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Abstract Inter-annual variability and trends of an-

nual/seasonal precipitation totals in Ghana are ana-

lyzed considering different gridded observational (gauge-

and/or satellite-based) and reanalysis products. A quality-

controlled dataset formed by fourteen gauges from the

Ghana Meteorological Agency (GMet) is used as ref-

erence for the period 1961-2010. Firstly, a good agree-

ment is found between GMet and all the observational

products in terms of variability, with better results for

the gauge-based products —correlations in the range of

0.7–1.0 and nearly null biases— than for the satellite-

gauge merged and satellite-derived products. In con-

trast, reanalyses exhibit a very poor performance, with

correlations below 0.4 and large biases in most of the

cases. Secondly, a Mann-Kendall trend analysis is car-

ried out. In most cases, GMet data reveal the existence
of predominant decreasing (increasing) trends for the

first (second) half of the period of study, 1961-1985

(1986-2010). Again, observational products are shown

to reproduce well the observed trends —with worst

results for purely satellite-derived data— whereas re-

analyses lead in general to unrealistic stronger than

observed trends, with contradictory results (opposite
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signs for different reanalyses) in some cases. Similar in-

consistencies are also found when analyzing trends of

extreme precipitation indicators. Therefore, this study

provides a warning concerning the use of reanalysis data

as pseudo-observations in Ghana.
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1 Introduction

Understanding variability and trends of precipitation in

Ghana is crucial for different socio-economic activities,

such as agriculture (Ofori-Sarpong, 2001; Cooper et al.,

2008) and hydroelectric power —the main source of en-

ergy in the country (Kunstmann and Jung, 2005).—

Several studies have analyzed rainfall trends in West

Africa, identifying a downward tendency for the period

1970-2000 (see e.g. Nicholson et al., 2000; Djomou et al.,

2009, and references therein). Consistently, other stud-

ies have also found a decrease in precipitation in Ghana

for the period 1980-2000 (as compared to 1950-1970),

especially notorious in the south (Owusu and Waylen,

2009, 2013). However, seasonal and local varying results

have been also reported over this region —this kind of

analysis is particularly difficult in Ghana since different

precipitation regimes coexist from the coast in the south

to the Sahelian region in the north, yielding a complex

spatial climate variability (Cooper et al., 2008).— For

instance, Kunstmann and Jung (2005) found that to-

tal annual precipitation in the Volta catchment was in-

creasing by 5% but extremely decreasing (up to 70%) in

April and Lacombe et al. (2012) observed no significant

trends for annual rainfall in the period 1960-2005, but
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local varying results for spells and onset of the wet sea-

son. However, the use of different gauges in the previous

studies hinders a comparative analysis of the results.

Therefore, a detailed seasonal analysis of rainfall vari-

ability and trends from quality-controlled gauge data is

still needed in Ghana.

Due to the lack of dense gauge networks, some stud-

ies have considered alternative gridded observational

and reanalysis products to perform this kind of analysis

over West Africa. For instance, Jury (2013) described

climatic trends of several meteorological variables in

sub-Saharan Africa using, among others, the NCEP re-

analysis and gridded observations from the Global Pre-

cipitation Climate Center (GPCC) and from satellite

estimates.

In this paper we analyze the inter-annual variabil-

ity and trends of annual/seasonal precipitation totals in

Ghana during the last fifty years (1961-2010). To this

aim, we consider a quality-controlled network of four-

teen gauges from the Ghana Meteorological Agency as

reference and compare the results with those obtained

from a set of alternative observational gridded —gauge-

and/or satellite-derived— and reanalysis products. Our

main goal is to look for signals of change in precip-

itation in the period of study and to assess the per-

formance of the aforementioned products to reproduce

such changes, identifying the most suitable ones for a

reliable use in Ghana.

The paper is organized as follows: the data used

are described in Sec. 2. The different rainfall regimes of

Ghana are analyzed in Sec. 3. Results and discussion

are presented through Sec. 4. Finally, conclusions are

given in Sec. 5.

