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Abstract

This  work  analyses  three  uncertainty  sources  affecting  the  observation-based
gridded  datasets:  station  density,  interpolation  methodology  and  spatial
resolution.  For this purpose, we consider precipitation in two countries, Poland
and Spain, three resolutions (0.11, 0.22 and 0.44 degrees), three interpolation
methods,  both  areal-  and  point-representative  implementations,  and  three
different densities  of the underlying station network (high/medium/low density).
As a result, for each resolution and interpolation approach, nine different grids
have  been  obtained  for  each  country  and  inter-compared  using  a  variance
decomposition methodology.

Results indicate larger differences among the datasets for Spain than for Poland,
mainly due to the larger spatial variability and complex orography of the former
region.  The variance decomposition points out  to station density as the most
influential factor, independent of the season, the areal- or point-representative
implementation  and  the  country  considered,  and  slightly  increasing  with  the
spatial  resolution.  In  contrast,  the  decomposition  is  stable  when  extreme
precipitation indices are considered, in particular for the 50-year return value. 

Finally, the uncertainty due to station sub-sampling inside a particular grid box
decreases with the number of stations used in the averaging/interpolation. In the
case of  spatially  homogeneous grid  boxes,  the interpolation approach obtains
similar  results  for  all  the  parameters,  excepting  the  wet  day  frequency,
independently  of  the  number  of  stations.  When  there  is  a  more  significant
internal  variability  in  the  grid  box,  the  interpolation  is  more  sensitive  to  the
number of stations, pointing out to a minimum stations' density for the target
resolution (6-7 stations).

1. Introduction
There  is  an  increasing  need  for  global  and  regional  climate  model  data  for
present  and  future  climates.  Global  climate  models  and  downscaling
methodologies, which include regional climate models and statistical downscaling
methods,  are  the  only  tools  that  enable  the  production  of  future  climate
projections and thus, quality assessment of climate models in present climate is a
crucial step for augmenting the confidence of the projections and to characterize
the inherent uncertainties. Presently, climate models are being run at increasing
resolutions, and statistical downscaling methods mostly aim at describing climate
properties at local scales. Global  climate models are approaching resolutions of
50km in the atmosphere (e.g. Haarsma et al. 2016) and regional climate models
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are reaching the convective permitting scales of ~2km resolution, where deep
convection is expected to be explicitly or at least partially resolved (Prein et al.
2015; Ban et al. 2014). 

In evaluation exercises, potential scale mismatches between climate models and
observation-based estimates  have to  be carefully  considered.  Climate  models
provide area-averaged quantities of the different surface meteorological variables
whilst  ground  based  observations  are  collected  on  a  local  scale.  To  ensure
consistency,  grid  box  model  results  should  be  compared  to area-averaged
observational estimates (Osborn and Hulme 1997) and, as a result, the need to
build  observational  gridded  datasets  emerged,  representing  areal-average
quantities and allowing fair comparisons and evaluations of model results (Chen
and Knutson 2008). In addition,  observation-based  gridded datasets have been
used for the development of bias-corrected climate change scenarios and many
other climate impact studies (IPCC-BG3b 2015).

The first global regular gridded datasets proposed were the monthly datasets, at
0.5° × 0.5° latitude/longitude resolution, originally developed by New et al. (1999,
2000), later updated by Mitchell and Jones (2005) and by Harris et al. (2014) –
the CRU TS3.10 Dataset. At a European level the most widely used dataset, E-
OBS, was developed in the framework of the ENSEMBLES project and includes
daily observations for temperature, precipitation (Haylock et al. 2008; Klein Tank
et al. 2002; Klok and Klein Tank 2009) and sea level pressure (van der Besselaar
et  al.  2011).  Other  continental  scale  examples  include  the  APHRODITE
precipitation dataset for Asia (Yatagai et al. 2012), the AWAP climate datasets for
Australia (Jones et al. 2009), the North America regular gridded dataset (Chen et
al.  2008  and  Daly  et  al.  2008)  and  the  CLARIS  dataset  for  South  America
(Menéndez et al. 2010). Recently, some regional and/or national regular gridded
datasets were built, often at higher spatial and temporal resolution, incorporating
a higher  number of  local  station observations,  spanning different periods and
covering  further  variables  (e.g.  air  temperatures,  precipitation,  cloud  cover,
relative humidity,  etc.).  Examples exist  for  Spain  (Herrera et al.  2012,  2016),
Portugal  (Belo-Pereira  et  al.  2011),  Germany (Rauthe et  al.  2013;  Frick  et  al.
2014), Switzerland (Frei et al. 2014, Isotta et al.,  2014) or Romania (ROCADA,
2014 and 2015). 

