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Fifty years ago Arthur Winfree proposed a deeply influential mean-field model for the collective synchroniza-
tion of large populations of phase oscillators. Here we provide a detailed analysis of the model for some special,
analytically tractable cases. Adopting the thermodynamic limit, we derive an ordinary differential equation that
exactly describes the temporal evolution of the macroscopic variables in the Ott-Antonsen invariant manifold.
The low-dimensional model is then thoroughly investigated for a variety of pulse types and sinusoidal phase
response curves (PRCs). Two structurally different synchronization scenarios are found, which are linked via the
mutation of a Bogdanov-Takens point. From our results, we infer a general rule of thumb relating pulse shape
and PRC offset with each scenario. Finally, we compare the exact synchronization threshold with the prediction
of the averaging approximation given by the Kuramoto-Sakaguchi model. At the leading order, the discrepancy
appears to behave as an odd function of the PRC offset.
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I. INTRODUCTION

Macroscopic synchronization is a well-known emergent
phenomenon arising in ensembles of oscillators when, despite
their unavoidable differences, some fraction of the oscillators
spontaneously lock to one another and oscillate together with
exactly the same frequency [1–3]. Examples of collective
synchronization are abundant and surprisingly diverse, see,
e.g., Ref. [4]. They include the synchronous flashing of fireflies
[5], circadian [6] and cardiac [7] rhythms, the spontaneous
transitions to synchronous stepping [8] and to synchronous
clapping [9], or the collective synchronization of chemical
oscillators [10], and arrays of optomechanical cells [11], and
Josephson junctions [12].

The first successful attempt to model macroscopic synchro-
nization is due to Arthur Winfree. In 1967, Winfree proposed a
mathematical model consisting of a large population of glob-
ally coupled oscillators. Assuming weak coupling, Winfree
postulated the dynamics of the individual oscillators to be
well described by a single-phase variable. Interactions are
modeled by means of pulses that are emitted by each oscillator
and perturb the phase velocity of all the other oscillators.
Mathematically, this is expressed through two independent
functions: The (infinitesimal) phase response curve (PRC),
determining how the phase of an oscillator changes under
perturbations, and a function specifying for the shape of
the pulses. Numerical simulations in Refs. [13,14] showed
that, under suitable conditions, the Winfree model displayed
a transition from a totally asynchronous state to collective
synchronization, analogously to phase transition in statistical
mechanics. Though the Winfree model was later investigated
in a few more papers [15–17], the interest soon turned to the
simpler and renowned Kuramoto model [2–4,18].

A new boost in the theoretical understanding of phase-
oscillator populations models occurred in 2008, when Ott and
Antonsen (OA) discovered an exact dimensionality reduction
of the (infinite-dimensional) Kuramoto model, called OA
ansatz [19–21]. The discovery of the OA ansatz opened up

the possibility of tackling unresolved problems and investigate
novel variants and extensions of the Kuramoto model, see, e.g.,
Refs. [22–41]. Remarkably, the OA ansatz is also applicable
to pulse-coupled oscillators [42–49] and, in particular, to
the original Winfree model [50]. This allows to investigate
synchronization phenomena which are not accessible using
Kuramoto-like models. Specifically, the advantage of the Win-
free model is that permits to investigate separately how pulse
shape and PRC type influence collective synchronization.
Note that the PRC of cells, such as neurons [51,52] and
cardiac cells [53], can be measured experimentally. Therefore,
understanding better the Winfree model should contribute to
narrow the gap between mathematical models and biological
phenomena.

Here we build on our previous work [50] and systematically
analyze the impact of (i) pulse shapes and (ii) PRC offsets, onto
collective synchronization in the Winfree model. We find that
the phase diagram obtained in Ref. [50] is not unique and that a
novel synchronization scenario emerges for certain pulse types
via the mutation of a codimension-two Bogdanov-Takens (BT)
point. We end investigating the limit in which the oscillators
are nearly identical and very weakly coupled. In that situation,
the averaging approximation is valid, and a Kuramoto-like
model captures the dynamics with a level of accuracy that is
measured numerically.

The paper is organized as follows: In Sec. II we introduce
the Winfree model and discuss the pulses and PRC types under
investigation. In Sec. III, we consider the thermodynamic limit
of the Winfree model and derive two ordinary differential
equations (ODEs) that exactly describe the temporal evolution
of the complex Kuramoto order parameter in the Ott-Antonsen
invariant manifold. In Sec. IV, we present the results obtained
from those two ODEs, for a variety of pulse shapes and PRCs,
and check the validity of the results with simulations of a finite
population of Winfree oscillators. In Sec. V, we compare the
Winfree model with its averaging approximation. Finally, in
Sec. VI, we address the conclusions of this work.
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FIG. 1. AS, Ariaratnam-Strogatz; RP, rectified-Poisson, and
Square pulse functions P (θ ), for two different widths. Functions of
the same color have the same shape factor �; see Eq. (16). See also
Table I for the detailed mathematical form of the pulses and shape
factors.

