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We introduce a general theory for a consensus-based combination of estimations of probability measures.
Potential applications include parallelized or distributed sampling schemes as well as variations on ag-
gregation from resampling techniques like boosting or bagging. Taking into account the possibility of very
discrepant estimations, instead of a full consensus we consider a “wide consensus” procedure. The approach
is based on the consideration of trimmed barycenters in the Wasserstein space of probability measures. We
provide general existence and consistency results as well as suitable properties of these robustified Fréchet
means. In order to get quick applicability, we also include characterizations of barycenters of probabilities
that belong to (non necessarily elliptical) location and scatter families. For these families, we provide an
iterative algorithm for the effective computation of trimmed barycenters, based on a consistent algorithm
for computing barycenters, guarantying applicability in a wide setting of statistical problems.

Keywords: impartial trimming; parallelized inference; robust aggregation; trimmed barycenter; trimmed
distributions; Wasserstein distance; wide consensus

1. Introduction

Data that consists of samples composed of probability distributions are increasingly common.
Examples include the distribution of a set of medical measurements in hospitals in a multicenter
clinical trial or that of several economic magnitudes (income and age distribution, for instance)
in different countries. Often these distributions are not directly observed, but some estimation is
available. This paper introduces a new approach for the combination of several estimations of
probabilities. Our goal is to provide a tool to combine available estimations to get a consensus-
based global estimation. We recall that this goal has been largely pursued under different frame-
works. Merging information, pooling estimation, aggregation estimation or meta-analysis, are
expressions related with this common goal. The potential applications that we have in mind also
include parallelized or distributed estimation schemes as well as those provided by resampling
methods designed to improve unstable procedures or to provide approximate solutions through
algorithms involving combinatorial complexity problems.
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At present, statistical methodologies under a parallelized or distributed scheme are receiving
growing interest. In fact, they constitute a basic statistical challenge in a world where we want
to exploit massive data sets that could have been collected by different units or that exceed the
size that would make their analysis on a single machine feasible. The need for aggregation meth-
ods becomes clear in the following two cases. One, when the different sets of data would be
obtained, stored and even processed by the different units, perhaps using different experimental
techniques. Another, associated to the “divide and conquer” principle, would include the com-
bination of results obtained from the partition of the data set in smaller, tractable subsets. Note
that the partition of the data, in this second category, is often performed based on computational
convenience criterions, say by their storage location, or oldness in the data basis, hence essen-
tially both categories share the same handicap: the hypothesis of homogeneity of the distributions
corresponding to the different units seems to be excessively optimistic in practice.

Regarding the already mentioned resampling methods, since the introduction of bagging by
Breiman [9], subagging, and other aggregating procedures have been introduced in the last years
to improve the performance of estimators in different setups, including regression or classifica-
tion (see, e.g., Bühlmann and Yu [13], Bühlmann [12] and Meinshausen and Bühlmann [32]).
The aggregation is usually achieved just by averaging, but there are also other proposals like
bragging (in [12]) or magging (in [32]), which aim at robust aggregation. In a different problem,
the available algorithms for the obtention of some well known estimators (like the Minimum
Volume Ellipsoid (MVE), Minimum Covariance Determinant (MCD) and several others) involve
the use of a iterative procedure starting from many initial random choices, either for statistical or
computational convenience, that result in a set of different estimations that must be combined to
produce a better (or just computable) estimation (see, e.g., Woodruff and Rocke [43], Croux and
Haesbroeck [16], or Rousseeuw and Driessen [38]). Depending on the intrinsic geometry of the
estimated objects, the aggregation procedure may have to be based on some sort of non standard
averaging technique.

Aggregation of a set of estimations of probabilities to provide a final estimation – the con-
sensus – is analyzed in this paper under a novel point of view. We can get motivation for our
goal from the following hypothetical situation. Consider a biomedical study to be carried out
and processed by a network of hospitals. Each hospital will provide an estimation of the dis-
tribution of interest and the goal is to obtain a meta-estimation summarizing the estimations.
This combination of information is sensitive to two different possible types of atypic or noisy
data. First, the sample obtained in any hospital could have some contaminating data. Second,
one or several hospitals could produce very atypical results when compared to the others simply
because the patients in the influence zone of the hospital have very different (social, cultural,
ethnic, nutritional) features. To handle this general setting we will assume that there exist k units,
say U1, . . . ,Uk , and that unit Ui will process a sample xi

1, . . . , x
i
ni

of Rd -valued data obtained
from a distribution Pi . As the results of processing their associated samples, the units produce a
new sample consisting in the estimations P̂1, . . . , P̂k , perhaps given through the estimations of
suitable parameters. Our goal will be to produce a consensus estimator from those obtained by
the different units. However, since some units could process very contaminated batches, whose
consideration would lead to large deviations from the mainstream model (if any), we will in-
clude the possibility of obtaining a wide consensus instead of a full consensus. In our scheme,
the meaning of wide consensus must be understood as the possibility of avoiding the results of
the most discrepant units, elaborating the consensus just from the remaining units.
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We emphasize that our approach assigns a different status to the samples processed by the
units (composed by points in R

d ) and to the meta-sample, of size k (composed by probability
distributions on R

d ), provided by the units. The primitive samples have the usual meaning in
Statistics and will be processed through more or less standard procedures, a task that will not be
considered here, our object of interest being the sample of probability distributions. To work with
this sample, we will make a careful use of the structure of these objects. To illustrate this point,
let us consider a simple example involving estimation in a normal model. Our proposal aims
at producing a normal distribution which is an optimal representation of k normal distributions,
P̂1, . . . , P̂k in some sense. Note that a (weighted) average of probabilities is a probability, but
the mixture of normal distributions that we could produce in this way is not normal and could
be very far, in terms of shape, from the k normal distributions that we are trying to summarize,
hence making a different aggregation procedure to be more convenient.

Our choice for the basic aggregation procedure is the Wasserstein barycenter, that we briefly
describe next. We will work in the space P2(R

d) of probability measures on R
d with finite second

order moment, endowed with the L2-Wasserstein distance, W2, defined for P,Q ∈ P2(R
d) by

W2(P,Q) := inf
{(

E‖U − V ‖2)1/2 : L(U) = P,L(V ) = Q
}
, (1)

where we use L(X) to denote the distribution law of a r.v. X. Given a finite set of elements,
P1, . . . ,Pk ∈ P2(R

d) and positive weights λ1, . . . , λk , with
∑k

i=1 λi = 1, we would like to obtain
a representative element for the whole set. Like the mean of a set of vectors, a barycenter or
Fréchet mean in this space can be a good candidate and would be any probability, P̄ ∈ P2(R

d)

satisfying

k∑
i=1

λiW2
2 (P̄ ,Pi) = inf

{
k∑

i=1

λiW2
2 (P,Pi) : P ∈ P2

(
R

d
)}

. (2)

Such a probability, when it exists, is called a ({λi}ki=1-weighted) barycenter of {Pi}ki=1. The
consideration of barycenters in the Wasserstein setting has been initiated by Agueh and Carlier
in [1], with several extensions in Boissard et al. [8], Pass [34], Bigot and Klein [7] and in Le
Gouic and Loubes [31], where the concept has been extended to arbitrary (non-necessarily finite)
families of probabilities (see Definition 2.2 below).

A full consensus representation of P1, . . . ,Pk would be the barycenter associated to equal
weights λi = 1/k, i = 1, . . . , k. Different weights would be more appropriate if, for example,
some of the Pi ’s have been obtained from (or represents) a considerably larger population than
some others. On the other hand, the possible existence in P1, . . . ,Pk of very discrepant rep-
resentations (possibly due to highly contaminated batches as before), would justify a trimming
or reweighting action. Rather than using the ({λi}ki=1-weighted) barycenter of {Pi}ki=1, with the
original weights, the wide consensus representation of P1, . . . ,Pk with weights {λi}ki=1 or α-
trimmed barycenter, P̄α , is a solution, for suitable weights (λ̄α

i )ki=1, of the following double
minimization problem

k∑
i=1

λ̄α
i W2

2

(
P̄ α,Pi

) = inf

{
k∑

i=1

λ∗
i W2

2 (P,Pi) : P ∈ P2
(
R

d
)
, λ∗

i ≤ λi,

k∑
i=1

λ∗
i = 1 − α

}
. (3)
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Trimming procedures are of frequent use in Robust Statistics to prevent the influence of atyp-
ical data in statistical analyses. In fact, a trimmed version of the Wasserstein distance for proba-
bilities on the line was introduced, in the context of Goodness of Fit tests, by Munk and Czado
[33] to avoid the effects of data in the tails. This approach was extended in some papers (see
Álvarez-Esteban et al. [3] and references therein) to cover trimmings like that considered in (3)
that are “impartial”. This means that there are not a priori selected directions or zones for trim-
ming, being the complete data set which will provide that information. Although often trimming
is used with the meaning of deleting a part of the data, here we follow a more flexible approach
as in Gordaliza [29], based on probability trimmings (see Definition 3.1 below) which allows
to decrease the weight of some regions without completely removing them. We include in Sec-
tion 5.2 a succinct account of basic results on probability trimmings and refer to Álvarez-Esteban
et al. [2] for further details.

In this paper, we introduce the concept of trimmed barycenter for probabilities μ on the
Wasserstein space of probabilities on R

d with finite second moment endowed with the met-
ric W2, extending that of trimmed mean introduced in Rousseeuw [36] and Gordaliza [29]. No-
tice that no moment assumption is made on μ. Our setup covers the case of general Borel proba-
bility measures on P2(R

d) (of which (3) corresponds to the particular case of finitely supported
measures, see Definitions 2.2 and 3.1 below). We provide existence and consistency results for
trimmed barycenters. In particular, we prove a Strong Law of Large Numbers (Theorem 3.6) for
trimmed barycenters in this space, to be denoted throughout by W2(P2(R

d)) (see (7) below).
As noted before, a desirable feature of any aggregation method is adaptation to the shape of the

objects to be aggregated. Remarkably, this is the case for barycenters and trimmed barycenters in
location and scatter families such as the Gaussian family. In particular, we show that the barycen-
ter or trimmed barycenter of a probability on P2(R

d) supported in a (non-necessarily finite) set
of probabilities belonging to a location scatter family also belongs to the family. We also provide
a characterization of barycenters in location and scatter families in terms of a fixed point equation
as well as some equivariance results for general barycenters and trimmed barycenters. Notice that
suitability of the location and scatter families in the Wasserstein space has been considered by
Chernozhukov et al. in [15] in relation with Monge-Kantorovich quantiles. Also, Rippl et al. [35]
take advantage of the explicit expression of the Wasserstein distance between Gaussian distribu-
tions. In a similar spirit to that considered here, they substitute sampling distributions obtained
from Gaussian distributions by Gaussian distributions with estimated parameters, and address
the problem of the asymptotic behavior of the Wasserstein distance between empirical and the-
oretical distributions. Their analysis includes the two-sample setting, for independent samples,
through the distance between normal distributions when the parameters are estimated from the
respective samples.