Typically, the aim of a gridded dataset is to represent the areal average in a grid
box, which requires a sufficiently large number of stations within the grid box to
account  for  the  subgrid  variability  and allow the  computation  of  an accurate
mean value. Unfortunately, in many regions the observational network is sparse
which  poses challenges and difficulties for the building of high quality regular
gridded datasets  affecting the spatiotemporal  structure  of  not  only  the mean
values, but also the variance and extremes. Moreover, as the target resolution of
the gridded dataset increases the effects of the mentioned issues on the quality
of the dataset also increase. To the best of our knowledge there are  only few
studies focusing on these issues and due to their importance more investigation
on this topic is needed.

Some previous  studies  have  analyzed  the  impact  of  the  station  density  and
interpolation method on the quality of the gridded datasets produced regarding
mean and extreme values (e.g. Gervais et al. 2014, Avila et al. 2015). In fact, the
recognizable good quality of gridded datasets for mean values is not extendable
for the variance as shown by Beguería et  al.  (2016).  This study showed that
modifications in the sample size result in changes in the variance of the gridded
data.  Usually  gridded products  underestimate  the  variance,  even  of  the  area
average, leading to flawed inferences about changes in climate variability and
extremes. Hofstra et al. (2010) investigated the effect of station network density
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on distributions and trends in indices of area-averaged daily precipitation and
temperature in the E-OBS gridded dataset. By randomly decreasing the number
of stations included in some of the grid boxes, the authors found that the fewer
stations are used for the interpolation the larger the over-smoothing, for both
precipitation and temperature. This smoothing is larger for higher percentiles and
thus  for  extremes  and  the  related  extreme indices.  In  the  context  of  a  new
method  for  spatial  interpolation  of  daily  surface  air  temperature  from  local
stations in complex orographic regions,  Frei  et  al.  (2014) showed that,  in  the
covered  period,  as  the  network  became  denser  the  interpolation  accuracy
improves. Nevertheless with the drawback regarding the long-term homogeneity
of the resulting grid dataset, Herrera et al. (2016) used two interpolation methods
to  produce  three  regular  gridded  temperature  (maximum and  minimum)  and
precipitation  datasets  for  Spain  and tested  the  sensitivity  of  the  interpolated
fields to the use of orography as a covariate in the interpolation. As in Hofstra et
al. (2010), the inclusion of  orography in the temperature interpolation method is
necessary  to  produce consistent  results,  while  it  introduces  high precipitation
biases  with  increasing  elevation.  The  high  station  density  also  allowed  the
authors  to  infer  that  the  precipitation  underestimation  (mean  and  extremes)
encountered  in  E-OBS  is  associated  to  the  density  of  the  underlying  station
network.

For Australia, Contractor et al. (2015) assessed the spatiotemporal variability of
precipitation comparing different gridded datasets, namely AWAP, TRMM, GPCP,
in addition to 6 datasets built using diverse interpolation methods (cubic spline,
triangulation  with  linear  interpolation,  ordinary  kriging,  natural  neighbor
interpolation, Barnes objective analysis) and grid station average. Regarding the
temporal  variability,  grids  interpolated  by  ordinary  kriging  and  cubic  spline
interpolation show regionally larger differences (lower correlations). Additionally,
the  larger  differences  are  associated  with  rainfall  extremes,  which  in  some
locations have differences up to a factor of five. From the gridding methods no
one consistently performs better when compared with the station observations,
but in particular cubic spline interpolation shows a tendency to “overshoot” in
comparison to station data and the other gridded products, particularly in regions
with strong spatial gradients. Similar shortcomings appear to occur in particular
in regions where the sparseness of the network is larger and important climate
variability exists, like e.g. in West Africa (Wagner et al. 2007). 