2 Data

2.1 Gauge Data

Daily rainfall from fourteen gauges from the Ghana

Meteorological Agency (hereafter GMet) was consid-

ered for the period of study 1961-2010. These stations

have not suffered changes in location and present less

than 2% of missing data in the whole period. Gauges

are spread across country and cover the different ex-

isting rainfall regimes (Cooper et al., 2008). To ac-

count for this in the next sections, we grouped the

fourteen gauges into the same four main agro-ecological

zones that have been used in previous studies (Owusu

and Waylen, 2009, 2013), which are homogeneous in

terms of rainfall regimes. Gauges forming these zones

—referred hereafter to as North, Transition, South and

Coast— are marked in Fig. 1 in black, blue, green and

red color, respectively.

NORTH

TRANSITION

SOUTH

COAST

Fig. 1 Administrative map of Ghana showing the four-
teen GMet gauges considered, grouped into the four
main agro-ecological zones previously used in Owusu
and Waylen (2009, 2013). Gauges belonging to the
North/Transition/South/Coast zones are marked in
black/blue/green/red.

2.2 Gridded Observational Datasets

To fully cover the wide variety of gridded observational

products available nowadays, several gauge-based, satellite-

gauge merged and purely satellite-derived products were
considered. With respect to the gauge-based products

we have considered three datasets covering the full pe-

riod of study 1961-2010: The Global Precipitation Cli-

matology Centre Full Data Reanalysis version 6 (GPCC

v6), the Climatic Research Unit Time-Series version

3.20 (CRU TS 3.20) and the PRECipitation reconstru-

cion over Land (PREC/L) from the NOAA. GPCC v6

provides monthly global land-surface precipitation on a

regular grid at three spatial resolutions (0.5◦×0.5◦ has

been used here) for the period 1901-2010. This dataset

is based on 67200 gauges worldwide and supports cli-

mate variability and historical trends analysis (Becker

et al., 2013). CRU TS 3.20 provides monthly rainfall

on a high-resolution 0.5◦ × 0.5◦ global grid for the pe-

riod 1901-2011 and allows for studying climate varia-

tions (Harris et al., 2013). PREC/L (Chen et al., 2002)

provides monthly global precipitation totals from 1948

to 2013 at three spatial resolutions (0.5◦ × 0.5◦ has

been used here). Gauge observations come from over

17000 stations collected in the Global Historical Clima-
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tology Network version 2 (GHCND2) and the Climate

Anomaly Monitoring System (CAMS) datasets.

With respect to the satellite-gauge merged prod-

ucts, two datasets were considered: The Global Precip-

itation Climatology Project version 2.2 (GPCP v2.2)

and the CAMS-OPI. Note that although other com-

bined datasets such as the CPC Merged Analysis of

Precipitation (CMAP) and the African Rainfall Cli-

matology version 2 (ARC2) exist, CMAP is compara-

ble to GPCP v2.2 (Xie and Arkin, 1997) and ARC2

is consistent both with GPCP v2.2 and CMAP, with

correlations of 0.86 (Novella and Thiaw, 2013). Thus,

these two datasets have not been included in the study

since no added value (with respect to GPCP v2.2) is

expected to be obtained from them. GPCP v2.2 (Huff-

man et al., 1997) is a merged analysis that provides

monthly mean precipitation on a 2.5◦ × 2.5◦ global

grid for the period 1979-2011. This dataset incorpo-

rates precipitation estimates from low-orbit satellite mi-

crowave data, geosynchronous-orbit satellite infra-red

data and surface rain gauge observations. CAMS-OPI

(Janowiak, 1999) combines satellite rainfall estimates

from the Outgoing Longwave Radiation (OLR) Precipi-

tation Index (OPI) with ground-based rain gauge obser-

vations from the Climate Anomaly Monitoring System

(CAMS), providing monthly precipitation on a 2.5◦ ×
2.5◦ global grid from 1979 to present.

