightly coupled. Frequent

collisions between them ensured complete thermodynamic equilibrium of matter

and radiation. As the young Universe expanded, the pressure and temperature



Chapter 1. Introduction 5

decreased. After ∼ 3×105 years (redshift z ∼ 1000) the temperature had dropped

to T ∼ 3000K. Below this temperature, electrons and protons combined to form

neutral atoms and the photons were free to propagate. The Universe became

transparent. This is why this epoch is called either recombination or decoupling

time. After the decoupling, matter and radiation follow different paths. Most of

the photons never interacted again with the matter, preserving the black body

spectrum of the primordial thermal equilibrium. The temperature of the CMB

has dropped since decoupling due to the expansion of the Universe according to

T (z) = (1 + z)To, being To the actual temperature of 2.73K. Since before the

recombination the Universe was opaque, the CMB can be considered as the first

and oldest picture of the Universe.

For any observer, the origin of the CMB photons arriving at each time can be

located on a spherical surface centered in the observer and with a radius corre-

sponding to the travel time of the light emitted at the recombination time. This

(fictitious) surface is called last scattering surface. Unless the Universe has exper-

imented a strong reionisation at some redshift 0 < z < 1000, most of the CMB

photons we receive come from the last scattering surface. CMB anisotropies can

be studied as projections over this spherical surface.

1.1.2 Observables

The basic observable of the CMB is its intensity as a function of frequency and

direction on the sky. Since the CMB spectrum is an extremely good black body,

its usual to describe it in terms of the temperature fluctuation ∆T
T

(~n) = T (~n)−To

To
,

where ~n is a unit vector on the sphere. It is useful to describe the random field

∆T/T in spherical harmonics:

∆T

T
(~n) =

∞∑
`=1

∑̀
m=−`

a`mY`m(~n) (1.1)

where the a`m coefficients are independent random variables with < a`m >= 0.

a`m =
∫
d~n Y ∗

`m(~n)
∆T

T
(~n) (1.2)

On small sections of the sky -where the curvature can be neglected- the spherical

harmonic analysis becomes ordinary Fourier analysis in two dimensions and ` be-
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comes the Fourier wavenumber. Small `’s correspond to large separations in the

sky, whereas ` ∼ 102 represents degree scale separations.

If the temperature fluctuations are statistically isotropic, the variance of the

a`m coefficients does not depend of m:

< a`ma
∗
`′m′ >= C`δ``′δmm′ , (1.3)

where the averages are to be taken over statistical ensembles. The quantities C`

are the angular power spectrum of the temperature field.

Angular power spectrum of the CMB

If the fluctuations are Gaussian, then the angular power spectrum C` fully char-

acterizes the temperature field. The power spectrum is usually displayed as the

power per logarithmic interval in wavenumber:

∆2
T =

`(`+ 1)

2π
C`T

2 . (1.4)

The C`’s can be accurately calculated for the inflationary models as a function of

the cosmological parameters (e.g. Seljak & Zaldarriaga 1996, Hu et al. 1998). If the

fluctuations are non-Gaussian, higher order moments must be studied. However,

the angular power spectrum is still a fundamental test of the viability of those

theories.

The behaviour of the angular power spectrum of the CMB as a function of `

can be splitted into three major regions:

• The large angular scales (low `) correspond to physical sizes on the last

scattering surface larger than the horizon at the epoch of decoupling. Since

no physical process could affect these regions as a whole due to causality, no

particular structure is expected in this region of the power spectrum. This

is reflected in the angular power spectrum as a plateau at low `.

• Intermediate regions (` ' 30 to ` ' 1000) correspond to regions with physical

size less than the horizon. Matter and radiation inside these regions could be

affected by causal processes. Before the decoupling time, acoustic oscillations

occurred in the baryon-photon fluid, giving rise to acoustic (Doppler) peaks
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in the case of inflationary-line Universe models where the oscillations are in

phase. The position of these peaks is mainly determined by the geometry

of the Universe (Kamionkowski et al. 1994), the first one located around

` = 200 (corresponding to the size of the horizon at the epoch of decoupling).

In the case of some non inflationary models (such as topological defects), the

oscillations are not in phase and a large bump is expected, but no multiple

peaks.

• At small scales (arcminute scales and below), temperature fluctuations are

damped due to the fact that decoupling is not instantaneous, that is, the

last scattering surface has a finite thickness ∆z ∼ 100 (Jones & Wyse 1985).

Thus, fluctuations with smaller scales than the thickness of the last scattering

surface will be reduced by averaging over photons coming from different parts

of the surface. Other mechanism responsible for the fall-off of the fluctuations

is the so-called ‘Silk damping’ (Silk 1968): photons diffuse out from overdense

regions, dragging the baryons with them and consequently smoothing the

density fluctuations of both photons and baryons.

A real observer is limited to one Universe and one sky with its one set of a`m’s,

that is, 2`+1 numbers for each `. For Gaussian fluctuations each C` is drawn from a

χ2 distribution with 2`+1 degrees of freedom. This leads to an inevitable variance

of 2
2`+1

C2
` that affects mainly at low `’s. This fundamental limitation is called

cosmic variance. Another effect that reduces our ability to accurately measure the

angular power spectrum is the sample variance, which is due to partial coverage of

the sky. If the fraction of sky covered is fsky, then the errors increase by a factor of

f
−1/2
sky . Even full-sky coverage experiments can be affected by sample variance, since

highly contaminated parts of the data (i.e. the Galactic plane) may be needed to

discard. Cosmic and sample variance are present independently of the resolution

and sensitivity of the experiment.

The shape of the angular power spectrum for the working cosmological model

with the present experimental results are shown in Figure 1.1. The plateau at low

`’s and the acoustic peaks can be clearly seen. The low ` region was determined

by the early measurements of COBE (Smoot et al. 1992). Only very recently the

region of the acoustic peaks has become accessible with experiments such as the
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balloon-borne BOOMERanG (Mauskopf et al. 2000, Netterfiled et al. 2001) and

MAXIMA (Lee et al. 2001) and the ground based interferometer DASI (Halverson

et al. 2001). The results of those experiments clearly show the multiple acoustic

peak structure and strongly disfavour topological defects as seeds for the struc-

ture formation in the Universe. The favoured model is dominated by dark energy

(around 70%) and a 30% of matter containing mainly non-baryonic dark matter

and an amount of baryons in agreement with Big-Bang nucleosynthesis predic-

tions and light element abundances measurements. The results agree very well

with another estimations of the cosmological parameters obtained with completely

different methods such as type Ia supernovae, light element abundances, etc. A

complete reference list with all the CMB experiments shown in Figure 1.1 can be

found in the recent review by Hu & Dodelson (2001).

1.1.3 Temperature anisotropies

The angular size of the anisotropies depend on their size in the last scattering

surface and on the geometry of the Universe along the path of the photons to

the observer. Hence, mapping the CMB anisotropies is a powerful cosmological

test. CMB anisotropies can be classified as primary, if they are origined until the

decoupling time, or as secondary, if they are due to processes in the way of the

photons from the last scattering surface to us. Besides, emission from several kind

of sources (foregrounds) is superimposed to cosmic microwave radiation.

Only a very brief summary on the principal facts about CMB anisotropies will

be included in the following paragraphs. For a more extensive description, see the

recent reviews of Durrer (2001) and Hu & Dodelson (2001).

Primary anisotropies

The ultimate origin of the CMB anisotropies can be found in the initial density

fluctuations of matter and radiation fluid at the decoupling time. It is easy to

understand that the fluctuations in the photon density at the decoupling time δγd

must be strongly correlated with with the fluctuation in the intensity of the CMB.

Those fluctuations serve also as seeds for the structure formation in the Universe.

Two different cases of initial density fluctuations are distinguished: adiabatic and
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isocurvature. Adiabatic fluctuations are characterized by a null fluctuation of spe-

cific entropy associated to each component at each point:

δ(
nb

nγ

) = δ(
nX

nγ

) = 0 , (1.5)

where the subscripts γ, b and X denote photons, baryons and non-baryonic dark

matter, respectively. Equation (1.5) implies the following relation at the initial

time:

δγ =
4

3
δb =

4

3
δX (1.6)

Isocurvature fluctuations are characterized by a null fluctuation of total energy at

each point, i.e., δ(ργ + ρb + ρX) = 0, what keeps constant the space curvature.

In addition it is usually assumed that the entropy per baryon remains constant

δ(nb/nγ) = 0, when there exist a non-baryonic dark matter component. This leads

to the following relation at the initial time:

δγ = − 4ρX

3ρb + 4ργ

δX (1.7)

There are two main scenarios that try to explain the origin of these initial seeds:

inflation and topological defects. Inflationary models (Guth 1982, Linde 1982,

1983, Albrecht & Steindhart 1982) consider that the fluctuations were originated

from quantum fluctuations that were boosted is scale during the exponential ex-

pansion that characterizes the inflationary epoch (Hawking 1982, Guth & Pi 1982,

Starobinskii 1982, Bardeen et al. 1983). Inflationary models favour adiabatic fluc-

tuations (e.g. Kolb & Turner 1990) drawn from a realization of a homogeneous

and isotropic Gaussian random field. If the fluctuations are Gaussian, they are

fully characterized by their power spectrum P (k). Inflation favour power spectra

of the type

P (k) = Akn , (1.8)

where A is the power spectrum normalization and n is the spectral index. Standard

inflation predicts n = 1 (Harrison-Zel’dovich spectrum, Harrison 1970, Zel’dovich

1972). In non-standard inflationary models isocurvature fluctuations (Efstathiou

& Bond 1986, Peebles 1999a,b) and deviations from Gaussianity (Salopek 1992,

Peebles 1999a,b) are also possible. Topological defects scenarios consider cosmic
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strings, textures and monopoles that might be formed during symmetry breaking

phase transitions in the early Universe as seeds to initial perturbations (for a review

see Vilenkin & Shellard 1994). CMB fluctuations induced by topological defects

are non-Gaussian. Hybrid scenarios that combine inflation and topological defects

have also been proposed (Jeannerot 1996, Linde et al. 1997, Avelino et al. 1998).

Photon density fluctuations are not the only source of primary anisotropies.

Other contributions arise from the gravitational redshift of photons climbing out

of potential wells in their way from the last scattering surface to us (Sachs-Wolfe

effect, Sachs & Wolfe 1967) and the Doppler effect due to the peculiar velocities

of the last scatters of the photons. Then, if recombination occurs in the matter-

dominated era and Ω ∼> 0.1,

∆T

T
(~n) ≈ 1

4
δγd +

1

3
φd − ~n~vd (1.9)

where ~n is the direction given by the line of sight, the subscript d indicates quan-

tities at the decoupling time and the units have been chosen so that c = 8πG ≡ 1.

The first term in eq. (1.9) corresponds to density fluctuations. The second term

corresponds to the Sachs-Wolfe effect and dominates at scales larger than the hori-

zon size at decoupling, where the CMB anisotropies are directly related to the

initial power spectrum of matter density fluctuations. The third term represents

the Doppler effect. The three terms together cause the behaviour of the angular

power spectrum described in § 1.1.2.

Secondary anisotropies

The secondary anisotropies provide information about the evolution of the Uni-

verse after decoupling. Two kind of phenomena are mainly responsible for these

anisotropies: gravitational and scattering effects.

Gravity affects photons in two ways:

• Gravitational shifts. If the photons cross a region with a potential well

that is evolving they experiment a variation in their energy due to the

variations in gravitational redshift/blueshift along the path of the pho-

ton (Mart́ınez-González et al. 1990). The integrated effect is

∆T

T
(~n) =

∫ ∂φ

∂t
dt . (1.10)
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In the special case where the potential well is due to linear density

perturbations in a Universe different from the Einstein-de Sitter one,

this effect is known as the Integrated Sachs-Wolfe effect (ISW). In an

Einstein-de Sitter Universe the ISW is zero. Four different regimes can

be distinguished for this mechanism: early ISW effect when the poten-

tial decays between the decoupling time and the full matter domination,

late ISW effect when the potential decay due to the natural Universe

expansion once matter no longer dominates the expansion (Λ or open

models), Rees-Sciama effect which is due to non-linear evolution of col-

lapsing structures and finally all the other gravitational redshift effects,

including gravitational waves and topological defects.

• Gravitational Lensing. Gravitational shifts described above change the

energy of the photons but not their trajectories. Gravitational lensing

is the deviation of the light due to a gravitational well without changing

the energy of the photons. Matter density fluctuations along the path of

the photons smear the angular power spectrum on scales typically small

(Mart́ınez-González et al. 1997). Although this effect is expected to be

small, it could be detectable for future CMB experiments and could be

used to trace the large scale structure of matter.

Scattering. If the Universe suffer a reionisation after decoupling (due to quasars,

massive formation of first generation stars, etc.), then the CMB anisotropies

will be dramatically influenced by scattering with electrons. Scattering can

change the direction of the photons (Thomson scattering) and their energy

(Compton scattering). In the first case, a smearing of the light will occur

affecting scales smaller than the horizon size at the redshift of the scattering.

If the Universe went through a global reionisation at a given redshift zr, then

a dumping in the fluctuations would happen due to photon path mixing.

Local ionised regions can also affect the CMB. For example, inverse Compton

scattering of microwave photons by hot electrons in the intracluster gas of a

cluster of galaxies produces spectral distortions of the black body spectrum

of the CMB, known as the thermal Sunyaev-Zel’dovich effect. The Sunyaev-

Zel’dovich (SZ) effect will be further discussed in § 1.1.4.
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1.1.4 Foregrounds

Besides the cosmological radiation described in the previous sections, other objects

and physical processes produce emission in the microwave region of the electromag-

netic spectrum. The set of astronomical microwave sources other than the CMB

are known as foregrounds. In any direction of the sky, a detector will measure

the photons coming from the last scattering surface mixed with photons coming

from foregrounds situated along the line of sight. A good understanding of the

different foregrounds is necessary for a suitable analysis of the CMB. Moreover,

the knowledge of the foregrounds is a major goal on itself because they contain

themselves very valuable information on astronomical phenomena. There are two

main contributions to the foregrounds: Galactic and extragalactic. Galactic fore-

grounds are typically extense and grow stronger towards the Galactic Plane; they

can dominate at low `’s and be a painful problem to estimate the first C`’s. Ex-

tragalactic foregrounds are local contaminants, meaning that they are centered in

the positions of galaxies and clusters of galaxies surrounding our own and, due to

the relatively small angular scale of such objects as seen from Earth, the emission

from these sources is located in small areas of the sky. This work will focus mainly

on the detection of extragalactic foregrounds.

The main Galactic foregrounds are:

Synchrotron

Synchrotron emission is produced by relativistic electrons that are accelerated in

magnetic fields (for a recent review see Smoot 1999). Hence, it depends on the

energy spectrum of the electrons and the strengths of the magnetic field. Supernova

remnants are strong synchrotron sources. There also exists a diffuse Galactic

synchrotron emission associated to the Galactic magnetic field and electrons freed

by older supernovae. Synchrotron emission is highly polarized and dominates in

the low frequency range (< 30 GHz). There is a complete sky survey at 408

MHz (Haslam et al. 1982) and another half sky survey at 1024 MHz (Reich &

Reich 1986) which have been used to extrapolate synchrotron emission to higher

frequencies relevant to CMB observations.
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Dust emission

Dust grains in our Galaxy are heated by the interstellar radiation field, absorbing

UV photons and re-emitting the energy in the far IR. In general the equilibrium

temperature between absorption and emission is T ≈ 20K in the limit of large dust

grains. The spectrum of this light can be well approximated by a modified black

body spectrum Iν ∝ Bν(Tα)να where α ∼ 2 (Draine & Lee 1984). This emission

peaks at ∼ 140 µm but extends out to microwave wavelengths. Dust dominates

over the other components at high frequencies (ν > 300 GHz). Wright (1991) and

Reach et al. (1995) found that two components were necessary to fit the Galactic

dust emission, including a cold component with T ∼ 7K. If this cold component

exists, it could dominate the dust emission at low frequencies. The Berkeley-

Durham dust map (Schlegel et al. 1998) is based on infrared radiation from dust,

observed by IRAS at 100 µm and DIRBE at 100 µm and 240 µm. This map can

be used to clean up future CMB data. There could be another component of dust

emission due to spinning dust grains that would have a peak in the low frequency

channels of Planck. In Oliveira-Costa et al. (1999) they have shown evidence for

this hypothesis. They have cross-correlated Tenerife data with Galactic templates

and they found a turnover in the spectrum at 10 and 15 GHz which supports the

spinning dust hypothesis. However, its existence is still unclear.

Free-free emission

Free electrons, when accelerated by ions in the interstellar gas, radiate due to

thermal bremsstrahlung. This emission is located in hot regions (T ∼> 104K)

where the hydrogen is ionised. Therefore, Hα regions are thought to be good

tracers of free-free emission. Free-free is the less well known Galactic foreground

due to the fact that it only dominates over a small range of frequencies (25 − 75

GHz), where the total Galactic emission is minimal. However, the correlation of

free-free emission with Hα can be used to create free-free template maps. The

Wisconsin Hα Mapper (WHAM) survey (Reynolds et al. 1998) will produce a

map in Hα of the northern sky with 1◦ resolution. This survey can be combined

with the southern celestial hemisphere Hα survey (McCullogh et al. 1999). Free-

free emission is partially correlated with dust as the Hα emission has long been
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known to be. A possible source of confusion exists between dust-correlated free-

free emission and spinning dust (see above). Future CMB experiments should be

able to solve this uncertainty.

Figure 1.2 shows the frequency behaviour of the strength of the different Galac-

tic foregrounds. Dust is the dominant contribution at high frequencies whereas

synchrotron dominates the low frequency regime. The CMB and its dipole and

quadrupole are also shown.
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Extragalactic foregrounds are of very diverse nature. Almost all of them are

unresolved at the resolutions of present and near future CMB experiments. All

these foregrounds receive the generic name of extragalactic point sources. Resolved

extragalactic sources include nearby galaxies (such as the Magellanic Clouds) and

some galaxy clusters. Even though the Sunyaev-Zel’dovich imprint in the CMB

should be considered as a secondary anisotropy (see § 1.1.3), it will be discussed

in this section due to the similarity between galaxy clusters and point sources

regarding their spatial profile.

Extragalactic point sources

There are different source populations that can produce emission in the microwave

domain. The ‘zoo’ of extragalactic objects has many species; hence, the systematic

study of extragalactic point sources has many uncertainties. Toffolatti et al. (1998)

and Guiderdoni (1999) have performed a detailed study of these extragalactic point

sources at the frequencies of the Planck mission. From these works, fluctuations

from point sources are well below the expected amplitude of CMB fluctuations

in the frequency range 50 − 200 GHz on all angular scales covered by the Planck

mission. The number counts of extragalactic point sources are dominated at high

frequencies by IR selected sources (such as starburst and late type galaxies at in-

termediate to low redshift and high redshift ellipticals). On the other hand, radio

selected sources (flat-spectrum radiogalaxies, radio-loud quasars, BL Lacs, etc.,

mostly at substantial redshift) are expected to dominate the counts in the Planck

low frequency channels. At intermediate frequencies (353, 217 and 143 GHz) the

channels are almost free of point source counts (being the infrared population the

dominating among these few counts). Since the sources are, as a first approach,

randomly distributed in the sky, their angular power spectrum can be approxi-

mated by white noise, i.e., C` = constant for all scales. Thus, confusion from point

sources mainly will affect small angular scales. The contributions to fluctuations

owing to clustering of both radio and far-IR sources is found to be generally small

in comparison with the Poisson term; however, the relative importance of the clus-

tering contribution increases and may eventually become dominant if sources are

identified and substracted down to low flux limits (Toffolatti et al. 1998).

Detection and substraction of bright point sources is essential before any other
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analysis of the CMB is performed. Vielva et al. (2001a) have shown that Planck

will detect thousands of these point sources. Due to the uncertainties in the

knowledge about the different source populations as well as their variability, it

is extremely difficult to perform detection techniques based in the frequency de-

pendence of the angular power spectrum of the sources. Fortunately, all the point

sources have a characteristic in common: their size. As we will see through this

thesis, filter and wavelet techniques are specially well suited to detect point sources

(Cayón et al. 2000, Vielva et al. 2001a, 2001b, Sanz et al. 2001, Herranz et al.

2001a, 2001b).

The Sunyaev-Zel’dovich effect

As mentioned above, the Sunyaev-Zel’dovich effect (SZE) is a secondary anisotropy

source and therefore should be treated in § 1.1.3. In spite of this fact, it is included

here for two reasons: first, because its origin can be related to actual astronomical

objects, as is the case of extragalactic point sources, and second because galaxy

clusters, except for the nearest ones, share with point sources their small angular

sizes, close or clearly below the resolution of CMB experiments. Hence, the same

detection techniques that apply to point sources can be used to detect the SZE of

galaxy clusters, albeit in this last case the frequency dependence can be used to

improve the results.

The physics of the SZE is simple (for a recent review see Birkinshaw 1999).

Gas in hydrostatic equilibrium within a cluster’s gravitational potential well corre-

sponding to typical cluster masses must have an electron temperature Te of several

keV. At this temperature, the gas is ionised an thermal emission from the gas

appears in the X-ray part of the spectrum. Electrons in the intracluster gas can

scatter photons of the CMB. If the electrons have enough energy they can even

transfer some energy to the photons. This is known as inverse Compton scattering.

When a photon is scattered by an electron, its energy and momentum is altered.

The change in energy and direction of the photon is given by the Compton formula:

ε′ =
ε

1 + (1− cosφ) ε
mec2

(1.11)

in the rest frame of the electron before the interaction, and where ε and ε′ are the

photon energies before and after the scattering and φ is the deflection angle of the
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photon. For low energy photons and mildly relativistic or non-relativistic electrons,

ε� mec
2 and the scattering is almost elastic (ε ' ε′). This limit is appropiate for

the scatterings in cluster of galaxies that produce the SZE and causes a considerable

simplification in the physics. When an ensemble of electrons produce scattering

the final effect must be calculated by averaging over the electron distribution.

An approximation usually done is to assume that the electron velocities follow a

Maxwellian distribution.

When describing the SZE is useful to define the Compton parameter :

yc =
kBTe

mec2
τ (1.12)

where τ = σT

∫
nedl is the optical depth (the optical depth is the line integral along

the line of sight of the electron density times the Thomson scattering cross-section

σT ). It can be found that the induced change in the CMB temperature is expressed

as:
∆T (x)

T0

= g(x)yc (1.13)

where x = hν/kBTCMB and g(x) = (x coth(x/2) − 4) is the spectral shape factor.

Although the most common way to express the SZE is the corresponding intensity

change which is given by:

∆I(x) = I0f(x)yc , f(x) =
x4ex

(ex − 1)2
g(x) (1.14)

Note that eqs. (1.13) and (1.14) are independent of redshift, meaning that the tem-

perature distortion produced by a galaxy cluster does not depend on the distance

to the clusters.

The characteristic shape of the SZE frequency dependence is shown in Fig-

ure 1.3. At x = 3.81 (ν = 217 GHz) the intensity change is zero. Below this

frequency clusters will produce a decrement on the CMB intensity whereas above

it clusters will enhance the CMB intensity. Typical temperature distortions due to

the SZE are δT/T ∼ 10−4, one order bigger than the intrinsic CMB anisotropies.

For very hot clusters (T > 10 keV) relativistic corrections should be taken into

account.

The SZE discussed above is called thermal SZE due to the fact that the veloc-

ities of the electrons producing the scatterings are drawn from thermal agitation.
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But if the bulk of the cluster gas is moving relative to the the Hubble flow with

a peculiar velocity vr along the line of sight, then a kinematic contribution to the

SZE appears. This contribution is given by:(
∆T

T

)
kin

= −vr

c
τ (1.15)

with τ the optical depth. This contribution is independent both on the redshift

of the cluster and the frequency; this fact is interesting because at ν = 217 GHz

the only contribution to the SZE comes from the kinematic SZE, providing this a

method to measure the radial component of the peculiar velocities of the clusters.

However, the detection of the kinematic SZE is a difficult task since typically it is

about two orders of magnitude below the thermal SZE.

For a recent review on the current status of SZE measurements, see Rephaeli

(2001). The SZE can be used as a powerful probe in Cosmology due to its lack of

dependence of the redshift of the clusters. In that sense, SZE surveys can reach

even the most distant clusters, allowing to detect the first clusters formed in the

Universe. The knowledge of the number counts of clusters as a function of redshift

can be used as a test to cosmological and structure formation models. Moreover,

SZE data can be combined with X-ray data to determine the distance to clusters.

Finally, kinematic SZE can be used to estimate the peculiar velocities of galaxy

clusters. For all these reasons and for the sake of cleaning up CMB maps, the

detection of SZE is one of the most promising fields in Astronomy.

1.1.5 The component separation problem

In the previous sections the main facts about the CMB and the microwave fore-

grounds have been quickly reviewed. From this discussion it is clear the big rel-

evance of studying the microwave sky. Data collection, analysis and posterior

interpretation are difficult tasks, especially when we consider the huge amounts

of data that are necessary to store and handle in typical CMB experiments. The

statistical pipeline which confronts the data with the theory include mapping, fil-

tering, comparing, cleaning, compressing, forecasting, estimating and many other

tasks, most of them out of the scope of this thesis. But before (or while) per-

forming any analysis is necessary to know what is CMB and what is not; in other
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words, we must separate the different components that contribute to the data.

In that sense, noise can be considered as a independent component that we need

to remove (denoising) while the other components (i.e., the CMB and the dif-

ferent foregrounds) must be separated and kept apart for their posterior analysis

(component separation).

Component separation of CMB maps has been widely discussed over the last

years. The different methods proposed include Wiener filtering (WF, Tegmark &

Efstathiou 1996, Bouchet et al. 1997), maximum entropy method (MEM, Hobson

et al. 1998, 1999), fast independent component analysis (FastICA, Maino et al.

2001), Mexican Hat Wavelet analysis (MHW, Cayón et al. 2000, Vielva el al.

2001a) and matched filter analysis (MF, Tegmark & Oliveira-Costa 1998). For a

comparison of different methods applied to CMB, see Tegmark (1997) and Jones

(1998). WF, MF and MHW techniques will be further discussed along this work.

Among the numerous data analysis techniques that have been applied to the

study of CMB and in particular to the component separation problem, filtering is

specially well-suited to deal with the detection and extraction of signals embedded

in a noisy background. WF and MF are two different filtering techniques. The

Mexican Hat Wavelet can be used as a wavelet (e.g. in multiresolution analysis) or

as a linear filter; wavelets and filters are deeply related between them. The follow-

ing section is devoted to introduce the concept of ‘filter’ and the basic formalism

that will be used through this thesis.

1.2 Filters

1.2.1 What is a filter?

A classical, maybe somewhat engineer-oriented definition of filter is: “a filter is

a device in the form of a piece of physical hardware or computer software that

is applied to a set of noisy data in order extract information about a prescribed

quantity of interest” (Haykin 1996). This reflects the intuitive idea of a filter: a

tool that, provided a certain data input, gives an output that have some desir-

able properties. From the signal processing point of view, a filter is a kind of
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system, that is, a process that results in the transformation of a signal. From the

mathematical point of view, a filter is an operator :

L : f(t) −→ g(t) = Lf(t) (1.16)

where f is the input, g is the output and t is the independent variable (for the sake

of simplicity we will discuss only the one-dimensional case, though generalization

to the n-dimensional case is straightforward), which let us call ‘time’ (it could also

be space, temperature or any other quantity). The filter is linear if the filtered

quantity g is a linear functional of the inputs. The filter is time-invariant when if

the input is delayed by τ the output is also delayed by τ , that is, g(t−τ) = Lf(t−τ).
Most of the filters used in a wide range of disciplines are linear and time-invariant.

Time-invariance is a very desirable property of a filter. Let δ be the Dirac

distribution. Then, if f is continuous, its value at t is obtained by the integral:

f(t) =
∫ ∞

−∞
f(u)δ(t− u)du (1.17)

The continuity and linearity of L imply that

Lf(t) =
∫ ∞

−∞
f(u)Lδ(t− u)du (1.18)

Let h be the impulse response of L:

h(t) = Lδ(t) (1.19)

Due to the time-invariance of the operator, Lδ(t− u) = h(t− u) and hence

Lf(t) =
∫ ∞

−∞
f(u)h(t− u)du =

∫ ∞

−∞
h(u)f(t− u)du = h⊗ f(t) (1.20)

where the symbol ⊗ denotes convolution. A time-invariant linear filter is thus

equivalent to a convolution with the impulse response h. The convolution property

is quite useful when going to Fourier space. Let us choose the following convention

for the Fourier transform:

f̂(q) =
1√
2π

∫ ∞

−∞
f(t)eiqtdt (1.21)

f(t) =
1√
2π

∫ ∞

−∞
f̂(q)e−iqtdq (1.22)
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Making use of the convolution theorem (see Appendix A):

Lf(t) = g(t) = h⊗ f(t) =
∫ ∞

−∞
ĥ(q)f̂(q)e−iqtdq (1.23)

The Fourier transform ĥ of the impulse response h is known as the transfer function

of the filter.

This discussion is valid for continuous functions (signals). For discrete data it

is easy to generalize the definitions above, obtaining equivalent results in terms of

sums instead of integrals.

1.2.2 Why filtering?

In the last section we have seen that filtering with a linear time-invariant filter is

equivalent to multiply the Fourier transform of the data with a transfer function

that, at the end, modulates the spectral properties of the input. In other words,

a linear time-invariant filter is a frequency-selective device. This suggests some

immediate applications. The first of them is denoising : as the noise usually mani-

fests in Fourier space in the high frequency domain, a filter that takes values close

to zero in that region and close to unity in the low frequency domain (low-pass

filter) will remove the noise without affecting the large scale features of the signal.

A similar application of low-pass filters is the smoothing of data. On the contrary,

a high-pass filter (one that is zero near the origin and close to unity for high fre-

quencies) will erase all large scale features while preserving the rapidly variable

features. Other possibility is to select a signal which is known to be in a certain

frequency domain (band-pass filter) or to do exactly the opposite: to remove an

interference located at a certain frequency (‘notch’ filter). Additionally, filters can

be used for prediction, that is, to estimate the value of an underlying signal at a

time (or position) where we have no direct measurement.

The filters described above allow to easily manipulate the spectral behaviour

of the data, selecting some frequency domains and removing others. If a signal is

know to lie in between certain frequency limits, it can be enhanced with respect

to the other components of the data. Moreover, these filters are linear, which is

often a desirable characteristic from the point of view of mathematical analysis.

Finally, the convolution property provides a easy recipe to quickly filter large data
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sets. For all these reasons, filters have become a powerful tool in signal processing

and data analysis.

1.2.3 Filter design

Ideal low-pass, high-pass, band-pass and notch transfer functions can be easily

constructed in Fourier space simply by setting the value of the transfer function

equal to zero outside the desired frequencies. For example, an ideal low-pass filter

has a transfer function:

ĥlp(q) =

{
1 if | q |< qc ,
0 if | q |≥ qc ,

(1.24)

where qc is a cutoff frequency. The region | q |< qc is the passband of the filter,

whereas the region | q |≥ qc is called stopband. The impulse response of this filter

is

hlp(t) = 2qc
sin(qct)

t
(1.25)

This function has a central lobe surrounded by decreasing ripples. This kind of

pattern is usually produced by strong discontinuities in the transfer function. That

means that after filtering with the filter given by eq. (1.24) the data will show

undesirable ring-like features. Besides, in many filtering contexts the signals to be

separated do not lie in totally disjoint frequency bands. For example, the spectrum

of point sources in CMB maps extends to frequencies dominated by white noise and

other backgrounds. In order to avoid ringing effects and to improve the filtering of

signals with overlapping spectra, a gradual transition from stopband to passband

is generally preferable. Such filters are called non-ideal filters. In filtering theory,

non-ideal is generally better than ideal!