An  increasing  number  of  studies  assess  the  observational  uncertainty  by
comparing different observation-based reference datasets for specific variables
(e.g., Herold et al., 2016, Berg et al., 2015, Dunn et al., 2014, Hofstra et al. 2009,
Isotta et al., 2015, Kyselý and Plavcová, 2010, Palazzi et al., 2013, Schneider et
al., 2014) and investigate the influence of uncertainties in gridded observations
on regional climate model evaluation (e.g. Prein and Gobiet 2017; Kotlarski et al.
2017).

Against this background, a first objective of this study is to assess the sensitivity
of gridded products to resolution, observation density and interpolation method,
and  assess  their  contribution  to  the  total  variance  of  the  resulting  gridded
datasets.  In  particular  we consider three resolutions (0.11º,  0.22º  and 0.44º),
three  station  densities  (high,  medium  and  low,  the  latter  equivalent  to  the
density of the E-OBS dataset), and three interpolation methods based on ordinary
kriging (alone, or applied to the residuals after considering 2D or 3D splines for
the  monthly  mean  values).  Moreover,  we  considered  both  point-  and  areal-
representative  implementations  for  the interpolation methods.  The analysis  is
carried out for two distinct regions, Poland and Spain, which represent a wide
range of European climatic variability.  A second objective of  this work was  to
provide  suitable  information  to  undertake  an  analysis  of  the  uncertainty  of
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gridded products for the evaluation of Regional Climate Models (see Kotlarski,
2017, this issue).

This  paper  is  organized  as  follows.  Section  2  describes  the  observational
networks considered to build the gridded datasets for both countries (Poland and
Spain),  the  interpolation  methods  used  in  this  work  and  the  variance
decomposition analysis considered to separate the contribution of each factor to
the total variability. Section 3 describes the main results obtained and Section 4
summarizes the results and concludes the paper.

2. Data and Methods
2.1 Observation data for Spain

The  Iberian  peninsula  is  located  in  southwestern  Europe  (Figure  1a),  in  the
transition  zone  between  extratropical  and  subtropical  influences,  spanning  a
region with complex orography influenced by both Atlantic and Mediterranean
climates.  The  resulting  local  climate  variability  (Figure  2c-d)  ranges  from
temperate climates with regular precipitation spread over the whole year in the
north; to dry (semiarid) climates with areas with less than 100 mm/year in the
southeast; to the Mediterranean coast and part of the Ebro basin where frequent
drought periods alternate with heavy rainfall events (see, e.g. Llasat, 2009).

The  observational  network  used  in  this  work  is  based  on  the  observational
datasets described in Herrera et al. (2011). Only stations with at least 40 years in
the period 1950-2003  and  with  at least  90%  data availability within  each year
have been considered, being representative of the climatology observed in the
whole period and also for each particular year.  None automated missing daily
data completion algorithm has been included in the process. Moreover, only the
homogeneous stations (at  a  95% confidence level)  according to the standard
normal homogeneity test (SNHT) and Alexandersson test (Alexandersson, 1986)
have been considered.  The final  observational  network obtained contains 822
precipitation stations (Figure 1b) in the period 1951-2010 which have been used
in the interpolation procedure.

[INSERT FIGURES 1 and 2 AROUND THIS POINT]

2.2 Observation data for Poland

Poland is, for the most of its territory, topographically relatively flat and reaches
from the Baltic Sea in the north, to the Carpathian Mountains in the south (Figure
1a). The country is located in a transition zone in the temperate climatic zone
(Szwed,  2010).  Poland’s  climate  is  influenced  by  oceanic  (Atlantic)  and
continental  air  masses  approaching  from  the  western  and  eastern  direction,
respectively, as  well  as  by  polar  and  tropical  air.  These  factors  determine
precipitation amounts which,  in the annual sum,  are  largest  (greater than 600
mm) in the northwest of the country and in the southern upland and mountainous
part (Tatra mountains) where they partly exceed 1000 mm per year (Figure 2a-b).
The maximum monthly precipitation sum is observed in July and the minimum in
February. There is  a  tendency for extreme daily totals to increase towards the
east (Marosz et al., 2013). Drought is more frequent in the northern and western
part of Poland (Kalbarczyk, 2010).