II. THE WINFREE MODEL

The Winfree model consists of an ensemble of N � 1
globally coupled phase oscillators with heterogeneous natural
frequencies ωi , i = 1, . . . ,N [13,14]. The phases θi are
governed by the set of N ordinary differential equations
(ODEs):

θ̇i = ωi + Q(θi)
ε

N

N∑
j=1

P (θj ). (1)

All the oscillators receive the same inputs via the mean
field h = N−1 ∑N

j=1 P (θj ). Their response to the mean field
depends on the state of each oscillator θi and is determined
by the PRC function Q(θ ). Both P and Q are 2π -periodic
functions on the real line and hence can be defined either in
the range [0,2π ) or in the range [−π,π ). Finally, the global
coupling strength is controlled by the parameter ε > 0.

A. Pulse shape, P(θ )

The function P in Eq. (1) specifies the form of the pulses.
We only consider pulses with the following properties:

(i) P is unimodal and symmetric around θ = 0.
(ii) P vanishes at θ = π .
(iii) P has a normalized area:

∫ π

−π
P (θ )dθ = 2π .

We consider the three pulse types with finite width shown in
Fig. 1 and defined in Table I. The first pulse, labeled as AS,
was originally adopted by Ariaratnam and Strogatz [15] and
is commonly used in recent studies of pulse coupled-phase

oscillators [42–45,48–50,54]. Additionally, we consider a
variant of the pulse used by O’Keeffe and Strogatz in Ref. [48]
equal to the Poisson kernel but with an offset so that it
fulfills the condition (ii). We term this pulse as “rectified
Poisson kernel” (RP). Finally, we consider a square pulse
with a flat profile and vanishing in a finite interval of θ :
[−π,−b) ∪ (b,π ).

Concerning the macroscopic dynamics of the Winfree
model, the precise value of N becomes irrelevant provided
it is large enough (i.e., only trivial finite-size fluctuations are
observed; see below). However, for Dirac δ pulses, this is not
the case, as we discuss in Sec. IV D. The Dirac δ is the limiting
case of the pulse types considered, i.e., n → ∞, r → 1, and
b → 0 for the AS, RP, and square pulses, respectively.

B. Phase-response curve (PRC), Q(θ )

The influence of a certain (small) perturbation on the phase
of an oscillator is determined by the PRC, Q(θ ). Here, we
assume that (i) the PRC vanishes at the phase where the pulses
peak, i.e., at Q(θ = 0) = 0; and (ii) the PRC has a sinusoidal
shape. This latter condition is crucial, for the OA theory to be
applicable. The constraints (i) and (ii) lead us to the following
one-parameter family of PRCs:

Q(θ ) = sin β − sin(θ + β)

cos β
= q(1 − cos θ ) − sin θ, (2)

where parameter q = tan β determines the degree of asym-
metry of the PRC. As illustrated in Fig. 2, Q is more
positive (advancing) than negative for q > 0, while it is more
negative (retarding) for q < 0. The case q = 0 corresponds to
a perfectly balanced PRC. Hence, we call q “offset parameter”
hereafter. Note that in Ref. [50] the PRC is defined in a
slightly different manner: Here, ε is equivalent to ε cos β in
our previous work.

C. Frequency distribution, g(ω)

As indicated above, heterogeneity in the population enters
through the set of natural frequencies ωi . As we show in the
next section, to simplify the analysis of the Winfree model
Eq. (1), it is convenient to adopt a Lorentzian distribution
centered at ω0 with half-width 	:

g(ω) = 	/π

(ω − ω0)2 + 	2
. (3)

III. DIMENSIONALITY REDUCTION

We turn now to the analysis, and apply the so-called Ott-
Antonsen theory to derive a low-dimensional system of ODEs
that, under some assumptions specified below, determines
the mean-field, long-term dynamics of the Winfree model in
the thermodynamic limit N → ∞ [55]. Hence, we introduce
a density function F , such that F (θ |ω,t) dθ represents the
fraction of oscillators with phases between θ and θ + dθ and
natural frequency ω at a time t . The density F satisfies the
continuity equation,

∂tF + ∂θ (F θ̇ ) = 0, (4)
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TABLE I. Summary of the various pulse functions considered. The normalizing constant of the AS pulse is an = 2n(n!)2/(2n)! = n!/(2n −
1)!!. The fourth column shows the mean field h(Z), which is the function entering in Eq. (11) describing the system’s mean-field dynamics
exactly. In the last column, the shape factor � quantifies the effective strength of each pulse under the averaging approximation; see Eq. (16).
In Fig. 1, lines of the same style share the same � value.