Turning back to the statistical motivation of this work, we note that the applicability of
barycenters or trimmed barycenters for data analysis will strongly depend on the availability of
efficient algorithms for their computation. In this sense, we stress the fact that, in the multivariate
setting, even the computation of the barycenter of a finite collection of normal distributions can
be a hard task since no closed form expression for the barycenter is available. On the other hand,
convexity of the map η �→ W2

2 (η, ν) implies that Wasserstein barycenters are minimizers of a
convex functional. This fact is at the basis of a fast algorithm just introduced in [4] for the ap-
proximate computation of barycenters, including the case of location and scatter families. Here
we show how this can be used for the efficient computation of trimmed barycenters in these loca-
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tion and scatter families. Also we must stress that our approach constitutes a technical keystone
for the introduction of robust clustering in the Wasserstein space, opening new applications in
that wide setting (see del Barrio et al. [24]).

The remaining sections of this paper are organized as follows. In Section 2, we give a quick
account of notable results on Wasserstein distance and Wasserstein spaces including the main
known results on barycenters. Section 3 introduces trimmed barycenters and provides the main
results announced before. They include existence, consistency, equivariance, and characteriza-
tions in location-scatter families as well as relevant properties involving shapes and sizes. Sec-
tion 4 discusses computational issues for barycenters and trimmed barycenters and presents an
algorithm for the computation of trimmed barycenters in location and scatter families. It also
includes some toy examples and an application to aggregation of MCD’s solutions obtained by
subsampling on a real data set. The analysis of this example includes hints on the possible selec-
tion of the trimming as well as information on the running times of the algorithms. Most of the
technical details and proofs are deferred to Section 5.

We conclude this Introduction with some explanations on notation. Unless explicitly noted,
probability measures are defined on the Borel σ -algebra of the (metric) space. The indicator
function of a set, A, will be represented by IA, while δ{x} will denote Dirac’s measure on x. We
write �d for Lebesgue measure on R

d and μ � ν to mean that μ is absolutely continuous with
respect to ν. Weak convergence of probability measures will be denoted by →w . We assume
that weights, λ1, . . . , λk , are positive numbers, λi > 0, i = 1, . . . , k such that

∑k
i=1 λi = 1. We

will denote by P2,ac(R
d ) the subset of absolutely continuous probabilities (with respect to �d )

in P2(R
d). Given P ∈ P2(R

d) and r > 0, BW (P, r) (resp. BW (P, r)) will be the open (resp.
closed) ball with center at P and radius r for the distance W2, while B(x, r), where x ∈ R

d , will
refer to the open ball with center at x and radius r for the Euclidean distance on R

d . Finally, we
will say that the map T transports (pushes forward) the probability P to Q if Q is the image
measure of P by T , namely, if Q = P ◦ T −1.

2. Barycenters in Wasserstein space

As noted in the Introduction, our proposal for wide consensus aggregation is based on Wasser-
stein metrics and barycenters in Wasserstein space. We refer to the books of Villani [41,42] for
a complete and well documented view of the general theory on Wasserstein spaces and optimal
transport and to the papers by Agueh and Carlier [1] and Le Gouic and Loubes [31] for barycen-
ters. Here we include a brief introduction, continued in Section 5.1, with some relevant facts and
necessary results for our presentation.

It is well known that the infimum in (1) is attained, that is, there exists a pair (X,Y ), defined
on some probability space, with L(X) = P and L(Y ) = Q such that E‖X − Y‖2 = W2

2 (P,Q).
Such a pair (X,Y ) is called a W2-optimal transportation plan (W2-o.t.p.) for (P,Q), although
the alternative terminology L2-optimal coupling for (P,Q) is often used.

For probabilities on the real line, it is well known that the quantile functions associated to P

and Q, denote them by F−1
P and F−1

Q , are a W2-o.t.p.,

W2(P,Q) =
(∫ 1

0

(
F−1

P (t) − F−1
Q (t)

)2
dt

)1/2

, (4)
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but for multivariate distributions there is no equivalent explicit expression to compute W2(P,Q).
A useful fact, that allows to focus on the case of centered probabilities is that if mP ,mQ are the
means of P and Q, and P ∗,Q∗ are the corresponding centered probabilities, then

W2
2 (P,Q) = ‖mP − mQ‖2 +W2

2

(
P ∗,Q∗).

In the late 1980s and early 1990s, a series of papers by Brenier [10,11], Cuesta-Albertos
and Matrán [18] and Rüschendorf and Rachev [39] put the basis for the analysis of optimal
transporting: under continuity assumptions on the probability P , the L2-o.t.p. (X,Y ) for (P,Q)

can be represented as (X,T (X)) for some suitable map T . Moreover, this optimal transport map
for (P,Q) coincides with the (essentially unique) cyclically monotone map transporting P to Q.

A very interesting consequence of the characterization of optimal transportation maps is that,
independently of the initial distribution, some maps have the optimal transport property between
any initial probability P and its transported probability. In particular, if A is a positive definite
matrix (here and through the paper we assume that positive definiteness includes symmetry),
then (X,AX) is a W2-o.t.p. independently of the law L(X). This fact allows to characterize
the optimal transport maps between nonsingular normal distributions and yields some additional
facts that we quote in the next result, a version of Theorem 2.1 in Cuesta-Albertos et al. [20],
which, in turn, improves the original statement by Gelbrich [28].

Theorem 2.1. Let P and Q be probabilities in P2(R
d) with means mP ,mQ and covariance

matrices 	P ,	Q. If 	P is assumed nonsingular, then

W2
2 (P,Q) ≥ ‖mP − mQ‖2 + trace

(
	P + 	Q − 2

(
	

1/2
P 	Q	

1/2
P

)1/2)
(5)

= W2
2

(
N(mP ,	P ),N(mQ,	Q)

)
.

Moreover the equality holds if and only if the map T (x) = (mQ − mP ) + Ax transports P to Q

(in particular if P and Q are Gaussian), where A, semidefinite positive, is defined by

A := 	
−1/2
P

(
	

1/2
P 	Q	

1/2
P

)1/2
	

−1/2
P , (6)

The set P2(R
d) equipped with the W2-distance is a Polish space (separable and complete

metric space) that is often called a Wasserstein space and denoted as W2(R
d ). We can also

consider (through a definition of the distance similar to that in (1)) a Wasserstein-type space over
other spaces, notably over P2(R

d) leading to W2(P2(R
d)). This space consists of the probability

measures, μ, on P2(R
d) (equipped with the Borel σ -field associated to the distance W2) such

that ∫
P2(R

d)
W2

2 (P,Q)μ(dP ) < ∞, for some (hence, for every) Q ∈ P2
(
R

d
)
. (7)

Wasserstein distance in this space will be denoted by WP2 . It is worthwhile to stress that the
Wasserstein metric on W2(P2(R

d)) inherits the good properties that it exhibits on P2(R
d) (see

Section 5.1). The space W2(P2(R
d)) is in the basis of the (more abstract) framework considered

in [31] to generalize (2) to this definition of barycenters.
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Definition 2.2. If μ ∈ W2(P2(R
d)), then a barycenter of μ is any probability μ̄ ∈ P2(R

d) such
that W2

P2
(μ, δ{μ̄}) = inf{W2

P2
(μ, δ{Q}),Q ∈ P2(R

d)}, that is:

∫
P2(R

d)
W2

2 (P, μ̄)μ(dP ) = Var(μ) := inf

{∫
P2(R

d)
W2

2 (P,Q)μ(dP ) : Q ∈ P2
(
R

d
)}

. (8)

We use the notation Var(μ) to stress the role of variance of μ played by this quantity. Note
that (8) is the natural extension of the already considered barycenters of a finite set of probabili-
ties P1, . . . ,Pk ∈ P2(R

d) with weights λ1, . . . , λk .
It will be convenient to consider a generic probability space (
,σ, P) where a measurable

random element with values in P2(R
d) (and distribution law μ) is defined. The image of a

generic ω ∈ 
 will be denoted as μω. Then equation (8) becomes∫



W2
2 (μω, μ̄)P(dω) = inf

{∫



W2
2 (μω,Q)P(dω) : Q ∈ P2

(
R

d
)}

. (9)

Existence of barycenters in this setting has been proved in [31], as well as uniqueness under
absolute continuity assumptions (in fact this follows easily from Theorem 2.9 in [2]). Barycenters
in Wasserstein space enjoy some continuity properties. We refer to Proposition 5.3 and Theorems
5.4 and 5.5 (which are essentially contained in Theorems 2 and 3 in [31]).

We show next that barycenters in Wasserstein space satisfy an equivariance property with re-
spect to similarity transformations, namely, linear transformations that preserve shape. We recall
that these transformations include rotations, reflections, translations and scaling. A proof can be
found in Section 5.3.

Proposition 2.3. Let μ̄ ∈ P2(R
d) be a barycenter of μ ∈ W2(P2(R

d)), and let T be a similarity
transformation on R

d . If μ∗ is defined as the probability in W2(P2(R
d)) given, through the

notation above, by μ∗
ω = μω ◦ T −1, then μ̄ ◦ T −1 is a barycenter of μ∗.

We close this section with some remarks on the computability of Wasserstein barycenters.
In general, it shares the serious computational difficulties inherent to optimal transportation.
Explicit expressions are available just for distributions on the real line, a fact that is quoted in the
next result.

Proposition 2.4. If F−1
1 , . . . ,F−1

k are the quantile functions associated to probabilities

P1, . . . ,Pk on the real line, and λ1, . . . , λk are positive weights with
∑k

i=1 λi = 1, then the
barycenter of {Pi}ki=1 is the probability with quantile function

∑k
i=1 λiF

−1
i .