The number of  publicly  available  precipitation station data  for  Poland is  very
limited.  Even the station  network  used for  public  gridded datasets  is  sparse,
resulting in low quality datasets, especially for the extremes (Wibig et al., 2014;
Hofstra  et  al.,  2009).  The  rain  gauge  network  operated  by  the  Institute  of
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Meteorology and Water Management – National Research Institute in Poland is
not very dense in comparison to other European countries of similar scale and
comprises about 500 stations. To avoid dealing with missing data and to focus on
the sensitivity analysis we have decided to take only stations with more than 98%
data  available into  account,  without  including  automated  missing  daily  data
completion in the process.  This finally leads to 197 Polish stations in the period
1978-2012  considered  in  our  analysis  (Figure  1c).  The  data  has  been
homogenized  and  quality  controlled  by  the  MASHv3.03  (Szentimrey,  2011)
procedure.

Note  that  the  quality  control  and  homogeneity  analysis  considered  for  each
country  are  the  standard  procedures  as  employed  (a)  by  the  Institute  of
Meteorology and Water Management to be applied to its observational datasets
in  Poland  and  (b)  in  the  development  of  the  ensemble  of  gridded  datasets
Spain02 (Herrera et al. 2012; 2015). In order to maintain the coherence with the
datasets of reference used in both countries we decided to keep both procedures
for the present analysis in spite of their differences.

For the sake of the coherence and the comparability of the analysis proposed for
both  countries,  only  the  common  period,  1981-2010,  of  both  observational
dataset has been considered in this study.  For this period,  the 50-year return
value for each grid-box was obtained by adjusting a Generalized Extreme Value
(GEV) distribution to the annual maximum of daily precipitation (see Herrera et
al. 2015, Section 2.3, for a detailed description).

2.3 Target Resolutions and Grids

The objective of a related study was to provide suitable information to undertake
an analysis of the uncertainty of gridded products for the evaluation of Regional
Climate Models (see Kotlarski, 2017, this issue). Therefore, the grids considered
in this study match the rotated grids considered in the EURO-CORDEX initiative at
a  horizontal resolution of 0.11º, 0.22º and 0.44º (see Figure 3). Note that the
latter two grids are degraded versions of the 0.11º one. Note also that the E-OBS
grid (v11 was used in this work) matches the  0.22º resolution grid used in this
work. 

In order to evaluate the uncertainty associated  with the  density of the  station
network we defined three different densities for each domain (high, medium and
low),  considering  the  full  set,  half  and  quarter  of  all  available  stations,
respectively. The medium and low density network were chosen from the total
network with a stratified random sampling based on the location (longitude and
latitude) and the mean precipitation. To obtain each sample, a k-means clustering
algorithm was applied to these variables (after standardization), considering the
same number of  clusters  as stations used for  each  target  density.  Then,  one
station was randomly chosen within each of the clusters. Note that the lowest
density  considered  (~200/50  stations  for  Spain/Poland)  approximately
corresponds to the number of stations used by E-OBS to define the 0.22º rotated
grid  (~190/30  stations  for  Spain/Poland).  Therefore,  the  sensitivity  analysis
undertaken in this study sheds some light on the representativeness of the E-OBS
datasets over the two regions under study.

We want to remark that the sensitivity analysis provided in this work focuses on
the impact of a relative change in the actual density of stations available (note
that  the actual  density  is  higher  in  Spain  than in  Poland),  not  at  the impact
relative to some hypothetically perfectly representative density. This latter aspect
is illustratively analyzed with a case study in Sec. 3.3, considering the gridbox
with highest density.
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[INSERT FIGURE 3 AROUND THIS POINT]

2.4 Interpolation Methods

The present work builds on the methodologies described in a previous study of
Herrera et al. (2016). In that study four interpolation methods were applied to
obtain a set of daily gridded datasets for precipitation and temperature (mean,
minimum and maximum), targeting the three different resolutions presented in
Sec.  2.3. In order to obtain gridded products comparable with the RCM direct
output  we  consider  the  three  methods  representing  the  area  average  (AA)
included in the work of Herrera et al. 2016: Ordinary Kriging (AA-OK), and 2- and
3-dimensional  thin plate splines (AA-2D and AA-3D). These three methods are
based on ordinary kriging. In the first case, the method is directly applied to the
observed daily precipitation values, while the other two methods follow a two-
step approach: first the 2- or 3-dimensional thin plate splines (considering or not
the  orography as  covariable)  is  applied  to  the  observed monthly  values,  and
secondly the daily anomalies are interpolated using the ordinary kriging. Finally,
both monthly values and daily anomalies are combined to obtain the interpolated
daily  values.  Area-averaged representativeness is  achieved by performing the
interpolation  using  an  auxiliary  0.01º  grid,  and  averaging  the  resulting
interpolated results in both regions for the three target resolutions (0.11º, 0.22º
and 0.44º). In addition, the above interpolation methods were applied using a
point-representative implementation (OK, 2D and 3D, according to the previously
defined notation) by directly estimating the values for the final grid, not including
the interpolation to the auxiliary 0.01º grid. In this case, the resulting grids are
not averaged versions of the higher-resolution one.