Finally, one purely satellite-derived dataset, the African

Rainfall Climatology And Time-series dataset (TAR-

CAT v2.0), was also considered. TARCAT v2.0 (Tar-

navsky et al., 2013; Maidment et al., 2013) is a new

dataset developed by the Tropical Applicatons of Me-

teorology using SATellite data and ground-based ob-

servations (TAMSAT) research group at the University

of Reading. TARCAT v2.0 provides precipitation es-

timates at three temporal resolutions (monthly values

have been used here) on a regular grid of approximately

4 km resolution over Africa from 1983 to present. Note

that although other satellite datasets exist, all of them

are either too short (series of less than 10 years) or

temporally inhomogeneous (different sensors and dif-

ferent proportions of gauge data included at different

times). Thus, TARCAT v2.0 is the only suitable op-

tion for our study. Furthermore, good results have been

shown across most of Africa for this dataset (Tarnavsky

et al., 2013) since the major part of the African rainfall

is convective and TARCAT v2.0 is based on locally cal-

ibrated cold cloud duration derived entirely from Me-

teosat Thermal Infra-Red (TIR) imagery.

2.3 Reanalysis Data

Among the different atmospheric reanalyses currently

available, only two of them cover the full period of study

1961-2010: The NCEP/NCAR Reanalysis I (NCEP v1)

and the NOAA-CIRES 20th Century Reanalysis ver-

sion 2 (20CR v2). The NCEP v1 (Kalnay et al., 1996)

follows a 3D-var assimilation scheme whilst the 20CR

v2 (Compo et al., 2011) uses the Ensemble Kalman Fil-

ter technique to produce an estimate of the complete

state of the atmosphere and the uncertainty in that

estimate. Therefore, considering both allows for assess-

ing the differences between distinct generations of re-

analyses. NCEP v1 (20CR v2) uses a 1.875◦ × 1.875◦

(2◦ × 2◦) grid and spans the period 1948 to present

(1871-2010). Apart from NCEP v1 and 20CR v2, all

reanalyses except ERA-40 (Uppala et al., 2005) start in

1979, with the beginning of the satellite era. From this

year onward, up to five different reanalyses are avail-

able. However, all of them except the ERA-Int (Dee

et al., 2011) follow a 3D-var assimilation scheme. There-

fore, we opted for including ERA-Int and its predeces-

sor ERA-40 (which use a 4D- and 3D-var assimilation

scheme, respectively) in the study. ERA-40 (ERA-Int)

provides precipitation on a 1.125◦ × 1.125◦ (0.75◦ ×
0.75◦) global grid for the period 1957-2002 (1979 to

present). Daily accumulated precipitation —as com-

puted from their different base resolutions— was con-

sidered for the above reanalyses.

Moreover, all the aforementioned gridded products,

observational and reanalysis, were bi-linearly interpo-

lated to the fourteen GMet gauges shown in Fig. 1. All

the calculations were also done considering the alterna-

tive nearest grid-box interpolation scheme, obtaining

very similar conclusions. Therefore, only results for the

former interpolation technique are shown.

3 Rainfall Regimes in Ghana

Ghana presents different rainfall regimes along the coun-

try from the coast in the south to the Sahelian re-

gion in north (Cooper et al., 2008). These regimes are

mainly defined by the north- and south-ward move-

ment of the Inter-Tropical Convergence Zone (ITCZ)

(Sultan and Janicot, 2003), which brings the African

monsoon, giving rise to the uni- and bi-modal distribu-

tion characteristic of the northern and southern part of

the country, respectively. Fig. 2 shows the climograms

of monthly and seasonal accumulated precipitation for

the four zones considered in the period of study.

As can be seen, the annual cycle in the North zone

is characterized by a uni-modal distribution; one rainy

season followed by a long dry season. In this region,
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Fig. 2 Monthly and seasonal (first and second row, respec-
tively) climograms showing the mean accumulated precipita-
tion in the four zones for the period of study 1961-2010.

rainfall builds up gradually from small rains in April

and reaches its maximum in August-September, when

the rain-bearing tropical maritime air mass gets to the

area. The decline of the rains is faster, with retreat

dates at the end of October. Then, the dry northeast

trade winds begin to dominate, resulting in the so called

Harmattan season, which lasts from November until

early March.

The Transition zone exhibits a longer rainy season

which starts around April and reaches a relatively low

maximum in June, which is almost maintained until

September (maximum peak). This zone represents an

interface between the uni- and bi-modal distributions.