Pulse name P (θ ) Parameter Mean field: h(Z) Shape factor: �

Ariaratnam-Strogatz (AS) an(1 + cos θ )n n ∈ Z+ 1 + (n!)2
∑n

k=1
Zk+(Z∗)k

(n+k)!(n−k)!
n

n+1

Rectified-Poisson (RP) (1−r)(1+cos θ)
1−2r cos θ+r2 r ∈ (−1,1) Re[ 1+Z

1−rZ
] 1+r

2

Square
{
π/b for |θ | � b

0 otherwise
b ∈ (0,π ) 1 − 1

b
Im[ ln(1 − Zeib) − ln(1 − Ze−ib)]] sin b

b

Dirac δ 2πδ(θ ) — Re[ 1+Z

1−Z
] 1

and, since it is 2π -periodic in θ , it admits the Fourier
expansion,

F (θ |ω,t) = 1

2π

{
1 +

[ ∞∑
m=1

αm(ω,t)eimθ + c.c.

]}
, (5)

where c.c. denotes complex conjugation.
The Winfree model belongs to the class of phase oscillator

systems,

θ̇i(t) = ωi + B(t) + Im[H (t)e−iθi (t)], (6)

with the particular form of the common forcing terms B(t) =
qεh(t) and H (t) = ε(1 − iq)h(t). In the thermodynamic limit,
systems of the general form of Eq. (6) admit solutions F in
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FIG. 2. Phase-response curves [Eq. (2)] for q = 1,0,−1. Brief,
perturbations lead to either a phase delay (light-shaded blue) or a
phase advance (shaded red), depending on the phase θ of the oscillator.
The sign and magnitude of parameter q controls the offset of the
PRC and hence determines if pulse interactions are mostly promoting
(q > 0) or delaying (q < 0) phase shifts.

the so-called Ott-Antonsen (OA) manifold [19],

F (θ |ω,t) = 1

2π

{
1 +

[ ∞∑
m=1

[α(ω,t)]meimθ + c.c.

]}
, (7)

which is simply Eq. (5) with the coefficients αm(ω,t) =
[α(ω,t)]m; see, e.g., Refs. [20,21,35,50,56]. Furthermore, in
Refs. [20,21] it was also shown that, for analytic frequency
distributions g(ω), the OA manifold is the unique attractor and
hence, if F does not initially satisfy Eq. (7), it subsequently
converges (in the sense of Refs. [20,21]) to it [57]–although
in some cases the convergence can be very slow [58]. In the
following, we restrict our attention to the OA manifold Eq. (7)
where the system can be easily analyzed.

Substituting the OA ansatz Eq. (7) into the continuity
Eq. (4), we find

∂tα = −i(ω + εhq)α + εh

2
[(1 + iq) − (1 − iq)α2], (8)

where the mean field,

h(t) =
∫ ∞

−∞
g(ω)

∫ 2π

0
F (θ |ω,t) P (θ ) dθ dω, (9)

couples every α(ω,t) with all others α(ω′,t).
The complex Kuramoto order parameter Z quantifies the

amplitude of first Fourier mode of the density F and reads

Z(t) =
∫ ∞

−∞
g(ω)

∫ 2π

0
F (θ,ω,t)eiθ dθ dω.

Under the assumption that the system evolves in the OA
manifold the previous equation writes

Z∗(t) =
∫ ∞

−∞
g(ω) α(ω,t) dω,

where the asterisk denotes complex conjugation. For
Lorentzian g(ω), this integral over the real line can be
computed by performing an analytical continuation of α(ω,t)
from real ω into complex ω = ωr + iωi ; see Ref. [19] for
details. Closing the integral by a half-circle at infinity in the
lower complex ω half-plane permits us to apply the residue
theorem, which gives

Z∗(t) = α(ωp,t), (10)

where ωp = ω0 − i	 is the simple pole of g(ω) inside the
integration contour. Then, setting ω = ωp in Eq. (8), we obtain
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the complex-valued ODE,

Ż = (−	 + iω0) Z + εh

2
[1 − Z2 − iq (1 − Z)2], (11)

for the complex Kuramoto order parameter Z. To close
Eq. (11), one needs to express the mean-field as h(Z). With
that aim, it is convenient to expand P in Fourier series:

P (θ ) =
∞∑

m=−∞
cmeimθ , (12)

with cm = c−m ∈ R and c0 = 1, because of the properties (i)
and (iii) stipulated in Sec. II A. Inserting Eqs. (12) and (5) into
Eq. (9), we get

h = 1 +
∞∑

k=1

ck

∫ ∞

−∞
g(ω){[α(ω,t)∗]k + [α(ω,t)]k}dω, (13)

which again can be simplified applying the residues theorem,
and recalling that Eq. (10) allows us to express the result in
terms of Z only,

h = 1 +
∞∑

k=1

ck[Zk + (Z∗)k]. (14)

This relation permits us to achieve, after some algebra, the
desired expressions of h(Z) for the set of pulse types. They
are listed in the fourth column of Table I.