Note that both point- and area-representative interpolation have been applied in
previous  studies  (Herrera  et  al.  2012  and  2016)  and  the  optimal  approach
depends on the application. As an example, for climate models evaluation area-
represantive methods should be considered in order to maintain the coherence
between  both  datasets,  while  for  observation  data  completion  a  point-
representative can be more appropriated.

2.5 Variance Decomposition Analysis

The  described  experiments  lead  to  a  3x3  (interpolation  method  and  stations
density) matrix of gridded datasets for each interpolation approach (point- and
areal-representative), resolution (0.11º, 0.22º and 0.44º) and region (Poland and
Spain) which allows to assess the contribution of each dimension to the total
variance by means of a statistical analysis of variance (von Storch and Zwiers,
1999; Dequé et al 2007, 2011):

V=I+D+ ID

I=
1
3 ∑

i=1: 3
( X i .−X .. )

2 ; D=
1
3 ∑

j=1: 3
(X . j− X ..)

2;

ID=
1
3 ∑

i=1 : 3

1
3 ∑

j=1 :3
(X ij− X i .− X . j+X .. )

2 ,

where V is the total variance,  I and D are the variance due to the interpolation
method and the stations density alone respectively, ID is the variance due to the
interaction between both dimensions, Xij is the gridded dataset corresponding to
the  ith interpolation method and the  jth stations density, and the dots (.) in the
subindex  represent  the  mean  in  the  corresponding  dimension.  The  variance
decomposition  is  carried  out  for  each  grid  cell  independently,  and  variance
contributions are then spatially averaged.
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3. Results
3.1 Overall interpolation results

In order to analyze the effect of the station density and the interpolation methods
on the resulting gridded datasets, we focus both on mean and extreme regimes
and consider mean precipitation and  50-year return  value of the daily all-year
time series  for  each grid  box.  Figures 4 and 5 show the  results  for  the nine
datasets developed for the high density case considering the three resolutions
(columns)  and  the  three  interpolation  methods  (in  rows),  for  Spain  (left)  and
Poland (right). The benchmarking results for the stations and the gridded (0.22º)
dataset E-OBS are shown in the upper two panels of each figure.  Note that, for
the sake of simplicity, the individual map results have been shown only for the
areal-representative methods, whereas both approaches will be considered in the
analysis of variance in the following section.

Figure 4 shows the results for mean daily precipitation. On the one hand, this
figure shows a general underestimation by E-OBS, mainly in regions with complex
orography (e.g. Spain or the south of Poland). On the other hand, comparing the
interpolation methods, there are in general smaller differences between them for
each  resolution  than  with  respect  to  E-OBS,  which  is  related  to  the  stations
network considered in both cases and points out to the importance of the stations
density in the interpolation process. The main difference is found between the
AA-OK and AA-2D metods in Southern Poland.

Regarding the 50-year return value, Figure 5 shows similar results than those
described for the mean daily precipitation with a significant underestimation by
E-OBS  in  both  countries  for  all  the  interpolation  methods.  In  this  case,  the
differences between methods are more significant than for the mean for the three
resolutions. In particular, for both countries the main differences appear when the
monthly splines-based interpolation is included in the methodology  in isolated
points/regions (e.g. Northwestern Spain or Center Poland). Note that the spatial
pattern of the extreme precipitation is less dependent on the orography which
has been partially explained by the relation between the occurrence of extreme
events with different circulation patterns (Ramis et al, 2013; García-Ortega, 2007;
AEMET,  2011;  Herrera,  2012)  like  the  North  Atlantic  Oscillation  (NAO)  or  the
western Mediterranean Oscillation (WeMOi). In particular, despite orography, in
the Mediterranean coast the humid air from the Mediterranean Sea favors the
development of mesoscale convective systems and convective clouds resulting in
hail or heavy precipitations in the eastern coast of the Iberian Peninsula.