The South and the Coast zones present the bi-modal

distribution characteristic of the southern part of the

country. In both, the onset of the monsoon occurs around

April and the maximum rains (main peak) are reached

in June, when the maritime tropical air mass is heavily

charged with water vapor, what results in substantial

rainfalls. Additionally, there is also a relatively short

minor season (secondary peak) around October, when

the ITCZ still lies on the West African mainland near

the coast. Despite their similar annual cycles, rains in

the Coast are lower than in the South, especially during

the minor season, what can be attributed to a complex

series of coastal/oceanic and atmospheric interactions

(Acheampong, 1982).

4 Results and Discussion

All the results shown in this section have been calcu-

lated from inter-annual time-series of annual/seasonal

precipitation values. These aggregated values have been

calculated from the daily values available for the gauge

observation from GMet and for the reanalysis products

and from the monthly values available for the observa-

tional gridded datasets.

4.1 Performance of Gridded Products

The performance of the gridded (observational and re-

analysis) products described in Sec. 2 was evaluated in

terms of the Pearson correlation and bias —the latter

in units of inter-annual observed standard deviations—

with respect to GMet for their common period 1983-

2000 (Fig. 3). The comparison was performed both at

an annual and seasonal scale, considering the corre-

sponding annual/seasonal accumulated precipitation se-

ries.

With regard to the gridded observations, gauge-based

products show the best agreement with GMet. In par-

ticular, GPCC v6 shows the highest —around 0.9 in

all cases— correlations and nearly null biases. CRU TS

3.20 performs also very well, with correlations around

0.8 in most cases and biases near to zero. PREC/L

shows the poorest performance among the gauge-based

datasets, with correlations around 0.6 and biases below

0.5. Concerning the satellite-gauge merged products,

GPCP v2.2 provides slightly better correlations —with

values in the range of 0.5-0.7— than CAMS-OPI. Both

present small (below 0.5) biases. Finally, the purely

satellite-derived dataset, TARCAT v2.0, is shown to be

comparable to the satellite-gauge combined products,

providing similar correlations but slightly larger (nega-

tive) biases.

All the reanalysis products exhibit weak correlations

(below 0.4 in most of the cases) and large biases —

there is a rather general dry/wet bias dipole over the

northern/southern part of the country.— These results

highlight the limitations of reanalysis data to under-

take climate variability studies over the region of study.

Among the four reanalyses, ERA-Int shows the highest

correlations in all cases, whereas the other three exhibit

a similar overall performance.

4.2 Trends of Annual/Seasonal Precipitation Totals

Inter-annual trends for the annual/seasonal accumu-

lated precipitation series were calculated applying lin-

ear regression analysis. Moreover, the non-parametric

two-sided Mann-Kendall test was applied to test the

significance of the resulting trends. Since no significant

auto-correlation was found for the target series, the

original method without correction for auto-correlation

was applied. Note that the same approach has been

used in several studies to examine rainfall trends from

gauge data across the globe (see e.g. van Belle and
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Fig. 3 Left: Pearson correlation between GMet and the different gridded products considered for the inter-annual time-series
of annual/seasonal precipitation totals in the overlapping period 1983-2000. Right: As left but for the biases (in units of
inter-annual observed standard deviations). The numbers inside each panel indicate the corresponding spatial averages.

Hughes, 1984; Zhang et al., 2001; Burn and Hag El-

nur, 2002; Partal and Kahya, 2006; Obot et al., 2010).

In order to account for changing trends in precip-

itation, calculations were independently performed for

the first and second half of the period of study (1961-

1985 and 1986-2010) —hereafter referred to as P1 and

P2, respectively.— These two periods were chosen after

a careful analysis of the trends exhibited by the four

datasets covering the whole period (GMet, NCEP v1,

20CR v2 and GPCC v6). In particular, Fig. 4 shows

that the NCEP dataset exhibits significant decreasing

(increasing) trends in most of the regions for P1 (P2),

whereas the rest of datasets (including GMet) present

—with only a few exceptions— no significant trends.