From Proposition 2.4 we see that for k normal distributions, N(mi,σ
2
i ), i = 1, . . . , k, on R,

the barycenter would be the normal law N(
∑k

i=1 λimi, (
∑k

i=1 λiσi)
2). More generally, for mul-

tivariate normal distributions there is an interesting characterization for the barycenter that comes
from Knott and Smith [30] (but see also Rüschendorf and Uckelmann [40] and [1]).
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Theorem 2.5. Let Pi = N(mi,	i), i = 1, . . . , k be normal probabilities on R
d with positive def-

inite covariances, and λ1, . . . , λk positive weights with
∑k

i=1 λi = 1. Then the unique barycenter
of P1, . . . ,Pk is the normal law N(μ̄, 	̄), where m̄ = ∑k

i=1 λimi and 	̄ is the only positive
definite root of the equation

k∑
i=1

λi

(
	1/2	i	

1/2)1/2 = 	. (10)

Later, in Theorem 3.10, we will generalize this result to probabilities in W2(P2(R
d)) supported

in an arbitrary location-scatter family. We note that our proof is elementary and self-contained
(in particular, it does not use Theorem 2.5 but only general principles of optimal transportation).

3. Trimmed barycenters

We introduce in this section our approach for a wide consensus representative of a sample
P1, . . . ,Pk of probabilities, with given weights λ1, . . . , λk . It is based on considering a suitably
trimmed subsample. The trimming procedure allows partial discarding of some probabilities,
through a suitable reweigthing as in the following definition.

Definition 3.1. Given 0 ≤ α < 1 and P a probability on a measurable space (
,σ ), we say that
the probability P ∗, also defined on σ , is an α-trimming of P if there exists a measurable function
τ : 
 → R such that 0 ≤ τ(ω) ≤ 1 for every ω ∈ 
 and P ∗(A) = 1

1−α

∫
A

τ(ω)P (dω) for every
A ∈ σ . Such a function is often called an α-trimming function. The set of all α-trimmings of P

will be denoted by Tα(P ).

Remark 3.2. A typical trimming function would be the indicator function of a set A with prob-
ability P(A) = 1 − α. The trimmed probability being then the conditional probability given A.
However, our definition even includes the consideration of P , itself, as a trimmed version of P ,
with associated trimming function τ = (1 − α)I
.

Since trimmed probabilities and trimming functions are associated in an essentially one to one
way, the notation Tα(P ) will be indistinctly used for the set of all α-trimmings of P and for the
set of the corresponding trimming functions.

Given α ∈ (0,1), and a probability μ on P2(R
d), we look for a μ̄α ∈P2(R

d) and a probability
μα ∈ Tα(μ), with associated trimming function τα

μ , which satisfy∫
W2

2

(
P, μ̄α

)
μα(dP ) = Varα(μ) := inf

μ∗∈Tα(μ),ν∈P2(R
d )

∫
W2

2 (P, ν)μ∗(dP ) (11)

or, equivalently, in terms of trimming functions,∫
W2

2

(
P, μ̄α

)
τα
μ(P )μ(dP ) = (1 − α)Varα(μ) = inf

τ∈Tα(μ),ν∈P2(R
d )

∫
W2

2 (P, ν)τ (P )μ(dP ).
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Such a μ̄α will be called (α-)trimmed barycenter of μ and τα
μ an (α-)optimal trimming function.

Similarly to Var(μ), the value Varα(μ) will be called the (α-)trimmed variance of μ. As usu-
ally, the previous definitions apply to any P2(R

d)-valued random variable, by identifying these
concepts for a random variable with those of its probability distribution. The following theorem
(proved in Section 5.4) guarantees the existence of trimmed barycenters.

Theorem 3.3. Let α ∈ (0,1) and let μ be a probability defined on P2(R
d). Then, there exists an

α-trimmed barycenter of μ, which we will denote as μ̄α .

By considering as trimming function (with the corresponding normalizing factor), the indi-
cator set of a large enough ball centered at δ{0}, it becomes obvious that the minimum value
Varα(μ) must be finite and (recall the definition of W2(P2(R

d)) in (7)) that the set Tα(μ) can
be substituted by the subset Tα(μ)∩W2(P2(R

d)). Since every probability on W2(P2(R
d)) has a

barycenter, obviously μ̄α must be a barycenter of μα , which justifies the notation we are using.
Furthermore, and similar to the impartially trimmed means, trimmed barycenters must simulta-
neously be the barycenter of the trimmed distribution and the center of its support. To formalize
this fact, we define

rα(P ) := inf
{
r > 0 : μ[

BW (P, r)
] ≥ 1 − α

}
. (12)

It trivially follows that if r < rα(P ), then μ[BW (P, r)] < 1 − α and

μ
[
BW

(
P, rα(P )

)] ≤ 1 − α ≤ μ
[
BW

(
P, rα(P )

)]
.

This is the key to the following result.

Proposition 3.4. Let α ∈ (0,1), ν ∈ P2(R
d) and τ ∗ ∈ Tα(μ) be such that

IBW (ν,rα(ν)) ≤ τ ∗ ≤ IBW (ν,rα(ν)), (13)

then, for every τ ∈ Tα(μ), we have∫
W2

2 (P, ν)τ ∗(P )μ(dP ) ≤
∫

W2
2 (P, ν)τ (P )μ(dP ). (14)

Proof. Let τ ∈ Tα(μ) and consider the real r.v. X(P ) := W2
2 (P, ν). It is clear that the dis-

tribution of X, when we consider in P2(R
d) the probability μ trimmed through the trimming

function τ∗, is stochastically smaller than that associated to any other τ . Therefore (14) holds. �

Note that equality in (14) is only possible if (13) happens for τ . Thus, the optimal trimming
functions must satisfy (13) where ν must be a barycenter of the trimmed probability associated
to τ∗. In other words, the optimal trimming functions are essentially defined by the indicator of
a ball centered at a trimmed barycenter.

We turn now to consistency of trimmed barycenters. Theorem 3.5 (see Section 5.4 for a proof)
guarantees it under weak consistency of the probability distributions. Note that, unlike in the case
of (non trimmed) barycenters, it is not necessary that W2(μn,μ) → 0, but it suffices to assume
that μn →w μ.
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Theorem 3.5. Let (μn)n,μ be probabilities on P2(R
d) such that μn →w μ. For a fixed α ∈

(0,1), let μ̄α
n be any trimmed barycenter of μn. Then the trimmed variances converge, namely,

Varα(μn) → Varα(μ), the sequence (μ̄α
n)n is precompact for the W2 topology and any limit is a

trimmed barycenter of μ. If μ has only one trimmed barycenter, μ̄α , then W2(μ̄
α
n, μ̄α) → 0.

Repeating the argument that we use for law of large numbers for barycenters (Theorem 5.5),
we obtain from Theorem 3.5 the corresponding one for trimmed barycenters. We state the result
under the additional hypothesis of uniqueness of the trimmed barycenter of the probability law.
This kind of assumption is quite common when showing consistency of centralization measures
to avoid complicated or too simplistic statements with complicated proofs even on R

k (see, for
instance, Cuesta-Albertos and Matrán [17]). If the μ-probability of the set of absolutely con-
tinuous probabilities in P2(R

d) is greater than 1 − α, the support of every α-trimmed version
of μ would contain absolutely continuous probabilities, thus it would have only one barycen-
ter. Therefore, lack of uniqueness of the trimmed barycenter should be provoked by particular
configurations of μ. For example, for the uniform distribution on [0,1], every point in the set
[(1 − α)/2, (1 + α)/2] is an α-trimmed mean. Section 5 in García-Escudero et al. [27] treats
this problem, although in practice it is quite rare to find distributions where uniqueness fails and,
even then, the lack of uniqueness could be only due to an improper choice of α.

Theorem 3.6. Assume that μ is a probability on the space P2(R
d) with a unique trimmed

barycenter. If μn is the sample probability giving mass 1/n to the probabilities P1, . . . ,Pn ob-
tained as independent realizations of μ, then the trimmed barycenters and variances are strongly
consistent: μ̄α

n →a.s. μ̄α , and Varα(μn) →a.s. Varα(μ).

3.1. Location-scatter families

Computation of Wasserstein distances and of barycenters for probabilities on the real line can be
done through the explicit characterizations given in (4) and Proposition 2.4. In the multivariate
setting, Proposition 2.4 can be extended to probabilities that can be parameterized in terms of a
location and a scatter matrix, generalizing the normal multivariate model.

Definition 3.7. Let M+
d×d be the set of d × d positive definite matrices and let X0 be a random

vector with probability law P0 ∈P2,ac(R
d ). The set

F(P0) := {
L(AX0 + m) : A ∈ M+

d×d,m ∈ R
d
}

of probability laws induced by positive definite affine transformations from P0 will be called a
location-scatter family.

As an easy consequence of Theorem 2.1, any probability P ∈ F(P0) can be optimally trans-
ported to any other Q ∈ F(P0) through an affine transformation with positive definite matrix.
Thus w.l.o.g. we can assume that the mean of P0 is the vector 0̄ and its covariance matrix is Id ,
the identity matrix. Also note that to make reference to a probability in F(P0) we could use its
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mean m, and the transformation A or alternatively 	 = A2, the corresponding covariance matrix.
We will use the second option to share the usual notation in the normal model. Therefore, Pm,	

will denote the probability in F(P0) with mean m and covariance matrix 	.
In the statistical literature, a location and scatter family usually refers to an elliptical model.

However, the families considered in this work under this denomination include the elliptical
families, but also families induced by different shapes. For instance, if we take in R

2 the prob-
ability P0 whose marginals are independent standard normal and exponential, respectively, then
the family F(P0) is not elliptical. We also note that to address a confidence set problem, P0

and the choice of any measurable set Mγ in R
d , such that P0(Mγ ) = γ , will play the role

of shape of the reference set. A typical asymptotic pivotal function for a parameter θ ∈ R
d

has the structure n1/2V̂
−1/2
n (θ̂n − θ), thus, if we approximately know its law, P0, then the set

{θ̂n − n−1/2V̂
1/2
n x : x ∈ Mγ } would be an approximate confidence set of level γ . Therefore, the

estimation of the location and scatter in the family F(P0) produces a confidence set of the desired
level, and a consensus based estimation would automatically produce a consensus confidence set
for the parameter.