Note that, compared to the AS pulse used in previous studies
[15,42–45,48–50,54], the RP pulse has the advantage that h(Z)
remains a simple function of Z, no matter how much the pulse
width is decreased; see Table I. Moreover, though the mean-
field function h(Z) for square pulses is more cumbersome than
that of the RP pulses, it still permits us to investigate Eq. (11)
with pulses of arbitrary small width, without the drawback of
dealing with the long sums of the AS pulse’s mean field.

IV. PHASE DIAGRAMS AND PHASE PORTRAITS

In this section, we analyze the attractors and bifurcations of
the ODEs Eq. (11) for particular instances of the PRC offset
q and the pulse type P (θ ). The dynamics of Eq. (11) depends
on five parameters: the coupling strength (ε), the pulse width
(through n, r or b), the center and half-width of the frequency
distribution (ω0 and 	), and the PRC offset (q). From now
on, and without lack of generality, we set ω0 = 1, since this
can always be achieved after a trivial rescaling of time and
parameter ε. In the following, using the MATCONT toolbox of
MATLAB, we identify and continue the bifurcations of Eq. (11)
in the (ε,	) parameter space for the pulse functions described
in Table I and for various PRC offsets q.

A. Rectified-Poisson (RP) pulse

Figure 3 shows the phase diagram for the RP pulse
(r = 0.5) with negative PRC offset (q = −1). The diagram
is qualitatively identical to those presented in Ref. [50] for
the AS pulse, indicating certain robustness of the dynamics
against modifications of the pulse shape. In Fig. 4(a), we show
a sketch of the phase portraits in the regions of interest. In
the shaded region, labeled 2, Eq. (11) has one attractor of
limit-cycle type, meaning that Z exhibits periodic oscillations.

SNIC
Hom

Hopf

Synchronous
state

SNSL

SN

SN

FIG. 3. Phase diagram of the Winfree model in the (	,ε)-plane
for a PRC with q = −1 and a RP pulse with r = 0.5. Bifurcation
lines are obtained from Eq. (11). In the shaded region there is
a stable limit-cycle corresponding to a macroscopic synchronized
state; see Fig. 5(c). The boundary of synchronization are Hopf,
SNIC, and homoclinic bifurcation lines. In the dark shaded region
the limit cycle (synchronization) coexists with a stable fixed point
(asynchronous state). Accordingly the dashed lines are the loci saddle-
node bifurcations. Finally, note that three codimension-two points
organize the bifurcation lines: double-zero eigenvalue Bogdanov-
Takens (BT), cusp (CP), and saddle-node separatrix-loop (SNSL).

This is reflecting a state of macroscopic synchronization in
which a certain part of the population is self-entrained to a
common frequency. There are three different paths leading
to this macroscopic state, depending on which bifurcation
line is crossed: Hopf, SNIC (saddle-node on the invariant
circle), or Hom (homoclinic or saddle-loop). Note that the
latter one is a global bifurcation that does not destabilize
the macroscopic steady state, and in consequence, a region
of bistability between synchrony and asynchrony exists; see
the dark shaded region in Figs. 3 and 4(a). Two lines of
saddle-node bifurcations of fixed points, emanating from a
cusp point (CP), complete the phase diagram and bound a
region of bistability between two stable equilibrium points
(region 4). They correspond to two macroscopic asynchronous
states with a different proportion of quiescent oscillators. For
large enough 	, namely above the CP point, the fraction of
quiescent oscillators varies smoothly (i.e., nonhysteretically)
with ε.

Next, we numerically compare the dynamics of the reduced
model Eq. (11) with that of a finite population of N =
2000 Winfree oscillators. In Figs. 5(a) and 5(c), we present
raster plots corresponding to macroscopic asynchronous and
synchronized states, respectively (a dot is plotted every time an
oscillator crosses a multiple of 2π ). In Figs. 5(b) and 5(d), we
display the dynamics of Z = N−1 ∑

j eiθj with solid lines, and
compare with the results from Eq. (11) in red. The agreement
is very good up to finite-size fluctuations.

Moreover, to be more systematic we swept parameter ε

along 	 = 0.15, i.e., a vertical line in Fig. 3, with the intention
of testing that the bifurcations were indeed reproduced. As the
rotation of the oscillators is not uniform, |Z| is not a useful
order parameter to characterize the synchronization transition
since it never vanishes. In the thermodynamic limit, we have
|Z| = const. in the macroscopic asynchronous state and time-
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FIG. 4. Possible synchronization scenarios of the Winfree model Eq. (1). Panels (a) and (b) are sketches of the phase diagrams and phase
portraits in the different regions of the (	,ε)-plane. Graph (a) displays a typical diagram when a BT point comes into play [50], whereas graph
(b) corresponds to the case of a BT′ point (see text for more details). Some details such as the transition from stable node to stable focus or the
annihilation of saddle and unstable node have been omitted for simplicity.

periodic |Z| in the macroscopic synchronous state. It is more
convenient to use the order parameter proposed by Shinomoto
and Kuramoto [60],

ζ = |Z − Z|, (15)

where the bars denote long-time average. For asynchronous
dynamics, the Shinomoto-Kuramoto order parameter Eq. (15)
satisfies ζ = 0, while ζ 	= 0 indicates some degree of synchro-
nization. Figure 5(e) shows that the results of our numerical
simulations of the original Winfree model show a good
agreement with the reduced ODE, Eq. (11). Below the Hopf
bifurcation and above the homoclinic one, ζ is not exactly zero
due to the finiteness of the population; indeed, ζ ∼ O(N−1/2)
in both regions. At large ε the comparatively smaller finite-size
fluctuations can be attributed to the fact that most oscillators are
in a macroscopic quiescent state with basically no contribution
to the fluctuations.