Having assured the goodness of the filters with continuous transfer functions,

the question is: ‘what filter is the best fitted for a given problem?’ Filter design is

in many senses an art. For a given data set, there are as many filters as possible

questions about the data we could formulate. There would be filters suitable for

denoising, filters for selecting some signals according to certain signal properties,

filters for smoothing, filters for predicting the future behaviour of the data, etc.

Regarding component separation, that is, signal recovering, the general problem

can be summarized in the following diagram:
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SIGNAL + NOISE −→ FILTER −→ SIGNAL + reduced noise

In the optimistic case, the ‘reduced noise’ should tend to zero. Optimal filtering

is the art of reducing the noise in the output as much as possible. All of this is clear

from the qualitative point of view. Going from the qualitative to the quantitative

requires to make use of statistics; in other words, before trying to design an optimal

filter is necessary to define what is meant by ‘optimal’ using statistical terms.

Different statistical criteria will lead to different optimal filters. In the next section

we will discuss two different filters, Wiener filter and the ‘matched’ filter, that

are optimal in different senses. In Chapter 2 a new criterion for optimal will be

introduced that will lead to a new family of filters, called scale-adaptive filters.

1.2.4 Some examples of filters

To illustrate how the choice of a criterion or another can lead to very different

filters that are optimal in a certain way let us discuss two very popular examples

of filters: the Wiener filter and the matched filter.

Wiener filter

Let us consider the following situation: there is some underlying, uncorrupted sig-

nal u(t) that we want to measure. The measurement process is imperfect, however,

and what comes out is a corrupted signal c(t). This corruption may have arisen

from two different causes: first, the apparatus may have not a perfect Dirac-δ re-

sponse, so that the signal is smeared out by some known response function r(t) to

give a smeared signal s(t),

s(t) =
∫ ∞

−∞
r(τ)u(t− τ)dτ , (1.26)

and second, the measured signal c(t) may contain an additional component of noise

n(t), so that

c(t) = s(t) + n(t) = r ⊗ u(t) + n(t). (1.27)

Let U(q), R(q), C(q) and N(q) be the Fourier transforms of u(t), r(t), c(t)

and n(t), respectively. To obtain an estimator ũ(t) as close as possible to u(t) (or,

equivalently, a Ũ(q) as close as possible to U(q)) we want to find a filter φ(t) (or
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Φ(q)) which, when applied to c(t) (or C(q)) and then deconvolved by r(t) or R(q),

produces ũ(t).

Ũ(q) =
C(q)Φ(q)

R(q)
(1.28)

In what sense is Ũ to be close to U? We ask that they be close in the least-square

sense, i.e., ∫ ∞

−∞
|ũ(t)− u(t)|2 dt =

∫ ∞

−∞

∣∣∣Ũ(q)− U(q)
∣∣∣2 dq (1.29)

is minimimum. The equality in eq. (1.29) comes from Plancherel’s formula. Sub-

stituting equations (1.27) and (1.28) into the right-hand side of eq. (1.29) we

have ∫ ∞

−∞

∣∣∣∣∣ [S(q) +N(q)]Φ(q)

R(q)
− S(q)

R(q)

∣∣∣∣∣
2

dq =∫ ∞

−∞
|R(q)|−2

{
|S(q)|2 [1− Φ(q)]2 + |N(q)|2 |Φ(q)|2

}
dq (1.30)

For the right hand of the equality it has been used the fact that the signal S and

the noise N are uncorrelated and therefore their cross product, when integrated

over q, gives zero. Minimizing the lower integral of eq. (1.30) with respect to Φ

gives

Φ(q) =
|S(q)|2

|S(q)|2 + |N(q)|2
(1.31)

This is the formula for the Wiener filter (WF) Φ(q). Equation (1.31) does not

contain the true signal U . This makes for an important simplification: the optimal

filter can be determined independently of the deconvolution function that relates

S and U . The other filters we are going to consider in this work can be constructed

so that this is also true for them. Therefore, from now on the smearing term will

be put sideways in the discussion.

The filter in eq. (1.31) need previous knowledge on |S|2 and |N |2 (or, at least,

on |S|2, since |C|2=|S|2+|N |2). There is no way to do this from the measured signal

C alone without some other information, or some assumption or guess. Luckily,

the extra information is easy to obtain in most cases. Even a rough guess of |S|2

can give excellent results when it is applied to data. Unfortunately, this can not

be used as a basis for an iterative method: successive iterations of Wiener filter

converge to a signal of S(q) = 0.
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Wiener filter has several drawbacks. Firstly, it is easy to see that as an estimator

of the signal S it is biased, both in real and in Fourier space; in particular, the

estimation of the power spectrum of the signal is increasingly biased for high

q’s. It is possible to construct unbiased estimators based on WF. For a review

on this topic, see Rybicki & Press (1992). The second limitation is that WF is

based on a minimal variance approach; therefore, it should provide a powerful

reconstruction technique for random systems whose statistical behaviour does not

depend on moments higher than the second, namely the variance. If the signal

is strongly non-Gaussian, for example, the performance of WF is expected to be

poor. Even in the framework of Gaussian random fields, it depends on an adequate

modelling of the data and an assumed knowledge of the correlation function (or,

equivalently, the power spectrum) of the underlying field and the nature of the

statistical uncertainties. Finally, the WF always yields a conservative estimate of

the underlying field, replacing noise by the zero field in the absence of good data.

Despite its limitations, Wiener filter has been extensively used in signal pro-

cessing and image reconstruction. Currently, WF is usually overlooked in favor

of other methods, such as Maximum Entropy, particularly in the field of image

processing. However, in certain fields of Astronomy where the underlying signal is

close to be a Gaussian random field it proves to be optimal or near optimal. It can

be proven that, when the field to be reconstructed is a Gaussian random field, the

Wiener estimator coincides with the Bayesian estimator designed to maximize the

a posteriori probability of the field (Zaroubi et al. 1995). WF has been success-

fully applied to the study of large-scale structure (e.g. Zaroubi et al. 1995) and

to component separation in CMB maps (Tegmark & Efstathiou 1996, Bouchet et

al. 1995, 1999). The technique proposed by Tegmark & Efstathiou (1996) and in

parallel by Bouchet et al. (1995) is a generalization of WF to multiple frequency

channels and multiple components:

Let us consider a set of data measured at a certain frequency ν. Each mea-

surement is a combination of m physical components s = (s1(ν), s2(ν), · · · , sm(ν)).

Let now consider we have n frequency channels. In a general case, after the mea-

surement the output data vector d = (d1, d2, · · · , dn) can be written as a linear

convolution of the signal:

d = Rs + n (1.32)
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where R is some known n×m response matrix and n = (n1(ν), n2(ν), · · · , nn(ν))

is a random noise vector. The noise and the signal are taken to have zero mean

and we assume knowledge of the covariance matrices:

S =< sst > ,

N =< nnt > . (1.33)

In addition, signal and noise are taken to be uncorrelated:

< nst >= 0 (1.34)

Following the same ideas of equations (1.29) and (1.30) we find the WF form for

the multifrequency case:

W = SRt(RSRt + N)−1 (1.35)

The filter in eq. (1.35) has the same drawbacks that filter (1.31). In particular,

it is biased as an estimator of the power spectrum of the underlying data. Tegmark

& Efstathiou (1996) proved that the modified filter

W = ΛRt(RSRt + N)−1 , (1.36)

where the matrix Λ ≡ diag{λ1, λ2, · · · , λm} has elements λi = 1/(Rt[RSRt +

N]−1R)ii, can be used as an unbiased estimator of the power spectrum of the

underlying signal. This modified WF requires only assumptions about the power

spectra of the foregrounds and the CMB. The availability of multiple frequency

channels is essential: when the number of channels is reduced to one, the method

degenerates not to standard WF, but to no substraction at all.

The matched filter

The Wiener filter derived in last section was obtained as an optimal filter in the

least-squares sense, but there are other possible criteria to consider a filter as

optimal. Let us consider a single signal s(t) with a maximum at a certain t0 (for

simplicity let t0 = 0) embedded in a noisy background n(t). We can define the

signal to noise ratio of the signal as the ratio between the maximum value of the

signal and the variance of the field:

s/n =
s(0)

σ
(1.37)
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The variance σ includes the contributions from the noise and the signal. Our

ability to detect the signal will be directly proportional to its s/n ratio. In order

to maximize the chance of detecting the signal, we are interested in make the s/n

ratio as large as possible. By introducing a linear filter with impulse φ(t) we modify

the data in a certain way so that the new signal to noise ratio is (s/n)φ = φ⊗s(0)
σφ

,

where now σφ is the variance of the filtered field. To simplify the notation, we will

call sφ = φ⊗ s. Let us define the gain of the filter as the ratio:

g =

(
sφ(0)

σφ

)
(

s(0)
σ

) (1.38)

One way to maximize the gain of the filter is to make sφ(0) = s(0) while minimizing

σφ. It is useful to perform this minimization in Fourier space, where it can be

proven that the filter that satisfies this minimization is

Φ(q) ∝ s∗(q)

P (q)
(1.39)

where s(q) is the Fourier transform of the signal profile s(t) and P (q) is the power

spectrum of the data. A complete proof of eq. (1.39) with the correct propor-

tionality factors is given in Appendix A as a simplification of the derivation of

scale-adaptive filters (to be introduced in Chapter 2). For the moment the value

of the proportionality constant is not important for this discussion. This filter is

called the matched filter for the signal s.

To illustrate how the matched filter works let us consider an example. Imagine

a Dirac-δ signal located at t = 0 and then consider that the signal is measured

with a detector whose instrumental point spread function (psf) is a Gaussian Gσ(t),

where σ is the width of the Gaussian. The smeared signal is then s(t) = Gσ(t).

This could be the case of a star seen through a telescope with a Gaussian psf or

an extragalactic point source detected with an antenna with Gaussian beam in

CMB maps. Due to inherent imperfections of the measure, the detector’s output

includes a certain amount of white instrumental noise that corrupts the signal.

Imagine that the noise dominates so that the power spectrum of the data is well

approximated by the power spectrum of white noise, that is, P (q) ' constant.

Then, the matched filter given by eq. (1.39) is

Φ(q) ∝ Gσ(q) . (1.40)
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This is not a surprise: it is an old and well-known result that a Gaussian filter

is optimal for denoising signals with a Gaussian profile embedded in white noise.

The Gaussian filter whips out the small-scale noise while preserving the features

with scale σ or larger.

The previous example is useful because it illustrates another interpretation of

the filtering process: to pass a filter on a data set can be considered as to calculate

the correlation of the data with the impulse response of the filter. The matched

filter of the example works well because its obvious correlation with the shape of

the signal: this correlation is maximum where the data resemble a Gaussian and

close to zero elsewhere.

Note that to produce a matched filter it is not necessary to know the signal

power spectrum. The only prerequisite is the knowledge of the profile of the signal.

This makes the matched filter a specially useful tool when the data contain sets of

identical signals which need to be detected, specially if the signals are located in

relatively small regions of the data. Maximizing the gain as defined in eq. (1.38)

is equivalent to maximizing the probability of detection of the sources. For that

reason, matched filter is optimal in the detection sense.

Point sources in CMB maps are ideal signals for a matched filter. Knowing

the shape of the beam, it is straightforward to build a matched filter directly from

the data without making any other assumption (Tegmark & Oliveira-Costa 1998,

Herranz et al. 2001a). Though the matched filter may be less powerful than

the Wiener filter in image reconstruction (and certainly less useful since it only

recovers a single component while WF can be designed to separate all components

simultaneously), it is more robust because makes less assumptions about the data.

Besides, the matched filter can be normalised to be an unbiased estimator of the

amplitude of the signal.

1.2.5 Filters and wavelets

In the last ten years the world of signal processing has suffered an authentic revo-

lution due to the fast development of wavelet techniques. Wavelets are known to

be very efficient dealing with problems of data compression, denoising and pattern

recognition. The property that makes wavelets so interesting is that they keep
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a good space-frequency localization. Unlike the Fourier transform, the wavelet

transform allows to have information about the importance of different scales at

each position.

The discussion of wavelet theory is out of the scope of this thesis. However,

some basic ideas on wavelets are useful to better understand the concept of scale

that will repeatedly appear in this work. We will find that the scale-adaptive filters

that are introduced in Chapter 2 resemble wavelets. In certain particular cases,

they are wavelets. This fact is not casual: we will use filters that select more or

less narrow frequency bands in order to detect compact signals (sources) that are

located in very precise positions in the real space. Therefore, these filters should

inherit some of the space-frequency localization properties of wavelets.

To illustrate the concept of scale, let us consider the discrete wavelet transform

(DWT). The wavelet basis is constructed from dilations and translations of the

mother (or analyzing) wavelet function ψ and a second related function φ(t) called

the father (or scaling) function:

ψj,l = 2j/2ψ
(
2jt− l

)
,

φj,l = 2j/2φ
(
2jt− l

)
, (1.41)

where j and l are integer numbers denoting the dilation and translation indices,

respectively. The functions φ and ψ have generally compact support and they usu-

ally are chosen to be orthogonal. They must together satisfy some mathematical

relations, as first shown by Daubechies (1988). In particular, two straightforward

requirements are: ∫
ψ(t)dt = 0 ,∫
φ(t)dt = 1 . (1.42)

The reconstruction of the signal f(t) using the wavelet basis is given by

f(t) = a0,0φ0,0(t) +
∑
j

∑
l

wj,lψj,l(t) (1.43)

being a, w the wavelet coefficient defined as:

a0,0 =
∫
f(t)φ0,0(t)dt ,

wj,l =
∫
f(t)ψj,l(t)dt . (1.44)
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Equation (1.43) can be interpreted as the sum of a low resolution, smoothed func-

tion plus a series of consecutive refinements that carry information about the details

of the function f(t). The difference between the refinement level j and the next

tell us about the structure of f at the scale j.

So the scaling functions carry information about structures of a certain scale

inside a compact region. This is precisely what makes them so useful from the

point of view of source detection. It suggests the idea of using wavelets as filters in

order to select structures which have the same characteristic scale than the wavelet.

For the purposes of this work we are more interested in the continuous wavelet

transform (CWT). Rather than restricting translation and dilation by the set of

integers, we can allow them to vary continuously. For R > 0, b ∈ IR, define

ψ(R,b)(t) = R−1/2ψ

(
t− b

R

)
. (1.45)

The continuous wavelet transform is thus defined to be:

Wf(R, b) =
∫ ∞

∞
f(t)ψ(R,b)(t) dt = f ⊗ ψ̄R(b) , (1.46)

where

ψ̄R(t) = R−1/2ψ
(−t
R

)
. (1.47)

This transform has the form of a convolution with a scaled function. As we will see,

the scale-adaptive filters to be defined in Chapter 2 have the same structure than

eq. (1.45), except for the normalisation factor. As in the DWT case, continuous

wavelets are localized in both real and Fourier spaces and can be used to decompose

a signal into elements with different resolution, although the set of such elements

is now continuous. In this case, the generalisation of eq. (1.43) is a double integral

on b and R instead of a sum over indices j, l.

An example of wavelet generally used in the CWT is the Mexican Hat Wavelet

(MHW):

ψMHW (t) =
2

π1/4
√

3σ

(
t2

σ2
− 1

)
e−t2/2σ2

. (1.48)

This wavelet is obtained from the second derivative of a Gaussian of width σ.

Because its relation with the Gaussian (the exponential is an eigenvector of the

derivation operator), the MHW gives a high correlation when it is used to filter
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a Gaussian signal. This is why it has been used to detect Gaussian signals in

many fields of Astronomy. MHW have been successfully used to detect/extract

point sources from CMB data alone (Cayón et al. 2000, Vielva et al. 2001a) or in

combination with other methods such as Maximum Entropy (Vielva et al. 2001b).

Recently, a generalization of the Mexican Hat Wavelet to the sphere has been

presented (Cayón et al. 2001).

Besides the detection of localized sources, wavelets have been used on CMB

data to perform denoising (Sanz et al. 1999a,b, Tenorio et al. 1999) and to detect

non-Gaussianity in CMB maps (Barreiro & Hobson 2001, Cayón et al. 2001,

Mart́ınez-González et al. 2001).

There are many books and reviews devoted to wavelets; for example, see Mallat

(1998), Odgen (1997) or Burrus et al. (1998).

1.2.6 Filtering of discrete data

Before concluding this introduction, a word has to be said about the filtering of

discrete data. Along all section § 1.2 it has been assumed that both the data and

the filter are continuous functions. But real data are often discrete, as is the case

of pixelised CMB maps or discrete time ordered data. In that case, one can choose

two different ways to operate.

• One can directly choose the framework of discrete signal processing and con-

sider the discretised form of the filters or wavelets needed. All results given

in the last sections can be easily generalized to the discrete case, basically

by substituting integrals by sums over the number of data points.

• Or one can consider that the discrete data are finely sampled enough and

proceed with the integrals.

At the end, no matter what choice have we done, the discreteness of the data

is unavoidable: in practise we will perform operations with pixels, (discrete) Fast

Fourier Transforms, etc. However, the continuous notation is generally more simple

and allows to reach analytical results more easily. Through the following chapters

filters are always treated as continuous functions. How can harmonize this with

the discreteness of the data we are going to filter?



32 Chapter 1. Introduction

The answer is that in most cases this is not very important. When the condi-

tions of the sampling theorem are met, the overall system for filtering a discrete

data set with a discretised version of a continuous filter is equivalent to filter the

data with a ‘good’ discrete filter. That means that, if the mentioned conditions

apply, we can take a continuous filter, evaluate it in the same grid where the dis-

crete data are defined, and proceed. And the conditions of the sampling theorem

are:

• Both the signal S and the filter Φ must be band-limited in Fourier space

with S(q) = Φ(q) = 0 for |q| > qM .

• The data and the filter must be sampled with a sampling frequency ωs > 2qM ,

where ωs = 2π/T and T is the sampling interval.

Conversely, similar conditions must be met when changing the places of the Fourier

space and the real space, in order to allow deconvolutions. So the data and the

filter must be both of finite support (or periodic) and band-limited. The price

for not satisfying these conditions is aliasing : a contamination of high frequencies

invading the region of low frequencies.

Let us assume that the data satisfy the sampling theorem conditions. This

is always true from the practical point of view when we are working with CMB

maps: we have no way to perceive the data outside the measured area and with

greater resolution than the pixel, so there is no other alternative than convince

ourselves that the quantity we have measured is zero (or a mirror reflection) outside

the measured area and that the underlying function is some interpolation of the

sampled points. This automatically make the sampling theorem conditions ‘true’.

Then, it is only necessary to make the filter met the conditions. For this is enough

that the filter is zero outside the region covered by the data in both real and

Fourier space. In fact, it is sufficient if the filter drops rapidly near the limits of

the allowed area.

In practise, a continuous filter will work well when applied to discrete data if:

• It decreases quickly in real space.

• It decreases quickly in Fourier space.
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• Its typical scale of variation is of the order of the pixel or more.

The two first conditions remind us of wavelets. The third condition is to assure

that the filter is not going to loose its shape when it is discretised. For example,

it is a bad idea to filter with a Gaussian with a width much smaller than the pixel

because it becomes a Heaviside step with the size of the pixel.

All the filters described in the following chapters satisfy the first two conditions

mentioned above. And the third condition is an exercise of common sense for the

filter user.
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Figure 1.1: Anisotropy detections in the CMB. The boxes represent the 1-σ errors
and the approximate `-bandwidth of the different experiments. The solid line show
the prediction of the working cosmological model (Ωtot = 1, ΩΛ = 2/3, Ωbh

2 = 0.02,
Ωmh

2 = 0.16, n = 1, Ei = 2.2× 1016 GeV and zri = 7), complete with the acoustic
peaks. Figure reproduced with permission from Hu & Dodelson (2001).
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Figure 1.2: The frequency dependence and relative strength of Galactic syn-
chrotron, free-free and dust as well as of the CMB, the dipole and the quadrupole
are shown. Taken from Smoot (1999).
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Figure 1.3: Characteristic frequency dependence of the thermal Sunyaev-
Zel’dovich. At x = 3.81 (217 GHz) the thermal SZE is zero. Vertical lines show the
relative Planck’s sensitivity to detect the SZE at its different frequency channels.
Figure taken with permission from Diego et al. (2001b).
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Scale-Adaptive Filters

In the first chapter of this work it was introduced the importance of component

separation in CMB studies. Filtering techniques were suggested as a possible way

to overcome this problem. But the usefulness of filtering is not limited to the CMB

field of work. Many other disciplines in Astronomy, Physics in general, engineering,

image processing and all sciences involving data analysis use filters. This chapter

is devoted to introduce a new kind of filter, the scale-adaptive filter, in a general

way. Examples will be taken from Astronomy problems when necessary.

2.1 The role of filtering in Astronomy

One of the challenges in the analysis of 1D spectra, 2D images or 3D volumes in

Astrophysics and Cosmology is to overcome the problem of separating a localized

signal from a background. In particular, we are interested in localized signals

(sources, from now on) with central symmetry and a background that we shall

assume with the properties of homogeneity and isotropy and it will be characterized

by a power spectrum. Typical cases in the 1D case include: a) the spectra of

QSOs, how to detect/extract absorption lines from a noisy spectrum once a profile

is assumed, b) time series analysis where a localized emission is superposed on a

background, c) point and extended sources to be detected in time-ordered data

where the scanning strategy (for satellites like Planck) is affected by the well-

known 1/f noise. In the 2D case, we mention as typical cases: a) cleaning of

images to detect typical astrophysical sources on a white noise background, b) the

37
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detection/extraction of point sources and extended sources (clusters of galaxies) on

microwave/IR maps where the background is dominated by white noise or intrinsic

CMB signal or galactic emission. In the 3D case, we remark as an example: a) the

detection of clusters and large-scale structure in 3D catalogs.

The classical treatment to remove the background has been filtering. Low and

high-pass filters reduced the contribution from the high and low frequencies present

in the spectrum or image. In general, this process is extremely inefficient in dealing

with very localized sources. The reason for that is that a very localized source can

be decomposed in Fourier space but many waves are needed (infinite for a delta

distribution!), so if low/high-pass filters are applied then at the end many artifacts

(rings in 2D images) usually appear surrounding the sources.

A very important application of these principles is the detection of sources in

two-dimensional astronomical images. Several packages are commonly used for

this task, such as DAOfind1, used to find stellar objects in astronomical images,

and SExtractor (Bertin & Arnouts 1996). When trying to detect sources, two

different problems have to be solved: first, it is necessary to take account for the

background variations across the image. In addition, if instrumental noise (i. e.

white noise) appears, it should be removed as far as possible in order to increase

the signal to noise ratio (SNR). SExtractor estimates the local background on a

grid of size set by the user and then approximates it by a low-order polynomial.

Once such a background is defined the detection of sources at a certain level can

be established through sets of connected pixels above certain threshold. DAOfind

implicitly assumes that the background is smooth and its characteristic scale is very

much larger than the scale of the stars. But in the case where the characteristic

scale of variation of the background is approximately the scale of the structures the

previous schemes obviously fail. An incorrect estimation of the background leads

to a biased estimation of the amplitude of the sources. An example is a typical

image of the cosmic microwave background radiation (CMB) at a resolution of

several arcmin. If the intrinsic signal is due to a cold dark matter model (i. e.

the characteristic scale of the background is of the order of ∼ 10 arcmin), then

the separation of point sources with the same characteristic scale becomes a very

1P.B. Stetson, User’s Manual for Daophot II, is available at
http://www.ast.cam.ac.uk/ mbt/daophot.
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difficult task.

To deal with the instrumental noise the traditional procedure is filtering (e.

g. Gaussian window). DAOfind filters with an elliptical Gaussian that mimics

the stellar psf and then it performs the detection looking for peaks above certain

threshold. SExtractor includes the possibility of filtering with several kind of filters

(Top Hat, Gaussian, Mexican Hat and even self-made filters for every particular

situation). An obvious advantage of this procedures (background estimation plus

filtering) is that no a priori information on the structures is needed. A serious

drawback is that the choice of the filter will have a great influence on the final

result. The choice of filter depends on many factors, including in most cases

personal preferences. In this context, it is necessary to find a systematic way to

determine the optimal filter for every case.

Other methods have been used to separate different components given several

microwave maps: Wiener filtering (WF) and maximum entropy methods (MEM).

Regarding point sources, WF assumes a mean spectral flux dependence together

with other assumptions for the other components (Tegmark & Efstathiou, 1996;

Bouchet & Gispert 1999) whereas MEM assumes that the point sources are dis-

tributed like noise (Hobson et al. 1999). These methods are powerful regarding

extended sources like clusters of galaxies because they use the concrete spectral

dependence for the Sunyaev-Zeldovich effect. It is clear that the unknown spectral

dependence for point sources remark the inefficiency of the previous methods.

A possible solution to overcome this problem came with the usage of wavelets.

These are localized bases that allow a representation of a local object due, in

general, to their basic properties: spatial and frequency localization (as opposed

to the trigonometric functions appearing in Fourier decomposition). We remark at

this point the success of such a technique dealing with simulated microwave maps:

the ”Mexican Hat” wavelet can be used in a nice way (no extra assumptions about

the background) to detect/extract point sources and create a simulated catalog

(Cayón et al. 2000, Vielva et al. 2001a,2001b). Two advantages emerge: on the

one hand, one localizes the structures associated to the maxima of the wavelet

coefficients and, what is more remarkable, we gain in the detection (as compared

to real space) due to the amplification effect because at the scale of the source the

background is not contributing to the dispersion. One relevant question concerns
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the possibility to find optimal filters. Tegmark & Oliveira-Costa (1998) introduced

a matched filter in order to minimize the variance in the map. With this method

one can identify a big number of point sources in CMB maps. However, they failed

to introduce the appropriate constraints in the minimization problem, i. e. the

fact that we have a maximum at the source position at the scale defined by the

source in order not to have spurious identifications.

Thus, this type of analysis lead us to the following questions: is there an optimal

filter that, given the source profile and the power spectrum of the background,

is the best adapted to the profile and characteristic scale of the sources?, Is the

”Mexican Hat” wavelet the optimal filter (in the previous sense) dealing with point

sources? In order to answer these questions, we will assume that the sources can be

approximated by structures with central symmetry given by a profile τ(x), x ≡ |~x|
with a characteristic scale (e.g. a single maximum at its center and rapid decay at

large distances). If the nD image contains different types of sources, a number of

filters adapted to each profile must be used to detect them. The background will

be modelled by a homogeneous and isotropic random field given in terms of the

power spectrum P (q), q ≡ |~q|. In particular, we shall explore a scale-free spectrum

P (q) ∝ q−γ that includes the cases of white noise (γ = 0), 1/f noise (γ = 1), etc.

Moreover, any spectrum of physical interest often can be locally approximated by

a power-law. If the characteristics of the noise are not known a priori it can be

always estimated directly from the nD image. We consider the n-dimensional case

and make special emphasis on the analysis of spectra (n = 1), 2D images (n = 2)

and 3D volumes (n = 3). In all the calculations we assume that the overlapping

by nearby sources is negligible and also that their contribution to the total power

spectrum is also negligible. All of this is a very good approximation at least above

a certain flux level.

2.2 The Scale-Adaptive Filter

Let us consider an n-dimensional (n = 1, 2, 3) image with data values defined by

y(~x) = s(x) + n(~x), (2.1)
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where x is the spatial coordinate (in the 1D case x can be also time, when we are

dealing with time-ordered data sets) and s(x), x ≡ |~x|, represents a source with

central symmetry placed at the origin with a characteristic scale (e. g. a single

maximum at its center and rapid decay at large distances) and n(~x) a homogeneous

& isotropic background (random field) with mean value 〈n(~x)〉 = 0 and charac-

terized by the power spectrum P (q), q ≡ |~q| (this can represent instrumental noise

and/or a real background),

〈n(~q)n∗(~q ′)〉 = P (q)δn(~q − ~q ′), (2.2)

where n(~q) is the nD Fourier transform (n(~q) = (2π)−n/2
∫
d~x ei~q~xn(~x)), symbol n∗

represents the complex conjugate of n, ~q is the wave vector and δn is the nD Dirac

distribution.

Let us introduce a spherical (centrally symmetric) filter, Ψ(~x;~b, R), dependent

on n+ 1 parameters:

Ψ(~x;R,~b) =
1

Rn
ψ

 |~x−~b|
R

 , (2.3)

where ~b defines a translation whereas R defines a scaling. Note the similarity of

this expression with the continuous wavelet transform given by eq. (1.45). Then,

we define the filtered field w(R,~b):

w(R,~b) =
∫
d~x y(~x)Ψ(~x;~b, R). (2.4)

We do not assume a priori the positiveness of Ψ. The previous convolution can be

written as a product in Fourier space, in the form

w(R,~b) =
∫
d~q e−i~q~by(~q)ψ(Rq). (2.5)

where y(~q) and ψ(q) are the Fourier transforms of y(~x) and ψ(~x), respectively.

Because of the central symmetry assumed for the filter, ψ(q) depends only on the

modulus of ~q. A simple calculation -taking into account eqs. (2.1) and (2.2)- gives

the average at the origin ~b = 0, 〈w(R,~0)〉, and the variance, σ2
w(R) = 〈w2(R,~b)〉 −

〈w(R,~b)〉2, of the filtered field:

〈w(R,~0)〉 = α
∫
dq qn−1 s(q)ψ(Rq),

σ2
w(R) = α

∫
dq qn−1 P (q)ψ2(Rq). (2.6)
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where q = |~q|, α = 2, 2π, 4π for n = 1, 2, 3, respectively, (for n-dimensions α =

2πn/2Γ−1(n/2)) and the limits in the integrals go from 0 to ∞.

Now, we are going to express the conditions in order to obtain an optimal filter

for the detection of the source s(x) at the origin. One basic idea is to find a filter

such that when the original image is filtered with a scale Ro ≈ Rs -being Rs the

characteristic scale of the source- one obtains the maximum detection level Dw

Dw ≡
〈w(R,~0)〉
σw(R)

. (2.7)

Taking into account the fact that the source is characterized by a single scale Rs,

other basic idea is to generate a filter giving the maximum contribution at the

center of the source at a filtering scale Ro ≈ Rs. Finally, we would like to estimate

directly the amplitude of the source by the previous number. Therefore, taking

into account these basic ideas we will introduce from the mathematical point of

view the optimal filters we are looking for.

By definition a filter will be called scale-adaptive filter (SAF) if the following

conditions are satisfied:

1. There exists a scale Ro such that 〈w(R,~0)〉 has a maximum at that scale.

2. 〈w(Ro,~0)〉 = s(0) ≡ A, i. e. w(R,~0) is an unbiased estimator of the ampli-

tude of the source.

3. The variance of w(R,~b) has a minimum at the scale Ro, i. e. we have an

efficient estimator.

As a by-product, the ratio given by eq. (2.7) will be maximum. We remark

that no other information about the source profile is assumed, so “optimal” must

be understood in the previous sense.