We show in Theorems 3.8 and 3.10 below that Wasserstein barycenters and trimmed barycen-
ters of probabilities supported on a location-scatter family belong to the location-scatter family,
or, in other words, that location-scatter families are closed for barycenters. Of course, the gen-
eral equivariance result for similarity transformations (recall Proposition 2.3) remains true in the
location-scatter setup. We also include a Gelbrich’s type result showing that the dispersion in the
W2-sense is minimized just when the probabilities belong to a common location-scatter family,
in particular when all the probabilities are normal. The proof can be found in Section 5.5.

Theorem 3.8. Let {Pi}ki=1 be probabilities in P2,ac(R
d ) with means mi, i = 1, . . . , k, and non-

singular covariance matrices 	i, i = 1, . . . , k. Let Ni = N(mi,	i), i = 1, . . . , k, be normal
probability distributions on R

d . Also let P0 ∈ P2,ac(R
d ) and let us denote by Pm,	 the prob-

ability in F(P0) with mean m and covariance matrix 	.
Let us consider λ1, . . . , λk positive weights with

∑k
i=1 λi = 1, and respectively denote by P̄ ,

N̄ and P̄ the (unique) barycenters of {Pi}ki=1, {Ni}ki=1 and {Pmi,	i
}ki=1. Then we have:

k∑
i=1

λiW2
2 (Pi, P̄ ) ≥

k∑
i=1

λiW2
2 (Pmi,	i

, P̄) =
k∑

i=1

λiW2
2 (Ni, N̄). (15)

Moreover, the inequality in (15) can be an equality only if the mean and covariance matrix of
P̄ coincide with those of N̄ and the relation {Pi}ki=1 ⊂F(P̄ ) holds.

Remark 3.9. We stress the fact that Theorem 3.8 generalizes (with the same proof but adding
some notational complexity) to any μ ∈ W2(P2(R

d)) if, using the notation employed in (9), we
assume that for every ω ∈ 
, μω ∈P2,ac(R

d ) with mean mω and covariance matrix 	ω ∈ M+
d×d .

Theorem 3.10. Let P0 ∈ P2,ac(R
d ), and μ ∈ W2(P2(R

d)). With the notation in Remark 3.9,
assume that for every ω ∈ 
, the probability μω ∈ F(P0). Then the unique barycenter, μ̄, of μ
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also belongs to F(P0). The mean of μ̄ is m̄ := ∫
mωP(dω), and the covariance matrix, 	̄, is the

only positive definite matrix satisfying

	̄ =
∫ (

	̄1/2	ω	̄1/2)1/2P(dω).

Once we know that a family is closed for barycenters, the property will be shared by the
trimmed barycenters. This is motivated by the fact that trimmed versions of a probability μ have
their supports contained in that of μ, and a trimmed barycenter is characterized as a barycenter of
an optimal trimmed version of μ. Once a trimming function has been fixed, the uniqueness of the
barycenter of absolutely continuous distributions, obtained in [14], leads also to the uniqueness
of the trimmed barycenter associated to that trimmed version of μ. However, we cannot deduce
uniqueness of the trimmed barycenters in an easy way. In fact, this is a hard problem even for
trimmed means in euclidean spaces.

Corollary 3.11. Assume that P0 ∈ P2,ac and μ a probability on P2(R
d) that is supported in

F(P0). Then, for every α ∈ (0,1), any trimmed barycenter of μ also belongs to F(P0). Moreover,
any optimal trimming function for μ uniquely determines a trimmed barycenter.

Remark 3.12. We emphasize the importance of Corollary 3.11 that allows to search for trimmed
barycenters of, say a random normal distribution, looking just to the means and covariance func-
tions. Moreover, by Theorem 2.1, the distance between probabilities in F(P0) is given by

W2
2 (Pm1,	1,Pm2,	2) = ‖m1 − m2‖2 + trace

(
	1 + 	2 − 2

(
	

1/2
1 	2	

1/2
1

)1/2)
, (16)

which allows computation of Wasserstein distances. With applications in view, these facts will
be complemented with the proposal of a feasible algorithm for addressing the computation of the
trimmed barycenter of a finite set of probabilities that belong to a location-scatter family and a
given set of weights.

Once this theory has been developed it can be argued that (16) is just a combination of metrics:
the Euclidean metric for the means plus another one between covariance matrices. Since the final
product only involves distributions in F(P0), which are fully determined by the location and
the scatter parameters, the problem is parametric and some comparison with other specialized
metrics to analyze these parameters could be in order. Focusing on the metric on the covariance
matrices, Fréchet means related to several metrics on the space of symmetric positive definite
matrices have been proposed in the literature. Among these metrics particular attention is de-
served by the affine-invariant metrics and Log-Euclidean metrics, introduced by considerations
that mainly arise from the image analysis framework (see Arsigny et al. [5]). In both cases, the
associated Fréchet means can be considered as generalizations of the geometric mean, although
the Log-Euclidean mean could be preferred by its easier computation. We should note that our
choice of (16) is not guided by the search for a metric on this set of matrices, but it is rather
the restriction of a metric on the set of all probabilities with finite second moment – a kind of
L2 space– with suitable properties already pointed out in the literature in different scenarios. We
note also that the computation of Wasserstein barycenters can be efficiently done through the
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Figure 1. Each picture shows the effects of linear interpolation of two matrices corresponding to the
weighted mean (middle row), barycenter (lower row) and Log-Euclidean mean (upper row), of the ma-
trices represented by the black and cyan ellipses. From left to right we handle the weights 1, 0.75, 0.50,
0.25, 0 on the black one. Note the characteristic swelling effect associated to the weighted mean.

algorithm introduced in [4] and discussed in Section 4. Taking this into account, the comparison
must rely on purely statistical arguments, like those involving the comparison between the mean
and the geometric mean for real numbers. Any of them can be preferred for different tasks but,
arguably, the usual mean is the preferred choice in most of the applications. To provide some
illustrative idea of their relative behavior, in Figure 1 we resort to the comparison of the inter-
polation of two pairs of covariance matrices represented by the black and cyan ellipses in each
picture. Notice that the average (the weighted mean of covariances) is included for reference.
The upper, middle and lower rows are respectively associated to Log-Euclidean, average and
barycenter approaches. The red, green and blue ellipses respectively represent the solutions as-
sociated to 0.75, 0.5 and 0.25 weights on the black covariance matrix (and 0.25, 0.5 and 0.75 on
the cyan one). Additionally, we include in Figure 2 the density functions of three centered nor-
mal distributions accompanied by those associated to these approaches. For very similar standard

Figure 2. Left: Density functions corresponding to N(0, σi) distributions for σ1 = 0.2, σ2 = 1, σ3 = 2.
Right: Normal density functions for σ = (1/3

∑3
i=1 σ 2

i
)1/2 = 1.296 (green), σ = (

∏3
i=1 σi)

1/3 = 0.737

(red) and σ = 1/3
∑3

i=1 σi = 1.067 (black), respectively associated to the mean of variances and the geo-
metric mean (or Log-Euclidean) of the variances, and the barycenter of the distributions.



3160 Álvarez-Esteban, del Barrio, Cuesta-Albertos and Matrán

deviations {σi}ki=1 and any associated weights {λj }kj=1, the three aggregation procedures would
produce nearly the same result but, if this is not the case, the estimates can be very different.

An explanation for these different behaviors comes from Jensen’s inequality. In the simplest
one-dimensional case, these three averaging procedures result in standard deviations given by the
left (Log-Euclidean), middle (Wasserstein barycenter) and right (weighted average of variances)
terms in the following inequalities

exp

(
k∑

j=1

λj logσj

)
≤

k∑
j=1

λjσj ≤

√√√√√ k∑
j=1

λjσ
2
j . (17)

This shows that the standard deviation of the geometric mean is smaller than the average of
the standard deviations which in turn is smaller than the standard deviation arising from the
weighted mean of the variances. This gives some explanation to the swelling effect associated
to the weighted mean. We also note that if we are willing to admit that the standard deviation
(
∫ |x|2P(dx))1/2 is a good measurement of the size of a centered distribution, P , then the Log-

Euclidean mean results in summaries which are smaller than the average size of the objects to be
summarized. In this sense, the Wasserstein barycenter provides the better choice between these
alternatives.

For diagonal (in some basis) covariance matrices, this explains the intermediate size of the
barycenter, avoiding the swelling effect of the mean of variances, but also the somewhat ex-
cessive decrease associated to the Log-Euclidean approach. In a location scatter model, for a
finite collection {P0,	j

}kj=1 and weights {λj }kj=1, and if the principal directions of the 	j ma-
trices are the same, then for some orthonormal matrix H , 	j = HDjH

t , j = 1, . . . , k with
Dj = diag(σ 2

j1, . . . , σ
2
jd). If we denote by 	∗, 	̄, 	̂ the covariance matrices associated to

the Log-Euclidean, Wasserstein barycenter and weighted average approaches, then also 	∗ =
HD∗Ht, 	̄ = HD̄Ht , 	̂ = HD̂Ht , with D∗ = diag(σ ∗

1
2, . . . , σ ∗

d
2), D̄ = diag(σ̄ 2

1 , . . . , σ̄ 2
d ),

D̂ = diag(̂σ 2
1 , . . . , σ̂ 2

d ), which are related by σ ∗
j ≤ σ̂j ≤ σ̂j , j = 1, . . . , d , from (17) because

σ ∗
j = exp(

∑k
i=1 λi logσji), σ̂j = ∑k

i=1 λiσji and σ̂j
2 = ∑k

i=1 λiσji
2. Also note that in this case

we obtain again that the “standard deviation” of the Barycenter is the weighted mean of the
standard deviations.

Although the fact just noticed will not be true in full generality, we will show below that
such weighted mean of standard deviations is an upper bound for the standard deviation of the
barycenter. We would like to stress that this result will be proved for probabilities that do not
necessarily belong to a location-scatter family. Even more, by Remark 3.4 in [4], the property is
true even without the absolutely continuous assumption that we will impose here for a simpler
argument.