We next investigate how the synchronization region
changes as the pulse width varies. Figures 6(a) and 6(b) show
the synchronization boundaries for r = 0, 0.5, and 0.95, and
opposite values of the PRC’s offset q (= ∓1). For the sake of
clarity other bifurcation lines have been omitted. For positive
offsets, we find the same result that we found in Ref. [50] for
AS pulses with highly unbalanced PRCs (q � 0): Narrow RP
pulses (r close to 1) are more efficient than broad pulses to
synchronize heterogeneous populations of oscillators. Indeed,
note that the synchronization boundary of the narrowest pulse
(r = 0.95) reaches the highest value of the heterogeneity
parameter 	 in Fig. 6(b). However, a small discrepancy with
this previous rule was already noticeable in the q = 0 curve
of Fig. 2(a) in Ref. [50]. Here we revisit that question and
find that, as Fig. 6(a) shows, for negative PRC offsets the
discrepancy is even more dramatic: the Hopf boundary is far
from attaining the largest 	 value for the narrowest pulse.
Hence, synchronization is not optimal for narrow pulses, but it
also depends on the sign of the PRC’s offset q. Consequently,
one is tempted to wonder if, in nature, adaptation may in

some cases drive PRC offsets and pulse widths to be mutually
optimized in a certain sense.

B. Ariaratnam-Strogatz (AS) pulse

Thus far we found no qualitative difference between the
phase diagram for RP pulses of Fig. 3, with that of Ref. [50],
obtained using AS pulses. Nonetheless, in this section we show
that this qualitative agreement breaks down for AS pulses with
PRCs with negative offset.

The AS pulse with n = 1 is identical to the RP pulse with
r = 0, so that no differences arise in this case. Surprisingly,
when we considered narrower pulses (larger values of n) a
more complicated bifurcation scenario showed up; see Fig. 7
for n = 5 and q = −1. Indeed, at a certain critical n, the
Bogdanov-Takens point mutates its character in such a way that
the Hopf line emanating from it becomes of subcritical type,
while the homoclinic bifurcation now involves an unstable
periodic orbit—because the sum of the eigenvalues of the
saddle point, called saddle quantity, is positive. This mutated
Bogdanov-Takens point is designated as BT′ hereafter. Points
BT and BT′ are both equally generic double-zero-eigenvalue
points consistent with the normal form in textbooks [61,62]:
BT is the usual representation (up to a transformation of
parameters), while BT′ is also consistent upon time inversion.

In the transition from BT to BT′ two new codimension-two
points appear:

(1) A generalized Hopf (GH) point on top of the Hopf line
where the bifurcation shifts from super- to subcritical.

(2) A neutral saddle (NS) point where the homoclinic
connection is degenerate, since it involves a saddle point
with zero saddle quantity [62]. At the NS point the line of
homoclinic bifurcation of the stable limit cycle terminates.

The GH and NS points are connected by a new line,
which is the locus of a saddle-node bifurcation of limit cycles
(SNLC). Figure 4(b) shows sketches of the phase portraits
when a BT′ point is present in the phase diagram. Notably,
the synchronization region is detached from the BT′ point,
and a region with three attractors (i.e., tristability) exists. This
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(a)

(c) (d)

(b)

(e)

FIG. 5. (a) Raster plot for a system of N = 2000 “Winfree
oscillators” with q = −1 and RP pulses with r = 0.5—as in Fig. 3—
with a coupling strength ε = 0.4. The natural frequencies have been
deterministically selected from a Lorentzian distribution with ω0 = 1
and 	 = 0.15, using ωi = ω0 + 	 tan[π (2i − N − 1)/(2N )]. The
horizontal white stripe corresponds to oscillators with natural fre-
quencies near zero that remain quiescent. (b) Phase portrait of the
macroscopic state in panel (a) is depicted with a solid line, and the
stable fixed point of Eq. (11) is depicted as a red point. Panels (c) and
(d) are equivalent to (a) and (b), but with ε = 0.5. For this parameter
value the system displays a certain degree of synchrony. Note that in
panel (d), Eq. (11) exhibits a stable limit cycle represented as a red
dashed line. (e) Bifurcation diagram ζ vs. ε along the line 	 = 0.15.
The red lines are obtained from the low-dimensional Eq. (11), and
the bifurcations (Hopf, saddle-node, and homoclinic, from left to
right) are marked by vertical dotted lines. Symbols correspond to
numerical simulations of the Winfree model. Circles (respectively,
squares) are obtained by increasing (respectively, decreasing) ε in
steps of magnitude 0.01. The simulations were initiated with the
oscillator phases randomly chosen from the interval [−π,π ), followed
by a transient of 1000 t.u. The time-averaged quantities Z and
ζ are computed sequentially for time intervals of 1000 t.u. each.
The numerical integration of the population was carried out with a
fifth-order Runge-Kutta scheme with adaptive stepsize control [59].