By introducing the profile τ(x) of the source, s(x) = Aτ(x), the condition A.10

and the equation (2.6) give the constraint:∫
dq qn−1 τ(q)ψ(Roq) =

1

α
, (2.8)

whereas the condition A.9 gives the constraint:∫
dq qn−1 τ(q)ψ(Roq)

(
n+

d ln τ

d ln q

)
= 0. (2.9)
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So, the problem is reduced to the functional minimization (with respect to ψ)

of σ2
w(R) given by equation (2.6) with the constrains given by equations (2.8)

and (2.9). This minimization incorporate these constraints through a couple of

Lagrangian multipliers. The full derivation of the solution is described in Appendix

A. The solution (scale-adaptive filter) is found to be:

ψ̃(q) ≡ ψ(Roq) =
1

α

τ(q)

P (q)

1

∆

[
nb+ c− (na+ b)

d lnτ

d lnq

]
, (2.10)

∆ = ac− b2,

a ≡
∫
dq qn−1 τ2

P
,

b ≡
∫
dq qn−1 τ

P
d τ

d lnq
,

c ≡
∫
dq qn−1 1

P
[ d τ
d lnq

]
2
.

(2.11)

Therefore, we have obtained analytically the functional form of the scale-

adaptive filter (its shape and characteristic scale are associated to the source pro-

file and power spectrum). It is clear that assuming an adimensional dependence

τ(x/Rs), where Rs is the characteristic scale of the source, then such scale will ap-

pear explicitly in the form ψ̃(qRs). Obviously, we assume all the differentiable and

regularity conditions at q → 0,∞ for τ and P (q) in order to have finite expressions

for a, b, c. Let us remark that if we assume the behavior τ(q)
P (q)

→ 0, 1
P

d τ
d lnq

→ 0 for

q → 0 then ψ(q) → 0 and Ψ is a ”compensated” filter, i. e.
∫
d~xΨ = 0. Strictly

speaking there is another condition to be satisfied to get the reconstruction of the

image and thus to have a wavelet:
∫
dqq−1ψ2(q) <∞ (the admissibility condition).

Taking into account eq. (2.5) the amplitude will be estimated as:

A = w(Ro,~0) =
∫
d~q y(~q) ψ̃(q), (2.12)

where ψ̃ is given by eq. (2.10).

2.2.1 Scale-Adaptive filters on real space

The equation (2.10) can be written on real space as follows:

Ψ(~x;Ro,~0) =
1

Rn
o

ψ

(
|~x|
Ro

)
=

1

α∆
[(nb+ c)F (x)− (na+ b)G(x)] , (2.13)
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where F and G are the inverse Fourier transform of τ
P

and 1
P

dτ
dlnq

, respectively.

For a flat background, i.e. P = constant, and assuming the behaviour q
1
2
(n+1)τ →

0 when q →∞, one obtains

b = −n
2
a, F =

τ(x)

P
, G(x) = − 1

P
[nτ +

dτ

dlnx
]. (2.14)

If we also assume a Gaussian profile, i.e. τ = e−
x2

2θ2 , one finds the scale-adaptive

filter:

Ψ(~x; θ,~0) =
1

πn/2θn
e−

x2

2θ2

[
1 +

n

2
−
(
x

θ

)2
]
, (2.15)

that is a useful formula to be used for the detection of nD-Gaussian structures on

nD-images (e.g. spectra, 2D images or 3D volumes) on a flat background.

On the other hand, if one assumes a Gaussian profile but a non-flat spectrum

one can easily find

Ψ(~x; θ,~0) =
1

α∆
[(nb+ c)F (x)− (na+ b)θ2∇2F (x)], (2.16)

being F (x) the Fourier transform of τ
P
.

2.3 Detection level, gain and reliability

Taking into account the previous expression (2.10), one can calculate the detection

level (see equation (2.7))

Dw = A
(

α∆

n2a+ 2nb+ c

)1/2

. (2.17)

On the other hand, we can calculate the dispersion of the field n(~x)

σ2
b = α

∫
dq qn−1P (q), (2.18)

that allows to define a detection level on real space as

D =
A

σb

. (2.19)

The gain going from real space to filter space is defined by

g ≡ Dw

D
=

σb

σw(Ro)
. (2.20)
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If the background has a characteristic scale different from the scale of the structures

(sources) to be detected, it is obvious that σw < σb, so that we have a real gain

going from real space to filter space.

The identification of sources as peaks above a high threshold (e. g. 3σw) in

filter space gives a low probability of false detections (reliability) because if the

background has a characteristic scale different from the sources then everything

detected with our method is real, but if both scales are comparable one can give

an estimate based on the fluctuations of the background. For instance, in the

case of a Gaussian background, false detections above 3σw, due to the Gaussian

background, appear with a probability ' 1.5× 10−3 based on the formula

Pr(w > A) =
1

2
erfc

(
A

21/2σw

)
. (2.21)

To select the false detections from the real ones one can study the scale-adaptive

filter profile nearby any real source (see the last paragraph of § 2.7).

Regarding the completeness (i. e. how many real sources we miss with our

method), this is a complicated topic because the background can slightly modify

the location of the peaks and their amplitude. We will address this problem via

numerical simulations (see § 2.6).

2.4 Gaussian source on a background

In many physical applications the standard response of the instruments can be

approximated by a Gaussian function. In particular, the Point Spread Function

(PSF) for many telescopes is of Gaussian type. Other more specific applications

are related to the Cosmic Microwave Background (CMB), where the antennas used

are well approximated by a Gaussian. Dealing with absorption systems associated

to QSOs, if the absorption line is not saturated and is dominated by thermal

motions, then the line is usually approximated by an inverted Gaussian inserted

in a continuum plus noise.

Let us assume that the source and the background can be represented by

s(x) = Ae−
x2

2θ2 , P = Dq−γ. (2.22)

The structure to be detected could have an intrinsic Gaussian profile or it

could be a point source in n-dimensions observed with an instrument that can be
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modelled through a Gaussian pattern with a beam size θ. The background can be

described by a scale-free spectrum. In this case: τ(q) = θne−
1
2
(qθ)2 , and equations

(2.11) give

a =
θn−γ

2D
Γ(m), b = −ma, c = m(1 +m)a, m ≡ n+ γ

2
(2.23)

and the scale-adaptive filter is

ψ̃(q) =
1

αΓ(m)
(qθ)γe−

1
2
(qθ)2

[
2 + γ − n+

n− γ

m
(qθ)2

]
. (2.24)

Taking into account the q behaviour in this formula, one obtains a compensated

filter (i. e. ψ(q = 0) = 0) if γ > 0 or γ = n− 2. In figure 2.1 appear the optimal

scale-adaptive filters for the 1D, 2D and 3D cases, respectively, and scale-free power

spectrum with indexes γ = 0, 1, 2, 3. There is a degeneration in the case n = 3,

where the γ = 1 line overlaps with the γ = 3 line, and in the case n = 2, where the

γ = 0 line overlaps with the γ = 2 one. This degeneration can be deduced directly

from equation (2.23).

On the other hand, the detection level in filter space is given by equation (2.18)

Dw = A

[
2α

D

Γ(1 +m)

4m+ (n− γ)2

]1/2

θ
n−γ

2 . (2.25)

Finally, it is interesting to remark that the cases γ = n and γ = n− 2 give the

same scale-adaptive filter

ψ̃(q) =
2

αΓ(n)
(qθ)ne−

x2

2θ2 . (2.26)

Therefore, in the cases n = 2, γ = 0, 2 the Mexican Hat is found to be the

scale-adaptive filter. This justify the use of this wavelet to detect point sources in

CMB maps (Cayón 2000, Vielva 2001a, 2001b).

2.4.1 Gaussian source and white noise

This sub-case corresponds to P = constant or γ = 0, and the scale-adaptive filter

is

ψ̃(q) =
2

αΓ(n
2
)
e−

1
2
(qθ)2

[
1− n

2
+ (qθ)2

]
, (2.27)
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that gives a scale-adaptive filter for the analysis in the different dimensions except

for n = 2 that gives the Mexican Hat wavelet

ψ =
1

π
e−

1
2
(qθ)2(qθ)2. (2.28)

The detection level is given by equation (2.25):

Dw = A

[
αΓ(n

2
)

2D(1 + n/2)

]1/2

θn/2. (2.29)

We have calculated the contribution of sources to the power spectrum in order

to estimate their influence in calculating the scale-adaptive filter. We arrive to the

conclusion that if the signal/noise ratio (i. e. dispersion associated to the sources

over dispersion associated to the background) is (σs/σb) < 0.6 (lp/θ), being lp

the pixel scale and θ the width of the source, then the extra contribution to the

scale-adaptive filter coefficients a, b, c is less than a 10%.

2.4.2 Gaussian source and 1/f noise

Let us assume a source with a Gaussian profile and a background represented by

1/f noise, i.e. P = Dq−1 or γ = 1. In this case τ(q) = θne−
1
2
(qθ)2 , and equation

(2.24) gives the scale-adaptive filter

ψ̃(q) =
1

αΓ(n+1
2

)
e−

1
2
(qθ)2(qθ)

[
3− n+ 2

n− 1

n+ 1
(qθ)2

]
, (2.30)

For instance, in the case n = 1 one has the wavelet ψ = (qθ)e−
1
2
(qθ)2 , that is the

scale-adaptive filter to be used to detect a Gaussian signal on 1D spectra. In this

case the detection level is (see equation(2.25)) Dw = AD−1/2.

2.5 Exponential source on a background

Typical example in Astrophysics is the exponential disk associated to spiral galax-

ies. Another interesting application could be in some areas of physics where the

profile expected for the signal associated to the detection of some particles could

be of exponential type.
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Let us assume that the source and background can be represented by

s(x) = e−
x
λ , P = Dq−γ. (2.31)

In this case:

τ(q) = βλn
[
1 + (qλ)2

]−n+1
2 , (2.32)

where β = ( 2
π
)
1/2
, 1, 2( 2

π
)
1/2

for n = 1, 2, 3, respectively, and equations (2.11) give

a =
β2λn−γ

2D

Γ(m)Γ
(
1 + n−γ

2

)
Γ(n+ 1)

, (2.33)

b = −ma, c =
n+ 1

n+ 2
m(1 +m)a, m ≡ n+ γ

2
(2.34)

and the scale-adaptive filter is

ψ̃(q) =
2L

αβ
(qλ)γ

[
1 + (qλ)2

]−n+1
2

[
1 +

γ − n

2
(n+ 1) +M

(qλ)2

1 + (qλ)2

]
, (2.35)

L ≡ Γ(n+ 1)

Γ
(

n+γ
2

)
Γ
(
2 + n−γ

2

) ,
M ≡ n− γ

n+ γ
(n+ 1)(n+ 2). (2.36)

In figure 2.2 appear the scale-adaptive filters for the 1D, 2D and 3D cases,

respectively, and power spectrum with indexes γ = 0, 1, 2, 3. The filter profiles

are more extended than in the Gaussian source, as one can expect from the more

gentle fall of the exponential source.

An interesting case is γ = n, then the scale-adaptive filter is

ψ̃(q) =
2n

αβ
(qλ)n

[
1 + (qλ)2

]−n+1
2 . (2.37)

2.5.1 Exponential source and white noise

For this sub-case γ = 0, then equation (2.35) leads to the scale-adaptive filter

ψ̃(q) =
2

αβ

Γ(n+ 1)

Γ(n
2
)Γ(2 + n

2
)

[
1 + (qλ)2

]−n+1
2

[
1 +

n

2
(n+ 1) +

(n+ 1)(n+ 2)(qλ)2

1 + (qλ)2

]
.

(2.38)
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For instance, for an exponential structure to be optimally detected in a 1D

spectrum, we must use

ψ̃(q) =
8

(2π)1/2

(qλ)2[
1 + (qλ)2

]2 . (2.39)

2.5.2 Exponential source and 1/f noise

An interesting case is n = γ = 1, equation (2.35) gives

ψ̃(q) =
(
π

2

)1/2 (qλ)

1 + (qλ)2 . (2.40)

2.6 Simulations of one-dimensional Gaussian

sources and 1/f noise

In order to test some of the ideas proposed in previous sections, we simulated

the case of one-dimensional Gaussian sources on a background. The kind of back-

ground simulated is the well-known 1/f noise. This kind of noise appears very often

in many devices in experimental physics. Further simulations with 2-dimensional

data and realistic realizations of noise will be carried on in further chapters of this

work.

For the sake of simplicity, all the simulated sources have the same amplitude

and that is set to be 1 (in arbitrary units). 100 of these sources were deployed over

a 32768 pixel ’field’. The number of sources and the size of the field were selected

in order to have enough sources for statistical studies, to avoid (as far as possible)

the overlapping of the sources and to minimize the contribution of the sources to

the total dispersion of the simulations. The width of the Gaussian profiles was

chosen to be θ ' 3θp: this is the case for a pixel of 1.5′ and a Gaussian with a

FWHM of 5′. Noise was added so that the SN ratio of the sources, defined as the

ratio A/σb (where A is the amplitude of the source and σb is the standard deviation

of the noise), assumes values of 2, 3, 4 and 5. Finally, the optimal filter, given by

eq. (2.30) with n = 1, was applied to the image.

To compare with a more traditional filtering scheme, we filtered the images also

with a Gaussian of width equal to θ and a Mexican Hat wavelet of width equal to θ.
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N s/n σ Ā s/nm σAop d3σ e3σ d5σ e5σ

1 2 0.5085 1.0670 2.0983 0.5075 19 12 0 0
2 3 0.3454 1.0195 2.9514 0.3432 47 9 1 0
3 4 0.2656 0.9994 3.7629 0.2582 72 6 10 0
4 5 0.2189 0.9890 4.5174 0.2070 90 9 36 1

Table 2.1: Simulations. The first column shows the number of the simulation. The
second column indicates the original SN ratio, as explained in the text. Column
3 indicates the dispersion of the map. Column 4 shows the mean amplitude of
the sources as measured from the map and column 6 indicates the variance of the
source amplitudes. This quantity is not equal to the original SN ratio (column 2)
because the sources contribute to the final dispersion of the image, thus lowering
the final, measured SN ratio. Column 5 indicates the mean SN ratio of the sources
(that is, the ratio between the quantities in columns 4 and 3). Columns 7 and
8 indicate the number of sources detected at the 3σ level and the number of 3σ
detections that do not correspond to real sources, respectively. Finally, columns 9
and 10 indicate the number of sources detected at the 5σ level and the number of
5σ detections that do not correspond to real sources, respectively.

This is a rather naive usage of the Mexican Hat wavelet and the Gaussian source

because the optimal width for these filters in the general case is not the source

scale (Cayón 2000, Vielva 2001a), but it serves us well because what we intend is

to compare how do filters work when we have no further information about the

data (i.e., the optimal scale, which is different for each background). The result of

these simulations is shown in tables 2.1 and 2.2. Table 2.1 refers to the original

simulations. It shows the original SN ratio of each simulation as well as statistical

quantities of interest such as the dispersion of the map and the mean amplitude

of the sources in it. Finally, it shows the number of sources directly detected from

the simulations above 3σ and 5σ thresholds and the number of spurious detections

above these thresholds. As expected, only a few sources are detected, except for

the most favorable cases (high original SN ratio and low detection threshold). The

small bias in the mean measured amplitude is due to pixelization effects. Table 2.2

refers to the simulations in table 2.1 after filtering with a Gaussian of width θ, a

Mexican Hat wavelet of width θ and the scale-adaptive filter. Each row in table 2.2

corresponds to the same row in table 2.1.

A Gaussian filter smoothes the image, removing small-scale noise. It also
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N σf Āf s/nf σAf
g d3σ e3σ d5σ e5σ

Gaussian filter

1 0.4816 0.7466 1.5504 0.4822 0.7389 8 3 0 0
2 0.3260 0.7237 2.2204 0.3216 0.7523 27 4 0 0
3 0.2494 0.7134 2.8602 0.2411 0.7601 46 3 0 0
4 0.2045 0.7076 3.4604 0.1929 0.7660 67 2 5 0

Mexican Hat wavelet

1 0.2507 1.0070 4.0169 0.2475 1.9144 77 31 17 2
2 0.1798 0.9762 5.4298 0.1665 1.8397 93 16 64 4
3 0.1471 0.9642 6.5548 0.1250 1.7419 96 5 94 4
4 0.1292 0.9587 7.4214 0.1008 1.6429 98 2 98 2

Scale-Adaptive filter

1 0.2288 1.0159 4.4408 0.2217 2.1164 87 13 26 2
2 0.1673 0.9919 5.9305 0.1496 2.0094 94 8 79 5
3 0.1394 0.9825 7.0474 0.1131 1.8728 97 3 97 3
4 0.1244 0.9778 7.8592 0.0918 1.7398 99 1 99 1

Table 2.2: Gaussian, Mexican Hat and Scale-Adaptive filter results. The first
column shows the number of the simulation, the second shows the dispersion of
the filtered map, the third column indicates the mean estimated amplitude of the
sources, the fourth column shows the mean SN ratio of the sources, column 5 indi-
cates the dispersion of the measured amplitudes of the sources, column 6 indicates
the gain of the filter (calculated through (s/n)filter/(s/n)original) and columns 7
and 8 indicate the number of sources detected at a 3σ threshold and the num-
ber of 3σ detections that do not correspond to real sources, respectively. Finally,
columns 9 and 10 indicate the number of sources detected at the 5σ level and the
number of 5σ detections that do not correspond to real sources, respectively.

smoothes the source peaks, thus lowering the amplitude of detected sources. For

the case of 1/f noise the dominant fluctuations appear at large scales and are not

affected by the Gaussian filter. The large-scale features may contribute to con-

tamination in two different ways: they can conceal sources in large ’valleys’ and
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can produce spurious peaks. None of these effects can be avoided with a Gaussian

filter. On the other hand, the smoothing effect of the Gaussian filter takes place

normally and lowers the amplitude of the sources. Therefore, the number of true

detections is smaller than in the non-filtered image, and the spurious detections

are not removed even in the highest s/n case. The gains, indicated in column 6,

clearly reflects this situation (g < 1).

The Mexican Hat wavelet has a better performance under 1/f conditions. The

Mexican Hat removes large-scale fluctuations, allowing the ‘hidden’ sources to arise

above the detection threshold. For example, in the case of original s/n = 2.95 there

were 47 sources above the 3σ level and only 1 above the 5σ level. After filtering

with the Mexican Hat, there are 93 detections above 3σ level and 64 above the 5σ

level, a significant improvement. The number of spurious sources remains almost

the same.

The scale-adaptive filter also deals with the large-scale structure. It is con-

structed to enhance all fluctuations in the source scale, while removing fluctuations

that arise in other scales. In addition, it is required to be unbiased with respect

to the amplitude. In practice, the amplitude is slightly underestimated due to the

propagation of pixelization effects. This small bias is lower than a 10% and can

be calibrated in any case. In the 1/f case the number of true detections is higher

than in the Mexican Hat case and the number of spurious sources is comparable

or slightly reduced. Only in the case of low initial SN ratio the number of spurious

detections is greater. This is due to the fact that this scale-adaptive filter enhances

all fluctuations in the source scale. For the case of initial SN ratio of 2.95 we find

94 sources (of 100) and 8 spurious detections (a reliability close to 10%) above the

3σ level, a result very similar to the obtained with the Mexican Hat. Above the

5σ detection level the scale-adaptive filter finds 79 sources where the Mexican Hat

found only 64. The number of spurious sources have not increased significantly

(from 4 to 5). For higher initial SN ratios the completeness and reliability quickly

improve.

The gain obtained with the scale-adaptive filter is greater than the one obtained

with the Mexican Hat. It can be analytically calculated, using eqs. (2.6) and (2.17)
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for the scale-adaptive filter and its equivalents for the Mexican Hat, leading to:

gop

gmh

=

 4

π

Γ(1+γ
2

)Γ(5−γ
2

)

1 + (1−γ)2

2(1+γ)

1/2

(2.41)

for the one-dimensional case. This formula holds while γ ≤ 1. According to

equation (2.41), the ratio gop/gmh is 1.41 in the case γ = 0 and 1.13 in the case

γ = 1. The mean observed ratio in the simulations is 1.31 and 1.08 respectively,

and fits well with our expectations. As a conclusion we have that scale-adaptive

filter gives higher gains than the classical Mexican Hat filter.

In figure 2.3 an example of the simulations is shown. In the top panel there

is a 500 pixel wide subsection of the s/n = 3, γ = 1 simulation. This subsection

corresponds to a region in which the large-scale noise has a positive value. Four

sources are present in this area, all of them arising above the 3σ level (indicated

with a dotted line). The position of the sources are marked with an asterisk in

the lower panel. Additionally, there are three peaks, corresponding to background

fluctuations, that arise above the 3σ level. The second panel from the top shows

the image after filtering with the (optimal) scale-adaptive filter. The large-scale

features have been removed and also the small-scale noise is reduced. The sources

have been amplified with respect to the original map and now all of them reach the

3σ level but the spurious peaks have been removed. The amplitudes of the sources

remain unbiased and close to the true value of 1. In the third panel from the

top there is the image after filtering with a Gaussian. The whole image has been

smoothed and now one of the sources barely reaches the 3σ level. The large-scale

fluctuations remain untouched and all the spurious peaks remain in the filtered

image. In the bottom panel we see the image after filtering with the Mexican Hat.

The large-scale fluctuations are also removed as well as the small-scale noise, as in

the case of the scale-adaptive filter. Nonetheless, the gain is lower and only three

of the sources reach the 3σ level. Additionally, it is found that the small-scale

noise removal is less efficient in the case of the Mexican Hat.
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2.7 Extraction of sources

The scale-adaptive filter gives the position and an unbiased estimator of the am-

plitude of the source. We propose to make the extraction of the source on real

space, i. e. one subtracts the function Aτ(|~x− ~xo|), being τ the given profile and

A the estimated amplitude, at the position of the source ~xo.

From the practical point of view, in order to select the appropriate sources

(with a given scale and avoiding to select spurious detections if the background

and/or noise are manifest at scales comparable to the sources) we can operate with

the scale-adaptive filter at other different scales R as given by equation (2.10) but

with ψ̃(qx), x ≡ R/Ro. If the scale that gives the maximum do not correspond

to the scale we are looking for then this is a spurious source (or another type of

source with a different scale). As an additional check, we can calculate the source

profile in the filter space nearby any real source, e. g. for a Gaussian profile the

behaviour around the maximum Ro ≈ Rs must be

〈w(R)〉 = Axγ
(

2

1 + x2

)m
[
1 +

n− γ

2

1− x2

1 + x2

]
, x ≡ R

Ro

, m ≡ n+ γ

2
, (2.42)

and an analogous behaviour can be found for the exponential profile. If a detected

source do not follows such a behaviour then it would be consider as a false detection

and must be deleted from the initial catalog.

2.8 Conclusions

In this chapter it has been introduced for the first time the concept of scale-

adaptive filter to detect/extract spherical sources on a background modelled by

a (homogeneous & isotropic) random field characterized by its power spectrum.

It has been obtained a generic analytical formula that allows to calculate such a

scale-adaptive filter either in Fourier or real space as a function of the source profile

and power spectrum of the background. The scale-adaptive filter is an unbiased

an efficient estimator of the amplitude of the sources.

The previous formula has been applied to the cases of a Gaussian and an expo-

nential profile embedded in a background with scale-free spectra. In particular, the

interesting cases of white noise and 1/f noise have received a careful treatment.
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The detection level has been calculated for the physically interesting cases of spec-

tra, images and volumes. For some particular cases, the scale-adaptive filters are

wavelets (e. g. a Gaussian source embedded in white noise in the 2D case requires

a scale-adaptive filter that is a Mexican Hat wavelet).

To test these ideas, simulations of Gaussian sources embedded in a 1/f noise

have been performed. The scale-adaptive filters have been compared using these

simulations with Gaussian filters and Mexican Hat wavelets. In the last two cases

the gain is lower, the noise removal is less efficient and the number of real detections

is smaller.

The extraction of the sources identified at a certain scale is proposed to be done

directly on real space. At the location of the source ~xo one subtracts the function

Aτ(|~x− ~xo|), being τ the given profile.

All the calculations assume that the overlapping of nearby sources is negligible

and the contribution of the sources to the background is also negligible. This is a

very good approximation in many cases of interest, at least above a certain flux

level.
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Figure 2.1: Scale-adaptive filters for a Gaussian source in a background P (q) =
Dq−γ for γ = 0 (white noise, solid line), γ = 1 (1/f noise, dotted line), γ = 2
(short-dashed line) and γ = 3 (large-dashed line). One, two and three-dimensional
cases are represented. There is a degeneration in the case n = 3, where the γ = 1
line overlaps with the γ = 3 line, and in the case n = 2, where the γ = 0 line
overlaps with the γ = 2 one.
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Figure 2.2: Scale-adaptive filters for an exponential source in a background P (q) =
Dq−γ for γ = 0 (white noise, solid line), γ = 1 (1/f noise, dotted line), γ = 2
(short-dashed line) and γ = 3 (large-dashed line). One, two and three-dimensional
cases are represented. There is a degeneration in the case n = 3, where the γ = 0
line overlaps with the γ = 2 one.
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Figure 2.3: Performances of scale-adaptive filter, Gaussian filter and Mexican Hat
wavelet. In the top panel a portion of a 32768-pixel one-dimensional simulation
is shown. In the simulation there are present Gaussian sources of width θ = 3θp

and 1/f noise. The amplitude of the sources is 1 for all of them. The dispersion
of the background is set to be 1/3. The second (third) panel from the top shows
the map after filtering with the scale-adaptive filter (a Gaussian of width θ). The
bottom panel shows the map after filtering with a Mexican Hat of width θ. The
positions of the sources are marked with asterisks. In the three cases the 3σ level
of the resultant map is shown with an horizontal dotted line.



Chapter 3

Scale-Adaptive Filters in 2D
images

The scale-adaptive filters introduced in Chapter 2 (see eq. 2.10) have been de-

veloped for the n-dimensional case, being n any integer. The most interesting

cases are n = 1 (spectra, time-ordered data, etc.), n = 2 (images) and n = 3 (vol-

umes). The unidimensional case was chosen as a straightforward example. In most

cases, however, astronomers have to deal with two-dimensional data sets, such as

photographic plates, CCD images and an assorted set of detection devices across

the whole electromagnetic spectrum range, including microwave, radio and X-ray

maps. Examples of objects of astronomical interest present in these images include

point-like sources (such as stars, QSOs and galaxy nuclei) and extended objects

(such as galaxies, galaxy clusters, globular clusters, etc.) that in many cases can

be well approximated by more or less symmetric profiles (Gaussian profiles for

point sources seen through Gaussian beams, exponential disks in spiral galaxies,

β-models for galaxy clusters, etc.). In this chapter an application of scale-adaptive

filters to one of the most important cases above mentioned: the detection of galaxy

clusters in two-dimensional images. In particular, we will consider the detection

of the well-known β profiles of galaxy clusters, that are broadly used in X-ray and

microwave Astronomy. By ‘detection’ we mean the determination of the position

of the sources as well as the estimation of parameters such as the intensity at

the central pixel (amplitude, hereafter) and the characteristic scale of each source.

Given the radial profile of the cluster, knowing the amplitude and the scale is

59
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equivalent to knowing the total flux at the observation frequency.

Given several images at different frequency channels, it is possible to use the

knowledge about the frequency dependence of the different components as well as

their statistical properties to separate them. Wiener filtering (WF, Tegmark and

Efstathiou 1996; Bouchet et al. 1999) and Maximum Entropy Method (MEM,

Hobson et al. 1998, 1999) are powerful tools for component separation based on

this idea. When the frequency dependence of the sources is not known the previous

methods are inefficient. Moreover, if only a single image is provided, the knowledge

of the ν-dependence of the different components is of no use. In that case, only

spatial properties (such as characteristic scale, profile, structure, distribution and

other statistical properties) might be used to perform the separation. In the case

we are going to consider in this work, we intend to detect localized sources (that

is, with a ‘small’ characteristic scale) with spherical symmetry and a given radial

profile. All the other components in the image will be considered as a background

(‘noise’) that should be removed in order to optimize the detection of the signal.

Wavelet formalism is well suited to deal with localized signals. The localized

bases used in wavelet analysis allow one to obtain a precise representation of local

objects both in spatial and frequency domains. In the context of signal process-

ing, a wavelet can be considered as a kind of band-pass filter, capable of select a

finite range of frequencies (scales) of an image. The Mexican Hat wavelet (MHW)

has been successfully applied to simulated X-ray images (Damiani et al. 1997,

Valtchanov et al. 2001, Freeman et al. 2002) in order to detect X-ray sources, as

well as to detect and extract point sources from simulated microwave maps (Cayón

et al. 2000, Vielva et al. 2001a and 2001b).

As noted in Chapter 2, we may wonder if the Mexican Hat wavelet is the best

possible choice in every case or if, on the contrary, there are different families of

functions, wavelets or not, which are better suited to each particular case. It is

clear that such a filter should take into account the shape (profile) of the source,

its characteristic scale and the statistical properties of the background in which is

embedded. The MHW is nearly optimal to detect point sources convolved with a

Gaussian beam because of the relation between the MHW and the Laplacian of the

Gaussian. If the source profile is other than Gaussian, however, the optimal filter

would be different. In this chapter optimal scale-adaptive filters will be applied to
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the separation and detection of compact sources with a multiquadric profile.

3.1 Scale-Adaptive filter for multiquadric pro-

files

In some astrophysical/cosmological applications the source is modeled by a multi-

quadric, i. e. the profile is given by

τ(x) =
1[

1 + ( x
rc

)2
]λ , λ ≥ 1/2. (3.1)

Typical examples are, for the 2D case, the emissions in the microwave and X-ray

bands with λ = 3β−1
2
, 6β−1

2
, respectively, for a β-profile for the electron number den-

sity ne(r) ∝ [1 + (r/rc)
2]
− 3

2
β
. Assuming the standard value β = 2/3 one trivially

obtains λ = 1/2, 3/2 for the microwave and X-ray emissions, respectively.

Assuming a scale-free power spectrum P (q) = Dq−γ, the equations (2.10) and

(2.11) lead to the filter:

ψ̃(q) =
1

αa′
Γ(λ)

21−λ(γ + n)
(qrc)

γ+λ−n
2

[
P Kλ−n

2
(qrc) +QqrcK1+λ−n

2
(qrc)

]
, (3.2)

P ≡ 2γ − (n− γ)(γ + 2λ), Q ≡ 2(n− γ)
γ + 2λ+ 1

γ + 4λ− n
, (3.3)

a′ ≡ 2γ+2λ−3

Γ (γ + 2λ)
Γ
(
γ + n

2

)
Γ2

(
γ + 2λ

2

)
Γ

(
γ + 4λ− n

2

)
. (3.4)

In the previous equations Γ denotes the Gamma function whereas K denotes the

Bessel K function. Table 3.1 gives the analytical form of the scale-adaptive filter

for λ = 1/2, 3/2 and different values of the spectral index γ = 0, 1, 2, 3 on Fourier

space and real space. The 2D scale-adaptive filters for the same parameters are

shown in the left side of figure 3.1.