Proposition 3.13. Let P1, . . . ,Pk ∈ P2,ac(R
d ) centered in mean, and λ1, . . . , λk be positive

weights adding one. If P̄ is the associated barycenter, then(∫
‖x‖2P̄ (dx)

)1/2

≤
k∑

j=1

λj

(∫
‖x‖2Pj (dx)

)1/2

.
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4. Computation of barycenters and trimmed barycenters

The characterization of trimmed barycenters given in Proposition 3.4 leads to consider the ef-
fective computation of barycenters as a first step in the obtention of trimmed barycenters. We
recall for probabilities on R the characterization given in Proposition 2.4 in terms of quantiles.
If μ is the probability on P2(R) giving weights λ1, . . . , λk to the probabilities P1, . . . ,Pk , then
the barycenter μ̄ is the distribution of the random variable

∑k
j=1 λjF

−1
j (defined on the unit

interval), thus denoting by mj and σ 2
j the mean and variance of Pj , and m̄ and Var(μ̄) those

of μ̄:

Var(μ) =
k∑

j=1

λj (mj − m̄)2 +
k∑

j=1

λjσ
2
j − Var(μ̄). (18)

When P1, . . . ,Pk belong to a common location-scale family, F(P0), where P0 has quantile func-
tion F−1

0 (with zero mean and variance 1), then F−1
j = mj + σjF

−1
0 , j = 1, . . . , k, and with

σ̄ := ∑k
j=1 λjσj , (18) specializes to

Var(μ) =
k∑

j=1

λj (mj − m̄)2 +
k∑

j=1

λj (σj − σ̄ )2 =
k∑

j=1

λj

(
m2

j + σ 2
j

) − (
m̄2 + σ̄ 2).

In contrast, as previously noted, in the multivariate case closed expressions are only available
just for situations essentially equivalent to several univariate cases. This is the case if, e.g. the
probabilities share a common structure of dependence in some particular basis (see Section 2
in Cuesta-Albertos et al. [22] or Section 4 in [8]), or if they are radial transformations of a
common probability law (see Section 3 in [22]). Turning to approximate computations, in re-
cent times some papers addressed the goal of numerical computation of Wasserstein barycenters,
see Cuturi and Doucet [23], Benamou et al. [6] or Carlier et al. [14]. In these cases, the ap-
proaches address the case of sample distributions or are based on the discretization of the prob-
lem through a fine grid and the use of suitable optimization procedures. Although their results
allow to get good representations for the barycenter of distributions with very different shapes,
the grid sizes for suitably approximating the distributions must be large and would strongly de-
pend on the dimension making them highly time-consuming even in small dimensions and with a
small number of distributions. Of course these procedures allow computation of barycenters, but
regrettably, under trimming, the available methods to compute the trimmed barycenters (even
for real random variables), like our Algorithm for the trimmed barycenter below, need several
initializations and often require the iterative computation of several thousands of barycenters.
This makes those algorithms based on discretizations to be, by now, inapplicable for our pro-
poses. Fortunately, for one of the most important cases in multivariate statistics, namely the
location-scatter families, a fast consistent procedure for approximating the numerical solution
of equation (10) has recently been introduced in [4]. We give here a quick description of the
procedure.
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Assume that P1, . . . ,Pk ∈ P2,ac and the weights λ1, . . . , λk are fixed. Given η ∈ P2(R
d), we

consider the functional

V (η) :=
k∑

i=1

λiW2
2 (η,Pj ),

looking for P̄ ∈ P2(R
d) such that

V (P̄ ) = min
η∈P2(R

d )

V (η).

If η ∈ P2,ac , we know that there exist optimal transport maps Tj from η to Pj . Assume that X

is a random vector with law η, thus

L
(
Tj (X)

) = Pj , and W2
2 (η,Pj ) = E

∥∥X − Tj (X)
∥∥2

, j = 1, . . . , k.

With this notation we define

G(η) := L
(

k∑
j=1

λjTj (X)

)
,

to design a consistent, iterative procedure for the approximate computation of P̄ . Next, we collect
some basic properties of G that show a link between the G transform and the barycenter problem.

Proposition 4.1. If η ∈P2,ac then

V (η) ≥ V
(
G(η)

) +W2
2

(
η,G(η)

)
.

In particular, if the barycenter, P̄ , is absolutely continuous then G(P̄ ) = P̄ .

We remark that the hypothesis of absolute continuity of P̄ is required just to guarantee that
G(P̄ ) is defined. The theory developed for the location-scatter families, and particularly for nor-
mal distributions, allows to guarantee this in such cases. On the other hand, the conclusion of the
proposition invites to consider an iterative process, starting from any η0 ∈P2,ac and considering
the sequence

ηn+1 := G(ηn), n ≥ 0. (19)

We have proved the consistency of this iterative procedure in greater generality in [4], but for our
present purposes it suffices that given in the following statement.

Theorem 4.2. If P1, . . . ,Pk are nonsingular Gaussian distributions on R
d and the initial mea-

sure, η0, is also a nonsingular Gaussian distribution, then the iteration defined by (19) is consis-
tent, namely,

W2(ηn, P̄ ) → 0,

as n → ∞, where P̄ is the (unique) barycenter of P1, . . . ,Pk .
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It is time to recall Theorem 3.10 on barycenters of location-scatter families. We know from it
that, given positive definite matrices 	1, . . . ,	k there exists a unique positive definite matrix 	̄

solving (10).
Reading Theorem 4.2 just in terms of approximating the unique solution of (10), the conclu-

sion becomes that if, starting from any positive definite matrix S0, according to Theorem 2.1, we
define

Sn+1 = S
−1/2
n

(
k∑

j=1

λj

(
S

1/2
n 	jS

1/2
n

)1/2

)2

S
−1/2
n , (20)

then

lim
n→∞Sn = 	̄.

Therefore the process leads to a consistent iterative method for approximating the solution
of (10). The method is easily implemented and, in practice, shows a very good performance. We
refer to [4] for further details.

The characterization of the distance between probabilities in the location-scatter family (16)
leads to identical distances to those between normal laws with same location and covariance
matrices. Therefore we can extend Theorems 2.5 and 4.2 in the following way.

Theorem 4.3. If μ is the probability on P2(R
d) giving weights λ1, . . . , λk to the probabilities

Pm1,	1, . . . ,Pmk,	k
∈ F(P0), a location-scatter family with P0 ∈ P2,ac(R

d ), then its barycenter
is the probability Pm̄,	̄ ∈F(P0), where m̄ = ∑k

i=1 λimi and 	̄ is the only definite positive matrix
satisfying equation (10). Moreover, 	̄ can be obtained as the limit of the sequence defined in (20).
The variance of μ takes the value

Var(μ) =
k∑

j=1

λj‖mj − m̄‖2 +
k∑

j=1

λj trace(	j − 	̄)

=
k∑

j=1

λj

(‖mj‖2 + trace(	j )
) − (‖m̄‖2 + trace(	̄)

)
.

Through Theorem 4.3 we can compute barycenters and variances for any finite set of prob-
abilities and weights, once we know the corresponding locations m1, . . . ,mk and covariance
matrices 	1, . . . ,	k . Moreover, the distances between probabilities are also easily computed
through (16), which is valid for every location-scatter family. Therefore, Corollary 3.11 and the
characterization of the best trimming functions given in Proposition 3.4 allow to search for a
trimmed barycenter as the barycenter based on subsets of P1, . . . ,Pk with an accumulate weight
of at least 1 − α and minimum variance after normalizing the weights.

Next, we include an algorithm to obtain the trimmed barycenter of the probabilities
Pm1,	1, . . . ,Pmk,	k

∈ F(P0) with weights λ1, . . . , λk . It combines estimation and concentra-
tion steps, being an adaptation of usual algorithms for obtaining best (in some sense) trimmed
regions, like the ones involved in the MCD or LTS robust estimators, with the necessary updates
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of the distances and weights in each concentration step. Once an initial solution is provided, this
kind of algorithm guarantees convergence through the estimation and concentration steps, but
we must also consider the possibility of local optimizers, a fact that leads to consider random
choices of initial candidates to be compared at the end. We simply emphasize the fact that this
algorithm shares the good performance of the versions currently used in similar problems on
estimation in the multivariate setting.

The algorithm.

0. Fix n = 0, and randomly choose initial candidates m̂n, 	̂n for the mean and the covariance
matrix.

1. Compute the distances dn
i between P

m̂n,	̂n
and Pmi,	i

, i = 1, . . . , k, through (16).
2. Consider the permutation ((1), . . . , (k)) such that dn

(1)
≤ · · · ≤ dn

(k)
.

3. Set jn = inf{j : ∑i≤j λ(i) ≥ 1 − α} and define the new weights:

λn
(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ(i) if i < jn,

1 − α −
∑
i<jn

λn
(i) if i = jn,

0 if i > jn.

4. Since
∑k

i=1 λn
(i) = 1 − α, define λn

(i) = (1 − α)−1λn
(i), in order to have

∑k
i=1 λn

(i) = 1.

5. Using the updated weights, compute m̂n+1, the weighted mean of the means, and 	̂n+1
through the recursive algorithm (20).

6. Iterate Steps 1 through 5 until convergence.
7. Compute the variance of the final trimmed sample of probabilities and weights.
8. Go to 0 and finalize after a moderate number of initial choices, reporting the barycenter

producing the minimum variance.

As a toy illustration of the results of the computation of the barycenters (trimmed or not),
we present now two examples, in which we handle 2-dimensional normal distributions, allow-
ing a suitable visualization of the results. In these examples, we represent graphically a normal
distribution with mean m and covariance matrix 	 by the set{

x ∈ R
2 : (x − m)t	−1(x − m) = 1

}
.

Example 4.4. We have considered first the six normal distributions represented in the graph in
the left hand side in Figure 3. We have computed the barycenter, and the 1/6 and 2/6 trimmed
barycenters of these normal distributions. The results appear in the right hand side graphic. All
three barycenters are normal distributions which are represented by the black, blue and red el-
lipses in the right hand side graphic in Figure 3.

The black ellipse is the non-trimmed barycenter. Trimming α = 1/6 the barycenter is the blue
ellipse, and the procedure trims the blue ellipse in the left graphic. The red ellipse shows the
result of trimming α = 2/6. In this case, the procedure trims the red and the blue ellipses in the
left hand side graphic. Observe that the red ellipse lies in the middle of the four black ellipses in
the left graphic showing a very similar shape.
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Figure 3. Computation of trimmed barycenters (right figure) of the ellipses shown in the figure in the left.