region is the approximate triangle with vertices at GH and
NS visible both in the inset of Fig. 7 and in Fig. 4(b), region
5. There, the limit cycle (corresponding to synchronization)
coexist with two stable fixed points. Note that by entering into
region 5 through the saddle-node bifurcation of limit cycles
line (connecting the points GH and NS) a finite-sized limit
cycle with a finite basin of attraction suddenly appears.

(a)

(b)

FIG. 6. Boundaries of the synchronization region in the (	,ε)-
plane for the RP pulse and several values of r . Graphs (a) and (b)
correspond to q = −1 and q = 1, respectively.

C. Transition between the synchronization scenarios
BT and BT′

In view of the distinct phase diagrams associated to BT
and BT′, next we investigate the conditions under which each
scenario shows up. Our systematic numerical investigation
indicates that the RP pulse is always associated to a BT point.

BT'

Hopf
supercritical

Hopf
subcritical

SNIC
Hom

NS

Hom
 

Hopf
subcritical

SNLC
 

SN

SNSNSL

FIG. 7. Phase diagram of the Winfree model in the (	,ε)-plane
for the AS pulse. Parameter values are q = −1 and n = 5; the inset
is a zoom of the region enclosed by a rectangle in the main plot.
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FIG. 8. Numerically obtained critical boundary q∗ separating the
regions BT and BT′, as a function of the AS pulse width n. The novel
synchronization scenario, associated to a BT′ point, shows up for
narrow pulses and negative PRC offsets.

In the case of the AS pulse, we determined numerically the
threshold value of q, which we designated as q∗, where the
transition between BT and BT′ occurs, i.e. the q value at which
a degenerate (codimension-three) BT point arises. The result
covering all integer values n � 10 is depicted in Fig. 8 and
demonstrates that the BT′ point only arises for sufficiently
negative offsets q. Noteworthy, when n grows, BT′ can be
observed for increasing small values of |q|. The absence of a
point for n = 1 in Fig. 8 is not an omission; in fact, we failed to
numerically find a BT′ point even after considering extremely
small values of q—recall also that the AS pulse with n = 1
coincides with the RP pulse with r = 0. Finally, we carried
out numerical simulations using square pulses (not shown),
and found that the bifurcation scenario associated to BT′ is
observed already for q = 0, provided that b is smaller than
b∗(q = 0) = 1.02 . . . (a significantly large value).

To get some more physical insight, we examined the
asymptotic behavior of P (θ ) in a neighborhood of θ = π for
each pulse type. They are

P (π ± δθ ) � 1 − r

2(1 + r)2
δθ2,

(n!)2

(2n)!
δθ2n,0,

for RP, AS, and square pulses, respectively. The marked
differences of the respective asymptotics led us to conjecture
a simple rule of the thumb: pulses that fall fast enough to zero
at θ = π are prone to exhibit the synchronization scenario
with five codimension-two points, i.e., BT′. On the contrary,
pulses that fall to zero more slowly (such as the RP pulse)
favor the first scenario (BT), making the second scenario (BT′)
impossible or only present for small enough PRC offsets q.

D. Dirac δ pulse

All the pulses studied in this paper have the Dirac δ as
limiting case. It is not difficult to obtain the expression of
h(Z) for the Dirac δ pulse; see Table I. Nonetheless, some
caution must be taken here: for obtaining the mean field h(Z)
the thermodynamic limit (N → ∞) is assumed prior to the
zero width pulse limit, and it is well known that these two
limits do not commute [63]. Therefore, the results we obtain
for Dirac δ pulses cannot be exactly reproduced in numerical

0.0 0.6
0

1

2
q 5.0
q 1.0
q 0.0
q 1.0
q 5.0

FIG. 9. Phase diagram of the Winfree model in the (	,ε) plane
for the Dirac δ pulse and several values of q.

simulations, which necessarily involve a finite number of
oscillators. Accordingly, the results obtained here for Dirac
δ pulses must be interpreted as a limit of the bifurcation lines
for very narrow pulses. This allows us to put aside the pulse
shape and to focus solely on the influence of the PRC offset
parameter q.