3.2 Other filters

For comparison with the scale-adaptive filters, we shall briefly review other two

filters that have been extensively used in the literature: the Mexican Hat wavelet
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λ γ Ψ̃a(q) Ψa(x)
1/2 0 2

π
e−y 2

πr2
c

1
(1+x2)3/2

1/2 1 2
π
ye−y 2

πr2
c

2−x2

(1+x2)5/2

1/2 2 2
π
ye−y 2

πr2
c

2−x2

(1+x2)5/2

1/2 3 2
π
(3− y)y2e−y 4

πr2
c

−12x4+21x2−2
(1+x2)9/2

3/2 0 2
π
(2y − 1)e−y 6

πr2
c

1−x2

(1+x2)5/2

3/2 1 4
3π
y2e−y 4

3πr2
c

2−3x2

(1+x2)7/2

3/2 2 4
3π
y2e−y 4

3πr2
c

2−3x2

(1+x2)7/2

3/2 3 4
15π

(5− y)y3e−y 4
3πr2

c

9x6−84x4+88x2−2
(1+x2)11/2

Table 3.1: Optimal scale-adaptive filters associated to the β = 2/3 profile for the
cases τ(r) = 1

(1+(r/rc)2)λ , λ = 1/2 (microwave) and λ = 3/2 (X-ray). Col. (1):

λ . Col. (2): Background (noise) exponent γ. Col (3): Filter in Fourier space
(y = qrc). Col. (4): Filter in real space (x = r/rc).

and the ‘matched’ filter (MF). Both of them have already been introduced in

previous chapters of this thesis; they have been used in 2D problems even more

that in one-dimensional data sets. Here the main facts concerning astronomical

images and these filters are summarized.

3.2.1 The Mexican Hat wavelet

The well-known n-dimensional Mexican Hat wavelet is defined by

Ψ(~x;R,~b) =
1

Rn
ψ(
|~x−~b|
R

), ψ(x) ∝ (n− x2)e−x2/2 (3.5)

ψ(q) ∝ q2e−
1
2
q2

. (3.6)

This type of wavelet has been extensively used for point source detection. Optical

images of galaxy fields have been analyzed to detect voids and high-density struc-

tures in the first CfA redshift survey slice (Slezak et al. 1993). Microwave images

have been analyzed (Cayón et al. 2000; Vielva et al. 2001a) and combined with

the maximum entropy method (Vielva et al. 2001b) to obtain catalogs of point

sources from simulated maps at different frequencies that will be observed by the

future Planck mission. On the other hand, the MHW has also been used to detect
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X-ray sources (Damiani et al. 1997) and presently for the on-going XMM-Newton

mission (Valtchanov et al. 2001) and Chandra (Freeman et al. 2001).

3.2.2 The matched filter

If one removes condition (3) defining the scale-adaptive filter in § 2.2 another type

of filter can be found after minimization of the variance:

ψ̃m(q) =
1

αa

τ(q)

P (q)
. (3.7)

This is usually called a matched filter (see § 1.2.4 and Appendix A). In general,

the matched and scale-adaptive filters are different. In the former case, one ob-

tains a slightly larger gain (although for γ ≥ 0.5 the gain is the same from the

practical point of view, i.e. the relative difference is less than 20%) but sources

must be identified ‘a posteriori’ with an extra criterion whereas the scale-adaptive

filter allows one to get the sources in a straightforward manner. Thus, from the

methodological point of view and reliability (detection of spurious sources) is bet-

ter to use the scale-adaptive filter unless the image is completely dominated by

white noise.

Matched filters have been used recently to detect clusters of galaxies from opti-

cal imaging data (Postman et al. 1996; Kawasaki et al. 1998). In this approach the

method uses galaxy positions, magnitudes and photometric/spectroscopic redshifts

if available to find clusters and determine their redshift.

For the case of a source profile given by eq. (3.1) and a scale-free power

spectrum given by P (q) ∝ q−γ, the previous formula (3.7) leads to the follow-

ing matched filter:

ψ̃m(q) =
1

αa′
Γ(λ)

21−λ
(qrc)

γ+λ−n
2Kλ−n

2
(qrc), (3.8)

with a′ given by eq. (3.4). For λ = 1/2 the matched filter is not defined for

white noise (i.e. γ = 0), whereas for other values of γ is given by table 3.2 in

Fourier space and real space, respectively. In the case of white noise, we can use

the modified profile

τ(x) = N

 1√
r2
c + x2

− 1√
r2
v + x2

 ,
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λ γ Ψ̃o(q) Ψo(x)

1/2 0 B e−qrc−e−qrv

q
B
N
τ(x)

1/2 1 1
π
e−qrc 1

πr2
c

1
(1+x2)3/2

1/2 2 2
π
(qrc)e

−qrc 2
πr2

c

2−x2

(1+x2)5/2

1/2 3 2
π
(qrc)

2e−qrc 2
πr2

c

2−3x2

(1+x2)7/2

3/2 0 2
π
e−qrc 2

πr2
c

1
(1+x2)3/2

3/2 1 2
π
(qrc)e

−qrc 2
πr2

c

2−x2

(1+x2)3/2

3/2 2 4
3π

(qrc)
2e−qrc 4

3πr2
c

2−3x2

(1+x2)3/2

3/2 3 2
3π

(qrc)
3e−qrc 2

πr2
c

3x4−24x2+8
(1+x2)3/2

Table 3.2: Matched filters associated to the β = 2/3 profile for the cases τ(r) =
1

(1+(r/rc)2)λ , λ = 1/2 (microwave) and λ = 3/2 (X-ray). Col. (1): λ . Col. (2):

Background (noise) exponent γ. Col (3): Filter in Fourier space (y = qrc). Col.
(4): Filter in real space (x = r/rc). For the case λ = 1/2 and γ = 0 the modified
profile (3.9) has been used.

N =
rc

1− rc/rv

, B =
1

4πN ln
[

rc+rv

2
√

rcrv

] , (3.9)

where rv is a cut-off radius. The behavior of this profile is: τ(0) = 1 and τ(x) ∝ x−3

for x� rv.

The matched filters appear in the right side of figure 3.1. Note that the scale-

adaptive filters reach their peak around qrc ∼ 1, whereas there is more dispersion

in the position of the peak of the matched filters. This means that scale-adaptive

filters put more emphasis around the characteristic scale of the sources. We remark

that for γ = n the scale-adaptive filter and the matched filter coincide.

3.3 Numerical simulations: application and re-

sults

In order to show the performance of the scale-adaptive filters we have simu-

lated realizations of multiquadric profiles embedded in backgrounds of the type

P (q) = Dq−γ. For the sake of simplicity we simulate ideal multiquadric profiles,

not taking into account the effect of the detector beam. However, the method can



Chapter 3. Scale-Adaptive Filters in 2D images 65

be generalized to include this effect by modifying the input source profile. We also

consider only integer values of γ, so we can directly use the filters from table 3.1.

In a more realistic case, where the power spectrum does not follow such a simple

law, it could be directly estimated from the data. Then, the filter is numerically

calculated.

3.3.1 Microwave emission and the SZ-effect of clusters

One of the most promising applications of scale-adaptive filters is the detection and

extraction of the emission of galaxy clusters due to the Sunyaev-Zel’dovich (SZ)

effect in microwave maps. Maps of the Cosmic Microwave Background (CMB)

contain contributions from a variety of foregrounds (the SZ effect among them)

and different types of noise. If we approximate the power spectrum of a typical

CMB map by the law P (q) = Dq−γ, the effective index γ ranges between values

near 0 (for regions dominated by white noise) to ∼ 3 (for regions dominated by

dust emission). As an example, we first simulated a 512×512 pixel field containing

100 randomly distributed ‘clusters’ with a multiquadric profile (λ = 1/2). All the

‘clusters’ have the same scale (rc = 1.0 pixel) and amplitudes distributed between

0.1 and 1 (in arbitrary units). With a convenient rescaling of the amplitude, this

could simulate, for example, a 12◦.8 × 12◦.8 field of the sky filled with clusters of

several arcmin of extent. The simulated clusters are shown in the bottom panel of

figure 3.2. A P (q) = Dq−3 background was added so that the peaks of sources are

on average at the 2σ level of the final map. The map containing the sources and

the background (‘noise’) is shown in the center of figure 3.2. In the following, we

will call this simulation ‘Simulation I’.

Following table 3.1, the scale-adaptive filter for the case λ = 1/2, γ = 3 is

Ψ̃o(q) = 4(3 − y)y2e−y/3π, y = qrc. The result of applying the scale-adaptive

filter on the simulated field is shown in the top panel of figure 3.2. For the sake

of clarity, only the pixels above the 3σ level have been plotted. After filtering, the

detection is performed by looking for peaks above a certain threshold. Knowing the

initial position and amplitude of the simulated sources, it is possible to determine

quantities such as the mean error in the estimation of the source parameters as

well as the reliability of the filter (that is, the probability of detecting spurious
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‘sources’). The results are summarized in table 3.3. The first column in table 3.3

shows the σ threshold used for the detection. The second column shows the number

of true detections found. The third column indicates the number of spurious

‘sources’ detected. The fact that above 4σ we find more spurious detections than

above the 3σ threshold may seem surprising. This can be easily explained taking

into account that our detection method looks for sets of connected pixels over a

given threshold. Therefore, a ‘lump’ with two peaks may be seen as a single source

if the detection threshold is low enough. A higher detection threshold allows to split

the ‘lump’ into separate peaks. The fourth column in table 3.3 indicates the mean

error in the determination of the position of the source in pixel units. As can be

seen, all the detected sources were correctly located. The mean relative bias given

in the fifth column of table 3.3 is defined as b̄A(%) = 100× 1
N

∑
(Ai−Aoi

)/Aoi
, where

Aoi
and Ai are the original and estimated amplitudes of the sources respectively

and N is the number of considered sources. The mean relative error given in the

sixth column is defined as ēA = 100× 1
N

∑ | Ai − Aoi
| /Aoi

. The seventh column

gives the mean gain, as defined in eq. (2.20). The most striking fact in this case is

the high gain (∼ 4.4) that is found in all the cases. This is due to the fact that the

scale-adaptive filter (which acts as a band-pass filter) is very efficient in removing

the large scale structure that characterizes the q−3 background. The individual

gain for each detection as a function of the true amplitude of the source is shown

in the bottom panel of figure 3.3. We see that there is a certain dispersion around

the average value (represented in figure 3.3 as an horizontal dotted line) but, in

general, the gain is nearly independent of the original amplitude of the source.

Only for the brightest and the faintest sources this independence is lost. Bright

sources tend to have lower gains than the average and vice versa. This is related to

what is seen in the top panel of figure 3.3, which shows the estimated amplitudes

of the detected sources versus the original amplitudes. Between the original and

estimated amplitudes there is a strong linear regression but with a small positive

deviation from the y = x law. This corresponds to the ∼ 7% relative bias that is

given in table 3.3. Again, both bright and faint sources deviate from this law.

Figure 3.3 can be explained considering the detection strategy we use. We look

for peaks above a certain threshold, that is, for local maxima in the filtered image.

Therefore the detection method is biased to give higher amplitudes (it selects the
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σ detected spurious mean offset b̄A ēA ḡ
3.0 80 14 0.0 7.7 10.7 4.4
4.0 71 17 0.0 6.6 9.5 4.4
5.0 59 12 0.0 7.2 9.7 4.4

Table 3.3: Detections in Simulation I. Col. (1): σ detection level. Col. (2):
Number of true detections above the σ threshold. Col (3): Number of spurious
sources. Col. (4): Mean offset in the position of the source (pixels). Col. (5): Mean
relative bias in the determination of the amplitude (%), defined as the average of
100 × A−Ao

Ao
. Col. (6): Mean relative error in the determination of the amplitude

(%), defined as the average of 100 × |A−Ao|
Ao

. Col. (7): Mean gain (as defined in
eq. 2.20)

pixels in which the contribution of the source plus the residual noise is maximum).

This effect has more relevance when the source is faint and less when the source is

bright. Indeed, the gain of the detected faint point sources is larger than average,

since otherwise they would be below the detection level. As Ao increases in the

top panel of figure 3.3, the bias decreases and eventually drops to negative values.

This suggests the existence of a systematic effect that gives a negative bias and

that is compensated by the positive bias produced by the detection method when

the sources are weak enough. Such negative bias has been reported in relation

with scale-adaptive filters in Sanz et al 2000 and Herranz et al. 2001a, and is due

to the fact that the normalization given by condition (1) of scale-adaptive filters

is calculated for an ideal profile on an infinite, continuous field (the limits of the

integral are 0 and ∞), while the real images are finite and discrete (pixelized).

In spite of these small systematics, the performance of the optimal filter is very

good in the sense that with a simple application of a filter and a thresholding

detection scheme we are able to recover a very significant number of sources and

estimate their amplitudes with errors not larger than ∼ 10%. The reliability of the

method is such that over a 3σ threshold there are a 15% of spurious detections.

In a more realistic case the scale rc of the sources will not be known a priori.

For example, in a CMB map, clusters of different scales will be present, going

from almost point-like sources to large structures that extend across several pixels.

Under these conditions, it does not seem clear which one should be the scale of the
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scale-adaptive filter. Fortunately, condition (3) of the optimal scale-adaptive filters

implies that the coefficient at the position of the source and at the ‘right’ scale is a

maximum. Therefore, the strategy to follow is to filter the image with a set of N

filters with different ‘tentative’ scales rci
, i = 1, ..., N . For a given detection, the

maximum value among the coefficients at the position of the source of the different

filtered maps will correspond to the rci
closer to the rc of the cluster.

To test this point we performed a new simulation (Simulation II, hereafter)

with 100 ‘clusters’ with rc distributed between 0.5 and 2.0 pixels and amplitudes

between 0.1 and 1.0 (in arbitrary units). The noise is similar to that of Simulation I.

The simulated map was filtered with scale-adaptive filters with the parameter rc =

0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25 and 2.50 pixels. In figure 3.4 are

plotted the original clusters (bottom panel), the simulated map with noise (central

panel) and the map filtered with the scale-adaptive filter rc = 1.50 (top panel).

The sources are detected over each filtered map by selecting peaks above a certain

threshold. If one of such peaks is detected at the same position on different filtered

maps, it is unlikely that it corresponds to pixel-scale noise (although it could be

a fluctuation of the noise at a scale of the order of the source scale). Looking

for detections in several filtered maps will help to reduce the number of spurious

sources in the output. For every detection that is present in several filtered maps

we look for the maximum of the coefficients at the central position. In particular,

we only consider sources that appear at least at 5 scales. This number was chosen

because with 5 consecutive scales is possible to ‘cover’ the pixel size in the scale

space and because it gives a good compromise between the number of detections

and the number of spurious detections, as will be seen through this section. The

maximum gives both the scale of the source and its amplitude.

The results are shown in table 3.4. The main difference between tables 3.4

and 3.3 is the lower gains that are obtained in Simulation II. This result is expected

because the set of filters used only fit clusters with some specific values of rc. For

the rest of clusters the filters are only approximately optimal. Moreover, any error

in the determination of rc will lead to a wrong determination of the amplitude. The

top panel of figure 3.5 shows the estimated rc versus the original rco in Simulation

II. There is a significant dispersion around the rc = rco line (represented by a dotted

line in the top panel of figure 3.5). As shown in table 3.4, the mean error in the
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σ detected spurious mean offset b̄A ēA b̄rc ērc ḡ
3.0 57 0 0.0 11.5 14.0 -0.12 0.14 3.7
4.0 49 0 0.0 7.3 10.4 -0.13 0.14 3.5
5.0 38 0 0.0 6.1 8.5 -0.12 0.13 3.5

Table 3.4: Detections in Simulation II. Col. (1): σ detection level. Col. (2):
Number of true detections above the σ threshold. Col (3): Number of spurious
sources. Col. (4): Mean offset in the position of the source (pixels). Col. (5):
Mean relative bias in the determination of the amplitude (%), defined as the av-

erage of 100 × Ai−Aoi

Aoi
. Col. (6): Mean relative error in the determination of the

amplitude (%), defined as the average of 100 × |Ai−Aoi |
Aoi

. Col. (7): Mean bias in

the determination of rc (in pixel units), defined as the average of
rci−rcoi

rcoi

. Col. (8):

Mean absolute error in the determination of rc (pin pixel units), defined as the

average of
|rci−rcoi

|
rcoi

. Col. (9): Mean gain (as defined in eq. 2.20).

determination of rc is ∼ 0.15 pixels, with a similar bias towards estimating higher

values of rc than the real ones. If we increase the ‘resolution’ in rc by increasing

the number of filters the error is not significantly reduced. This indicates that

it is not possible to determine scale parameters with a much better resolution

than the pixel scale. In spite of this limitation, the errors in the determination

of the amplitude remain reasonable (∼ 10%). This indicates that the estimated

amplitude does not vary significantly with rc in the neighborhood of the real value

of the core radius. Therefore, errors under the pixel scale in the estimation of rc

have little effect in the determination of the amplitude. Lower panel of figure 3.5

shows the estimation of the amplitudes in Simulation II. As in Simulation I, a

small positive bias is found. The gain shows the same behavior with respect to

the amplitude of the sources as in Simulation I (an asymptotic decrease of the

gain with the amplitude of the clusters) and is almost independent of the size of

the clusters. Small clusters tend to have slightly higher gains than large clusters.

This could be due to the fact that small clusters are detected in maps filtered with

small rc parameter and therefore in these maps the pixel-scale residuals are worse

removed than in maps filtered with a large rc. Maps filtered with small rc show

more contribution from pixel-scale noise residuals and therefore the peak amplitude
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is more likely to be overestimated. The number of spurious detections drops to

0 due to the fact that we discard those ‘candidates’ that are not detected in at

least 5 filtered maps. Indeed a similar constraint is imposed in the MHW method

used by Vielva et al. 2001a and 2001b, who performed a multiscale fit in order to

estimate the amplitude of point sources as well as to discard spurious detections.

Unfortunately, this constraint also reduces the number of true detections. This is

an example of a well-known and unavoidable problem in detection theory: the cost

of reducing spurious detections is to reduce the number of true detections and,

conversely, relaxing the selection criteria to include more true sources leads to an

increase of spurious detections.

3.3.2 X-ray emission and clusters

Other straightforward application of scale-adaptive filters is in the field of X-ray as-

tronomy. X-ray emission from galaxy clusters roughly follows a multiquadric profile

with λ = 3/2. Unfortunately, real X-ray images suffer from strongly non-isotropic

point spread functions that distort cluster profiles to quite odd and asymmetric

shapes. For this work, however, we will consider (as we did in the previous case

of SZ emission) that instrumental effects have been somehow corrected and that

we only have ideal clusters and noise. For Simulation III we distributed 100 ideal

multiquadric profiles with λ = 3/2, rc between 2.0 and 4.5 pixels and amplitudes

between 0.1 and 1.0 (in arbitrary units). The dominating background in X-ray im-

ages is Poissonian shot-noise that, when the exposure time is long enough, can be

approximated by white noise. We added white noise (γ = 0) to our simulation so

that, given the amplitudes of the clusters (in their arbitrary units), the final noise

level is roughly similar to the one of an XMM image of 95 ks of exposure time.

The final signal to noise ratio is greater than in Simulations I and II. Figure 3.6

shows the simulated clusters (bottom panel), the complete simulation with noise

(central panel) and the coefficient map that corresponds to the simulation filtered

with an scale-adaptive filter with rc = 3.0 pixels (top panel).

The detection and determination of the amplitude and the scale of the clusters

were performed following the same steps than in Simulation II. The set of chosen

‘core radii’ was rc = 1.2, 1.3, 1.5, ..., 5.1 pixels (N = 40 filters). To consider a
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σ detected spurious mean offset b̄A ēA b̄rc ērc ḡ
3.0 73 22 0.4 10.1 17.8 0.06 0.40 2.0
4.0 63 10 0.3 6.2 14.9 0.03 0.39 2.0
5.0 48 2 0.2 6.9 12.6 0.05 0.36 2.0

Table 3.5: Detections in Simulation III. Col. (1): σ detection level. Col. (2):
Number of true detections above the σ threshold. Col (3): Number of spurious
sources. Col. (4): Mean offset in the position of the source (pixels). Col. (5):
Mean relative bias in the determination of the amplitude (%), defined as the av-

erage of 100 × Ai−Aoi

Aoi
. Col. (6): Mean relative error in the determination of the

amplitude (%), defined as the average of 100 × |Ai−Aoi |
Aoi

. Col. (7): Mean bias in

the determination of rc (in pixel units), defined as the average of
rci−rcoi

rcoi

. Col.

(8): Mean absolute error in the determination of rc (in pixel units), defined as the

average of
|rci−rcoi

|
rcoi

. Col. (9): Mean gain (as defined in eq. 2.20).

detection as a source it must be present in at least ten of the filtered maps (we

chose this number for the same reasons that were explained in Simulation II). The

results are shown in table 3.5. Simulation III has two qualitative differences with

respect to Simulations I and II. First of all, the cluster profile drops much faster

in the X-ray case than in the SZ case. Second, the simulated background is white

noise instead of ∝ q−3. This is not the optimal situation since the gain achieved

by the scale-adaptive filter is not very high in comparison with other filters when

the background is dominated by white noise. In particular, the gains obtained in

Simulation III are only ∼ 2 (table 3.5). Moreover, the fast decline of the cluster

profile makes them much more compact (that is, more point-like), making more

difficult to distinguish them from noise fluctuations. In other words, comparatively

to a microwave image of the same pixel scale and in which there are clusters of

the same rc, it is harder to estimate parameters such as rc because the signal is

condensed in a few pixels. If, for example, rc was of the order or less than half

a pixel, the cluster would be almost indistinguishable from a point source. This

explains why, in spite of having the rc space quite densely sampled, the mean error

in the determination of that parameter is almost of 0.5 pixels. There is no observed

bias in the determination of rc. Clusters in Simulation II had smaller core radii
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than those in Simulation III, and therefore it was more likely to overestimate than

to underestimate their size. In Simulation II, smaller values of rc were chosen in

order to avoid overlapping among the clusters (the compactness of X-ray clusters

reduces the probability of overlapping). Besides, the P (q) ∝ q−3 noise fluctuations

grow stronger with their scale, so large-scale residuals (that, when combined with

the filtered profile, would lead to overestimation of the scale) were more likely

in Simulation II that pixel-scale residuals (that, when combined with the filtered

profile, would lead to underestimation of the scale). Under white noise conditions

all scales of the background have the same power and therefore there is no reason

for bias in any of the two directions, as is observed.

Figure 3.7 shows the performance of scale-adaptive filters in the determination

of the amplitude (bottom panel) and rc (top panel). The dispersion in the esti-

mated rc is comparatively much greater than the dispersion in the estimated A

(lower panel of figure 3.7). The relative errors in the determination of the ampli-

tude are also small (∼ 15%, table 3.5). This indicates that the estimated amplitude

is quite stable with respect to variations in rc, that is, that curves A versus rc are

fairly flat indeed. The observed bias in the determination of the amplitude is

around 5− 10%, similar to that observed in Simulations I and II.

Finally, the compactness of the clusters embedded in white noise has the effect

of increasing the number of spurious detections, specially for low detection thresh-

olds. At the 5σ level, however, the number of spurious sources is less than 5%

of the true detections. Therefore, the scale-adaptive filter is well suited to detect

and extract multiquadric profiles even in the less favorable case of more compact

clusters and a background dominated by white noise.

3.4 Conclusions

In this chapter the concept of scale-adaptive filter has been applied to a multi-

quadric profile characterized by two parameters: the core radius rc and the the

decay parameter λ, in order to obtain an unbiased estimation of the amplitude

of the source. Explicit analytical formulas on Fourier space and simple analytical

ones on real space for some source profiles and backgrounds have been obtained.

In particular, the chapter focuses on the interesting cases of microwave and X-
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ray emissions. A comparison with other standard filters is done. In particular, for

γ = n (e. g. 1D signal and 1/f noise, 2D image and P (q) ∝ q−2) the scale-adaptive

and matched filters coincide.

Two-dimensional clusters with λ = 1/2, with different core radius rc, embedded

in a background P (q) ∝ q−3 that can mimic microwave emission from the cluster

plus intrinsic microwave and foreground emissions and noise have been simulated.

When the characteristic scale (the ‘core radius’ rc) is a priori known it is possible

to recover a great number of sources without any significant error in their position

and with errors in the determination of the amplitude of ∼ 10%. About a 20% of

spurious detections are also detected. This percentage of spurious sources could

be reduced by introducing a multiscale analysis similar to the one used in the

previous section (i.e. imposing that the sources appear in a certain number of

maps filtered with different scales). However, this would also reduce the number

of true detections. The mean gain in this simulated case is 4.4, meaning that over

a 5σ detection threshold in the filtered maps we are able to detect sources that

were only at 1.14σ in the original map.

When the characteristic scale is not a priori known, as will happen in a realistic

case, the size of the clusters can be estimated by filtering the map with several

filters at different scales and looking for the maximum among the coefficients at

the position of the sources. Moreover, the multiscale analysis can be used to

reject spurious detections (that typically appear only in one or a few of the filtered

maps) by imposing that the source ‘candidates’ must be present in several filtered

maps. Unfortunately, the price of removing spurious detections is always to reduce

the number of detections. A simulation including clusters of different sizes has

been performed. A multiscale analysis with ten filters of different scale has been

applied to this simulation. Only sources appearing in five or more filtered maps

were considered as true detections. Under these conditions, it was possible to

recover 30% less sources than in the first simulation, but the number of spurious

detections dropped to 0. The position of the sources was again recovered with no

significant error. The mean error in the determination of the amplitude is < 15%.

Additionally, we were able to determine the scale parameter of the detected clusters

with mean errors of ∼ 0.15 pixels.

2D clusters with λ = 3/2, with different core radius rc, embedded in a back-
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ground P (q) = constant (that can mimic X-ray emission from the cluster plus

white noise) have been also simulated. The multiscale analysis allowed again to

estimate the position, amplitude and scale of the sources with small errors. The

results are slightly worse than in the microwave simulations because the X-ray clus-

ters are more compact and because the background used in this simulation (white

noise) is not the most favorable for the scale-adaptive filters. Scale-Adaptive fil-

ters take advantage of the fact that in most cases the power spectrum of the noise

has a maximum at a scale that is different from the scale of the sources. In the

white noise case the power spectrum is constant at all scales. In other words, the

scale-adaptive filter produced high gains in the microwave simulations because the

background showed strong large-scale features that were removed efficiently by the

scale-adaptive filters. In the white noise case, the gain is only g = 2.0. In spite of

that, the errors in the determination of the fundamental parameters remain small

and the number of spurious detections over the 5σ detection threshold is less than

5% of the number of true sources detected.

Therefore, the scale-adaptive filter is well suited to detect and extract multi-

quadric profiles from images with a variety of backgrounds.



Chapter 3. Scale-Adaptive Filters in 2D images 75

0 2 4 6 8 10

0

0.5

1

0 2 4 6 8 10

-0.5

0

0.5

0 2 4 6 8 10

0

0.5

1

0 2 4 6 8 10

-0.5

0

0.5

Figure 3.1: Optimal scale-adaptive filters and matched filters (in Fourier space)
associated to the β = 2/3 profile for the cases τ(x) = 1

[1+(x/rc)2]λ
, λ = 1/2 (mi-

crowave) and λ = 3/2 (X-ray) and a homogeneous and isotropic background with
power spectrum P (q) ∝ q−γ. The two panels in the left of the figure show the
optimal scale-adaptive filters for the cases γ = 0 (solid line), γ = 1 (dotted line),
γ = 2 (short-dashed line) and γ = 3 (long-dashed line). There is a degeneracy for
γ = 1 and γ = 2 in the two considered cases. The two panels in the right of
the figure show the matched filters for the mentioned cases. For the matched filter
and the case case λ = 1/2 and γ = 0 it has been used the modified profile (3.9).
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Figure 3.2: Simulation I. Bottom panel shows the simulated ‘clusters’. Central
panel shows the data to be analyzed (‘clusters’ plus q−3 noise). Top panel shows
the coefficient map (after filtering). Only pixels above 3σ have been plotted in the
top panel.
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Figure 3.3: Results of the detection (over a 3σ threshold) in simulation 1. The
top panel shows the estimated versus the original amplitudes. Points A = Ao are
given by a dotted line. The bottom panel shows the gain of the detected sources
against the original amplitude. The mean gain is given by the horizontal dotted
line.
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Figure 3.4: Simulation II. Bottom panel shows the simulated ‘clusters’. Central
panel shows the data to be analyzed (‘clusters’ plus q−3 noise). Top panel shows
the coefficient map (after filtering with an scale-adaptive filter of rc = 1.50).
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Figure 3.5: Results of the detection (over a 3σ threshold) in Simulation II. The
top panel shows the estimated versus the original core radii. The dotted line
corresponds to rc = rco . The bottom panel shows the estimated versus the original
amplitudes. Points A = Ao are given by a dotted line.



80 Chapter 3. Scale-Adaptive Filters in 2D images

Figure 3.6: Simulation III. Bottom panel shows the simulated ‘clusters’. Central
panel shows the data to be analyzed (‘clusters’ plus q−3 noise). Top panel shows
the coefficient map (after filtering with an scale-adaptive filter of rc = 3.50).
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Figure 3.7: Results of the detection (over a 3σ threshold) in Simulation III. The
top panel shows the estimated versus the original original core radii. The dotted
line corresponds to rc = rco . The bottom panel shows the estimated versus the
original amplitudes. Points A = Ao are given by a dotted line.
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Chapter 4

Point source detection from
Planck TOD using Scale-Adaptive
Filters

Chapters 2 and 3 have introduced the concept of scale-adaptive filter and tested

it on simplistic one and two-dimensional simulations. These simulations were sim-

plistic in the sense that the simulated noises were realizations of pure P (q) ∝ q−γ

spectra; in that case, it was easy to obtain the analytic expression of the filters.

Unfortunately, real life is quite more complicated than that. Except for the case of

white noise (P (q) = constant), the backgrounds that usually appear in astronom-

ical data sets can hardly be approximated by a single power law. The good news

is that, if an estimation of the power spectrum P (q) is available, any computer

can easily calculate integrals (2.11). The resulting filter is in a certain way semi-

analytic, because the profile τ(q) in eqs. (2.10) and (2.11) is a known mathematical

function and the integrals a, b and c are numerically calculated.

This chapter presents an application of scale-adaptive filters to a fully realistic

problem related to CMB science: the detection of point sources in time ordered

CMB data sets such as the ones the future Planck mission will produce.

4.1 Introduction

One of the most thrilling challenges in the study of the Cosmic Microwave Back-

ground (CMB) is to deal with the problem of separating the cosmological signal

83
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from the different foregrounds and noises that appear in CMB experiments. This

problem will be specially relevant in future high-resolution experiments such as

MAP (Bennett et al. 1996) and Planck (Mandolesi et al. 1998, Puget et al. 1998).

From the point of view of determining constraints on fundamental cosmological

parameters, the different foregrounds (synchrotron emission, galactic dust, free-

free radiation, thermal and kinetic Sunyaev-Zel’dovich (SZ) emission from galaxy

clusters and extragalactic point sources) are considered as contaminants and there-

fore must be removed together with the noise in order to extract the cosmological

signal. Besides, knowledge about each of these ‘contaminants’ has a great scientific

relevance on itself. Therefore, it is of exceptional importance to be provided with

good techniques of denoising and foreground separation.