The previous result could have been anticipated because, according to (16), the decision of
which distributions to trim depends on the shape and the location of the ellipses under considera-
tion and, in this example, the colored ellipses have more different shapes and separated locations
than the others. Because of this, we also show a not too big modification of this example which is
shown in Figure 4. Here five ellipses coincide with the corresponding ones in Figure 3. However,
the green ellipse in the left hand graph in this figure is one of the “horizontal” ellipses whose
center has been moved two units along the ordinates axis. Now, it happens that the trimmed

Figure 4. Computation of trimmed barycenters (right figure) of the ellipses shown in the figure in the left.
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distribution when taking α = 1/6 continues being the blue one, but when taking α = 2/6 the
procedure trims the blue and the green ellipses leaving the red one untrimmed.

Example 4.5. Let us assume that we are carrying out an experiment in k = 100 hospitals on a
2-dimensional r.v., that we are taking a sample with size n = 100 in each hospital, and that each
hospital is sending only its own estimation of the mean and the covariance matrix based on the
sample in its study.

Let us also assume that the population is divided in two subpopulations. The first subpopu-
lation is composed by 90% of individuals and the distribution of the variable of interest in this
subpopulation is standard normal, while the distribution in the second subpopulation is also nor-
mal, with the identity as covariance matrix and the mean at (4,4). The real goal of the study is
the estimation of the parameters of the majority, the second subpopulation being considered as
composed by outliers.

The statistician in charge of the experiment, being aware of these issues, decides that each
hospital uses the Minimum Covariance Determinant method (MCD, proposed in Rousseeuw
[37]), based on 80% of the points in its sample to estimate the mean and covariance matrix of the
people in its area (similar results could be obtained through the procedure developed in Cuesta-
Albertos et al. [19]), the reason to choose these estimators being that the probability of obtaining
more than 20 outliers in a binomial sample with parameters n = 100 and p = 0.1 being 0.00081
and, as long as we obtain less than 20 outliers in a sample with size 100, the MCD method will
give a fair estimation of the parameters in the main subpopulation.

However, it happens that, unknown to the statistician, the population is relatively heteroge-
neous, and that, in fact, the proportion of people in a given area belonging to the second sub-
population is chosen using a distribution Beta with parameters (4,36), which gives a global
proportion of 0.1, but irregularly scattered.

We have made a simulation of this process resulting that 5 hospitals have got more than 20
outliers, leading to largely wrong estimations of the parameters. The results of this experiment
appear in the left hand side graph in Figure 5. There, most estimations appear in grey, but a few
of them have been drawn in black to give a general idea of the objects we have obtained in the
first part of the process.

The right-hand side graph presents the area inside the square in the left hand side graph with
some summarizing possibilities for the estimations shown in the left graph. Here the red ellipse
represents the standard normal distribution (which can be considered as our target since this
distribution produced most of the data in the analyzed samples). The green ellipse represents the
normal distribution whose mean (resp. covariance matrix) is the sample mean of the estimated
means (resp. covariance matrices). This estimator is not expected to be particularly good.

The magenta ellipse represents the (non-trimmed) barycenter. This estimation is affected
by the anomalous estimations (but less that the previous one). The blue ellipse represents the
0.2-trimmed barycenter which, practically, matches the target.

Example 4.6. The Palomar Data is a data set considered in Rousseeuw and Driessen [38], con-
sisting in astronomic measurements recorded at the California Institute of Technology within
the Digitized Palomar Sky Survey. The set handled here, kindly shared by the authors, is the
same analyzed in that paper, containing 132,402 observations in 6 variables. The analysis there
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Figure 5. Computation of trimmed barycenters (right figure) of the ellipses shown in the left figure.

showed the interest of considering robust estimations of the covariance matrix and related met-
rics instead of the crude Mahalanobis distance, obtained through the sample covariance matrix.
In fact, through a plot of MCD-based robust Mahalanobis distances, they found evidence on the
existence of several groups in the data and, as a key part of the fast MCD algorithm for large data
sets, introduced a pooling strategy on the initial subsets of the data leading to the better solutions.
Our approach looks for the comparison between the MCD solution achieved for the whole data
set and those provided from 100 randomly chosen subsamples of size 5000. Figure 6 is a plot on
the two first variables (MAperF and csfF) of the data. It shows (gray) the 100 ellipses associated
to the MCD’s based on subsamples and that of the MCD based on the full sample (black dashed).
It also includes the ellipses that result from several aggregations of the MCD’s produced by the
subsamples. The green one is just that associated to the mean of the 100 covariance matrices
and centered in the mean of the 100 means estimations. In black, red, blue and magenta are
represented the trimmed barycenters of the 100 MCD’s respectively corresponding to the trim-
ming levels α = 0.1,0.2,0.3,0.4. Figure 7 is the plot of trimmed variations vs. trimming levels
associated to the 100 MCD’s solutions.

Through these pictures we have a nice summary. From both figures, it becomes apparent that
nearly 35% of the solutions correspond to ellipses centered around (18500,1000) with little
variation within this group, while the remaining 65% are very similar to the MCD obtained with
the complete sample. This implies that the right solutions should be selected when trimming,
at least, that (35%) proportion. In agreement with the conclusions of the analysis carried in
[38], such behavior would suggest the existence of at least two main bulks of data. Although
most samples have a proportion of data coming from these bulks that justify the MCD based
on the complete sample, small variations in these proportions would consistently produce a very
different MCD. In this situation, aggregation methods based on simple average would typically
produce bad solutions, while monitoring the trimmed barycenter solutions allows a well-founded,
stable, “wide consensus” proposal.
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Figure 6. Graph summarizing the MCD’s solutions obtained from 100 subsamples of size 5000 (gray) and
those provided by several aggregations of the solutions and that given by the full Palomar Data set (black
dashed). The green ellipse is associated to the mean of the solutions; those in black, red, blue and magenta
correspond to trimmed barycenters with respective trimming sizes 0.1, 0.2, 0.3 and 0.4.

To give evidence of feasibility of the proposal, we give below some details on the execution
times of the involved procedures. Computations have been carried on a MacBook Pro with a 4
Ghz processor Intel Core i7 and 16 Gb of RAM. The MCD’s have been computed with TCLUST
(available at the CRAN, see Fritz et al. [26]), an R application for model based robust clustering.
The parameters for the solution based on the full sample were k = 1, alpha = 0.5, nstart = 150,
restr.fact = 1e10, iter.max = 200, equal.weights = F . The only change in these parameters for
the subsamples was iter.max that was set to 100. The computations of trimmed barycenters have

Figure 7. Plot showing the evolution of the trimmed variations vs trimming levels on the 100 MCD’s
solutions in the Palomar Data example.
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been also carried into the R framework, with programs based on the algorithm presented in this
section.

Runtimes in seconds: For the large MCD (sample of size 132,402) 120.497 sec; for 100 MCD’s
(on samples of size 5000) 45.125 sec; for the 0.3-trimmed barycenter of the 100 MCD’s solutions
30.985 sec; for the (51) α-trimmed barycenters and trimmed variances (to produce the plot in
Figure 7, α = k/100 for k = 0, . . . ,50) 1744.315 sec. Handling the MCD based on the complete
sample as reference, the squares of the Wasserstein distances to the average solution and to those
given by the trimmed barycenters for 0.1, 0.2, 0.3, 0.4 were respectively: 87,260.07, 71,459.66,
33,953.8, 6426.18, 357.25.

Repeating the whole process under the same conditions, but with subsample sizes of 10,000
instead of 5000, the only runtime that changed was the one corresponding to the 100 MCD’s
(on samples of size 10,000) 110.007 sec. The squares of the distances were now: 73,850.38,
54,857.57, 21,578.75, 1517.071, 175.90.

5. Technical details and proofs

5.1. Supplementary results on Wasserstein spaces

For ease of reference, we include in this section some relevant results on Wasserstein spaces for
reference through the work. From a technical point of view a great deal of interest on the Wasser-
stein distance W2 comes from the fact that it metrizes the weak convergence of probabilities plus
the convergence of their second order moments: Given (Pn)n ⊂ P2(R

d) and P ∈ P2(R
d),

W2(Pn,P ) → 0 if and only if
(21)

Pn →w P and
∫
R

d
‖x‖2Pn(dx) →

∫
R

d
‖x‖2P(dx).

More generally, the following theorem gives a very useful characterization (see, e.g., Theo-
rem 7.12 in [42]) of the convergence in the space W2(P2(R

d)).

Theorem 5.1. Let (μn)n and μ be in W2(P2(R
d)), and consider the probability degenerated

at zero, δ{0} (that can be substituted by any other fixed probability in P2(R
d)). Convergence

WP2(μn,μ) → 0 holds if and only if:

μn →w μ and lim
R→∞ lim sup

n→∞

∫
W2(δ{0},P )>R

W2
2 (δ{0},P )μn(dP ) = 0. (22)

Proposition 5.2. If the sequences (μn)n, (νn)n in W2(P2(R
d)), verify μn →w μ and νn →w ν,

then WP2(μ, ν) ≤ lim infWP2(μn, νn). Moreover, if the convergences are in the sense showed
in (22), then the convergence WP2(μn, νn) → WP2(μ, ν) holds.

Note that the uniform integrability condition in (22) is similar to the uniform integrability
condition of ‖x‖2 in (21).
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Existence and continuity properties of barycenters in W2(P2(R
d)) are guaranteed by Proposi-

tion 5.3 and Theorem 5.4 to be stated next. They follow from the results in [31].

Proposition 5.3. If μ ∈ W2(P2(R
d)) and every P in the support of μ is absolutely continuous,

then the barycenter of the random measure μ exists and it is unique.

Theorem 5.4. Let (μj )
∞
j=1 ⊂ W2(P2(R

d)) and set μ̄j a barycenter of μj , for all j = 1, . . . .

Suppose that for some μ ∈ W2(P2(R
d)) we have that WP2(μ,μj ) → 0. Then, the sequence

(μ̄j )
∞
j=1 is precompact in P2(R

d) and any limit is a barycenter of μ.

In particular, when the limit distribution μ has only one barycenter, this theorem ensures con-
vergence in P2(R

d) of the barycenters to that of μ. In a sample setting, when the probability mea-
sures μn are the sample ones giving weight 1/n to the first n probabilities P1, . . . ,Pn obtained
as realizations of the random probability measure μ ∈ W2(P2(R

d)), by Varadarajan theorem,
μn →w μ almost surely. Now let us consider the probability degenerated at zero, δ{0}. Since the
classical Strong Law of Large Numbers applied to the real i.i.d. random variables W2

2 (Pi, δ{0})
gives∫

P2(R
d)

W2
2 (P, δ{0})μn(dP ) = 1

n

n∑
i=1

W2
2 (Pi, δ{0}) →a.s.