 [INSERT FIGURES 4 and 5 AROUND THIS POINT]

3.2 Variance decomposition

Figure 6 shows the spatially averaged variance decomposition (considering only
those  grid  boxes  with  at  least  one  station)  for  the  mean  (first  three  column
blocks)  and  extreme (last  block)  values,  considering  both  countries  and both
area- and point-representative implementations of the interpolation methods. For
each block, the stacked bar plots show the contribution to the total variance of
only  station  density  (blue),  only  the  interpolation  methodology  (red)  and  the
interaction  of  both  (green),  separately  for  each  resolution.  Station  density
appears to be the main variability factor, explaining over 60% of the variance in
Spain  and  over  50%  in  Poland  in  all  cases.  This  contribution  is  particularly
relevant  for  summer,  with  differences  in  the  range of  5-10% with  respect  to
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winter  and  annual  contributions.  Moreover,  the  interaction  term  is  roughly
insensitive  to  the  resolution  in  all  cases,  so  the  increment  of  the  relative
importance of station density (~10% for all seasons) with resolution leads to a
similar decrement of the relative importance of the interpolation method.  For the
point-representative interpolation methods the results are very similar in Spain,
but in Poland the station density component is more important, particularly due
to a reduction of the interaction term.

Similar results have been found for the 50-year return value, with the exception
of the sensitivity to resolution: in this case the results are roughly insensitive to
this factor. This could be partly explained by the fact that extreme precipitation is
less dependent on the orography than the mean precipitation (see Figures 4 and
5).  Since  the  main  effect  of  increasing  the  resolution  is  to  improve  the
representation of the orography (and the orographyc effects on precipitation), the
dependence on the resolution has less impact in the 50-year return value than for
the mean precipitation. 

Figure 7 shows the spatial variability of the variance decomposition obtained for
the  area-representative  implementation  and  the  highest-resolution  grid.  In
agreement  with  the  obtained  results,  areas  with  a  large  dependence  on  the
interpolation method broadly correspond to station-sparse regions (not included
in the bar plot). Note that regions without stations depend on the surrounding
network and on the nature of the interpolation method. Subsequently, once the
station's  network  is  defined,  all  the  variability  comes  from  the  interpolation
method as is shown in Figure 7. This information can support the identification of
target regions where a clear need for increasing the local representativeness with
new station data.

These results are also in agreement with those obtained for the local analysis
(see  Sec.  3.3  and  Figure  9)  which  shows  that,  for  a  particular  grid  box,  the
interpolated value strongly depends on the stations surrounding the grid box.
Hence, changes in the density modify the nearest stations affecting the grid box
and lead to a high variability in the resulting interpolated values.

 [INSERT FIGURES 6 and 7 AROUND THIS POINT]

3.3 Analysis of effective resolution

In the previous section we have seen that the station density largely influences
the variability of the interpolated grid box values. However, this analysis does not
provide information on the effective resolution for a given network of stations or,
in other words, the number of stations needed for convergence of interpolated
values for a given resolution. In this section we shed some light on this problem
by considering two grid boxes from the 0.44º resolution grid in Northern Spain
with the largest number of available stations (see the rectangle in Northern Spain
in Figure 1a). Figure 8 shows the local grid boxes of the 0.44º resolution grid in
this area and the location of the stations within these grid boxes. In this case, for
each number of stations and grid box a bootstrapping approach was considered
to obtain 100 randomly chosen samples from the 10 stations available within
each grid box. For each sample, the point-representative 3D interpolation method
was adjusted, considering the stations chosen for both grid boxes, and applied to
obtain the interpolated values of both grid boxes for the full period 1981-2010.
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Moreover,  for  comparison  we  have  considered  an  alternative  grid  box  value
estimation method based on simply averaging the station values.

On  the  one  hand,  the  averaging  approach  reduces  the  uncertainty  w.r.t.  the
interpolation due to the station combinations considered for all the parameters
and  grid  boxes  considered.  Moreover,  with  the  exception  of  the  wet  day
frequency,  in  the  case  of  the  averaging  approach  the  median  value  for  the
realizations is almost independent of the number of stations considered. On the
other hand, a greater variability and more dependence on the number of stations
have been found for the interpolation. In this sense, the results obtained for the
interpolation point out to a minimum stations' density of 6-7 stations per grid box
to  reach  the  target  resolution  (0.44º).  Although  this  result  depends  on  the
internal  variability  of  each  grid  box,  as  is  reflected  in  figure  9,  for  both
approaches and grid boxes considered all the parameters stabilize around these
values.