Extragalactic point sources are one of the most difficult foreground to sepa-

rate in CMB maps. This is so because their spatial distribution and abundance

remain uncertain and their frequency dependence is not well known. Besides, they

can show temporal and even spectral variability. Therefore, methods that take

advantage of the different statistical properties of the CMB and the foregrounds

(e.g. different angular power spectra), as well as the knowledge of their distinctive

frequency dependence, fail in detecting point sources. Such is the case of Wiener

filter (Tegmark and Efstathiou 1996, Bouchet and Gispert 1999) and on Maxi-

mum Entropy Methods (MEM, Hobson et al. 1998, 1999; Stolyarov et al. 2001).

Extragalactic point sources should be removed from the maps before any analy-

sis should be performed. Maximum Entropy Methods can produce a catalogue

of point sources as a residual (noise) from the separation process. However, only

the faintest sources are recovered, and the brightest ones can still be observed in

the residuals. The Independent Component Analysis technique (Baccigalupi et

al 2000, Maino et al 2001) has also been applied to this problem with promising

results: it has the advantage that, unlike the previous methods, it does not need

any prior knowledge of the components to be separated, but its weakest point is

actually the separation of point sources.

As noted in chapters 2 and 3, filtering techniques have been successful in both

denoising and extracting the brightest point sources from CMB maps. All the

point sources in a CMB map will have the same profile and size (the convolution

of a δ-Dirac source with the antenna beam) and the filtering process should take
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advantage of this fact using a filter optimal for that particular profile and size

(scale). This leads to the idea of scale-adaptive filters.

Scale-adaptive filters are unbiased, give a maximum at the position and scale

of the source and give the minimum variance of filter coefficients (i.e. are effi-

cient estimators of the amplitude of the sources). They adapt themselves to the

characteristics of the signal and the noise.

Although two-dimensional maps are the most useful and extended form to

show CMB data, they are only available after an exhaustive process of analysis

and reduction of the raw data from CMB experiments. These experiments scan

different patches of the sky in a sequence producing a unidimensional set of time

ordered data (TOD). TODs suffer from lower signal-to-noise ratios than final two-

dimensional maps, but on the other hand are less likely to show artifacts coming

from the data reduction, such as pixel-to-pixel noise correlations. Moreover, TODs

can be analyzed in (almost) real time during the observations in order to produce

early (preliminary) catalogs of sources.

4.2 One-dimensional scale-adaptive filter

TODs can be considered as a particular case of a one-dimensional image (a spec-

trum is another interesting case). The image data values can be expressed as

y(t) = s(t) + n(t), (4.1)

where t is the time, s(t) represents a symmetric source and n(t) is a homogeneous

and isotropic background with mean value 〈n(t)〉 = 0 and characterized by the

power spectrum P (q) (q is the absolute value of the ‘wave vector’ associated to

t). If A = s(0) is the amplitude of the source we can introduce the profile τ(t) as

s(t) = Aτ(t).

Following Chapter 2 and Appendix A, it is possible to derive the form of the

scale-adaptive filter for a given source profile, that is, the filter that satisfies the

three conditions:

1. There exists a scale Ro such that at the point source position (b = 0) <

w(R, 0) > has a maximum at that scale.
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2. < w(Ro, 0) >= s(0), i.e. w(Ro, 0) is an unbiased estimator of the amplitude

of the source.

3. The variance of w(R, b) has a minimum at the scale Ro, i.e. we have an

efficient estimator.

Given these three conditions, the solution (scale-adaptive filter) is found to be:

ψ̃(q) ≡ ψ(Roq) =
τ(q)

2P (q)∆

[
b+ c− (a+ b)

d ln τ

d ln q

]
(4.2)

a ≡
∫
dq
τ 2

P
, b ≡

∫
dq
τ

P

dτ

d ln q
,

c ≡
∫
dq

1

P

[
dτ

d ln q

]2

, ∆ = ac− b2 (4.3)

The limits of the integrals go from 0 to ∞. Equations (4.2) and (4.3) are the

one-dimensional form of equations (2.10) and (2.11).

In Chapter 2 analytic expressions for Gaussian sources and backgrounds of the

type P (q) ∝ q−γ were derived. In a more realistic case, the background can not

be modelled in such a simple way, and integrals in (4.3) should be numerically

estimated. When dealing with real data (or realistic simulations such as those

used in this work) we must perform the following steps: first, determine the power

spectrum of the background directly from the image. Second, evaluate integrals

(4.3). Third, build the scale-adaptive filter (4.2) and make the convolution with

the data. Finally, we can proceed to detect the sources, for example looking for

peaks above a certain σ-level in the coefficient (filtered) image.

When determining the power spectrum of an image we obtain the power spec-

trum of both the background and the sources together. In the following we consider

that the contribution of the point sources to the total power spectrum is negligible.

This is a reasonable assumption in a realistic case, specially at medium and high

wavelengths where the emission of IR and radio sources is weak. Another problem

related to power spectrum determination is the variance of the power spectrum

estimator. The variance of one-dimensional power spectrum estimators tends to

be larger than that of two-dimensional cases because the number of sample points



Chapter 4. PS detection from Planck TOD using SAFs 87

is usually smaller. A possible solution to this problem is to estimate low resolution

power spectra. However, a large amount of information is lost at scales that are

crucial for the determination of the scale-adaptive filters. For this work we chose

to average the estimated power spectra of contiguous rings of the TOD (corre-

sponding to regions of the sky separated by only a few arcminutes and therefore

possessing very similar underlying power spectra).

A typical profile of the scale-adaptive filter (in Fourier space) for a section of

the simulated TOD used in this chapter is shown in figure 4.1. The profile (solid

line) is irregular due to the roughness of the estimated power spectrum. These

irregularities reflect the particularities of the data and define the scales where

the scale-adaptive filter is more or less efficient. For comparison, a Mexican Hat

Wavelet (dashed line) and a Gaussian (dotted line), both of them with a width

equal to the width of the source, are also shown.

4.3 Data

For this work we chose the 30 GHz LFI28 channel of Planck because of the relatively

small size of its resulting TOD. Higher frequencies, in spite of being expected to

show more contribution from point sources due to their higher resolution and the

contribution of IR sources at ν ≥ 300 GHz, lead to huge TOD sets and require

many hours of computation to be simulated and analysed on an average computer

and will be analyzed in a future work.

The data simulates a 6 months run of the 30 GHz LFI28 channel of Planck,

covering the whole sky except for two circles of 1.82◦ around the ecliptic poles.

The sky simulation consist of the addition (in flux) of a CMB simulation and

three templates, each for the Galactic synchrotron radiation, Galactic dust and

thermal SZ. This sky is then combined with a map of point sources, generated

from a catalog performed following the model of Toffolatti et al. (1998) and then

‘observed’ by the Planck Pipeline Simulator for one of the LFI 30 GHz radiometers;

resulting in a TOD for the observed sky (CMB, foregrounds and point sources)

plus instrumental noise. The data are ordered in circular rings centered on points

situated on the Ecliptic. The angle between the pointing axis and the rotation

axis for the LFI28 instrument is 88.18◦. The maximum separation between two
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Figure 4.1: Several filters in Fourier space. The scale-adaptive filter particularised
for an individual ring of the TOD simulations is represented by a solid line. The
dashed line shows a Mexican Hat Wavelet of width equal to the width of the
(Gaussian) source. The dotted line represents a Gaussian of width equal to the
width of the source. All filters are normalized to give the true amplitude of the
source after convolution.

consecutive rings is 2.5′ (at the intersection with the Ecliptic plane). Each ring

results from the average of 60 revolutions of the detector around the rotation

axis, corresponding to one hour of integration time, and contains 1950 measures of

antenna temperature. There are a total of 4383 of such rings, leading to 8546850

measures of temperature. The antenna has a FWHM of 33′ and its response slightly
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differs from a circular Gaussian one.

The simulation contains CMB emission, different extended foregrounds (Galac-

tic synchrotron, dust and free-free, thermal and kinetic SZ emission from clusters,

etc), point sources and instrumental noise. Both white noise and 1/f noise are

present. The knee frequency fν is set to be < 20 mHz (less than the frequency

of rotation). In the lower panel of figure 4.2 it is shown a segment of one of the

rings of the simulation. There is a bright point source near pixel 400 (in fact, it

is the brightest source in the simulation). Apart from this extraordinarily bright

source, the features that dominate the image are Galactic emission (the large peaks

around pixels 150 and 940) and noise.

4.4 Data analysis

The complete set of simulated TOD was filtered using the scale-adaptive filter de-

scribed in § 4.2. Each individual ring was filtered separately. The power spectrum

that appears in equations (4.2) and (4.3) was obtained by averaging the estimated

power spectra of twenty-one consecutive rings (the ring that is being filtered, the

ten previous rings and the ten subsequent rings).

In order to detect the sources from the filtered image one can set a certain

threshold over the dispersion of the filtered ring and look for connected regions

(peaks) above that threshold. That would be the most direct detection method

if the different rings were independent of their neighbours. This is not the case,

since adjacent rings scan very close regions and each source is expected to appear

in more than one ring. The use of information coming from neighbouring rings

allows to increase the effective signal to noise ratio of the detections and to discard

spurious ‘sources’ due to noise fluctuations. The most straightforward way to

detect sources is then to perform a kind of two-dimensional thresholding, looking

for connected pixels at equal latitude that appear in several adjacent rings. In a

first approximation, the position of the source will be the position of the maximum

of that region of connected pixels. We will show that this approximation is good

enough for the purpose of locating the sources with an error comparable to 1/3 of

the antenna FWHM.

Two different regimes of ‘noise’ have to be removed in order to optimize the
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detection of the sources. The large scale features due to Galaxy foregrounds as

well as CMB fluctuations are strongly correlated between a given ring of data and

its neighbours. On the other hand, the small scale noise, dominated by white

instrumental noise, is expected to be nearly independent from one ring to another.

This suggests a further step in the idea of combining information from nearby

rings to increase the signal to noise ratio of the sources. By averaging each ring

data (before filtering) we can construct a ‘synthetic TOD’ in which the large scale

fluctuations are almost the same than in the original TOD but the noise at the

scale of the pixel has been greatly diminished. The 1/f will still be present in the

averaged TOD. The point sources of the original TOD are replaced in the averaged

TOD by Gaussians of amplitude

Aa =
1

Na

Na∑
i=1

Ae
−| ~xo− ~xi|2

2σ2
b (4.4)

where A is the true amplitude of the source, Na is the number of rings that are

averaged, σb is the beam width and the distance | ~xo − ~xi|2 is the geodesic (spheri-

cal) angular distance between the pixel corresponding to the position of the source

and the pixel that is being added to calculate the average. This is true when the

beam is a perfect Gaussian because in that case the average is a weighted sum of

Gaussians of equal width, that is, a new Gaussian of the same width and amplitude

given by eq. (4.4). Therefore, we can filter the rather denoised, ‘synthetic TOD’,

instead of the original TOD and correct the amplitude of the sources that we will

detect using eq. (4.4) in order to recover an estimate Â of the true amplitude A.

4.5 Results

In order to determine the goodness of the averaging of close rings we performed

two different filterings of the TOD. In the first case, the raw data of the TOD were

filtered ring by ring as described in § 4.4. In the second case, a ‘synthetic TOD’ in

which each individual ring was the average of the original ring (at that position)

with the twelve neighbours was constructed. The number of rings averaged is such

that at the maximum ring spatial separation region on the sky (the ecliptic Equa-

tor) the separation between the two most separated rings is approximately equal
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to the FWHM of the beam. After filtering, the detection and extraction was per-

formed looking for sets of 5 or more connected pixels (in the 2-dimensional sense).

A lesser number of connected pixels required would lead to a much higher num-

ber of spurious detections. To check if the detections correspond to real sources

we compare with the catalogue of the 1000 brightest sources present in the sim-

ulations. This catalogue is complete and its flux limit is clearly lower than the

expected flux limit of the detected sources.

In the lower panel of figure 4.3 the number of detections (defined as the number

of peaks encountered above a certain threshold that correspond to a real source in

the reference catalog) above several σ thresholds is shown for the case where the

data have been averaged (filled circles and solid line) and the case where they have

not (open circles and dashed line). The remaining quantities of interest (such as

estimation of the amplitudes, fluxes, etc.) concerning the detection/extraction of

sources over the averaged and then filtered TOD are shown in table 4.1 and will

be discussed later. As expected, the number of sources detected when analysing

the synthetic TOD is 4 to 5 times higher to the number of sources detected over

the original, filtered TOD for every σ level.

Apart from having the greatest number of detections, it is also of great im-

portance to reduce as much as possible the number of spurious detections. In the

lower panel of figure 4.4 (labeled as ‘simple detection’) the ratio between spurious

and ‘true’ detections is represented for the case where the data have been averaged

(filled circles and solid line) and the case where they have not (open circles and

dashed line). The ratio is lower for the case in which the data have not been aver-

aged. It is evident that a kind of compromise has to be reached between gain and

reliability. If we arbitrarily set a maximum proportion of spurious sources versus

true ones, say a 10% (represented in fig. 4.4 with an horizontal dashed line), we

can determine the minimum σ level that satisfies this condition. In this example,

for the case of non-averaged rings, we can reach the 3σ and find 80 sources (to

a minimum flux of 4.33 Jy) with a 7.5% of spurious detections. For the case of

averaged rings, we must go to the 4σ level, where we find 224 sources (to a mini-

mum flux of 0.885 Jy) with a 9.8% of spurious detections. We conclude that the

averaging of neighbouring rings is a valid strategy to reduce pixel-scale noise. In

the following, all the results will refer to filtering of averaged rings.
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σ detected spurious mean m.r.a.e. < bias > min. compl.
sources sources offset (′) (%) (%) flux (Jy) flux (Jy)

Scale-Adaptive filter

2.5 549 1368 14.08 24.22 3.15 0.542 4.337
3.0 403 296 13.56 24.32 1.31 0.644 4.337
3.5 351 54 12.73 21.75 -4.91 0.760 4.337
4.0 224 22 12.49 20.98 -7.69 0.885 4.337
5.0 150 9 12.20 19.82 -14.85 1.065 4.337
5.5 124 5 12.03 20.38 -15.54 1.197 4.337

Gaussian filter

2.5 11 11 18.88 538.4 537.0 6.511 17.070
3.0 7 6 17.84 746.4 744.2 8.787 10.070
3.5 7 13 17.50 898.1 898.1 7.908 18.866
4.0 4 11 17.24 1281.7 1281.7 10.340 18.866
5.0 4 12 13.09 1985.3 1985.3 13.926 18.866
5.5 4 15 13.09 1985.3 1985.3 13.926 18.866

Mexican Hat Wavelet

2.5 473 413 12.83 21.46 4.27 0.531 4.337
3.0 361 130 12.66 20.76 2.52 0.693 4.337
3.5 270 63 12.67 20.46 0.45 0.761 4.337
4.0 196 59 12.40 18.47 -4.22 0.844 4.337
5.0 139 49 12.50 19.47 -4.96 0.957 4.337
5.5 118 44 12.41 19.83 -5.53 1.099 4.337

Table 4.1: Detections at 30GHz with the Scale-Adaptive filter, compared to a
Mexican Hat Wavelet (MHW) and a Gaussian window with FWHM of 33′. Col.
(1): σ detection level. Col. (2): Number of sources found. Col. (3): Number
of spurious detections. Col. (4): Mean position offset. Col. (5): Mean relative
absolute error of the amplitude (defined as r.a.e. = 〈|A0 − Ae|/A0〉, where Ae is the
estimated amplitude). Col. (6): Mean bias in the amplitude. Col. (7): Minimum
reached flux. Col. (8): Flux over which the catalog of detections is complete.

The number of detections and spurious sources found with the scale-adaptive
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filter applied to a synthetic TOD is shown in table 4.1. The determination of the

position of the source, the mean relative absolute error in the determination of

the amplitude (defined as m.r.a.e. = 〈|A0 − Ae|/A0〉, where Ae is the estimated

amplitude and A0 is the real amplitude), the mean bias (defined in the same way

as the m.r.a.e, but without the absolute value), the minimum flux reached and the

completeness flux are also included in table 4.1. In each case the mean error in the

position of the sources is comparable with the size of the ‘pixel’ of the TOD, 11′.

The determination of the amplitude using eq. (4.4) has relative errors ranging from

24.32% at 3σ threshold to 19.82% at 5.0σ. The error decreases as the detection

threshold increases. This indicates that the estimation of the amplitude of weak

sources is less accurate than the estimation of the amplitude of bright ones. Also,

the determination of the amplitude is biased to higher values at low σ levels and

to lower values (negative bias) at high σ levels. The positive bias for weak sources

arises due to the peak finding algorithm: it preferably finds the maxima in pixels

where the noise contribution is positive. The negative bias that appears at high

σ levels is systematic and is due to the fact that the filter is designed to detect

‘perfect’ Gaussian sources whereas real data are non ideal. This systematic bias

is never greater than 16%. At intermediate thresholds, both effects tend to cancel

and, on average, the amplitude estimates are unbiased.

To compare with other ‘classic’ filters we repeated the process using a Gaussian

filter and a Mexican Hat Wavelet (MHW, hereafter), both of them with a width

equal to the beam width of the antenna (33′). The normalization of both filters was

chosen so that the coefficient at the position of the source is equal to the amplitude

of the source (that is, the filtering process does not change the amplitude of the

sources). The scale-adaptive filter automatically satisfies this condition (condition

2 for an scale-adaptive filter). While the MHW and the scale-adaptive filters are

both band-pass filters, the Gaussian is a low-pass filter, so the comparison with the

Gaussian is a bit unfair: the Gaussian is expected to perform significantly worse

than the other two filters. The number of detections above several thresholds for

the two ‘classic’ filters together with the scale-adaptive filter are shown in table 4.1.

The number of detections is similar for the MHW and the scale-adaptive filter, yet

are slightly higher for the scale-adaptive filter. The lowest number of detections

corresponds to the Gaussian filter. In the lower panel of figure 4.5 the number of
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detections with the three different filters is compared. Detections with the scale-

adaptive filter are shown with open circles and solid line. The open boxes and

dashed line corresponds to MHW detections and the triangles and dashed line

corresponds to Gaussian filter detections. The ratio between spurious and true

detections for the three filters is shown in the top panel of figure 4.5. Except for

the 2.5σ level, the Gaussian filter produces the worst ratio. The scale-adaptive

filter gives spurious to detected (e/d) ratios that quickly decline with increasing

σ thresholds. The e/d ratio for the MHW remains almost constant with σ in the

considered cases and clearly exceeds the ratio obtained with the scale-adaptive

filter. The m.r.a.e. and the bias in the determination of the amplitude are huge

in the case of the Gaussian filter. Both have very similar values. That means

that the main source of error is systematic (the filter is biased). Considering the

m.r.a.e, the MHW seems to give amplitude estimates a few percent better than the

scale-adaptive filter. Flux limits are similar in the MHW and scale-adaptive filter

cases. The Gaussian filter leads to higher inferior flux and completeness limits.

Figure 4.2 provides a useful insight into what is happening with the different

filters. The Gaussian filter smoothes the image, removing very efficiently the small

scale noise but allowing the large structures (the Galaxy and others extended

fluctuations) to remain in the image. The naive σ thresholding counts these bright,

large structures as sources, leading to a big relative number of spurious detections.

Besides, the sources that by chance lie on ‘valleys’ of the background can not be

detected. On the other hand, sources that lie on areas of positive background are

enhanced and can be more easily detected. This can explain the large and positive

bias in the detections with the Gaussian filter.

Both MHW and scale-adaptive filter are better prepared to deal with this prob-

lem than the Gaussian window. Their profiles in Fourier space drop to zero at low

frequencies and thus they are efficient in removing large scale structures. Images

filtered with the MHW and the optimal scale-adaptive filter in figure 4.2 are sim-

ilar. A visual inspection reveals that MHW smoothes better the high-frequency

fluctuations. The scale-adaptive filter is more efficient in removing medium and

large structures. The fluctuations around pixel 150 (corresponding to one of the

two observations of the Galaxy in the ring) are better removed with the optimal

scale-adaptive filter than with the MHW. This is more apparent in figure 4.1 where
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the profiles of the different filters in Fourier space clearly indicate the faster drop

of the scale-adaptive filter at low frequencies (large scales) and its slower drop

at high frequencies (small scales). The MHW can have the same problem as the

Gaussian filter. However, the probability of this problem should be smaller due to

its better efficiency in removing the Galaxy and other large-scale structures. This

effect explains the higher e/d ratio and the trend to positive bias.

The conclusion is that the scale-adaptive filter detects point sources better than

the MHW and the Gaussian window. The number of detections is comparable to

the number of detections with the MHW and clearly higher than with the Gaussian

window. The relative number of spurious detections with the scale-adaptive filter

is lower, except for very low detection thresholds, than with the MHW and the

Gaussian window. Over 4σ the contamination of spurious detections is lower than

10%. At this level (4σ) the number of expected sources in all the sky is of a few

hundreds (224 in our simulation) above fluxes of around 0.9 Jy.

Some tests can be performed in order to discover if the number of spurious

sources, the most unpleasant effect of the filtering and detection process, can be

reduced. Where do these spurious detections come from? One possibility is that

the peak finding algorithm is detecting the Galaxy or other large-scale features.

Such structure will appear in several adjacent rings, as sources do, and therefore a

possibility of confusion exists. To test this potential source of contamination, we

repeated the analysis excluding a band of 5◦ centered on the Galactic plane (cor-

responding to a 4.36% of the sky area). The top panels of figures 4.3 and 4.4 show

the number of detections and the ratio of spurious/true detections, respectively,

for the scale-adaptive filter in the cases where the rings have been averaged (as

explained before, filled circles) and where they have not (open circles). In the first

section of table 4.2 are the results for the case of averaged rings (the tabulated

quantities are the same than in table 4.1) are shown. The decrease in the number

of detections corresponds to the one expected for a uniform distribution of sources

in the sky (around 5%). This indicates that the density of detections around the

Galactic plane is not substantially different from the density of detections in other

regions, less ‘contaminated’, of the sky. This can be seen in figure 4.6, where the

4σ detections have been represented in Galactic coordinates (the Galactic Plane

being represented by a dashed line).
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σ detected spurious mean m.r.a.e. < bias > min. compl.
sources sources offset (′) (%) (%) flux (Jy) flux (Jy)

Scale-Adaptive filter, excluding the Galaxy

2.5 520 1272 14.06 23.79 2.67 0.542 13.722
3.0 379 257 13.51 23.69 0.58 0.644 13.722
3.5 280 34 12.67 20.87 -6.04 0.760 13.722
4.0 212 8 12.45 20.05 -8.97 0.885 13.722
5.0 142 1 12.16 18.73 -16.25 1.066 13.722
5.5 118 1 11.94 18.97 -17.22 1.197 13.722

Mexican Hat Wavelet, excluding the Galaxy

2.5 454 347 12.76 20.21 2.79 0.531 13.72
3.0 342 87 12.54 19.04 0.42 0.693 13.72
3.5 256 25 12.49 18.28 -2.37 0.806 13.72
4.0 187 14 12.15 15.71 -7.65 0.844 13.72
5.0 129 7 12.18 15.07 -10.64 0.957 13.72
5.5 108 7 12.01 14.60 -12.37 1.099 13.72

Table 4.2: Different tests for the detections at 30 GHz. Columns have the same
meaning than in table 4.1. Two different cases are tabulated: detections with the
scale-adaptive filter when a 5◦ band around the Galactic plane is excluded from
the analysis and detections with a 33′ MHW when a 5◦ band around the Galactic
plane is excluded from the analysis.

The ratio between spurious and true detections remains almost untouched for

low σ. For higher σ levels, the proportion of spurious detections that are due to

the Galactic plane increases dramatically (comparing tables 4.1 and 4.2 we see that

this proportion increases from a 7% at 2.5σ to a 89% at 5σ). This indicates that

the contamination by the Galaxy dominates at high signal to noise ratios, whereas

low-intensity contamination is dominated by noise fluctuations. In all cases, the

number of peaks that correspond to the Galaxy is much smaller than the number

of detected sources, thus implying that the scale-adaptive filter deals efficiently

with large scale backgrounds.

We stated before that the higher number of spurious detections of MHW could

be due to its non-optimal performance at large scales. To further test this hy-
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pothesis we repeated the test for the MHW, now considering only the peaks found

outside a 5◦ band centered in the Galactic plane, as we did with the scale-adaptive

filter before. The results are shown in the last section of table 4.2. Most of the

spurious sources (specially at high σ) lied near the Galactic plane, as we expected.

And yet the remaining number of spurious sources is still greater than in the

equivalent scale-adaptive filter case. The number of detections and the flux limits

remain similar to the scale-adaptive filter case. The m.r.a.e. is also similar in the

two cases. Finally, the mean bias in the determination of the amplitude is negative

for high σ thresholds, as happens with the optimal scale-adaptive filter. Note that

the MHW used in this work has the same scale as the antenna. In fact, that scale is

not the optimal for detection (Vielva et al. 2001a). The optimal scale of the MHW

for a particular case has to be determined from the power spectrum of the data.

This, in a certain way, mimics the determination of the scale R0 that is automat-

ically included in the scale-adaptive filter via eqs. (4.2) and (4.3). The MHW at

its optimal scales resembles the shape of the scale-adaptive filter in Fourier space

(in the sense that its maximum is located near the maximum of the scale-adaptive

filter) and thus the effectiveness of both filters should be similar.

In order to further decrease the number of spurious detections, we could take

advantage of the fact that, in many realistic cases, due to the sky coverage of the

experiment and its scanning strategy, many positions of the sky can be measured

more than once (that is, at different epochs). For example, a source of 0◦ latitude

will be detected once when the center of the ring is located on longitude φ =

φsource − R, being R the radius of the ring, and once again several months later,

when the center of the ring is located on longitude φ = φsource + R. When this

occurs, it would be possible to almost duplicate the amount of information in some

areas of the sky and therefore improve both the sensitivity and the reliability of

the detection. However, such a refined detection can not be done when the data

do not cover the whole sky, and therefore is useless for the construction of an early

catalogue of sources during the mission flight.
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4.6 Conclusions

In this chapter a sequence of time ordered data such as the one that the future

Planck 30 GHz LFI28 channel will produce after the first 6 months of flight has been

simulated and analysed using scale-adaptive filters. The data include all the main

foregrounds as well as CMB fluctuations, point sources and instrumental noise.

The resulting TOD has been ring-averaged in order to remove pixel-scale noise

and then filtered with an scale-adaptive filter that includes the spectral properties

of the data in order to maximize the detection of sources of a particular shape

(Gaussian) and scale (the scale of the antenna). The optimal scale-adaptive filter

was designed to produce an unbiased, efficient estimator of the amplitude of the

sources at their position and to give a maximum of detections at the characteristic

scale of the sources. The detection of the sources was performed by thresholding

the filtered TOD and looking for connected sets of peaks belonging to adjacent

rings. At a 4σ detection level 224 sources over a flux of 0.88 Jy are detected with a

mean relative error (in absolute value) of 20.98% and a systematic bias of −7.69%.

The position of the sources in the sky is determined with errors inferior to the size

of the antenna. The catalogue of detected sources is complete at fluxes ≥ 4.337

Jy. The number of spurious detections is 22.

The performance of the scale-adaptive filter has been compared with the per-

formances under the same conditions of a Gaussian window and a Mexican Hat

Wavelet (MHW) of width equal to the beam width. The number of sources de-

tected with the scale-adaptive filter is comparable to the number of sources de-

tected with the MHW and much higher than the number of sources detected with

the Gaussian. However, the scale-adaptive filter finds a significantly lower number

of spurious sources than the other two filters. This is due to the fact that the

scale-adaptive filter removes better the large scale fluctuations (e.g. the Galaxy)

than the other two filters. To test this hypothesis a 5◦ band around the Galactic

Plane was removed and the analysis was repeated with the scale-adaptive filter and

the MHW. This test shows that most of the spurious detections that were found

with the MHW were located on the Galactic Plane, whereas spurious detections

that were found with the scale-adaptive filter are uniformly distributed in the sky.

The mean absolute error in the determination of amplitudes is slightly higher in
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the case of the optimal scale-adaptive filter than in the MHW case. The estimation

of the amplitudes with the Gaussian window suffer from very large errors. In most

cases, the Gaussian detects only the Galaxy.

The number of spurious detections can be reduced by means of further analysis

after the filtering. For example, when the sky coverage of the scan is big enough

some areas of the sky can be observed twice or more times, increasing the signal

to noise ratio of the sources that lie in such areas. This point is out of the scope

of the present work, in which we only present the filter as a first step in the data

reduction.

In conclusion, the scale-adaptive filter is an efficient, unbiased and reliable tool

for the detection and extraction of punctual sources from TOD. A few hundred

of sources over 1 Jy will be detected in the 30 GHz channels of the future Planck

mission with ≤ 10% of spurious detections. The catalogue will be complete at

fluxes ≥ 4 Jy. One possible application of this technique would be the elaboration

of early catalogues of sources. A greater number of detections is expected at higher

frequencies. The simulation and analysis of such frequencies will be performed in

a future work.



100 Chapter 4. PS detection from Planck TOD using SAFs

0 200 400 600 800 1000

0.025

0.026

0.027

0.028

t

original

0

0.002 Gaussian

0

0.002 MHW

0 200 400 600 800 1000

0

0.002 optimal 

Figure 4.2: A 1024-pixel section of one of the rings before and after filtering. The
lowest panel shows the section before any filtering. The second panel shows the
section after filtering with a Gaussian of FWHM 33′ (equal to the one of the source).
The third panel shows the section after filtering with a Mexican Hat Wavelet of
width equal to the width of the source. The top panel shows the section after
filtering with the (optimal) scale-adaptive filter.
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Figure 4.3: 30 GHz detections with the scale-adaptive filter as a function of the σ
detection threshold. The open circles and dashed lines represent detections over the
filtered TOD. The filled circles and solid line represent detections over a filtered
synthetic TOD in which each ring is the result of the average of 9 rings of the
original TOD. The synthetic TOD has the same number of rings than the original
one. Two cases have been represented: simple detection over a certain threshold
(lower panel) and simple detection excluding a 5◦ band around the Galactic plane
(top panel).
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Figure 4.4: 30 GHz ratio between the number of spurious sources and the number
of true detections with the scale-adaptive filter as a function of the σ detection
threshold. The open circles and dashed lines represent detections over the filtered
TOD. The filled circles and solid line represent detections over a filtered synthetic
TOD in which each ring is the result of the average of 9 rings of the original TOD.
The synthetic TOD has the same number of rings than the original one. Two cases
have been represented: simple detection over a certain threshold (lower panel) and
simple detection excluding a 5◦ band around the Galactic plane (top panel).
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Figure 4.5: Comparison of the performances of three different filters over the 30
GHz TOD. Open circles and solid line refer to scale-adaptive filter results. Boxes
and dashed line correspond to Mexican Hat Wavelet results. Triangles and dashed
line correspond to Gaussian filter results. Both the MHW and Gaussian filter
have a width of 33′. The lower panel shows the number of detections above the
different σ thresholds. The upper panel shows the ratio between spurious and true
detections for the same σ thresholds.
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Figure 4.6: Positions of the sources detected with the scale-adaptive filter at a
4σ detection level. The sky is projected in Galactic coordinates. The dashed line
represents the Galactic Equator. The scale-adaptive filter is able to detect sources
even in the highly contaminated region around the Galactic Plane.