Moreover, to test the robustness of the results to the

choice of the cut-off year (1985-1986), alternative cut-
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offs in the range 1980-1990 were considered (note that

some of the products start around 1980, with the begin-

ning of the satellite era, so the period P2 is constrained

to start from 1980 onwards). The obtained results were

very similar in all cases.
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Fig. 4 Inter-annual time-series of annual precipitation to-
tals for GMet (black), NCEP v1 (red), 20CR v2 (green) and
GPCC v6 (blue), averaged in the four zones considered. Lin-
ear trends were independently calculated for P1: 1961-1985
and P2: 1986-2010 and are indicated in the different panels for
each dataset. Solid (dashed) regression lines are only shown
for significant trends at a 1% (5%) level, according to the
Mann-Kendall test. The two numbers in the different panels
correspond to the trends (in mm/year) in the periods P1 and
P2 for the NCEP v1 series.

For the sake of comparison among zones with differ-

ent precipitation amounts, the Standardized Anomaly

Index (SAI) (see, e.g. Wilks, 2011) was considered rather

than the original time-series for all the calculations here-

after. Therefore, trends are given in units of inter-annual

observed standard deviations (STD) per year. Fig. 5

shows the GMet trends for the individual stations within

each zone and for the corresponding zonal average. Small

(big) dots indicate significant trends at a 5% (1%) level.

As can be seen, decreasing (increasing) trends are pre-

dominantly found for P1 (P2) in most of the gauges and

seasons. However these trends are not significant in gen-

eral, except for the South and Coast zones in AMJ (the

main rainy season) in P1. Note that, for quantitative

comparison among different zones, Table 1 shows the

STD of the inter-annual series of accumulated precipi-

tation in the four zones considered for P1 and P2.

The same analysis was carried out for the differ-

ent gridded products considered (Fig. 6). The result-
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ing trends are shown for all the reanalyses. However,

given the similarities found between certain observa-

tional products, only some of them are shown for the

sake of simplicity. In particular, one illustrative dataset

was selected for each type of observational product, i.e.,

gauge-based, satellite-gauge merged and purely satellite-

derived. The selection was done based on the results

from the performance analysis of Sec. 4.1, giving pref-

erence to those datasets showing higher correlations.

Thus, in addition to TARCAT v2.0 (the only purely

satellite-based product analyzed), results are shown for

GPCP v2.2 and GPCC v6, in representation of the

satellite-gauge merged and gauge-based products, re-

spectively. Note that GPCP v2.2 and TARCAT v2.0

are only available for P2. However, comparing these

datasets with GPCC v6 allows for assessing the effect

of satellite-derived information, as it is being included

in many gridded products in the last few decades.

Trends from the gauge-based products are in good

and consistent agreement with observations in most of

the zones and seasons —especially for P1— as shown
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Table 1 Standard deviation (STD) of the inter-annual time-
series of annual/seasonal precipitation totals for P1:1961-
1985 and P2:1986-2010, averaged over the four zones con-
sidered. Units are mm.

Zone Season STD (P1) STD (P2)

North

Year 163 133
JFM 28 19
AMJ 53 57
JAS 100 76
OND 57 32

Transition

Year 200 214
JFM 45 44
AMJ 108 97
JAS 132 121
OND 77 61

South

Year 310 146
JFM 53 42
AMJ 131 90
JAS 201 125
OND 63 67

Coast

Year 276 194
JFM 33 40
AMJ 183 152
JAS 145 103
OND 68 64

for GPCC v6. CRU TS 3.20 yields very similar re-

sults (not shown), which is in agreement with Har-

ris et al. (2013), who found that previous versions of

both products lead to similar results in terms of long-

term trends in West Africa. Interestingly, the satellite-

gauge combined datasets, GPCP v2.2 and CAMS-OPI

—the latter not shown— exhibit very similar trends to

those from GPCC v6 for P2, whilst TARCAT v2.0, the

only satellite-derived product, shows over-pronounced

increasing trends, significant in some regions and sea-

sons, what suggest than gauge-based information is needed

to properly reproduce the observed trends.