Figure 9 shows phase diagrams in the (	,ε) plane for Dirac
δ pulses and for several values of q. The curves displayed
are Hopf bifurcation lines that emanate from the origin and
approach the vertical axis when ε → ∞. As mentioned above,
there are subtle questions regarding this pulse, so the Hopf
bifurcation lines have to be understood simply as the limit of
the Hopf curves for very narrow pulses. In fact, the absence of
the saddle-node bifurcations lines indicates a certainly singular
behavior in that limit.

Yet, from Fig. 9, we can conclude that the synchronization
region increases monotonically with q. Our physical inter-
pretation of this feature is that, for negative PRC offsets, the
bias of the PRC tends to slow down the oscillators favoring
the formation of a cluster with quiescent oscillators (partial
oscillation death). On the contrary, positive PRC offsets
generally favor phase advances, retarding the accumulation of
quiescent oscillators and leaving room for the synchronization
to occur more widely.

Let us finally point out that the bifurcation lines can
be analytically obtained by transforming Eq. (11) into a
complex-valued ODE for a new variable w = (1 + Z)/(1 −
Z), such that h = Re(w). In the new coordinate system, and
with the assistance of MATHEMATICA, we derived convoluted
but nonetheless exact equations of the Hopf boundaries in
parametric form:

	H (y) = f (y,q)[−g(y,q) + y(q + y) + 1]

(y2 + 1)(2q + y)
,

εH (y) = 2f (y,q){g(y,q)(y2 − 1) + y[q(y2 + 3) + y] + 1}
(y2 + 1)(2q + y)(4qy − y2 + 3)

,

with

g(y,q) ≡
√

(q2 + 1)y2 + 1,

f (y,q) ≡
√

2g(y,q) + 2qy − y2 − 1,

where y ∈ (0,∞). In passing, we note that for q = 0, a simple
explicit formula can be found; see Ref. [36] in Ref. [50].
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V. LIMIT OF WEAK COUPLING AND NEARLY
IDENTICAL OSCILLATORS

To conclude, we investigate the Winfree model in the
limit of weak coupling and weak heterogeneity, i.e., |ε| � 1,
	 � 1. This is an important limiting case, since the method of
averaging can be applied and the Winfree model reduces to the
well-studied Kuramoto-Sakaguchi (KS) model [64,65]. Our
aim in this section is to investigate how the synchronization
threshold of the Winfree model deviates from that of its
corresponding KS model, for different pulse functions and
PRC types.

A. Averaging approximation: Kuramoto-Sakaguchi model

In the classical analysis by Kuramoto [64], weakly inter-
acting oscillators with frequencies close to a resonance are
described by means of the averaging approximation. In the case
of 1:1 resonance (nearly identical frequencies), the interaction
term between any two oscillators becomes a function of their
phase difference.

Given that the PRCs considered here are chosen to be sine-
shaped, the only resonant term is the first harmonic. Thus, the
averaging calculation leads to the KS model [50,64,65]:

θ̇i = ωi + εq + �
ε

N

N∑
j=1

[sin(θj − θi) − q cos(θj − θi)].

(16)

The parameter � is a “shape factor” that depends on the pulse
shape. The shape factor depends only on the first harmonic
of the pulse, or more precisely, � = c1; see Eq. (12). The
dependence of � on the parameter controlling the pulse width
can be found in the last column of Table I. In all cases, the
effective interaction strength increases as the pulses become
narrower. In fact, the largest � value is attained for the Dirac
δ pulse.

Generally, for unimodal frequency distributions, the KS
model Eq. (16) displays a simple transition between a
macroscopic asynchronous, incoherent state (Z = 0 in the
thermodynamic limit) and macroscopic synchronization at
a critical finite value of ε —but see Refs. [36,66] for
exceptions. The synchronous state is characterized by the
appearance of a subset of oscillators that rotate with a common
frequency and have their phases locked, thanks to the mutual
coupling that is able to overcome the disparity of the natural
frequencies. For the Lorentzian distribution of frequencies,
Eq. (3), the critical coupling of the synchronization transition
in the thermodynamic limit (N → ∞) can be obtained
analytically [65]:

ε(av)
c = 2	

�
, (17)

where the superscript “(av)” is used to emphasize that this
is the critical coupling of the averaged model in Eq. (16).
Curiously, within this approximation εc does not depend on
q. (This has to be attributed to the special properties of the
Lorentzian distribution g(ω), which usually yields particularly

simple results in Kuramoto-like models.) The exact critical
coupling of the Winfree model is computed numerically below
and, as presumed, depends on q.

B. Synchronization threshold: Winfree versus KS model

To test the goodness of the averaging approximation, we
next compare the synchronization threshold of the Winfree
model with the threshold of its averaged counterpart, given
by Eq. (17). Our aim is to determine if certain pulses deviate
more from the averaging approximation and whether these
results depend on the PRC offset q. To make the comparison
significant we considered different pulse types with the same
� values. In different panels of Fig. 1, pulses plotted with
the same line style have identical shape factor �, and there-
fore they yield the identical KS model upon averaging. In turn,
the prediction of Eq. (17) is exactly the same for all pulse types
(provided the same � value). To measure the deviation of the
Winfree model from the the KS model, we define the quantity

ρ(	) = εH − ε(av)
c

ε
(av)
c

, (18)

which is proportional to the difference between the exact
and the approximated critical couplings (normalized by the
approximated critical coupling). For each pulse type and q

value, the locus of the Hopf bifurcation εH (	) is numerically
available from the exact low-dimensional Eq. (11).