Chapter 5

Detection of clusters in Planck
data

Another interesting application of scale-adaptive filters is the detection of galaxy

clusters in CMB multi-channel data. The intensity of the CMB towards the line of

sight of a cluster is distorted due to the Sunyaev-Zel’dovich effect (SZE), as can be

seen in eqs. (1.13) and (1.14). The SZE has a characteristic frequency dependence

(see figure 1.3) that can be used to improve the detection of clusters. The future

Planck mission will allow to measure the whole sky in ten different frequency

channels. Therefore, it is expected to provide a very good chance of detecting

thousands of galaxy clusters. In this chapter, two different generalisations of the

scale-adaptive and matched filters will be presented that optimize the detection of

signals with a known frequency dependence in multifrequency data.

5.1 Introduction

The detection and characterisation of the Sunyaev-Zel’dovich effect (SZE) is one of

the most promising fields of interest in millimetric and sub-millimetric Astronomy.

The Cosmic Microwave Background (CMB) radiation is distorted in the direction

of galaxy clusters due to the hot intracluster plasma. This distortion, among other

contaminants, has to be corrected in order to study the anisotropies of the CMB.

Besides, the characteristic signature of the SZE can be used for the study of the

intracluster medium, its origin and its evolution. As the SZE does not depend on

105
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the redshift of the clusters, it can also be used to detect clusters that otherwise

would be undetectable. For example, the future ESA Planck satellite will produce a

full-sky catalogue containing several tens of thousands of galaxy clusters; therefore,

it is crucial to have a robust and efficient method to detect and extract the SZE.

Component separation of CMB images has been thoroughly studied and dis-

cussed in the literature. Regarding SZE detection, methods such as Wiener filtering

(WF, Tegmark & Efstathiou 1996, Bouchet et al. 1997) and maximum entropy

method (MEM, Hobson et al. 1998, 1999) have proven to be very powerful. In

general, a component separation method that uses all the available information

will be more powerful than other that does not assume any prior knowledge about

the data. MEM, for instance, produces astounding results in the separation when

the power spectrum and the frequency dependence of the components are well

known. Unfortunately, if the assumptions about the data are wrong, errors may

arise that would affect the separation of several (or all) components. This is par-

ticularly dangerous in methods that perform the separation of all the components

simultaneously (WF, MEM, FastICA). The opposite approach is to use a robust

method that makes as few assumptions as possible about the data. In this case the

separation is less powerful due to the loss of valuable information that could be

helpful to distinguish among the different components of the image. An example of

a method that makes almost no assumptions is the non-parametric Bayesian SZE

detection method given by Diego et al. (2001b), in which only the well-known

frequency dependences of the SZE and the CMB are needed. An example of a

method that can make use all the available information is MEM. Depending on

the circumstances of the analysis, a compromise between these two poles must be

reached.

Filtering techniques, such as Mexican Hat wavelets (MHW), matched filters

(MF) and scale-adaptive filters (SAF), are single component separation methods

that use some of the available information (i.e. the shape of the component that

is going to be detected and the power spectrum of the combination of the rest

of components) while reducing the errors that may appear due to error propa-

gation in methods that separate all components simultaneously. MHW assumes

a specific shape (a Gaussian) for the component to be separated (‘sources’) and,

given the power spectrum of the background (that can be directly estimated from
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the data), finds the optimal scale of the filter. MF generalises this idea by in-

troducing more general profiles. Adaptive filters put additional emphasis on the

characteristic scale of the sources in order to further reduce the number of spurious

detections. Although usually the spherical symmetry of the sources is assumed,

it is not a requirement of the method and the filters can be easily generalised to

detect asymmetric features.

This chapter will discuss the generalisation of filtering techniques, in particular

MF and AF, to the case of multiple images corresponding to different frequency

channels. Multifrequency information can be used both to increase the signal of

the sources and to reduce the contribution of the background (‘noise’). This infor-

mation can be used prior to the filtering of the images (by using the correlations

between the different channels to find an optimal combination of channels that

maximises the signal to noise ratio of SZE clusters) or be included directly in the

construction of the filters.

5.2 Formalism

There are two different approaches we can follow to include the frequency depen-

dence of a signal in the filtering of multi-channel data. On one hand, we can filter

each channel separately, but carefully taking into account the cross-correlation be-

tween the different channels and the frequency dependence of the signal in order to

obtain an output set of filtered maps that, added to each other, must be optimal

for the detection. This philosophy gives birth to the multifilter method. On the

other hand, one can use the information about correlations and frequency depen-

dence before filtering in order to find the optimal combination of channels that

maximizes the signal to noise ratio of the sources, and then use a filter on the

optimally combined map. This leads to the design of a single filter method.

5.2.1 The multifilter method

Let us consider a set of 2-dimensional images (maps) with data values defined by

yν(~x) = fνsν(x) + nν(~x), x ≡ |~x|, ν = 1, ..., N, (5.1)
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where N is the number of maps (or number of frequencies) and fν is the frequency

dependence of the SZE. We choose a fiducial frequency νf such that fνf
= 1, there-

fore A is the amplitude of the cluster at frequency νf . ~x is the spatial coordinate

and sν(x) ≡ Aτν(x) represents a cluster with spherical symmetry placed at the

origin with amplitude A and profile τν(x). If one assumes a β-profile for the elec-

tron number density ne(r) ∝ [1 + (x/rc)
2]
− 3

2
β

and assuming the standard value

β = 2/3, one trivially obtains for the microwave emission through the SZ-effect

τ(x) =
1[

1 + ( x
rc

)2
]1/2

. (5.2)

This is the multiquadric profile presented in Chapter 3. A convolution with the an-

tenna beam at the frequency ν, assumed here to be a 2D-Gaussian with dispersion

θν , gives the convolved profile τν(x).

The background nν(~x) is modeled by a homogeneous and isotropic random

field with average value 〈nν(~x)〉 = 0 and cross-power spectrum Pν1ν2(q), q ≡ |~q|:
〈nν1(~q)n

∗
ν2

(~q′)〉 = Pν1ν2(q) δ
2
D(~q− ~q′), nν(~q) is the Fourier transform of n(~x) and δ2

D

is the 2D Dirac distribution.

Let us for one moment forget the shape given by eq. (5.2) and consider a

generic profile τ(x). The results in following sections are general for any τ .

Scale-Adaptive multifilter (SAMF)

The idea of an optimal scale-adaptive filter has been introduced and developed

in previous chapters. By introducing a spherically-symmetric filter, Ψν(~x;Rν ,~b),

dependent on 4 parameters (Rν defines a scaling whereas ~b defines a translation)

for any of the frequencies

Ψν(~x;Rν ,~b) =
1

R2
ν

ψν

 |~x−~b|
Rν

 , (5.3)

we define the filtered field as

wν(Rν ,~b) =
∫
d~x yν(~x)Ψν(~x;Rν ,~b), (5.4)

and the total coefficient as

w(R1, ..., Rn,~b) ≡
∑
ν

wν(Rν ,~b). (5.5)
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The previous convolution can be written as a product in Fourier space, in the form

wν(Rν ,~b) =
∫
d~qe−i~q·~b yν(~q)ψν(Rνq), (5.6)

where yν(~q) and ψν(q) are the Fourier transforms of yν(~x) and ψν(~x), respectively.

A simple calculation gives the average at the origin ~b = 0, 〈wν(Rν ,~0)〉 and the

variance, σ2
w(R1, ..., Rn) ≡ 〈w2(R1, ..., Rn,~b)〉 − 〈w(R1, ..., Rn,~b)〉

2
, of the filtered

field

〈wν(Rν ,~0)〉 = 2πAfν

∫
dq qτν(q)ψν(Rνq), (5.7)

σ2
w(R1, ..., Rn) = 2π

∑
ν1,ν2

∫
dq q Pν1ν2(q)ψν1(Rν1q)ψν2(Rν2q). (5.8)

where the limits in the integrals go from 0 to ∞.

Now, we are going to express the conditions in order to obtain a scale-adaptive

multifilter (SAMF) for the detection of the cluster at the origin, taking into account

that the source has a bell shape with a single characteristic scale Roν in each map.

The following conditions are assumed:

1. 〈w(Ro1, ..., Ron,~0)〉 = sνf
(0) ≡ A, i. e. w(Ro1, ..., Ron,~0) is an unbiased

estimator of the amplitude of the source.

2. The variance of w(R1, ..., Rn,~b) has a minimum at the scales Ro1, ..., Ron, i.

e. it is an efficient estimator.

3. wν(Rν ,~b) has a maximum at (Roν ,~0).

Then, the multifilter satisfying these conditions is given by the matrix equation

ψ̃(q) = P−1(αF + G), (5.9)

where we we have introduced the following column vectors: ψ̃(q) = (ψν(Rνq)),

F = (fντν), G = (µνβν), µν ≡ fντν
[
2 + dlnτν

dlnq

]
, and P−1 is the inverse matrix of

P ≡ (Pν1ν2(q)),

α = A−1 0
0 , βν = A−1 ν

0 , (5.10)

where A is the (1 + n)× (1 + n) matrix whose elements are given by

A0
0 ≡

∫
d~qFtP−1F, A0

ν ≡
∫
d~q µν(F

tP−1)ν , (5.11)
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Aν
0 ≡

∫
d~q µν(P−1F)ν , Aν

ν′ ≡
∫
d~q µνµν′ P

−1 ν
ν′ . (5.12)

This will be called scale − adaptive multifilter extending the concept considered

in previous chapter for a single map. Equations (5.9) and (5.11)-(5.12) are indeed

the generalisation of eq. (2.10) and (2.11), respectively. The derivation of these

formulas is qualitatively equivalent to the derivation of the scale-adaptive filter in

Appendix A, though more laborious: condition (3) gives N constraints instead of

one and the minimisation problem involves (N+1) Lagrangian multipliers, leading

to the resolution of (N + 1) equations with (N + 1) unknown quantities that, in

matrix form, reduces to eq. (5.9).

On the other hand, the variance is given by

σ2
w =

∫
d~q ψ̃tPψ̃ = (A0

0)
−1
[
1 + 2

∫
d~qFtP−1G

]
+
∫
d~qGtP−1G. (5.13)

A particular case is when P is a diagonal matrix, i. e. there is no cross-correlation

between the backgrounds in the different maps Pνν′ = δνν′Pν(q). In this case the

multifilter is given by

ψ̃ν(q) =
fντν
Pν

1

a−∑
ν f 2

ν
b2ν
Hν

[
1−

(
2 +

dlnτν
dlnq

)
bν
Hν

]
, (5.14)

a =
∑
ν

f 2
ν

∫
d~q

τ 2
ν

Pν

, bν = f 2
ν

∫
d~q

τ 2
ν

Pν

(
2 +

dlnτν
dlnq

)

Hν = f 2
ν

∫
d~q

τ 2
ν

Pν

(
2 +

dlnτν
dlnq

)2

. (5.15)

If, additionally, one assumes that the backgrounds are white noise, i. e. Pν are

constants and the resolution is the same in all maps, originating the convolved

profile τ(rc, θ), then

fνψ̃ν(q) =
τ

N

f 2
νP

−1
ν∑

ν f 2
νP

−1
ν

[
1− b

H
(2 +

dlnτ

dlnq
)

]
, (5.16)

N ≡
∫
d~q τ 2 − b2

H
, b =

∫
d~q τ 2

(
2 +

dlnτ

dlnq

)
,

H =
∫
d~q τ 2

(
2 +

dlnτ

dlnq

)2

. (5.17)
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Matched multifilter (MMF)

If we do not assume condition (3) defining the SAMF in the previous subsection, it

is not difficult to find another type of multifilter after minimization of the variance

(i.e. condition (2) with the constraint (1)). Then, the multifilter satisfying such

conditions is given by the matrix equation

ψ̃(q) = αP−1F, α−1 =
∫
d~qFtP−1F, (5.18)

where F is the column vector F = (fντν) and P−1 is the inverse matrix of the cross-

spectrum one P . This will be called matched multifilter extending the concept

usually considered for a single map. On the other hand, the variance is given by

σ2
w =

∫
d~q ψ̃tPψ̃ = α. (5.19)

A particular case is when P is a diagonal matrix, i.e. there is no cross-

correlation between the backgrounds in the different maps Pνν′ = δνν′Pν(q). In

this case the multifilter is given by

ψ̃ν(q) = αfντνP
−1
ν , α−1 =

∑
ν

f 2
ν

∫
d~q

τ 2
ν

Pν

. (5.20)

If, additionally, one assumes that the backgrounds are white noise, i.e. Pν are

constants and the resolution is the same in all maps, originating the convolved

profile τ(rc, θ), then

fνψ̃ν(q) =
τ

N

f 2
νP

−1
ν∑

ν f 2
νP

−1
ν

, N ≡
∫
d~q τ 2. (5.21)

5.2.2 The Single Filter method

The idea is to build up a template (optimal map) combination of the original ones

(see eq. (5.1)) with a set of weights cν :

y(~x) = At(x) + ε(~x), (5.22)

y(~x) ≡
∑
ν

cνyν(~x), t(x) ≡
∑
ν

cνfντν(x), ε(~x) ≡
∑
ν

cνnν(~x). (5.23)
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The optimal values of the weights are found assuming the criterion: maximisation

of the quotient Q ≡ At(~0)/σε, σε is the dispersion of the noise field ε(~x). The last

quantity is given by

σ2
ε = ctMc, c = (cν), M = (Mνν′), Mνν′ = 〈nν(~x)nν′(~x)〉. (5.24)

The previous problem is equivalent to maximize

Q2 = A2 ctGc

ctMc
, G = (Gνν′), Gνν′ = fντν(0)fν′τν′(0). (5.25)

The solution is easily found to be the eigenvector c associated to the largest eigen-

value λ of the generalized eigenvalue problem

(G− λM)c = 0. (5.26)

Scale-Adaptive single filter (SAF)

Once we have obtained the template t(x) given by eq. (5.23) with the optimal

weights c given by eq. (5.26), we can apply a scale-adaptive filter to the single

image given by eq. (5.22). The only difference to the approach given in Chapter 2 is

that the profiles of the sources present in the combined map are more complicated

(namely, the superposition of individual profiles which in many cases are convolved

with different resolution beams).

Matched single filter (MSF)

Once we have obtained the template t(x) given by eq. (5.23) with the optimal

weights c given by eq. (5.26), we can apply a matched filter to the single image

given by eq. (5.22).

ψ̃(q) =
1

2πa

t(q)

P (q)
, a =

∫
dq q

t2(q)

P (q)
,

P (q) = ctNc, N = (Pνν′(q)), (5.27)

where t(q) and P (q) are the Fourier transform of t(x) and the power spectrum of

the noise ε, respectively. This last formula applies also to the case of the scale-

adaptive single filter.
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Frequency FWHM Pixel size Fractional σnoise

(GHz) (arcmin) (arcmin) bandwidth (µK)
(∆ν/ν)

30 33.0 6.0 0.20 4.4
44 23.0 6.0 0.20 6.5
70 14.0 3.0 0.20 9.8

100 (LFI) 10.0 3.0 0.20 11.7
100 (HFI) 10.7 3.0 0.25 4.6

143 8.0 1.5 0.25 5.5
217 5.5 1.5 0.25 11.7
353 5.0 1.5 0.25 39.3
545 5.0 1.5 0.25 400.7
857 5.0 1.5 0.25 18182

Table 5.1: Technical characteristics of the 10 simulated Planck channels. Column
two lists the FWHM assuming a Gaussian beam. Column three shows the pixel size
in arcmin. Column four lists the fractional bandwidths of each channel. In column
five the instrumental noise is ∆T (µK) per resolution element for 12 months of
observation.

5.3 Simulations

Realistic Planck simulations were performed in order to test the ideas presented

in § 5.2. The simulations mimic the main features of the future Planck mission.

They are realistic in the sense that they include the latest available information

about the different components (CMB, Galactic components, SZ effect and extra-

galactic point sources) and that they reproduce the technical specifications of the

different Planck channels (pixel sizes, antenna beams and noise levels). Table 5.1

shows the principal technical features of the simulated maps. We assume that

the components can be factorized as a spatial template at 300 GHz with a known

frequency dependence. The simulations were performed in patches of the sky of

12.8◦ × 12.8◦. However, the method can be extended to all the sphere.

The CMB simulation was generated using the Cl’s provided by the CMBFAST

code (Seljak & Zaldarriaga, 1996) for a spatially-flat ΛCDM Universe with Ωm =

0.3 and ΩΛ = 0.7 (Gaussian realization).

The simulations include four different Galactic emissions: thermal dust, spin-
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Figure 5.1: Components present in the simulation at 300 GHz. From left to
right and from top to bottom the components are: CMB, kinetic SZ, thermal SZ,
Galactic dust, free-free and synchrotron. The units of the maps are Jy/sr.

ning dust, free-free and synchrotron. Thermal dust was simulated using the tem-

plate given by Finkbeiner et al. (1999). This model assumes that dust emission is

due to two grey-bodies: a hot one with a dust temperature T hot
D ' 16.2K and a

emissivity αhot ' 2.70, and a cold one with T cold
D ' 9.4K and αcold ' 1.67. These

quantities are mean values.

For the free-free template we used one correlated with the dust emission in

the manner proposed by Bouchet et al. (1996). The frequency dependence of the

free-free emission is assumed to vary a Iν ∝ ν−0.16, and is normalised to give an

rms temperature fluctuation of 6.2µK at 53 GHZ.

The synchrotron spatial template has been produced using the all sky map
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of Fosalba & Girardino 1, which is an extrapolation of the 408 MHz radio map

of Haslam et al. (1982), from the original 1 deg resolution to a resolution of 5

arcmin. The small-scale structure has been extrapolated to 1.5 arcmin following

a power-law power spectrum with an exponent of −3. The frequency dependence

is assumed to be Iν ∝ ν−0.9 and is normalized to the Haslam 408 MHz map. We

include in our simulations the information on the changes of the spectral index as a

function of electron density in the Galaxy. This template has been done combining

the Haslam map with the Reich & Reich 1986 map at 1420 MHz and the Jonas et

al. 1998 map at 2326 MHz, and can be found in the previous FTP site.

We have also taken into account the possible Galactic emission due to spinning

dust grains, proposed by Draine & Lazarian 1998. This component could be im-

portant at the lowest frequencies of Planck (30 and 44 GHz) in the outskirts of the

Galactic plane.

The extragalactic point source simulations follow the same cosmological model

than the CMB simulations and correspond to the model of Toffolati et al. (1998).

The thermal SZ effect was made for the same cosmological model. The cluster pop-

ulation was modelled following the Press-Schechter formalism (Press & Schechter

1974) with a Poissonian distribution in θ and φ. The simulated cluster population

fits well all the available X-ray and optical cluster data sets (see Diego et al. 2001a

for a discussion). The different components used for the simulation are shown at

300 GHz in figure 5.1. Figure 5.2 shows the simulated channels taking into account

all the components and the antenna beam effect.

The simulation described above is the same used by Diego et al. (2001b). We

have chosen this particular simulation in order to compare results with that work

under the same conditions.

5.4 Results and discussion

5.4.1 Testing the methods

Before applying the methods presented in § 5.2 to the simulations described in

§ 5.3, let us illustrate how they work in a simplified case. Section § 5.2 introduced

1ftp://astro.estec.esa.nl/pub/synchrotron
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Figure 5.2: Simulated Planck channels. Each map corresponds to the same 12.8◦×
12.8◦ area of the sky at the frequency of the channel. 30, 30, 44, 70, 100 (LFI),
100 (HFI), 143, 217, 353, 545 and 857 GHz channels are represented. The units of
the maps are Jy/sr.

two different methods that include the multi-frequency information (optimal com-

bination and multifiltering) and that can be implemented for two different kind
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of filters (matched filters and adaptive filters). This makes four different possible

combinations to filter the data; each way will have advantages and shortcomings

with respect to the others.

From the methodological point of view, the main difference between the sin-

gle filter method and the multifilter method is that the first one uses the multi-

frequency information to give the optimal starting point for the filter, while mul-

tifilters produce the optimal ending point after filtering. In that sense, multifilters

are more powerful than a single filter applied to an optimally combined map. The

cost of this higher efficiency is an increase of the complexity of the filters and there-

fore of the computational time required to perform the data analysis. For example,

to filter 10 frequency channels the multifilter method will need ∼ 10 times more

than the single filter method (because the last one only filters once).

Regarding the type of filter, matched filters give higher gains while adaptive

filters reduce the number of errors in the detections (spurious sources). This is

due to the fact that the adaptive filter definition of ‘optimal filter’ includes a

constraint about the scale of the sources that is not present in matched filter

design. This constraint characterises with more precision the sources but also

restricts the minimisation of the variance in the filtered maps (that is, the final

gain).

To give an example of the previous ideas, we performed a ‘10 frequencies’ simple

simulation. The simulation includes the same foregrounds and technical features

than the simulations described in § 5.3, except for the SZ effect. Instead of the

realistic SZ clusters we simulated 200 clusters with the same size (rc = 0.5 pixels)

and amplitudes uniformly distributed between 0 and the maximum amplitude of

the clusters belonging to the realistic simulation. The simulated cluster have the

frequency dependence of the SZ effect and the radial profile

τ(x) = N

 1√
r2
c + x2

− 1√
r2
v + x2

 (5.28)

where N = rvrc/(rv +rc). Here rc denotes the core radius and rv is a ‘cut-off scale’

that can be interpreted as the virial radius of the cluster. The profile given by eq.

(5.28) is a modified multiquadric profile that behaves as a β model for x << rv

and decays quickly for x >> rv.
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The simulated maps were filtered using the four possible combinations of filters

and methods presented in this work. The single filter method took about 1 minute

of processing in a 700 MHz PC. The multifilter method took about 10 minutes

of processing in the same computer. Processing times were slightly higher for the

case of adaptive filters than in the case of matched filters. To compute the filters

and the combinations of the maps the low resolution channels were re-binned to

the resolution of the highest resolution channel (1.5 arcmin). Figure 5.3 shows the

filters (in Fourier space) employed in the multifilter method. The adaptive filters

are represented by solid lines, whereas matched filters are represented by dotted

lines. Filters, specially those used in low frequency channels, are quite complicate

and show several peaks at different wave numbers q that correspond to the different

scales the filters are trying to identify on the images. Conversely, the filters used

in the single filter method are rather simple. They are represented in figure 5.4.

The differences between matched and adaptive filters in the single filter method

are small. This indicates that there will be few differences in the results of both

filters. In the case of the multifilters the differences are greater, in particular for

the 217 GHz channel.

The results of the test are shown in table 5.2. After filtering, the sources were

detected by looking for peaks above a 4σ threshold and then compared with a

catalogue of the original simulated clusters. The number of detections is higher

in the multifilter case. this is not surprising since by definition the multifilter

method is more powerful than the single filter method. If we detect over a higher

threshold the difference between the two methods increase. for example, over 5σ

the matched multifilters produce 90 detections whereas the matched filter in the

single filter method gives only 78 (a 15 percent less).

A detected peak is considered a spurious detection if the distance to the closest

object in the original catalogue is greater than 1.5 pixels. The number of spurious

detections is strikingly low in all cases. The adaptive filter seems to work better

than the matched filter (0 spurious detections instead of 1 in the single filter

method). Of all the components present in the simulation, point sources are the

most likely to produce spurious detections due to the similar scale of sources and

SZ clusters. However, the frequency dependence of the SZ effect greatly reduces

the probability of contamination.
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METHOD number of number of mean offset b̄A(%) ēA (%)
detections spurious (pixels)

Single Filter/matched 110 1 0.41 33.3 33.3
Single Filter/adaptive 113 0 0.38 32.5 32.5
Multifilter/matched 116 1 0.42 29.8 29.9
Multifilter/adaptive 109 1 0.57 34.4 34.5

Table 5.2: Results of the test for 10 frequency channels and clusters of equal
size (rc = 0.5 pixels). The detection was performed over the 4σ threshold in all
cases. The filtering method is listed in the first column. Second column shows the
number of true detections found over the 4σ detection threshold. The third column
indicates the number of spurious sources detected in each case. The fourth column
lists the mean error in the determination of the position of the detected sources.
Column five lists the mean relative bias in the determination of the amplitude,
defined as b̄A = 100〈(A − A0)/A0〉. Column six shows the mean relative error in
the determination of the amplitude, defined as ēA = 100〈|A− A0|/A0〉.

The position of the sources was determined with errors below the pixel size (1.5

arcmin). The error in the determination is large (∼ 35%). Table 5.2 shows that

this error is due to a systematic bias. To explain this bias let us consider the case of

matched filter. The filter normalization is given by integral a =
∫∞
0 dqqτ 2/P , being

τ the source profile in Fourier space and P the power spectrum of the background.

However, when we analyse a pixelised patch of the sky we do not have information

about the power spectrum in all the wave numbers q. A pixellised image is limited

by a minimum value qmin and a maximum qmax. Therefore, the normalization we

calculate is a′ =
∫ qmax
qmin

dqqτ 2/P . For the case of images with the same size and pixel

scale than in our simulations and a multiquadric profile τ with rc = 0.5 pixels, the

normalisations can differ from a 10% for spectral indexes of the background γ = 1

to a 60% for spectral indexes of the background γ = 3. The case for adaptive

filters is more complicated but qualitatively similar. This bias is independent of

the source flux and can be calibrated using simulations.

Figure 5.5 shows the contribution of each channel to the source amplitude

estimation for each method. The channels with larger contribution are the 143 GHz

and the 353 GHz. This is not surprising since they are the channels with more SZ

contribution. The 100 GHz HFI channel has more contribution than the 100 GHz
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LFI because of its better signal to noise ratio. The single filter method puts more

emphasis in the 100 GHz and less in the 143 GHz channels than the multifilter

method. Contributions from the 30 GHz, 217 GHz and 857 GHz channels are

negligible. However, that does not mean that these channels do not contribute

to the filter construction. For example, if we repeat the analysis with only the 5

channels with more contribution (70, 100 LFI, 100 HFI, 143 and 353 GHz), the

number of detections reduces in ∼ 10% and the number of spurious detections

raise to 6 (at 4σ detection threshold) for the single filter method case (for the two

filters) and to 9 (adaptive filter) and 5 (matched filter) for the multifilter method.

Even the 217 GHz channel is important; repeating the analysis with all channels

except for the 217 GHz increases the error in the determination of the amplitudes

and also increases the number of spurious detections at low σ thresholds.

We can summarise the conclusions of the test as follows:

• Single Filter method is faster than the multifilter method.

• Multifilter method is more powerful in the detection and estimation of cluster

parameters.

• Multifrequency information reduces the number of spurious detections. There-

fore, it is not critical to use an adaptive filter to that end. The matched filter

allows to detect more sources.

• Some channels contribute more than others to the analysis, but all of them

carry valuable information; the analysis should include all the available in-

formation.

5.4.2 Results for realistic simulations

Taking into account the insights provided by the test presented in the last sub-

section, we are now prepared to confront the analysis of realistic simulations. The

main difference with respect to the previously performed test is that in the realistic

case clusters have different, non a priori known sizes. In Chapter 3 a way to deal

with this problem was proposed:

• We choose a trial core radius rc and construct the correspondent filters.
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• We filter the data with the filters, varying the scales Rν of eq. (5.3). This

is performed by substituting ψ̃(q) by ψ̃(qx), where x = R′
ν/Rν is simply a

dilation factor.

• In the case of scale-adaptive filters, condition (3) (see § 5.2.1) imply that,

if the rc tested corresponds with the true core radius of the cluster, the

coefficients will be maximum when x = 1. If this is not true, the trial rc is

discarded.

• In the case of matched filters, condition (3) no longer exits. However, a

similar criterion can be used: the best performance of the filter will happen

when the scale of the filter and the scale of the clusters is the same. Therefore,

if the maximum of the signal to noise ratio of the coefficients is not maximum

for x = 1, that means that the chosen radius rc is not the best choice.

• We repeat the process with as many different values of rc as we want.

In Chapter 3 the previous method has been successfully used on single frequency

maps containing simulated multiquadric profiles and different kind of backgrounds.

Following the results of the test in the last subsection, we choose a matched

multifilter to perform the analysis. After applying our method to the simulations

we detect the clusters by looking for sets of connected pixels above a certain thresh-

old. At the 3σ level (regions with 5 or more connected pixels) we are able to detect

63 cluster candidates. Of these 63 candidates 62 correspond with real clusters. The

spurious detection appear in one of the borders of the image and therefore can be

considered as a border effect. If we lower to 2σ we detect 284 candidates. Of these

284, 257 were real clusters and 27 were spurious detections. The mean error in the

determination of the position of the clusters was ∼ 1 pixel.

With the multi-scale analysis we were able to determine the core radii of the

clusters with a mean absolute error of 0.30 pixels. The mean bias in the deter-

mination of the core radii was -0.15 pixels. Since pixelisation effects are expected

to corrupt structures whose typical scale of variation is much smaller than the

pixel size, all clusters with a core radius small enough will not follow the multi-

quadric profile. Most of the clusters have very small core radii and therefore can

be considered as point-like sources. To detect these clusters, a Gaussian profile
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(corresponding to the beam at each channel) was assumed instead of the multi-

quadric given by eq. (5.28). The separation between clusters that are considered

as point sources and extended sources was set in rc = 0.4 pixel because if rc is be-

low this limit the FWHM of the multiquadric profile is of the order of a pixel. All

the clusters that were detected as point sources were considered to have rc = 0.1

pixel. The bias in the determination of the core radius above mentioned is due to

the asymmetry introduced when assigning rc = 0.1 pixel to all clusters whose core

radius is less than 0.4 pixel. Figure 5.6 show the resulting maps after filtering with

different scales (point source in the left, rc = 1.0 pixel in the middle and rc = 2.5

pixel in the right side). Small clusters stand out mainly in the left panel, while

large clusters are emphasized in the right panel.

Figure 5.7 shows the detected amplitudes of the 80 brightest detected clusters

vs. the true amplitudes. The brightest sources in the graph were recovered with

relative errors of ∼ 30%. The error goes worse as the true amplitude decreases.

For the weakest clusters, the detected amplitude tends to a horizontal line. This

bias is due to two factors: first, only the faint clusters that are overamplificated are

able to reach the detection threshold; second, the detection is performed looking

for peaks in the data and, hence, those clusters that are by chance enhanced by

residual fluctuations of the background (noise) are more likely detected.

The catalogue of detected sources was complete over 0.17 Jy (at 300 GHz).

Below this limit the completeness decreases gradually. There are a few very faint

clusters that are detected with this method (fluxes of few tens of mJy), but the

practical detection limit is 40− 50 mJy (at 300 GHz). A number of 62 detections

in our small sky patch of (12.8◦)2 means that we expect ≈ 15000 detections in all

sky.

The performance of the other filtering techniques proposed in this work was

compared to the performance of the matched multifilter. For the comparison, only

the point-like clusters (that dominate the number counts) were considered. The

scale-adaptive multifilter, as seen in § 5.4.1, performs worse than the matched

multifilter because their main advantage, that is the removal of spurious sources,

has already been accomplished by the multi-frequency information included in

the filters. Since the clusters we are trying to detect are very faint, what counts

here is the gain. At 3σ, the scale-adaptive multifilter detects a 40 percent less
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clusters than the matched multifilter. Single filters are slightly less sensitive than

multifilters, producing a 20 percent less detections at 3σ than with the matched

multifilter in the case of both matched and scale-adaptive filters. In the case of

single filters, matched and scale-adaptive perform very similarly (as was expected

from figure 5.4, where both filters look alike).