In the case of the reanalyses, Fig. 6 shows that the

unrealistic significant trends described for NCEP v1

in Fig. 4 are also found for ERA-40 in P1 and ERA-

Int in P2. On the one hand, NCEP v1 and ERA-40

lead to over-pronounced significant decreasing trends

in most of the zones —especially in the North and in

the Coast— and seasons in P1. On the other hand,

and interestingly, NCEP v1 and ERA-Int exhibit con-

tradictory over-pronounced significant increasing (the

former) and decreasing (the latter) trends in P2. A par-

ticular interesting case illustrative of the contradictions

found occurs for the North zone in JAS (the main rainy

season). However, 20CR v2 shows in general no signifi-

cant trends in any of the two sub-periods —except for

the North zone in P1, where it is in contradiction with

NCEP v1 and ERA-40)— being thus the reanalysis in

better agreement with observations.

YE
AR JF
M

AM
J

JA
S

O
ND

TARCAT v2.0

GPCP v2.2

GPCC v6
ERA-40/Int

NCEP v1
20CR v2

GMet

TARCAT v2.0

GPCP v2.2

GPCC v6

ERA-40/Int

NCEP v1

20CR v2
GMet

TARCAT v2.0

GPCP v2.2

GPCC v6

ERA-40/Int

NCEP v1

20CR v2
GMet

TARCAT v2.0

GPCP v2.2

GPCC v6

ERA-40/Int

NCEP v1

20CR  v2
GMet

YE
AR JF
M

AM
J

JA
S

O
ND

P1: 1961-1985 P2: 1986-2010

−0.10

−0.08

−0.06

−0.04

−0.02

0.0

0.02

0.04

0.06

0.08

0.10
STD/year

TR
A

N
S

IT
IO

N
N

O
R

TH
S

O
U

TH
C

O
A

S
T

Fig. 6 As Fig. 5, but for GMet and the different gridded
products considered in the four analyzed zones.

4.3 Trends of Extreme Precipitation Indicators

Besides the analysis of precipitation totals shown in the

previous sections, we also computed several indicators

to account for extreme events and spells. In particular,

we selected a subset from the standard indicators rec-

ommended by the joint CCI/CLIVAR/JCOMM Expert

Team (ET) on Climate Change Detection and Indices

(ETCCDI), which are listed in Table 2. Note that some

of these indicators have been used in previous studies

(Haylock et al., 2006; Wang et al., 2006; Sillman and

Roeckner, 2008).

As daily data is required for computing these in-

dicators, only GMet and the different reanalyses were

considered in this case. Trends were calculated on the

inter-annual time-series of these indicators by following

the same approach of the previous sections. In particu-

lar, we focus in P2 in order to check whether or not the
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Table 2 Extremes indicators analyzed (excerpt from the ETCCDI, http://etccdi.pacificclimate.org/indices.shtml).

Indicator Description Units
CDD consecutive dry days (precipitation < 1mm) day
CWD consecutive wet days (precipitation > 1mm) day
SDII simple daily intensity index mm/wet day
R10 days with precipitation > 10mm day
R20 days with precipitation > 20mm day

RX1DAY maximum precipitation in 1 day mm
RX5DAY maximum precipitation in 5 days mm

PRC90,95,99 90, 95 and 99th percentile mm

same deficiencies and contradictions found in Sec. 4.2

for some of the reanalyses hold for the case of extremes.

Fig. 7 shows the trends for six of the indices con-

sidered: CDD, CWD, SDII, R10, RX1DAY and PRC95

(similar conclusions were obtained for R10 and R20,

RX1DAY and RX5DAY and for PRC90, PRC95 and

PRC99, as defined in Table 2). Note that trends are

now given in units of the corresponding indicator.

As can be seen, GMet trends are not significant in

general and exhibit a higher zonal and seasonal vari-

ability than those obtained for precipitation totals, es-

pecially for the case of spell indicators. For the rest of

indices, similar contradictions as those found in Sec. 4.2

were found for NCEP v1 (ERA-Int), which systemati-

cally tends to show stronger than observed significant

decreasing (increasing) trends. Moreover, 20CR v2 ex-

hibits again no significant trends —although with val-

ues far from reality— in most of the cases, being thus

the reanalysis in better agreement with observations.