[INSERT FIGURES 8 and 9]

4. Summary and Conclusions
In  this  work  the  sensitivity  to  different  uncertainty  sources  of  a  precipitation
interpolation  methodology  has  been  analyzed  considering  three  interpolation
methods (OK, 2D and 3D), three stations density (low, medium and high), two
interpolation  approaches  (areal-  and  point-representative),  three  resolutions
(0.11º,  0.22º  and  0.44º)  and  two  different  geographical  domains  (Spain  and
Poland). 

The main conclusion obtained is the relevance of the stations density, explaining
more  than  60%  of  the  variance  independently  of  the  areal-  or  point-
representativity  of  the  interpolation  method,  the  resolution,  season  and  the
country considered. Regarding the spatial distribution of the explained variance,
regions with largest percentage due to the interpolation method are located in
regions with low stations density.

For  the sake of  comparison,  E-OBS has been considered as well  and showed
large differences w.r.t. the gridded products built, independently of the method
considered,  including  the  AA-3D  which  corresponds  to  the  method  used  to
develop E-OBS.  These differences are more significant for Spain than Poland due
to the large climatic variability and the complex orography of the former.

To analyze the local effect of the stations network considered in the interpolation,
two Spanish grid boxes containing the largest number of stations (10) for the
0.44  resolution,  and  the  time  series  corresponding  to  the  interpolation  and
average of 100 randomly chosen sub-samples have been considered. Although it
depends on the internal variability inside the grid box, the uncertainty due to the
combinations  and number of  stations considered is  reduced when the spatial
average is used instead an interpolation method. Based on the results obtained
for both grid boxes and interpolation/averaging approaches, at least 6-7 stations
per grid box should be considered to reach the target resolution.
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FIGURES

Figure 1: (a) Orography and location of the European regions analysed in
this work (Spain and Poland), together with the considered station

networks for (b) Spain and (c) Poland. The rectangle in northern Spain
shows the region containing the two grid-boxes with the largest station

density, which were considered for the local analysis in Sec. 3.3.
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Figure 2: Mean (a-c) and standard deviation (b-d) of daily precipitation of the
network considered for Poland (a-b) and Spain (c-d) for the period 1981-2010.

Figure 3: Grids defined for Poland (a-c) and Spain(d-f) for the three resolutions.
The  two  extreme  resolutions  (0.11  and  0.44)  were  used  in  EURO-CORDEX,
whereas the intermediate (0.22) was used in E-OBS.
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Figure  4:  Annual  mean  daily  precipitation  for  the  period  1981-2010  for  the
observations  and  the  nine  (3  interpolation  methods  x  3  resolutions)  area-
representative grids built.  The 0.22 resolution of  E-OBS has been included as
reference.

Figure 5: 50-years return value of daily precipitation based on the annual series
for  the  period  1981-2010  for  the  observations  and  the  nine  (3  interpolation
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methods  x  3  resolutions)  grids  built.  The  0.22  resolution  of  E-OBS  has  been
included as reference.

Figure 6: Percentage of explained variance for the two components: station
density (blue) and interpolation method (red) for the area-averaged (top) and

point-representative (bottom) interpolation methods over Spain (left) and Poland
(right). Each panel shows the results for mean annual, winter and summer, and
50-year annual return values for three different resolutions (0.11, 0.22 and 0.44

deg).
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Figure  7: Spatial  distribution  of  the  variance  components  between  the  two
components,  interpolation  method  and  stations  density,  for  Poland  (top)  and
Spain (bottom). As a reference the stations network is included (first column).

Figure 8: Highest-density grid boxes at 0.44 in Northern Spain and the stations
available inside them. Colours represent the orography of the region.
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Figure 9: Effective resolution analysis for the two grid boxes shown in Figure 8.
Box-plots show, for both the averaging (left) and interpolation (right) methods,
the variability of different statistics (mean daily precipitation, standard deviation
of daily precipitation, wet day frequency and 50-year return values, in rows) for
the period 1981-2010 due to the different combinations of stations considered,
for an increasing number of stations (m), ranging from one to ten (X-axis).
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