∫
P2(R

d)
W2

2 (P, δ{0})μ(dP ),

the characterization in Theorem 5.1 of convergence in the WP2 sense, through Theorem 5.4,
proves the following Strong Law of Large Numbers for barycenters.

Theorem 5.5. Assume that μ ∈ W2(P2(R
d)) and that the barycenter of μ is unique. If μn is

the sample probability giving mass 1/n to the probabilities P1, . . . ,Pn obtained as independent
realizations of μ, then the barycenters are consistent, i.e. W2(μ̄n, μ̄) →a.s. 0.

5.2. Overview on trimming

In this section, we recall some important properties of probability trimmings and obtain new
results of interest in our current framework. In particular, we emphasize those connected with
Wasserstein spaces and distances. We begin providing a list of statements arising from [2], that
can be easily translated to the framework of Polish spaces (metrizable, separable and complete
spaces).

Proposition 5.6. Let P be a probability in any mesurable space (
,σ ) and α ∈ [0,1). The
following statements are equivalent:

(a) The probability P ∗ is a trimmed version of P .
(b) P ∗ is absolutely continuous with respect to P , and dP ∗

dP
≤ 1

1−α
.

(c) (1 − α)P ∗(A) ≤ P(A) for every set A ∈ σ .
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Proposition 5.7. Let P be a probability in any abstract space and T a measurable map taking
values in a Polish space. If T transports P to Q, then for every α

Tα(Q) = {
P ∗ ◦ T −1 : P ∗ ∈ Tα(P )

}
.

Proposition 5.8. Let (E,d) be a Polish space and α ∈ (0,1).

(a) If P is any probability measure on (E,d), then Tα(P ) is compact for the topology of weak
convergence.

(b) If {Pn}n is a tight sequence of probabilities on (E,d) and P ∗
n ∈ Tα(Pn) for every n, then

{P ∗
n }n is tight. Moreover, if Pn →w P and P ∗

n →w P ∗, then P ∗ ∈ Tα(P ).

Proposition 5.9. If 0 < α < 1 and P ∈ W2(P2(R
d)) or P ∈ P2(R

d), then Tα(P ) is compact in
the W2 topology.

Proof. The proof given in [2] for P ∈ P2(R
d) quickly extends to the case P ∈ W2(P2(R

d)) by
handling the uniformly integrability condition in Theorem 5.1. �

Proposition 5.10. Let 0 < α < 1, {Pn}n and P be probabilities on a Polish space (E,d), and
assume that Pn →w P . Then, if P ∗ ∈ Tα(P ), there exists a sequence {P ∗

n }n such that P ∗
n ∈

Tα(Pn), for all n, and P ∗
n →w P ∗.

Proof. Use Skorohod’s Representation Theorem (see, e.g., Theorem 11.7.2 in Dudley [25]), to
obtain E-valued measurable maps X,X1, . . . defined on a probability space (
,σ, P) such that
L(Xn) = Pn, L(X) = P , and Xn → X, P-a.s.

By Proposition 5.7, P ∗ ∈ Tα(P ) can be represented as P ∗ = P∗ ◦ X−1 for some P∗ ∈ Tα(P).
By considering P ∗

n := P∗ ◦ X−1
n , we obtain probabilities in Tα(Pn), that obviously converge

weakly to P ∗ because Xn → X also P∗-a.s. �

Remark 5.11. Note that any kind of uniform integrability condition like the one in (22) verified
for some sequence {Pn}n is automatically shared for any sequence {P ∗

n }n such that P ∗
n ∈ Tα(Pn)

for every n. Therefore Proposition 5.10 and (22) imply that if Pn → P in WP2 , then the sequence
{P ∗

n }n is precompact in WP2 and any limit belongs to Tα(P ).

5.3. Proofs of Propositions 2.3 and 3.13

Proof of Proposition 2.3. A similarity transformation, T , can be expressed as a linear trans-
formation T = cA + b, where c is a constant, A an orthogonal transformation and b ∈ R

d .
If (X,Y ) is an W2-o.t.p. for the probabilities (P,Q), and (AX∗,AY ∗) is an W2-o.t.p. for
(P ◦ A−1,Q ◦ A−1) then we have

W2
2 (P,Q) = E‖X − Y‖2 = E‖AX − AY‖2 ≥ W2

2

(
P ◦ A−1,Q ◦ A−1)

= E
∥∥AX∗ − AY ∗∥∥2 = E

∥∥X∗ − Y ∗∥∥2 ≥W2
2 (P,Q),
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hence W2
2 (P ◦ A−1,Q ◦ A−1) = W2

2 (P,Q), and for T we easily obtain W2
2 (P ◦ T −1,Q ◦

T −1) = c2W2
2 (P,Q). Therefore, for every Q, we have∫



W2
2

(
μω ◦ T −1, μ̄ ◦ T −1)P(dω) = c2

∫



W2
2 (μω, μ̄)P(dω)

≤ c2
∫




W2
2 (μω,Q)P(dω)

=
∫




W2
2

(
μω ◦ T −1,Q ◦ T −1)P(dω).

Since T is invertible, denoting S = T −1, every Q can be written as Q = Q∗ ◦ S−1 for some Q∗,
hence we deduce that∫




W2
2

(
μω ◦ T −1, μ̄ ◦ T −1)P(dω)

≤
∫




W2
2

(
μω ◦ T −1,Q∗)P(dω) for every Q∗ ∈ P2

(
R

d
)
. �

Proof of Proposition 3.13. Let X be a random vector with L(X) = P̄ , and Tj , j = 1, . . . , k be
optimal transport maps for (P̄ ,Pj ). Denoting Xj = Tj (X), we know that L(Xj ) = Pj but also,
by Proposition 4.1, P̄ = L(

∑k
j=1 λjXj ). Therefore, by Minkowski inequality, we have

(
E‖X‖2)1/2 =

(
E

∥∥∥∥∥
k∑

j=1

λjXj

∥∥∥∥∥
2)1/2

≤
k∑

j=1

(
E‖λjXj‖2)1/2 =

k∑
j=1

λj

(
E‖Xj‖2)1/2

.
�

5.4. Existence and consistency of the trimmed barycenter

Let us begin noting that, under the additional assumption μ ∈ W2(P2(R
d)), the results would

easily follow from Theorem 5.4 and the compactness of the set Tα(μ) stated in Proposition 5.9.
However, as stated in Theorem 3.3, that assumption is not needed at all.

Proof of Theorem 3.3. Recall definition (11) and assume that μ∗
n ∈ Tα(μ) and νn ∈ P2(R

d)

verifying ∫
W2

2 (P, νn)μ
∗
n(dP ) → Varα(μ). (23)

We already know that Varα(μ) is finite and that we can assume that every μ∗
n in the the minimiz-

ing sequence belongs to W2(P2(R
d)), hence the νn’s can be chosen as their barycenters. Thus,

we will take νn = μ̄∗
n.

The next step is to show that the sequence {∫ ‖x‖2μ̄∗
n(dx)}n as well as that of their associated

radii {rα(μ̄∗
n)}n (defined in (12)) are bounded. For the sake of readability, we state this result as

a lemma.
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Lemma 5.12. Let {Zn}n be a sequence of r.v.’s defined on some probability space (
,σ, P) such
that PZn = μ̄∗

n for every n ∈N. Then, it happens that M := supn E[‖Zn‖2] < ∞. Moreover, the
sequence {rα(μ̄∗

n)}n is bounded.

Proof. Take r0 > 0 such that p := μ[BW (δ{0}, r0)] > α. Let us assume that there exists a subse-
quence such that limn E(‖Zkn‖2) = ∞. For this subsequence, we have that if P ∈ BW (δ{0}, r0),
then, since W2is a metric,

W2
(
P, μ̄∗

kn

) ≥ W2
(
δ{0}, μ̄∗

kn

) −W2(P, δ{0}) ≥ (
E

(‖Zkn‖2))1/2 − r0,

and, consequently, since p > α,∫
W2

2

(
P, μ̄∗

kn

)
μ∗

kn
(dP ) ≥ ((

E
(‖Zkn‖2))1/2 − r0

)2
(p − α) → ∞,

which contradicts the minimizing property (23) of the chosen sequence with Varα(μ) < ∞. Thus,
the sequence {E[‖Zn‖2]}n is bounded. Now, if P ∈ BW (δ{0}, rα(δ{0})), then

W2
(
P, μ̄∗

n

) ≤ W2(P, δ{0}) +W2
(
δ{0}, μ̄∗

n

) ≤ rα(δ{0}) + (
E

(‖Zn‖2))1/2
,

which implies that the set BW (δ{0}, rα(δ{0})) is a subset of the ball with center at μ̄∗
n and ra-

dius rα(δ{0})+ (E(‖Zn‖2))1/2, and therefore, rα(μ̄∗
n) ≤ rα(δ{0})+ supm(E(‖Zm‖2))1/2 for every

n ∈ N. �

Returning to the proof of Theorem 3.3, note that, by the first result of the lemma, {μ̄∗
n}n is tight,

so w.l.o.g. we can assume that it converges in distribution to some ν0 ∈ P2(R
d). Moreover, by

the lemma, the supports of the associated trimmed probabilities μ∗
n are contained in a common

ball BW (δ{0},M + sup{rα(μ̄∗
n), n ∈ N}) in P2(R

d), thus we can also assume that it converges to
some μ∗

0 ∈ Tα(μ) weakly and (by uniform integrability) in W2. This implies, by Theorem 5.4,
that the limit ν0 of the barycenters must be a barycenter of μ∗

0 and that the convergence is also
in W2.

By continuity of W2we have WP2(μ
∗
n, δ{μ̄∗

n}) → WP2(μ
∗
0, δ{ν0}), leading also to

lim
n

∫
W2

2

(
P, μ̄∗

n

)
μ∗

n(dP ) = lim
n

W2
2

(
μ∗

n, δ{μ̄∗
n}

) = W2
2

(
μ∗

0, δ{ν0}
) =

∫
W2

2 (P, ν0)μ
∗
0(dP ),

that shows that ν0 is a trimmed barycenter of μ. �

An easy modification of this proof allows to guarantee a consistency result in the sense of
Theorem 5.4 also without the integrability assumption.