5 Conclusions

An assessment of the suitability of various gridded ob-

servational (gauge- and/or satellite-based) and reanal-

ysis products for studies of precipitation variability and

trends over Ghana was carried out. To this aim, data

from a quality-controlled network of fourteen gauges

from the Ghana Meteorological Agency (GMet) were

used as reference for the period 1961-2010.

Firstly, reanalyses were shown to exhibit very poor

agreement with observations, with weaker correlations

—below 0.4 in most of the cases— and larger biases

than any of the observational datasets considered. Among

the latter, products based on gauge data showed corre-

lations of up to 0.9 and nearly null biases, whilst those

including satellite information were shown to perform

slightly worse.

Secondly, a linear regression analysis for the first

(1961-1985) and second (1986-2010) half of the period

of study revealed the existence of predominant decreas-

ing (increasing) trends in the GMet data. When the

same analysis was performed on the gridded products,

different results came out: On the one hand, trends

from gauge-based and satellite-gauge merged datasets

were in consistent agreement with GMet, whilst purely

satellite-based datasets showed over-pronounced trends,

what suggests than gauge data is needed to properly

reproduce the observed trends. On the other hand, re-

analyses lead often to unrealistic stronger than observed

trends. Moreover, contradictory results (trends of oppo-

site sign) were systematically found for some of them.

Furthermore, the latter inconsistencies were also found

for the analysis of trends of extreme precipitation indi-

cators.

In the light of the previous results, this paper warns

on the use of reanalyses for climate-related studies in

Ghana since they show serious limitations for repro-

ducing the observed inter-annual variability and trends.

In particular, the performance of dynamical climate

simulations over this region should be assessed with

caution, since Regional Climate Models (RCMs) could

be being driven by unrealistic forcings, not simulat-

ing thus properly the observed climatology (see e.g.

Paeth et al., 2005). Contrarily, observational products

are shown to perform reasonably well —being purely

satellite-derived products the less recommendable op-

tion for reproducing over-pronounced trends.—

Note that although further validation studies are

still needed (they will be feasible as precipitation series

from satellite-data and from automatic weather stations

become longer), this study has useful implications for

the country’s rain-fed agriculture, the water resources

management and the energy sector, which are directly

linked to food security and many socio-economic activ-

ities.
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Grimm AM, Karoly D, Marengo JA, Marino MB,

Moncunill DF, Nechet D, Quintana J, Rebello E,

Rusticucci M, Santos JL, Trebejo I, Vincent LA

(2006) Trends in Total and Extreme South Ameri-

can Rainfall in 19602000 and Links with Sea Surface

Temperature. Journal of Climate 19(8):1490–1512

Huffman GJ, Adler RF, Chang A, Ferraro R, Gruber A,

McNab A, Rudolf B, Schneider U (1997) The Global

Precipitation Climatology Project (GPCP) Com-

bined Precipitation Dataset. Bulletin of the Amer-

ican Meteorological Society 78(1):5–20

Janowiak JE (1999) CAMS-OPI: A global satellite-

rain gauge merged product for real-time precipi-

tation monitoring applications. Journal of Climate

12(11):3335–3342

Jury MR (2013) A return to wet conditions over

Africa: 19952010. Theoretical and Applied Climatol-

ogy 111(3-4):471–481

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven

D, Gandin L, Iredell M, Saha S, White G, Woollen

J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M,

Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ro-

pelewski C, Wang J, Jenne R, Joseph D (1996) The

NCEP/NCAR 40-year Reanalysis Project. Bulletin

of the American Meteorological Society 77(3):437–

470

Kunstmann H, Jung G (2005) Impact of regional cli-

mate change on water availability in the Volta basin

of West Africa. In: Regional Hydrological Impact of

Climate Variability and Change, IAHS Scientific As-

sembly, IAHS, 7, vol 295, pp 1–11

Lacombe G, McCartney M, Forkuor G (2012) Drying

climate in Ghana over the period 1960-2005: Evi-

dence from the resampling-based Mann-Kendall test

at local and regional levels. Hydrological Sciences

Journal 57(8):1594–1609

Maidment R, Grimes D, Tarnavsky E, Allan R, Stringer

M, Hewison T, Roebelling R (2013) Development of

the 30-year TAMSAT African Rainfall Time Series

And Climatology (TARCAT) Dataset Part II: con-

structing a temporally homogeneous rainfall dataset.