5.5 Discussion

The results obtained with the matched multifilter are comparable at 3σ and better

at 2σ than those obtained by Diego et al. (2001b). To perform their method it

is necessary to previously perform a careful cleaning of the maps. This cleaning

include point source removal with a MHW technique (Cayón et al. 2000, Vielva

el al. 2001a), dust substraction using the 853 GHz map and CMB substraction in

Fourier space up to a certain wavenumber limit using the 217 GHz map. In order to

compare, we performed the same cleaning method and then applied the matched

multifilter. We obtained a 7% more detections at 3σ detection threshold than

before. We also detected 7% more clusters and the number of spurious detections

decreased in a 12% at the 2σ level. The improvement is small taking into account

all the cleaning work that is necessary to obtain it. Moreover, it indicates that

the multifilter scheme is powerful and robust enough to successfully deal with

contaminants such as point sources, dust and the CMB signal.

The filtering techniques described in this work have proven to be useful tools for

the detection of signals that are present in multi-frequency data and that are known

to have a prescribed frequency dependence. The only other assumption about

the signals is their profile; any other quantities of interest are directly calculated

from the data. We have assumed in this work that the sources have circular

symmetry, but the method can be extended to deal with asymmetric structures.

Future work will take this point into account. We have applied these techniques

to the problem posed by the presence of Sunyaev-Zel’dovich effect in CMB maps.

The best results are obtained with matched multifilters. The detection level of

the method is comparable to other single-component separation methods, but the

number of assumptions and previous data processing is reduced to a minimum.

Due to the weakness of the signals that we tried to detect, the determination
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of the amplitude of the clusters is biased; this is the strongest limitation of the

method. Therefore, the method should be complemented with a posteriori aids

(for example data fitting, etc.) in order to improve the amplitude estimation of

weak clusters. Finally, the filters here presented can be used in other fields of

Astronomy, such as X-ray observations, large-scale structure detection, etc.
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Figure 5.3: Filters used to test the multifilter method. Adaptive filter (solid line)
and matched filter (dotted line) are represented in Fourier space for each frequency
channel.
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Figure 5.4: Filters used to test the single filter method. The adaptive filter (solid
line) and the matched filter (dotted line) are represented in Fourier space.
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Figure 5.5: Contributions of the different channels to the source amplitude es-
timation. The contributions are normalised so that the channel with maximum
contribution has contribution 1.
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Figure 5.6: Multifiltered data at several scales. Left panel shows the output after
filtering with a matched multifilter that considers that clusters are point-like. Cen-
ter panel shows the output after filtering with a matched multifilter for a modified
multiquadric profile with rc = 1.0 pixel. Right panel shows the output after fil-
tering with a matched multifilter for a modified multiquadric profile with rc = 2.5
pixel. Note how different structures are enhanced at different scales. The units of
the maps are in ∆T/T .



Chapter 5. Detection of clusters in Planck data 129

0.0001 0.001

Figure 5.7: Amplitudes of the 80 brightest detected clusters vs. the true ampli-
tudes. The dotted line corresponds to the perfect situation True Amplitude =
Detected Amplitude.
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Chapter 6

Conclusions and future work

The work presented in this thesis deals with the application of filtering techniques

to component separation of CMB data. The relevance of CMB studies has been

pointed out in the introduction of this thesis; it is necessary to develop efficient and

robust component separation techniques in order to identify the different physical

processes that are present at microwave wavelengths.

Filtering techniques are well suited to isolate (that is, detect) signals that have

a known characteristic behaviour in Fourier space. Examples of such signals are

extragalactic point sources and galaxy clusters in CMB maps. The initial question

of this work was, ‘is there any optimal way to filter a given data set in order to

recover certain signals?’

Chapter 2 introduced the use of scale-adaptive filters that optimize the detec-

tion/extraction of sources on a background. As a first approach, it is assumed

that such sources are described by a spherical (central) profile and that the

background is represented by a homogeneous & isotropic random field. The

scale-adaptive filters are derived so that

• They are unbiased estimators of the amplitude of the sources.

• They are efficient in the sense that they minimize the variance of the

filtered data.

• They give a maximum at a certain scale Ro related to the characteris-

tic scale of the sources. This last condition leads straightforwardly to

131
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a reduction of the probability of false detections (improvement of the

reliability).

A fully n-dimensional treatment of scale-adaptive filters is done, making em-

phasis in astrophysical applications for spectra, images and volumes, for the

cases of exponential and Gaussian source profiles and scale-free power spec-

tra to represent the background. The scale-adaptive filters were compared

with the Gaussian filter and the Mexican Hat Wavelet, surpassing them both

in number of detections and reliability.

Chapter 3 deals with the detection of more general profiles in two-dimensional

images. The profile of a galaxy cluster at different wavelengths, for example,

can be approximated by functions belonging to the multiquadric family, i.

e. τ(x) = [1 + (x/rc)
2]
−λ
, λ ≥ 1

2
, x ≡ |~x|. This chapter included simple

simulations of ‘clusters’ at microwave and X-ray frequencies embedded in

different noises. The scale-adaptive filters are able to detect clusters with

high reliability. Besides, it is shown that the scale-adaptive filters can be

used to determine not only the amplitude of the sources but also their size,

using the third condition mentioned above.

Chapter 4 apply scale-adaptive filters to optimize the detection and extraction

of point sources from a one-dimensional array of time-ordered data such as

the one that will be produced by the future 30 GHz LFI28 channel of the

ESA Planck mission. This simulation is fully realistic and include all the

foregrounds and instrumental effects to be present in Planck channels. The

scale-adaptive filter produced the following results:

• At a 4σ detection level 224 sources over a flux of 0.88 Jy are detected

with a mean relative error (in absolute value) of 21% and a systematic

bias of −7.7%.

• The position of the sources in the sky is determined with errors inferior

to the size of the pixel.

• The catalogue of detected sources is complete at fluxes ≥ 4.3 Jy.
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• The number of spurious detections is less than a 10% of the true detec-

tions (high reliability).

The results were compared with the ones obtained by filtering with a Gaus-

sian filter and a Mexican Hat Wavelet of width equal to the scale of the

sources. The adaptive filter outperforms the other filters in all considered

cases. We conclude that optimal adaptive filters are well suited to detect

and extract sources with a given profile embedded in a background of known

statistical properties. In the Planck case, they could be useful to obtain a

real-time preliminary catalogue of extragalactic sources, which would have a

great scientific interest, e. g. for follow-up observations.

Chapter 5 introduce multifilters and single filters that optimize the detection of

clusters on microwave maps. The Sunyaev-Zel’dovich effect generates source

profiles that can be approximately represented by multiquadric profiles. The

filters are applied to small patches (corresponding to 10 frequency channels)

of the sky such as the ones that will produce the future ESA Planck mission.

The method presented in this chapter is a generalization of the scale-adaptive

filters (see chapter 2) that includes all the cross-correlation between maps

as well as the frequency dependence of the Sunyaev-Zel’dovich effect. In a

square patch of the sky of 12.8◦ × 12.8◦ the matched multifilter detects 62

clusters. That means a number of detections of ≈ 15000 in whole sky. The

catalogue will be complete over fluxes S > 170 mJy (at 300 GHz). The

method here presented only assumes the profile of the cluster, allowing to

determine both the amplitude (flux) and the scale (core radius) of the clusters

in a robust manner.

Besides the applications described in this thesis, scale-adaptive filters may be

used in many other fields of Astronomy and science in general. Examples of such

applications are the analysis of spectra, detection and extraction of large-scale

structure, detection of X-ray clusters, etc. The scale-adaptive filters will be gener-

alised in the future for non-symmetric profiles, thus allowing to detect substructure

in galaxy clusters or to include more realistic beam profiles in the calculations.

One of the most promising work lines for the future will be the generalisation of
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the treatment presented in Chapter 4 to include information from different Planck

instruments in the TOD. For example, the final 30 GHz map will have contributions

from several radiometers. In Chapter 4 only one of them was taken into account.

By taking all of them into account it is expected to increase the SNR of the sources.

Besides, TOD can be used to detect Sunyaev-Zel’dovich clusters in a similar way

to described in Chapter 5. In this case, not only different instruments but also

different frequency channels must be taken into account.

Another possibility is the combination of scale-adaptive filters with other com-

ponent separation techniques. In Vielva et al. (2001b) the MHW was combined

with MEM in order to clean up the maps from bright sources as a previous step

to maximum entropy analysis. Similarly, SAFs can be combined with other tech-

niques to improve the final results.



Appendix A

Derivation of the formula for the
Scale-Adaptive Filters

Let us consider a set of n-dimensional data:

y(~x) = s(x) + n(~x), (A.1)

where ~x = (x1, x2, · · · , xn) is a position vector and x = |~x|. Therefore, s(x)

represents a source with central symmetry whose profile τ(x) can be defined as

τ(x) = s(x)/A, A ≡ s(0). The background n(~x) is assumed to be statistically

homogeneous and isotropic random field with mean value 〈n(~x)〉 = 0 and charac-

terized by the power spectrum P (q), q ≡ |~q|:

〈n(~q)n∗(~q ′)〉 = P (q)δn(~q − ~q ′), (A.2)

where n(~q) is the n-dimensional Fourier transform, symbol n∗ represents the com-

plex conjugate of n, ~q is the wave vector and δn is the n-dimensional Dirac distri-

bution. Throughout all this work the Fourier transform convention is the same as

in eq. (1.21),

f(~q) =
1

(2π)n/2

∫
d~xf(~x)ei~q~x,

f(~x) =
1

(2π)n/2

∫
d~qf(~q)e−i~q~x. (A.3)

Note that, with convention (A.3), any convolution can be expressed as

f ⊗ g(~b) =
∫
d~xf(~x)g(~b− ~x) =

135
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1

(2π)n

∫ ∫
d~q d~q ′f(~q)g(~q ′)e−i~q ′~b

∫
d~xe−i~x(~q−~q ′) =

1

(2π)n

∫ ∫
d~q d~q ′f(~q)g(~q ′)e−i~q ′~b (2π)nδn(~q − ~q ′) =∫

d~qf(~q)g(~q)e−i~q~b. (A.4)

This justifies the result in eq. (1.23). Let us introduce a spherical (centrally

symmetric) filter, Ψ(~x;~b, R), dependent on n+ 1 parameters:

Ψ(~x;R,~b) =
1

Rn
ψ

 |~x−~b|
R

 , (A.5)

where ~b defines a translation whereas R defines a scaling. The filtered field w(R,~b)

is

w(R,~b) =
∫
d~x y(~x)Ψ(~x;~b, R). (A.6)

Using the same reasoning that in eq. (A.4), the filtered field can be expressed as

a product in Fourier space:

w(R,~b) =
∫
d~q e−i~q~by(~q)ψ(Rq). (A.7)

A simple calculation -taking into account eqs. (A.1) and (A.2)- gives the average

at the origin ~b = 0, 〈w(R,~0)〉, and the variance, σ2
w(R) = 〈w2(R,~b)〉 − 〈w(R,~b)〉2,

of the filtered field:

〈w(R,~0)〉 = α
∫
dq qn−1 s(q)ψ(Rq),

σ2
w(R) = α

∫
dq qn−1 P (q)ψ2(Rq), (A.8)

where q = |~q|, α = 2πn/2Γ−1(n/2) and the limits in the integrals go from 0 to ∞.

The conditions that the filter (A.5) must satisfy are:

∃ Ro so that
d〈w(R,~0)〉

dR

∣∣∣∣∣
R=Ro

= 0 (A.9)

〈w(Ro,~0)〉 = s(0) = A (A.10)

σ2
w(Ro) is minimum with respect to ψ (A.11)
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Condition (A.9) means that ψ is a optimal scale estimator. It gives a constraint

on ψ given by
d〈w(R,~0)〉

dR
=

d

dR

[
Aα

∫
dqqn−1τ(q)ψ(qR)

]
. (A.12)

Changing variables x ≡ qR we have

d〈w(R,~0)〉
dR

= Aα
d

dR

[
1

Rn

∫
dxxn−1τ

(
x

R

)
ψ(x)

]
=

Aα

[
−n 1

Rn+1

∫
dxxn−1τ

(
x

R

)
ψ(x) +

1

Rn

∫
dxxn−1ψ(x)

dτ(x/R)

dR

]
(A.13)

but dτ(x/R)
dR

= dτ(u)
dR

= dτ(u)
du

du
dR

= − x
R2

dτ(u)
du

, where we have changed u ≡ x/R. Now,

note that reversing the variable change q = x/R we have that u = q and then

d〈w(R,~0)〉
dR

= −Aα
R

∫
dqqn−1τ(q)ψ(qR)

[
n+

q

τ

dτ

dq

]
=

−Aα
R

∫
dqqn−1τ(q)ψ(qR)

[
n+

d ln τ

d ln q

]
= 0. (A.14)

So we have a first constraint:∫
dqqn−1τ(q)ψ(qRo)

(
n+

d ln τ

d ln q

)
= 0. (A.15)

The condition (A.10) means that the filter is an unbiased estimator of the ampli-

tude of the sources and straightforwardly gives the constraint:∫
dq qn−1 τ(q)ψ(qRo) =

1

α
. (A.16)

To include condition (A.11), that reflects the fact that the filter is an efficient

estimator of the amplitude of the sources, we introduce a couple of Lagrangian

multipliers λ̄ and µ̄ and define

L(ψ) = σ2
w(ψ) + λ̄

[∫
dq qn−1 τ(q)ψ(qRo)−

1

α

]
+µ̄

[∫
dqqn−1τ(q)ψ(qRo)

(
n+

d ln τ

d ln q

)]
. (A.17)

Taking into account the expression (A.8) we find the extrema of L by taking

variations with respect to ψ and making the result equal to zero. For the sake of
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simplifying the notation, we will omit the q dependence of P (q), τ(q), ψ(qRo), etc.

L(ψ + δψ)

α
− L(ψ)

α
= 2

∫
dqqn−1Pψδψ∗ +

λ
∫
dqqn−1τδψ∗ + µ

∫
dqqn−1τδψ∗

(
n+

d ln τ

d ln q

)
, (A.18)

where λ = λ̄/α, µ = µ̄/α. The right hand side of the previous equation is zero iff

0 = 2Pψ + λτ + µτ

(
n+

d ln τ

d ln q

)
. (A.19)

Therefore,

ψ(qRo) =
τ(q)

αP (q)

[
λ+ µ

(
n+

d ln τ

d ln q

)]
, (A.20)

where the multipliers have been redefined for convenience. Now, to obtain the

values of λ and µ we go back to constraints (A.15) and (A.16). The first of them

gives the equation

aλ+ (na+ b)µ = 1, (A.21)

where as the second constraint gives

(na+ b)λ+ (n2a+ nab+ c)µ = 0, (A.22)

and where a, b and c are the integrals:

a ≡
∫
dq qn−1 τ2

P
,

b ≡
∫
dq qn−1 τ

P
d τ

d ln q
,

c ≡
∫
dq qn−1 1

P
[ d τ
d ln q

]
2
.

(A.23)

The solution to the system (A.21)-(A.22) is:

λ =
n2a+ 2nb+ c

∆
, µ = −na+ b

∆
, ∆ = ac− b2. (A.24)

Substituting (A.24) in (A.20) we reach the formula for the scale-adaptive filter:

ψ̃(q) ≡ ψ(Roq) =
1

α

τ(q)

P (q)

1

∆

[
nb+ c− (na+ b)

d lnτ

d lnq

]
(A.25)

If instead of using the three conditions (A.9)-(A.11) we only use the two last

ones, the only constraint to the minimization is (A.15) and in eq. (A.17) only
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the multiplier λ̄ appear. Then the solution does not depend on the logarithmic

derivative of τ and the filter that is obtained is:

ψ(Roq) =
1

α

τ(q)

aP (q)
, (A.26)

where a is the same integral that in eq. (A.23). This kind of filter is called matched

filter.
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Appendix B

Resumen de la tesis en castellano

B.1 Introducción

B.1.1 La radiación cósmica del fondo de microondas

La Radiación Cósmica del Fondo de Microondas (RCFM) es, como su propio nom-

bre indica, una radiación muy débil y uniforme que continuamente llega a la Tierra

desde todas las direcciones. Las dos caracteŕısticas más notorias de la RCFM son

que su espectro electromagnético corresponde exactamente con el de un cuerpo

negro cuya temperatura es To = 2.73K y que su intensidad es extraordinariamente

homogénea e isótropa. Hasta donde se sabe, sólo procesos en los que haya equi-

librio termodinámico son capaces de producir espectros de cuerpo negro, lo cual

sugiere que la RCFM tuvo un origen térmico. Por otra parte, la homogeneidad e

isotroṕıa de la RCFM implican que los procesos que la originaron afectaron a todo

el Universo observado. Conjuntamente, estas dos propiedades pdŕıan ser expli-

cadas fácilmente si el Universo hubiera atravesado en algún momento de su pasado

una fase de equilibrio termodinámico en la cual las condiciones de densidad y tem-

peratura alcanzaran valores muy elevados. Esto es precisamente lo que predicen

los modelos cosmológicos basados en la ‘Gran Explosión’ (‘Big Bang’ ). De hecho,

la RCFM ya hab́ıa sido predicha dentro del marco de la nucleośıntesis primordial

(Gamow 1948a,b, Alpher & Herman 1948) años antes de su descubrimiento por

parte de Penzias y Wilson en 1964 (Penzias & Wilson 1965).

141
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Origen de la RCFM

Inmediatamente después de la Gran Explosión las condiciones de temperatura,

densidad y presión en el Universo eran extremas. En esas condiciones, la materia

se encontraba totalmente ionizada y electrones, bariones y fotones formaban un

‘fluido’ que se manteńıa en equilibrio termodinámico gracias a las continuas interac-

ciones entre las part́ıculas que lo formaban. A medida que el Universo se expande,

la temperatura y la presión disminuyen, de modo que, después de ∼ 3× 105 años

(z ∼ 1000), la temperatura hab́ıa bajado a T ∼ 3000K. Por debajo de esta tem-

peratura, los electrones y los protones se combinaron para formar átomos neutros,

dejando libertad a los fotones para propagarse. El Universo se volvió transparente.

Tras este momento, llamado época de la recombinación o del desacoplo, materia y

radiación siguieron caminos independientes. La inmensa mayoŕıa de aquellos fo-

tones jamás volvieron a interaccionar con la materia, manteniendo aśı el espectro

de cuerpo negro. La temperatura de la RCFM ha disminuido desde la época de

recombinación de acuerdo con T (z) = (1+z)To, siendo To = 2.73K la temperatura

actual de la RCFM. Por lo tanto, la RCFM puede considerarse como la imagen más

antigua del Universo, ya que previamente al desacoplo el Universo era totalmente

opaco.

Observables

La isotroṕıa de la RCFM no es totalmente perfecta. En ella aparecen pequeñas

irregularidades en intensidad cuya magnitud t́ıpica es de una cienmilésima parte

de la intensidad media de la RCFM. Dichas irregularidades reciben el nombre de

anisotroṕıas de la RCFM. Las anisotroṕıas de la temperatura de la RCFM se

describen por un campo aleatorio 2-dimensional ∆T
T

(~n) ≡ T (~n)−To

To
, donde ~n es un

vector unitario sobre la esfera. Este campo suele escribirse como una expansión en

armónicos esféricos:
∆T

T
(~n) =

∞∑
`=1

∑̀
m=−`

a`mY`m(~n) , (B.1)

En dicha expansión, valores bajos de ` corresponden a escalas angulares grandes,

mientras que valores altos reflejan las anisotroṕıas a pequeña escala angular. Los

coeficientes alm son variables aleatorias independientes de media cero. Si las fluc-
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tuaciones de temperatura son isotrópas en sentido estad́ıstico, la varianza de los

alm es independiente de m:

< a`ma
∗
`′m′ >= C`δ``′δmm′ , (B.2)

donde los promedios se definen sobre conjuntos estad́ısticos. El conjunto de valo-

res C` constituye el espectro de potencias angular o, simplemente, el espectro de

potencias de la radiación.

Si las fluctuaciones de la RCFM son gaussianas, el espectro de potencias angular

describe por completo el campo de temperaturas. El espectro de potencias se suele

representar como la potencia por intervalo logaŕıtmico del número de onda:

∆2
T =

`(`+ 1)

2π
C`T

2 . (B.3)

Los C` pueden ser calulados con gran exactitud en función de los parámetros

cosmológicos (Seljak & Zaldarriaga 1996, Hu et al. 1998), de lo que se deduce la

importancia de su estudio a la hora de intentrar determinar los valores de dichos

parámetros. El comportamiento del espectro de potencias angular en función de

` refleja de manera muy sensible los fenómenos f́ısicos fundamentales del Universo

primitivo, por lo que resulta de vital importancia su estudio e interpretación. Aun

en el caso de que las fluctuaciones de la RCFM no sean gaussianas, el espectro

de potencias angular de la RCFM sigue siendo una herramienta fundamental en

Cosmoloǵıa.

El conocimiento del espectro de potencias de la RCFM está limitado por varias

razones:

• En primer lugar, porque un observador real siempre estará limitado a ob-

servar un único Universo, con un único conjunto de a`m, de tal manera que

para ` bajos el número máximo posible de a`m observables es muy pequeño.

Esto nos lleva a una varianza inevitable de orden 2
2`+1

C2
` . Esta limitación es

fundamental e insoslayable, y recibe el nombre de varianza cósmica.

• Otro efecto que reduce nuestra habilidad para medir con precisión el espectro

de potencias de la radiación es la varianza muestral, la cual es debida a un

cubrimiento parcial del cielo. Esta limitación también es inevitable, ya que
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aunque un experimento dado sea capaz de abarcar todo el cielo siempre habrá

regiones altamente contaminadas que deban descartarse del análisis.

• Por último, están las propias limitaciones instrumentales de los experimentos

de medición de la RCFM.

En la figura 1.1 se muestra el estado actual de los experimentos de RCFM. Estos

experimentos han permitido imponer fuertes ligaduras en el modelo cosmológico

que actualmente se maneja, y en un futuro próximo se espera que permitan deter-

minar los parámetros cosmológicos fundamentales con errores del orden de unos

pocos tantos por ciento.

Tipos de anisotroṕıas de la RCFM

Las anisotroṕıas de la RCFM pueden clasificarse como primarias, si el momento de

su origen es previo o igual al del desacoplo, y secundarias, si es posterior. Durrer

(2001) y Hu & Dodelson (2001) ofrecen excelentes revisiones sobre el tema.

Anisotroṕıas primarias. Su origen último son las fluctuaciones en la densidad

del fluido materia-radiación en la época del desacoplo. Dichas fluctuaciones

sirven también como semillas para la formación de las estructuras que ac-

tualmente se observan en el Universo. Se suelen distinguir dos tipos de

fluctuaciones: adiabáticas y de isocurvatura. Las fluctuaciones adiabáticas

se caracterizan por una fluctuación nula de la entroṕıa espećıfica asociada a

cada componente:

δ(
nb

nγ

) = δ(
nX

nγ

) = 0 , (B.4)

donde los sub́ındices γ, b y X hacen referencia a fotones, bariones y materia

no bariónica, respectivamente. Esta ecuación implica la siguiente relación en

el desacoplo:

δγ =
4

3
δb =

4

3
δX . (B.5)

Las fluctuaciones de isocurvatura se caracterizan por una fluctuación nula de

la enerǵıa total en cada punto, esto es, δ(ργ + ρb + ρX) = 0, con lo que la

curvatura del espacio se mantiene constante. En adición, se suele asumir que
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la entroṕıa por barión permanece constante, δ(nb/nγ) = 0. Eso conduce a

δγ = − 4ρX

3ρb + 4ργ

δX . (B.6)

Los modelos de inflación (Guth 1982, Linde 1982, 1983, Albrecht & Steind-

hart 1982) consideran que las fluctuaciones se deben a fluctuaciones cuánticas

cuya escala fue enormemente amplificada por un periodo de inflación cósmica.

Estos modelos tienden a favorecer fluctuaciones adiabáticas (Kolb & Turner

1990) de tipo gaussiano, aunque existen modelos inflacionarios no estándard

que predicen fluctuaciones de isocurvatura o no gaussianas. Modelos no in-

flacionarios, basados en defectos topológicos (por ejemplo cuerdas cósmicas),

predicen por lo general fluctuaciones no gaussianas (para una revisión sobre

el tema, véase Vilenkin & Shellard 1994). Además de a las fluctuaciones

de densidad de fotones, las anisotroṕıas primarias se deben también al co-

rrimiento al rojo sufrido por los fotones mientras escapan de los pozos de

potencial existentes en el momento del desacoplo (efecto Sachs-Wolfe). Por

último, aparece un término debido al efecto Doppler causado por las veloci-

dades peculiares de los últimos emisores de fotones:

∆T

T
(~n) ≈ 1

4
δγd +

1

3
φd − ~n~vd, (B.7)

donde ~n es la dirección de observación y el sub́ındice d indica cantidades

tomadas en el tiempo de desacoplo (se toman unidades c = 8πG = 1).

El primer término representa las fluctuaciones en la densidad de fotones, el

segundo recoge el efecto Sachs-Wolfe y el tercero es el término Doppler arriba

mencionado.

Anisotroṕıas secundarias. Se deben fundamentalmente a dos tipos de fenómenos:

gravitatorios y de reionización.

• Efectos gravitatorios : Uno de ellos es el llamado efecto Sachs-Wolfe

integrado (ISW). Cuando un fotón cae y escapa de un pozo de potencial

constante en el tiempo, el cambio neto en la enerǵıa del fotón es cero.

Sin embargo, si la profundidad del pozo de potencial vaŕıa mientras el

fotón lo cruza, la enerǵıa ganada al caer ya no se cancela con la perdida
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al escapar. La amplitud del efecto ISW está dado por una integral a lo

largo del camino del fotón (Mart́ınez-González et al. 1990):

∆T

T
=
∫ ∂φ

∂t
(~r, t)dt . (B.8)

Hay contribuciones de este efecto en los siguientes casos: el universo no

está completamente dominado por la materia al tiempo del desacoplo

(efecto ISW temprano), la constante cosmológica Λ 6= 0 o Ω + Λ 6= 0

(efecto ISW tard́ıo) o el régimen lineal no es válido (efecto Rees-Sciama).

Por otra parte, el efecto lente gravitatoria modifica la trayectoria de los

fotones sin cambiar su enerǵıa, lo que produce una distorsión de la ima-

gen de la superficie de desacoplo. Finalmente, las ondas gravitatorias

también pueden generar anisotroṕıas secundarias en la RCFM.

• Fenómenos de reionización: Si en algún momento de su historia el Uni-

verso ha sufrido de nuevo una fase de fuerte ionización, una fracción

de los fotones de la RCFM habrá interaccionado con electrones libres,

borrando parte de las anisotroṕıas primarias. La importancia de este

borrado dependerá del grado de reionización alcanzado y del tamaño

de la región del Universo (posiblemente todo él) que haya sufrido dicha

reionización. Un efecto similar es la distorsión de la enerǵıa de los fo-

tones de la RCFM debida a dispersión Compton en el gas caliente que

se encuentra en el interior de los cúmulos de galaxias (efectos Suyaev-

Zel’dovich térmico y cinemático).

Emisiones contaminantes

El cielo de microondas contiene no sólo la señal de la RCFM sino también la

emisión debida a otros objetos astronómicos, que desde el punto de vista del análisis

de la RCFM son considerados contaminantes. Además de estos contaminantes,

los experimentos que detectan la RCFM presentan de forma inevitable los datos

‘corrompidos’ con cierta dosis de ruido debido a la respuesta de los instrumentos.

Este ruido debe ser eliminado en la medida de lo posible si queremos analizar

correctamente la RCFM. Los contaminantes que se deben a procesos astronómicos,

sin embargo, requieren una consideración especial. Los principales contaminantes

presentes en las longitudes de onda de los experimentos de microondas son:
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Radiación sincrotrón. Es debida a electrones relativistas acelerados en el seno

de campos magnéticos y domina la emisión galáctica a frecuencias bajas ν ∼<
20 GHz. La dependencia espectral de este contaminante es aproximadamente

descrita como I ∝ ν−βsyn con βsyn ∼ 0.9.

Radiación de frenado . Es la radiación emitida por electrones libres al ser acel-

erados por iones en el gas interestelar. Este contaminante es el menos cono-

cido de las emisiones galácticas, ya que se cree que domina únicamente en

un rango muy pequeño de frecuencias (' 25 − 75GHz), donde además la

emisión galáctica total es mı́nima. La dependencia espectral de la radiación

de frenado sigue aproximadamente la ley I ∝ ν−βff con un ı́ndice espectral

βff ∼ 0.16

Emisión por parte del polvo . Los granos de polvo de nuestra galaxia son

calentados por la radiación interestelar, absorbiendo fotones ópticos y ultra-

violetas y reemitiendo la enerǵıa en el infrarrojo lejano. La emisión total

observada es la suma sobre la emisión de cada grano de polvo a lo largo de la

ĺınea de visión. Este contaminante domina la emisión galáctica a frecuencias

ν ∼> 90GHz y su dependencia espectral se suele modelizar como una ley de

emisión de cuerpo negro modificada I ∝ Bν(Td)ν
α con α ∼ 2 y Td ∼ 18K.

La existencia de una segunda componente de polvo fŕıa con una tempera-

tura ∼ 7K ha sido sugerida en la literatura para ajustar la emisión de polvo

galáctica. Si esta componente fŕıa existiese, podŕıa dominar la emisión de

polvo a bajas frecuencias. Sin embargo, todav́ıa hay una gran incertidumbre

sobre su existencia. Una posible componente anómala debida a granos de

polvo en rotación seŕıa detectable a frecuencias de 10 a 100 GHz.

Fuentes puntuales extragalácticas. Poblaciones de fuentes diferentes dominan

por encima y por debajo de ν ∼ 300GHz. A frecuencias más bajas, las radio

fuentes dan la contribución principal mientras que a frecuencias más altas

dominan las fuentes del infrarrojo lejano. Estas poblaciones consisten prin-

cipalmente de núcleos galácticos activos, blazars y cuásares radioemisores en

el radio y de galaxias espirales inactivas en el infrarrojo lejano. El número de

cuentas y la dependencia espectral de estas poblaciones están sujetos a gran
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incertidumbre debido a la falta de catálogos de fuentes puntuales en el rango

de frecuencias explorado por los experimentos de la RCFM, especialmente

a las frecuencias de Planck (30-900 GHz). El espectro de potencias de las

fuentes puntuales es, aproximadamente, el de un ruido blanco, es decir, C` =

cte. para todas las escalas, siempre y cuando el agrupamiento intŕınseco de

las fuentes no se sea muy fuerte.

Cúmulos de galaxias. Debido al efecto Sunyaev-Zel’dovich, los fotones de la

RCFM ven alterada su enerǵıa en la dirección de los cúmulos de galaxias.