Proof of Theorem 3.5. Since μn →w μ, we can choose a large enough M > 0 such that
μn[BW (δ{0},M)] > 1 − α for every n ∈N. This implies that there exist trimmed versions
μ∗

n ∈ Tα(μn) with support contained in BW (δ{0},M). Therefore, we have that Varα(μn) ≤
WP2(μ

∗
n, δ{δ{0}}) ≤ M , and lim supn Varα(μn) ≤ M < ∞.
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From this point, we can repeat the proof of Lemma 5.12 to guarantee that the sequence of
trimmed barycenters is contained in a large enough ball BW (δ{0},M) and that the sequence of
associated radii (rα(μ̄∗

n))n is bounded. The argument at the end of the proof of Theorem 3.3
applies also here to prove that weakly convergent subsequences of trimmed barycenters must
converge also in W2 and that the limits must be trimmed barycenters of the limit law μ. �

5.5. Proofs of Theorems 3.8 and 3.10

Recall that F(P0) := {L(AX0 + m) : A ∈M+
d×d,m ∈ R

d } is the location-scatter family induced
by positive definite affine transformations from the law P0 = L(X0). We assume throughout that
P0 is absolutely continuous as an easy way to guarantee uniqueness of optimal transport maps
and of barycenters, but much of the following analysis does not depend of this assumption. As
we already noted, we can assume w.l.o.g. that P0 has zero mean and covariance matrix Id . The
probabilities in F(P0) are represented as Pm,	 , where m is the mean, and 	 the covariance
matrix of the probability under consideration.

Relation (16) allows to extend Theorem 2.5 to any family F(P0) in a simple way. However,
we will give a direct proof. For this task, let us include the following proposition already ob-
tained in Cuesta-Albertos et al. [21]. It will allow us to guarantee that barycenters of families of
absolutely continuous probabilities in P2(R

d) cannot be degenerated on subspaces of dimension
lower than d .

Proposition 5.13. Let P,Q ∈ P2(R
d). Let us assume that P ∈ P2,ac and that Q is supported on

the subspace generated by the first q components of Rd , with q < d . Denote by T 1,...,q the W2

optimal map transporting the marginal probability, P 1,...,q , of P on that subspace to Q. Then
the map T (x1, . . . , xd) := T 1,...,q (x1, . . . , xq) is a W2 optimal map transporting P to Q.

Proposition 5.14. Let μ ∈ W2(P2(R
d)) and, using the notation employed in (9), assume that for

every ω ∈ 
, the probability μω is absolutely continuous. Then, the barycenter of μ cannot be
supported on an affine subspace of dimension q < d .

Proof. Let μ ∈ W2(P2(R
d)), such that μω is absolutely continuous for every ω ∈ 
 and let mω

be the mean of μω. Under these conditions, existence and uniqueness of the barycenter are guar-
anteed by Proposition 5.3. Since it is trivial to show that the mean of the barycenter coincides
with

∫



mωP(dω), we can simplify the problem by considering centered in mean distributions
(that is, mω = 0 for every ω) which remain absolutely continuous. Let μ̄ be the barycenter (with
zero mean) of μ, so suppose that it is supported on a subspace (instead of a general affine sub-
space) of dimension q < d . We can assume, w.l.o.g., that μ̄ is supported on the subspace cor-
responding to the first q components. Let μ

1,...,q
ω denote the marginal of μω on this subspace.

Since μ
1,...,q
ω � �q , we know that there exists an optimal map T

1,...,q
ω transporting μ

1,...,q
ω to μ̄.

From the previous proposition, the map Tω defined by Tω(x1, . . . , xd) := T
1,...,q
ω (x1, . . . , xq) is
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an optimal map transporting μω to μ̄. Therefore we have

W2
2 (μω, μ̄) = W2

2

(
μ1,...,q

ω , μ̄
) +

d∑
j=q+1

W2
2

(
μj

ω, δ{0}
)
, (24)

where μ
j
ω is the j th marginal of μω.

Let us consider the probability μ∗ := μ̄× μ̄q+1 ×· · ·× μ̄d and denote by μ̄j the barycenter of
the probability μj ∈ W2(P(R)), which is not degenerated because μ

j
ω � �1 for every j (recall

the comments preceding Theorem 2.5). Thus, from (24), we have∫



W2
2 (μω, μ̄)P(dω) =

∫



W2
2

(
μ1,...,q

ω , μ̄
)
P(dω) +

d∑
j=q+1

∫
W2

2

(
μj

ω, δ{0}
)
P(dω)

>

∫



W2
2

(
μ1,...,q

ω , μ̄
)
P(dω) +

d∑
j=q+1

∫



W2
2

(
μj

ω, μ̄j
)
P(dω)

=
∫




W2
2

(
μω,μ∗)P(dω),

contradicting the character of barycenter of μ̄. �

Proof of Theorem 3.8. Let P ∈ P2(R
d) and let N be a normal law with the same mean and

covariance matrix as P . From Gelbrich’s bound (5), we have W2
2 (Pi,P ) ≥ W2

2 (Ni,N) for i =
1, . . . , k, hence

k∑
i=1

λiW2
2 (Pi,P ) ≥

k∑
i=1

λiW2
2 (Ni,N) ≥

k∑
i=1

λiW2
2 (Ni, N̄). (25)

Moreover, according to Theorem 2.1, equality in the first inequality is only possible if Pi ∈
F(P ), i = 1, . . . , k. On the other hand, let P∗ be the probability law in F(P0) with the same
mean and covariance matrix as the barycenter N̄ of {Ni}ki=1. Then we have

k∑
i=1

λiW2
2 (Ni, N̄) =

k∑
i=1

λiW2
2

(
Pmi,	i

,P∗) ≥
k∑

i=1

λiW2
2 (Pmi,	i

, P̄).

Particularizing the first inequality in (25) for Pi = Pmi,	i
, i = 1, . . . , k and P = P̄, the con-

catenation with the last chain of inequalities gives that a normal law with the same mean and
covariance matrix as P̄ would be a barycenter for {Ni}ki=1. The uniqueness of this barycenter
implies that P̄ and N̄ must have the same mean and covariance matrix.

The proof ends by considering P = P̄ in (25) because both equalities would imply that the
mean and the covariance matrix of P̄ must coincide with those of N̄ and also that P̄ can be
obtained from every Pi through a positive definite transformation. By Proposition 5.14 these
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covariance matrices must be nonsingular, thus the barycenters, in particular P̄ , must be also
absolutely continuous and every Pi can be obtained from P̄ through a positive definite affine
transformation, thus {Pi}ki=1 ⊂F(P̄ ) holds. �

The following lemma can be proved through elementary arguments (see, e.g., equation (18)
in [4]) and will be used in the proof of uniqueness involved in Theorem 3.10.

Lemma 5.15. Let 	i, i = 0,1,2 be positive definite matrices and define

	0,2 := 	
−1/2
0

(
	

1/2
0 	2	

1/2
0

)
	

−1/2
0 .

Let Xi, i = 1,2 be random vectors on R
d with nonsingular respective laws P0,	i

∈ F(P0),
i = 1,2. Then the inequality

W2
2

(
N(0,	1),N(0,	2)

) ≥ trace
(
(Id − 	0,2)	1

) + E
(‖X2‖2 − Xt

2	
−1
0,2X2

)
holds. If 	0 = 	1 and X2 = 	0,2X1, then the inequality is an equality.

Proof of Theorem 3.10. The statement about the mean of μ̄ is already known, thus let us sim-
plify the problem assuming that every μω is centered in mean. By Proposition 5.14, μ̄ must
be absolutely continuous, hence its covariance matrix 	̄ must be nonsingular. To simplify the
notation, let us denote P̄ = P0,	̄ ∈F(P0). From Gelbrich’s bound, we have∫

W2
2 (μω, μ̄)P(dω) ≥

∫
W2

2 (μω, P̄ )P(dω),

hence, by the uniqueness of the barycenter, μ̄ = P̄ , and μ̄ ∈ F(P0). If we consider the optimal
maps T̄ω transporting μ̄ to μω, and define T̄ (x) := ∫

T̄ω(x)P(dω), we have∫
W2

2 (μ̄,μω)P(dω) =
∫ (∫ ∥∥x − T̄ω(x)

∥∥2
μ̄(dx)

)
P(dω)

=
∫ (∫ (∥∥x − T̄ (x)

∥∥2 + ∥∥T̄ (x) − T̄ω(x)
∥∥2)P(dω)

)
μ̄(dx)

≥
∫ (∫ ∥∥T̄ (x) − T̄ω(x)

∥∥2
μ̄(dx)

)
P(dω)

≥
∫

W2
2

(
μ̄ ◦ T̄ −1,μω

)
P(dω)

that (by the uniqueness) is possible only if μ̄ ◦ T̄ −1 = μ̄, that is, if T̄ (x) = x μ̄-a.s.
To finalize, observe that the optimal transport maps T̄ω from μ̄ to μω, being probabilities

in F(P0), take the form 	̄−1/2(	̄1/2	ω	̄1/2)1/2	̄−1/2 (see (6)), therefore (since 	̄ is positive
definite) the relation T̄ (x) = x μ̄-a.s. is equivalent to

	̄ =
∫ (

	̄1/2	ω	̄1/2)1/2P(dω).
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This proves that 	̄ verifies the integral equation. To prove that the integral equation has only a
positive definite solution, let 	̂ be any positive definite matrix and define

	0,ω := 	̂−1/2(	̂1/2	ω	̂1/2)1/2
	̂−1/2 and 	̂∗ :=

∫
	0,ωP(dω).

If we apply Lemma 5.15 first to 	0 = 	̂, 	1 = 	 and 	2 = 	ω, later to 	0 = 	1 = 	̂ and
	2 = 	ω, subtracting the results and integrating, we have that∫

W2
2 (P0,	,P0,	ω)P(dω) −

∫
W2

2 (P0,	̂
,P0,	ω)P(dω) ≥ trace

((
Id − 	̂∗)(	 − 	̂)

)
.

Thus, if 	̂ is a solution of the integral equation, we would have that P0,	̂
is the barycenter

of μ, and the uniqueness of the barycenter gives that 	̄ = 	̂. �
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