Submitted to Journal of Applied Meteorology and Cli-

matology (8 May 2013)

Nicholson SE, Some B, Kone B (2000) An Analysis of

Recent Rainfall Conditions in West Africa, including

the Rainy Seasons of the 1997 El Niño and the 1998

La Niña Years. Journal of Climate 13(14):2628–2640

Novella NS, Thiaw WM (2013) African Rainfall Cli-

matology Version 2 for Famine Early Warning Sys-

tems. Journal of Applied Meteorology and Climatol-

ogy 52(03):588–606

Obot NI, Chendo MAC, Udo SO, Ewona IO (2010)

Evaluation of rainfall trends in Nigeria for 30 years

(1978-2007). International Journal of Physical Sci-

ences 5(14):2217–2222

Ofori-Sarpong E (2001) Impact of climate change on

agriculture and farmers coping strategies in the up-

per East region of Ghana. West African Journal of

Applied Ecology 2

Owusu K, Waylen PR (2009) Trends in spatio-temporal

variability in annual rainfall in Ghana (1951-2000).

Weather 64(5):115–120

Owusu K, Waylen PR (2013) The changing rainy season

climatology of mid-Ghana. Theoretical and Applied

Climatology 112(3-4):419–430

Paeth H, Born K, Podzun R, Jacob D (2005) Regional

dynamical downscaling over West Africa: Model eval-

uation and comparison of wet and dry years. Meteo-

rologische Zeitschrift 14(3):349–367

Partal T, Kahya E (2006) Trend analysis in Turkish pre-

cipitation data. Hydrological Processes 20(9):2011–

2026

Sillman J, Roeckner R (2008) Indices for extreme events

in projections of anthropogenic climate change. Cli-

matic Change 86:83–104

Sultan B, Janicot S (2003) The West African Monsoon

Dynamics Part II: Preonset and Onset of the Summer

Monsoon. Journal of Climate 16(21):3407–3427



Precipitation variability and trends in Ghana 11

Tarnavsky E, Grimes D, Maidment R, Stringer M,

Chadwick R, Allan R (2013) Development of the

30-year TAMSAT African Rainfall Time Series And

Climatology (TARCAT) Dataset Part I: improved

calibration and operational validation. Submitted to

Journal of Applied Meteorology and Climatology (8

May 2013)

Uppala SM, Kllberg PW, Simmons AJ, Andrae U,

Bechtold VDC, Fiorino M, Gibson JK, Haseler J,

Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S,

Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda

MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann

N, Caires S, Chevallier F, Dethof A, Dragosavac M,

Fisher M, Fuentes M, Hagemann S, Hlm E, Hoskins

BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally

AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saun-

ders RW, Simon P, Sterl A, Trenberth KE, Untch

A, Vasiljevic D, Viterbo P, Woollen J (2005) The

ERA-40 re-analysis. Quarterly Journal of the Royal

Meteorological Society 131(612):2961–3012

Wang B, Ding Q, Jhun JG (2006) Trends in Seoul

(17782004) summer precipitation. Geophysical Re-

search Letters 33(15):n/a–n/a

Wilks DS (2011) Chapter 3 - Empirical distributions

and exploratory data analysis. In: Statistical meth-

ods in the atmospheric sciences, International Geo-

physics, vol 100, Academic Press, pp 23 – 70

Xie P, Arkin PA (1997) Global Precipitation: A 17-

Year Monthly Analysis Based on Gauge Observa-

tions, Satellite Estimates, and Numerical Model Out-

puts. Bulletin of the American Meteorological Society

78(11):2539–2558

Zhang X, Harvey KD, Hogg WD, Yuzyk TR (2001)

Trends in Canadian streamflow. Water Resources Re-

search 37(4):987–998