Aunque este efecto sea propiamente una anisotroṕıa secundaria, es tratado

aqúı por dos razones: primero, porque su origen puede ser localizado en obje-

tos astronómicos concretos, como es el caso de los contaminantes. Segundo,

porque, al igual que las fuentes puntuales extragalácticas, los cúmulos de

galaxias aparecen en los mapas de RCFM como objetos compactos y, por lo

tanto, las técnicas de separación de componentes de las que trata esta tesis

son muy adecuadas para detectar estos objetos. El efecto Sunyaev-Zel’dovich

se debe a cambios en la dirección y le enerǵıa de los fotones debido a dis-

persión (scattering) Compton inversa:

ε′ =
ε

1 + (1− cosφ) ε
mec2

. (B.9)

La anterior fórmula está calculada en el sistema de referencia de reposo del

electrón y en ella ε y ε′ son las enerǵıas del fotón antes y después de la

dispersión, mientras que φ es el ángulo de deflexión del fotón. Múltiples

dispersiones en el seno de los cúmulos de galaxias dan origen a una distorsión

en la temperatura de la RCFM

∆T (x)

T0

= g(x)yc, (B.10)

donde donde yc = kBTe

mec2
es el parámetro de Compton, x = hν/kBTCMB y

g(x) = (x coth(x/2)− 4) es el factor de forma espectral. La cantidad τ es la

profundidad óptica del gas. En términos de intensidades,

∆I(x) = I0f(x)yc , f(x) =
x4ex

(ex − 1)2
g(x). (B.11)
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Esta distorsión tiene una dependencia de la frecuencia muy caracteŕıstica que

puede verse en la figura 1.3. Cuando x = 3.81 (ν = 217 GHz), el cambio en

la intensidad de la RCFM debido al efecto SZ es nulo. Las distorsiones de

temperatura t́ıpicas debidas al efecto SZ son del orden de δT/T ∼ 10−4, esto

es, diez veces mayores que las anisotroṕıas intŕınsecas de la RCFM. Además

del efecto SZ descrito, que recibe el nombre de efecto Sunyaev-Zel’dovich

térmico, existe otra variante debida al movimiento conjunto de los electrones

del gas por causa del movimiento propio de los cúmulos. Este efecto, conocido

como efecto Sunyaev-Zel’dovich cinemático, se distingue del térmico debido

a que las distorsiones que produce no dependen de la frecuencia sino de la

velocidad del cúmulo: (
∆T

T

)
kin

= −vr

c
τ, (B.12)

donde τ es la profundidad óptica del gas. El efecto SZ cinemático suele ser

unas cien veces más débil que el SZ térmico. El efecto SZ es enormemente

útil como herramienta cosmológica, ya que su intensidad no depende de la

distancia a la que están los cúmulos que lo originan, por lo que permitirá

detectar los primeros cúmulos que se formaron en el Universo. Por lo tanto,

la detección del efecto SZ se convertirá en punto de referencia obligado para

todo modelo de formación de estructura que se precie.

El problema de la separación de componentes

Como hemos visto, los ‘contaminantes’ que aparecen en la región de microondas del

espectro son debidos a objetos astronómicos de la mayor importancia. Es por ello

necesario no sólo eliminarlos de los mapas de RCFM para poder estudiar bien esta

última, sino también conservarlos aparte para su posterior estudio e interpretación.

Por lo tanto, antes de realizar cualquier análisis es necesario eliminar el ruido

instrumental y lograr una adecuada separación de las distintas componentes f́ısicas

que intervienen en los datos.

Los diversos métodos de separación de componentes que se han propuesto

aprovechan en mayor o menor medida las distintas propiedades estad́ısticas de los

contaminantes y la RCFM para conseguir su separación. Los principales métodos

existentes son: el filtro de Wiener (WF, Tegmark & Efstathiou 1996, Bouchet
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et al. 1997), el método de máxima entroṕıa (MEM, Hobson et al. 1998, 1999),

análisis de componentes independientes, (FastICA, Maino et al. 2001), análisis

mediante la wavelet ‘Mexican Hat’ (MHW, Cayón et al. 2000, Vielva el al. 2001a)

y técnicas que utilizan filtros ‘ajustados’ (matched filters, en inglés) (MF, Tegmark

& Oliveira-Costa 1998). Para una comparación de diferentes técnicas aplicadas a

la RCFM, véase Tegmark (1997) y Jones (1998). Las técnicas de WF, MF y MHW

serán tratadas en mayor profundidad a lo largo de este trabajo.

Cuando se conocen pobremente las propiedades estad́ısticas de alguna de las

componentes, o si se quiere obtener un método robusto que haga el menor número

posible de suposiciones acerca de dichas propiedades, las técnicas de filtrado so-

bresalen. Ejemplos de técnicas de filtrado son WF, MHW y MF. Este trabajo está

dedicado al desarrollo de una nueva técnica de filtrado destinada a la detección de

fuentes compactas en mapas de RCFM.

B.1.2 Filtros

Un filtro es una herramienta f́ısica o matemática que, aplicada a unos datos de

entrada, los modifican de un cierto modo deseado. Dicho de una manera más

formal, un filtro es un operador

L : f(t) −→ g(t) = Lf(t). (B.13)

El filtro es lineal si la cantidad filtrada es un funcional lineal de las cantidades de

entrada. El filtro es invariante con respecto al tiempo si, al producirse un retardo

τ en los datos de entrada, los datos de salida también sufren ese mismo retardo,

esto es, g(t− τ) = Lf(t− τ). La mayor parte de los filtros que se suelen utilizar en

muchos ámbitos de la ciencia y la ingenieŕıa son lineales e invariantes con respecto

al tiempo. La utilidad de estos filtros radica en que su acción puede expresarse

como una convolución:

Lf(t) =
∫ ∞

−∞
f(u)h(t− u)du =

∫ ∞

−∞
h(u)f(t− u)du = h⊗ f(t), (B.14)

donde h(t) recibe el nombre de impulso del filtro. Esta convolución se puede

escribir en el espacio de Fourier como un producto:

Lf(t) = g(t) = h⊗ f(t) =
∫ ∞

−∞
ĥ(q)f̂(q)e−iqtdq, (B.15)
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siendo la transformada de Fourier ĥ del impulso del filtro lo que se denomina

función de transferencia del filtro. Estas dos últimas ecuaciones implican que los

filtros lineales e invariantes con respecto al tiempo pueden ser interpretados como

herramientas capaces de seleccionar determinadas frecuencias (modos) de una señal

en el espacio de Fourier. Por lo tanto, los filtros son muy útiles a la hora de:

• Eliminar ruido presente en frecuencias (escalas) altas.

• Suavizar datos.

• Seleccionar ciertas bandas de frecuencia (escala).

• Eliminar componentes de una señal.

• Cancelar variaciones de baja frecuencia (escala) superpuestas a una señal.

El diseño de filtros adecuados a un determinado problema es, en cierta medida,

un arte. En general, los filtros ideales (esto es, los que son cero fuera de un

determinado rango de frecuencias y valen la unidad dentro de dicho rango) no son

especialmente útiles debido a que generan efectos en forma de anillos y además

las distintas señales que componen los datos reales rara vez se hayan en regiones

disjuntas del espectro. Por lo tanto, se buscan filtros continuos que sean óptimos

para el problema en cuestión.

Filtros óptimos

Habitualmente, el problema al que se aplican los filtros es alguna variante del que

aparece en el siguiente diagrama:

SEÑAL + RUIDO −→ FILTRO −→ SEÑAL + ruido reducido

En el mejor de los casos, el ‘ruido reducido’ debe ser lo más cercano posible a cero.

La forma de establecer dicha cercańıa es a través de algún criterio estad́ıstico.

Según el criterio elegido, se obtiene un tipo de filtro u otro. Dos claros ejemplos

son:
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El filtro de Wiener Sea un conjunto de datos d = (d1, d2, ..., dN) que son uti-

lizados para estimar la señal subyacente s = (s1, s2, ..., sM) y que pueden

escribirse como:

d = Rs + n, (B.16)

donde R es una matriz N ×M conocida y n es un vector que representa

el ruido instrumental. Se busca un filtro W tal que, aplicado a los datos,

produzca unas cantidades filtradas ŝ que sean lo más parecidas a la señal

original en el sentido de los mı́nimos cuadrados, esto es, que 〈|s− ŝ|2〉 sea

mı́nimo. Esto nos lleva a un filtro (p.ej. Rybicki y Press 1992):

W = SRt
(
RSRt + N

)−1
, (B.17)

donde N =< nnt > es la matriz de correlación del ruido.

Filtros ‘ajustados’ Si en vez de pedir que las cantidades filtradas sean lo más

parecidas posible a la señal original en el sentido de los mı́nimos cuadrados

se impone que la relación señal/ruido final sea máxima, esto es, que haya una

ganancia máxima con respecto a la situación original a la hora de detectar

una señal dada, se obtiene un filtro

Φ(q) ∝ s∗(q)

P (q)
, (B.18)

donde s∗(q) es el conjugado del perfil de la señal en el espacio de Fourier y

P (q) es el espectro de potencias de los datos. Dicho filtro recibe el nombre

de ’filtro ajustado’ (matched filter). Por ejemplo, el filtro ajustado para el

caso de una señal gaussiana inmersa en ruido blanco es precisamente un filtro

gaussiano de idéntica anchura que la señal.

Filtros y wavelets

En los últimos años las técnicas de wavelets (‘ond́ıculas’ ) han revolucionado el

mundo del análisis de imágenes y el procesado de señales en general. Las wavelets

permiten obtener bases funcionales que poseen al mismo tiempo buena localización

tanto en el espacio real como en el de Fourier, por lo que se convierten en herra-

mientas muy adecuadas para tratar señales localizadas como las que se manejan
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en esta tesis. Consideremos la transformada continua de wavelet. Sea la wavelet

ψ(R,b)(t) = R−1/2ψ

(
t− b

R

)
, (B.19)

entonces se define la transformada continua de wavelet como

Wf(R, b) =
∫ ∞

∞
f(t)ψ(R,b)(t) dt = f ⊗ ψ̄R(b) , (B.20)

donde

ψ̄R(t) = R−1/2ψ
(−t
R

)
. (B.21)

Esta transformación permite descomponer de manera continua una señal en ele-

mentos que contienen información acerca del comportamiento de dicha señal en

distintas escalas. La transformada continua de wavelet puede interpretarse a la luz

de las anteriores ecuaciones como una especie de filtrado en el que intervienen las

escalas R. Esta idea va a ser muy importante en el desarrollo de esta tesis.

B.2 Filtros Adaptados a la Escala

Como se ha comentado ya, las técnicas de filtrado ofrecen una posible solución a los

problemas de separación de componentes y eliminación de ruido instrumental en

muchos campos de la Astrof́ısica. En particular, nos centraremos en cómo localizar

señales compactas (fuentes, a partir de ahora) cuando éstas se hallan inmersas en

un fondo de ruido que supondremos estad́ısiticamente homogéneo e isótropo y

que viene caracterizado por su espectro de potencias. Para simplificar el estudio,

supondremos que las fuentes tienen simetŕıa esférica, lo cual es una muy buena

aproximación en la mayoŕıa de los casos. Casos t́ıpicos que uno puede encontrarse

en Astrof́ısica son: el estudio de ĺıneas de emisión o de absorción en espectros,

el análisis de series de datos ordenados en el tiempo, la limpieza de imágenes

bidimensionales, la detección y extracción de fuentes puntuales extragalácticas en

mapas de RCFM, la detección de cúmulos en imágenes de rayos X o la detección

de estructuras en conjuntos tridimensionales de datos.

En todos los casos anteriores, cabe preguntarse cuál será el filtro óptimo para

conseguir el fin deseado. Por supuesto, la consecución de dicho objetivo dependerá

de la definición de ‘óptimo’ que se haga. En esta sección se introducirá un nuevo
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tipo de filtro, el filtro adaptado a la escala, que es óptimo desde el punto de vista

de la detección fiable de fuentes.

B.2.1 Obtención del filtro adaptado a la escala

Imaginemos un conjunto de datos n-dimensional que se puede representar como

y(~x) = s(x) + n(~x), (B.22)

donde ~x son las coordenadas en cada punto de la imagen y s(x) = Aτ(x) representa

una señal con simetŕıa esférica (x ≡ |~x|), de amplitud A y perfil τ (τ(0) = 1). El

ruido de fondo n(~x) es un campo aleatorio homogéneo e isótropo de media cero

que se puede describir a través del espectro de potencias

〈n(~q)n∗(~q ′)〉 = P (q)δn(~q − ~q ′), (B.23)

siendo n(~q) la trnasformada de Fourier de n. Sea un filtro también con simetŕıa

central

Ψ(~x;R,~b) =
1

Rn
ψ

 |~x−~b|
R

 , (B.24)

donde ~b define una translación mientras que R define una dilatación. El campo

filtrado es entonces

w(R,~b) =
∫
d~x y(~x)Ψ(~x;~b, R), (B.25)

que se puede expresar como producto en el espacio de Fourier:

w(R,~b) =
∫
d~q e−i~q~by(~q)ψ(Rq). (B.26)

Las condiciones que se exigen al filtro para que sea óptimo son:

1. Existe una escala Ro tal que 〈w(R,~0)〉 es máximo a dicha escala. Esta

condición servirá para seleccionar las fuentes frente a posibles detecciones

falsas indeseadas.

2. 〈w(Ro,~0)〉 = s(0) ≡ A, esto es, w(R,~0) es un estimador sin sesgo de la

amplitud de las fuentes.

3. La varianza de w(R,~b) es mı́nima a la escala Ro, esto es, tenemos un esti-

mador eficiente de la amplitud de las fuentes.
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Estas tres condiciones conducen al filtro (ver Apéndice A):

ψ̃(q) ≡ ψ(Roq) =
1

α

τ(q)

P (q)

1

∆

[
nb+ c− (na+ b)

d lnτ

d lnq

]
, (B.27)

∆ = ac− b2,

a ≡
∫
dq qn−1 τ2

P
,

b ≡
∫
dq qn−1 τ

P
d τ

d lnq
,

c ≡
∫
dq qn−1 1

P
[ d τ
d lnq

]
2
.

(B.28)

Este filtro, desarrollado en el caṕıtulo 2 por vez primera, recibe el nombre de filtro

adaptado a la escala asociado a la fuente de perfil τ y al fondo con espectro de

potencias P . El objetivo de este filtro es maximizar la probabilidad de detección

de las fuentes al tiempo que se mantiene baja la probabilidad de encontrar falsas

detecciones. Lo primero se consigue gracias a las condiciones (2) y (3), mientras

que del segundo punto se encargará la condición (1). En efecto, el comportamiento

del coeficiente w(R,~0) con la escala R es un poderoso elemento para discriminar

las señales auténticas de las que no lo son.

Este filtro puede ser obtenido también en el espacio real:

Ψ(~x;Ro,~0) =
1

Rn
o

ψ

(
|~x|
Ro

)
=

1

α∆
[(nb+ c)F (x)− (na+ b)G(x)] , (B.29)

donde F y G son las transformadas de Fourier inversas de τ
P

y de 1
P

dτ
dlnq

, respecti-

vamente. Se puede definir el nivel de detección como

Dw ≡
〈w(R,~0)〉
σw(R)

. (B.30)

Entonces, el filtro producirá una ganancia:

g ≡ Dw

D
=

σb

σw(Ro)
. (B.31)

Varios casos de interés son cuando las fuentes tienen un perfil gaussiano (como

es el caso de las fuentes puntuales extragalácticas detectadas mediante antenas de

instrumentos de microondas) o cuando tienen perfil exponencial (como es el caso

de los discos de galaxias espirales). En el caṕıtulo 2 se estudian en detalle ambos

casos, haciéndose hincapié en los particularmente interesantes casos en los que el

ruido puede describirse por un espectro plano (ruido blanco) o por uno de tipo

1/f .
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B.2.2 Simulaciones

Para poner a prueba el método propuesto, se han realizado simulaciones unidi-

mensionales en las cuales se han colocado fuentes con perfil gaussiano inmersas

en ruido 1/f . Los filtros adaptados a la escala son comparados con otros filtros

clásicos tales como la gaussiana y la wavelet ‘Mexican Hat’. Nuestro resultado

principal es que los filtros adaptados a la escala superan a dichos filtros en número

de detecciones al mismo tiempo que reducen el número de falsas detecciones de

manera muy apreciable. Las fuentes son encontradas con errores inferiores al 15%

en la determinación de la amplitud. Estos resultados permiten la extracción de las

fuentes en el espacio real, con lo que se consige la separación de componentes en

lo que a las fuentes consideradas respecta.

B.3 Filtros adaptados a la escala aplicados

a imágenes en 2D

Los filtros adaptados a la escala pueden ser construidos para perfiles más generales

que los gaussianos y exponenciales considerados anteriormente. Por ejemplo, en

Astrof́ısica es muy común encontrar perfiles de tipo

τ(x) =
1[

1 + ( x
rc

)2
]λ , λ ≥ 1/2. (B.32)

Ejemplos t́ıpicos son la emisión en microondas y en rayos X de los cúmulos de

galaxias, que se pueden aproximar bien mediante los ya conocidos ‘modelos-β’, que

se relacionan fácilmente con la ecuación anterior a través de λ = 3β−1
2

(microondas)

y λ = 6β−1
2

(rayos X), siendo la densidad en número de electrones en los cúmulos

ne(r) ∝ [1 + (r/rc)
2]
− 3

2
β
. Tomando el valor estándar β = 2/3 se obtiene λ =

1/2, 3/2 para el caso de microondas y el de rayos X, respectivamente. El perfil

(B.32) recibe el nombre de multicuádrico.

B.3.1 Filtro adaptado a la escala asociado a perfiles mul-
ticuádricos

Si asumimos un perfil como el dado en eq. (B.32) y un fondo de ruido cuyo espectro

de potencias se pueda aproximar por P (q) = Dq−γ, se obtiene un filtro adaptado
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a la escala del tipo:

ψ̃(q) =
1

αa′
Γ(λ)

21−λ(γ + n)
(qrc)

γ+λ−n
2

[
P Kλ−n

2
(qrc) +QqrcK1+λ−n

2
(qrc)

]
, (B.33)

P ≡ 2γ − (n− γ)(γ + 2λ), Q ≡ 2(n− γ)
γ + 2λ+ 1

γ + 4λ− n
, (B.34)

a′ ≡ 2γ+2λ−3

Γ (γ + 2λ)
Γ
(
γ + n

2

)
Γ2

(
γ + 2λ

2

)
Γ

(
γ + 4λ− n

2

)
, (B.35)

donde Γ es la función gamma y K es la función K de Bessel. La tabla 3.1 contiene

la expresión de estos filtros en el espacio de Fourier y el espacio real para algunos

casos de λ y γ.

B.3.2 Simulaciones y resultados

En el caṕıtulo 3 se han realizado tres simulaciones distintas para poner a prueba

el filtro (B.33). En el primer caso, se distribuyeron 100 cúmulos con λ = 1/2

e igual tamaño (rc = 1 ṕıxel) sobre un fondo P (q) ∝ q−3 de tal manera que la

relación señal/ruido media de las fuentes fuese 2.0. El filtro adaptado a la escala

correspondiente produjo en esas circunstancias ganancias medias g = 4.4, lo que

quiere decir que fuentes situadas inicialmente a 2σ pasaron a estar por encima de

8σ a la hora de la detección. Las amplitudes de las fuentes se lograron determinar

con errores medios del orden del 10%.

En la segunda simulación se distribuyeron 100 cúmulos de tipo λ = 1/2, va-

riando ahora no sólo sus amplitudes sino también sus tamaños (0.5 ṕıxel < rc < 2.0

ṕıxel). De nuevo el fondo fue simulado con P (q) ∝ q−3 y señal/ruido inicial de

2.0. La condición (1) de los filtros adaptados a la escala permite determinar el

tamaño de la fuentes mediante el siguiente procedimiento: vaŕıese los valores de

rc y la escala del filtro hasta que se encuentre un máximo en w(R,~0). Cuando eso

ocurra, el rc para el que se haya encontrado ese máximo será el del cúmulo que

se ha detectado. Aplicando este sencillo método, somos capaces de determinar los

radios rc con errores menores que 0.15 ṕıxels. La ganancia media producida por los

filtros fue en este caso g = 3.5, mientras que, gracias al propio criterio de escalas

aplicado para determinar el radio, el número de detecciones falsas se redujo a cero.

Por último, se simularon 100 cúmulos con λ = 3/2 y radios rc comprendidos

entre 2.0 y 4.5 ṕıxels, inmersos en ruido blanco. La simulación se hizo de tal
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manera que se aproximara de forma muy cruda a una imagen t́ıpica como las que

puede obtener el observatorio XMM con tiempos de exposición de 95 ks. En estas

condiciones, la ganancia media es moderada (g = 2.0). Utilizando el método de

variación de escalas descrito arriba, se determinaron los radios con errores medios

menores que 0.4 ṕıxeles, sin sesgos sistemáticos apreciables. Las amplitudes se de-

terminaron con errores medios inferiores al 15%. La determinación de parámetros

tales como rc en cúmulos de rayos X es más dif́ıcil que en el caso de microondas

debido a la cáıda más brusca del perfil de los primeros, que limita la información

disponible en un área más pequeña de la imagen.

B.4 Detección de fuentes puntuales a partir de

secuencias de datos ordenados en el tiempo

(DOT) de Planck

La primera aplicación a simulaciones realistas de los filtros adaptados a la escala

se ha realizado en el caṕıtulo 4 de esta tesis. En él se ha analizado una simulación

correspondiente a los seis primeros meses de datos tomados por el instrumento

LFI28 de 30 GHz de la futura misión de la Agencia Europea del Espacio Planck.

Planck cubrirá todo el cielo, tomando datos en diez canales diferentes de frecuencia,

y permitirá medir las anisotroṕıas de la RCFM con una sensibilidad y resolución

sin precedentes. El canal de 30 GHz, aunque no es el más adecuado para detectar

fuentes puntuales, es el primero que se simuló dentro del área de simulación de

datos del Consorcio de Planck, además de ser el más manejable desde el punto de

vista computacional debido a que su tamaño es menor que el de otros canales (con

mayor resolución angular).

Aunque la forma usual de presentar los datos de RCFM es a través de mapas

bidimensionales (o, cuando se extienden a todo el cielo, en representación esférica),

los datos se adquieren en forma de secuencias ordenadas de medidas a lo largo

del tiempo que luego se combinan para formar los mapas finales. El proceso de

confección de los mapas es complicado y, salvo que se realice con el más extremo

de los cuidados, fácilmente puede introducir artificios indeseados que corrompen

la información contenida en los mapas. Es por tanto deseable realizar un análisis
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paralelo de la secuencia de datos ordenados en el tiempo (DOT). Además, los

DOT pueden ser analizados casi inmediatamente después de haber sido obtenidos,

de forma que se puede generar un catálogo de fuentes en tiempo real que puede

ser utilizado, por ejemplo, para calibración de los instrumentos del satélite.

La secuencia de datos simulada utilizada en este trabajo contiene 8546850 medi-

ciones de temperatura, ordenadas en forma de 4383 anillos (correspondiente cada

uno al promedio de sesenta rotaciones del satélite), cada uno de los cuales contiene

1950 datos. La antena considerada es realista y tiene una resolución de 33′. Los

datos incluyen RCFM y todos los principales contaminantes (sincrotrón, radiación

de frenado, polvo, fuentes puntuales y ruido instrumental). Previamente al análisis,

se promedió cada anillo con los doce anillos adyacentes para eliminar ruido blanco.

Para el análisis se emplearon filtros adaptados a la escala, utilizando espectros

de potencias obtenidos directamente de los datos. Por comparación, también se

utilizaron un filtro gaussiano y una wavelet de tipo Mexican Hat para filtrar los

datos.

De los tres filtros utilizados, el que mejores resultados produjo fue el filtro

adaptado a la escala. En número de detecciones supera ampliamente al filtro

gaussiano y ligeramente a la Mexican Hat. En cuanto al número de detecciones

falsas, el filtro adaptado a la escala obtiene muchas menos que los otros dos filtros

(menos de un 10% al nivel de detección 4σ, frente a un 274% en el caso del filtro

gaussiano y un 30% en el caso de la Mexican Hat). Eso es debido a que el filtro

adaptado a la escala elimina mejor las fluctuaciones debidas a elementos como la

Galaxia, que no tienen la misma escala que las fuentes.

El filtro adaptado a la escala permite encontrar 224 fuentes reales a partir de

los datos, más 22 detecciones falsas (menos de un 10% de las reales). El error

medio en la determinación de la posición de las fuentes en el cielo es del orden

de la resolución del experimento (11′). El error medio en la determinación de la

amplitud de las fuentes es de 20%. El catálogo obtenido es completo a partir de

los 4.3 Jy, y contiene fuentes con flujos de hasta 0.9 Jy. Se espera que el número

de fuentes que se detecte en las frecuencias altas de Planck sea mayor, por lo que

en el futuro se emprenderá el análisis de dichas frecuencias.
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B.5 Detección de cúmulos usando filtros adapta-

dos a la escala

El efecto Sunyaev-Zel’dovich (SZ) térmico plantea la interesante posibilidad de em-

plear varios canales de frecuencia a la vez para potenciar la detección de cúmulos

en mapas de RCFM. Métodos de separación de componentes ya consagrados como

son el filtro de Wiener y el método de máxima entroṕıa aprovechan el conoci-

miento acerca de la dependencia frecuencial del SZ y del resto de componentes

para lograr su separación. Seŕıa interesante poder incorporar esta información a

nuestras técnicas de filtrado. El caṕıtulo 5 está dedicado a lograr ese fin. Para

ello, encontramos dos métodos:

B.5.1 Método de filtrado múltiple

La idea consiste en construir un conjunto de filtros que tengan en cuenta la infor-

mación acerca de la dependencia frecuencial de la señal y de las correlaciones entre

los diferentes canales de tal modo que, tras aplicar a cada canal su filtro corre-

spondiente, la suma de los coeficientes sea óptima para la detección. Imponiendo

unas condiciones totalmente equivalentes a las tres que definen el filtro adaptado a

la escala en una sola imagen se obtienen los filtros múltiples adaptados a la escala:

ψ̃(q) = P−1(αF + G), (B.36)

donde hemos introducido el vector columna ψ̃(q) = (ψν(Rνq)) y las matrices P−1

(que es la matriz inversa del espectro de potencias cruzado de los mapas P ≡
(Pν1ν2(q))), F = (fντν) y G = (µνβν). Las cantidades que intervienen en esta

última definición, junto con la constante α, vienen dados por

µν ≡ fντν

[
2 +

dlnτν
dlnq

]
, (B.37)

α = A−1 0
0 , βν = A−1 ν

0 , (B.38)

donde A es la matriz (1 + n)× (1 + n) coyos elementos vienen dados por

A0
0 ≡

∫
d~qFtP−1F, A0

ν ≡
∫
d~q µν(F

tP−1)ν , (B.39)
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Aν
0 ≡

∫
d~q µν(P−1F)ν , Aν

ν′ ≡
∫
d~q µνµν′ P

−1 ν
ν′ . (B.40)

Estos filtros de aspecto tan complicado son la generalización natural del filtro

adaptado a la escala para el problema con múltiples frecuencias.

B.5.2 Método de filtrado simple

Por otra parte, otra opción seŕıa combinar los distintos canales de frecuencia de

tal manera que la relación señal/ruido de los cúmulos en el mapa combinado fuese

máxima. Dicha combinación tendŕıa en cuenta la dependencia frecuencial de los

cúmulos y también las correlaciones entre canales. Después de la combinación, el

mapa resultante se podŕıa filtrar normalmente como si fuera un problema parecido

a los que se presentan en el caṕıtulo 3. El problema se reduce a encontrar un

conjunto de pesos c = (cν1 , cν2 , · · · , cνN
) tales que, tras la combinación y(~x) ≡∑

ν cνyν(~x), la relación señal/ruido del efecto SZ sea máxima. Se puede demostrar

que estos pesos vienen dados por el problema de autovalores generalizado:

(G− λM)c = 0, (B.41)

donde G = (Gνν′), Gνν′ = fντν(0)fν′τν′(0) y M = (Mνν′), Mνν′ = 〈nν(~x)nν′(~x)〉.
El vector c deseado es el que corresponde al mayor de los autovalores λ

B.5.3 Simulación de prueba

En el caṕıtulo 5 se consideran cuatro casos posibles: para cada uno de los dos

métodos atrás mencionados, podemos construir filtros adaptados a la escala o

‘matched filters’. Para aclarar las potencialidades de cada una de las cuatro

variantes posibles, hemos realizado una simulación de una región del cielo de

12.8◦ × 12.8◦ vista a través de los diez canales de frecuencia de Planck en la que

se incluyen de manera realista todos los contaminantes que se espera detectar. En

dicha simulación se distribuyeron 200 cúmulos de perfil multicuádrico, todos del

mismo tamaño para simplificar, con intensidades distribuidas uniformente entre 0

y el flujo del cúmulo más brillante (según simulaciones realistas) que se espera en

dicha región del cielo. Los resultados sobre esta simulación de prueba se resumen

en:
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• El método de filtrado simple es del orden de diez veces más rápido en su

ejecución que el método de filtrado múltiple.

• Sin embargo, el método de filtrado múltiple es más potente a la hora de la

detección, permitiendo alcanzar flujos más bajos.

• La información acerca de la dependencia frecuencial del efecto SZ permite

eliminar casi todas las detecciones falsas. En ese sentido, la principal ventaja

de los filtros adaptados a la escala frente a los ‘matched filters’, que era pre-

cisamente su capacidad para eliminar detecciones falsas, carece prácticamente

de importancia. Es sabido que los ‘matched filters’ producen por construcción

ganacias superiores a cualquier otro filtro. Por lo tanto, en este problema en

concreto es más recomendable usar simplemente ‘matched filters’ que filtros

adaptados a la escala.

• Pese a que ciertos canales contribuyen mucho más al resultado final que otros,

todos ellos aportan información valiosa al proceso.

B.5.4 Resultados utilizando una simulación realista

Si en vez de usar la simulación de prueba mencionada arriba se emplean simula-

ciones realistas de cúmulos (atendiendo a cuestiones como tamaños, distribución

en número de cuentas según el flujo, etc) se obtienen los siguientes resultados:

• Sobre el nivel de detección 3σ se encuentran 62 cúmulos y ninguna detección

falsa.

• Sobre el nivel de detección 2σ se encuentran 257 cúmulos y 27 detecciones

falsas.

• La determinación del radio rc de los cúmulos siguiendo el método de variación

de escalas descrito en el caṕıtulo 3 tiene un error máximo inferior a 0.3

ṕıxeles. La mayor parte de las fuentes detectadas poseen son prácticamente

puntuales.

• El flujo de completitud del catálogo de fuentes recuperado es de 170 mJy (a

300GHz).



Appendix B. Resumen de la tesis en castellano 163

• La determinación de la amplitud (flujo) de las fuentes tiene errores en torno

al 30% para el caso de los cúmulos más brillantes. Para el caso de los cúmulos

débiles, que dominan el número de cuentas, estos errores aumentan mucho.

Por tanto, el método demuestra ser potente en el sentido de la detección, pero no

tanto a la hora de la determinación de flujos. Trabajos futuros se encaminarán a

mejorar este aspecto, por ejemplo mediante ajustes en el espacio de coeficientes

filtrados. En cualquier caso, este método permitirá encontrar cerca de 15000 (a

3σ) o 65000 (a 2σ) cúmulos en todo el cielo con un nivel muy bajo de detecciones

falsas.
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“ Here ends [...]. If it has passed from the high and the beautiful to

darkness and ruin, that was of old the fate of Arda Marred; and if

any change shall come and the Marring be amended, Manwë and

Varda may know; but they have not revealed it, and it is not

declared in the dooms of Mandos.”

J.R.R. Tolkien, “The Silmarillion”
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