In Fig. 10, we graph ρ for � = 10/11 and the three pulse
types considered, adopting three values q = −1, 0, and 1 in
Figs. 10(a), 10(b) and 10(c), respectively. As expected ρ(	 →
0) = 0, indicating the validity of the averaging approximation
in this limit. As 	 is increased from zero, ρ(	) becomes
positive for q = −1 and negative for q = 1, which implies
that synchronization is hindered (promoted) with respect to
the averaging approximation for negative (positive) q. (This is
also consistent with Fig. 9.) Numerical evidence shows that

ρ(	) = ξ (q)	 + O(	2),

where ξ (q) is a pulse-dependent odd function (and possibly
monotonically decreasing). Note that this means that the best
pulse type, in a certain sense, for q > 0, becomes the worst
for q < 0. For instance, for q = −1, synchronizability is the
best for the square pulse among the pulses considered, but
this becomes just the opposite for q = 1. The case q = 0
is the boundary between these scenarios, because ξ (0) = 0.
Accordingly, the inset of Fig. 10(b) confirms a nonlinear
dependence, namely quadratic, of ρ(	 � 1).

VI. CONCLUSIONS

The Winfree model critically influenced the development
of the theory of synchronization, but it has been scarcely
studied in detail due to its mathematical complexity, compared
to the Kuramoto model. Nevertheless, the Winfree model
permits us to investigate synchronization phenomena beyond
the usual assumptions of weak coupling and low-frequency
heterogeneity, implicitly assumed in the abundant literature
investigating Kuramoto-like models. The recent discovery
that the so-called OA theory [19–21] can also be applied to
the Winfree model with sinusoidal PRC [50] allows for the
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FIG. 10. Quantity ρ(	), Eq. (18), measuring the deviation from
the averaging approximation Eq. (16) of the Winfree model for AS,
RP, and square pulses with � = 10/11—see Table I. Panels (a), (b),
and (c) correspond to q = −1, q = 0, and q = 1, respectively. The
inset in panel (b) shows the curves in log-log scale. The thick solid
line has slope 2 and is plotted as a guide for the eye.

detailed investigation of its collective dynamics. In Ref. [50],
we considered the pulse type originally adopted by Ariaratnam
and Strogatz in Ref. [15] and then used in numerous studies
[42–45,48–50,54].

Here we have additionally investigated the Winfree model
with rectified Poisson and square pulses. For these pulse
types the numerical study of the system of two ODEs in
Eq. (11) is simpler because, in contrast to the AS pulse,
their associated mean-field functions h(Z) do not become
increasingly convoluted as the pulse width is decreased (see
Table I). Indeed, the numerical investigation of Eq. (11) for
very narrow AS pulses is impracticable, but not for RP and
Square pulses.

Another question is that AS and RP pulses are nonvanishing
in θ ∈ (−π,π ). This means that a pulse is emitted during the

entire period of rotation of an oscillator (or even when the
oscillator becomes quiescent). In some cases this interaction
type may be unrealistic. For example, neuronal interactions
may be mediated by action potentials, which are brief, all-or-
none events that are better modeled using narrow squarelike
pulses.

Regarding the PRCs, we considered sinusoidally shaped
PRCs with positive, negative, and zero offsets q. The case
of negative offset was not considered in Ref. [50] but has
been revealed to be interesting and nontrivial. Indeed, the
claim that narrow pulses are optimal for synchronizing large
populations of oscillators [50] does not hold for negative
PRC offsets. In this case, we find that the optimal pulse,
allowing to synchronize more heterogeneous populations, has
an intermediate width; see Fig. 6(a). Moreover, PRCs with
a negative offset are more likely to have a synchronization
scenario with five codimension-two points (including BT′),
in contrast to the scenario with three already reported in
Ref. [50]—see Fig. 4. The conditions under which each of
the scenarios is found depend on the particular pulse type.
From our results, we inferred that pulses that are closer to
zero at phases far from the peak phase are more likely to
exhibit a BT′ point. In fact, the RP pulse does not exhibit
a BT′ point for any q value, while the square pulse already
does for a balanced PRC (q = 0). We also considered the
limit of infinitely narrow pulses (Dirac δ pulses) and provided
exact formulas for the synchronization boundary (a Hopf
bifurcation). Additionally, we demonstrated that positive PRC
offsets display larger synchronization regions and are capable
of synchronizing more heterogeneous ensembles. It would be
interesting to investigate whether there exists some natural
system where the intrinsic PRCs and the pulse shape/type is
correlated in a way consistent with these results.

Finally, we have compared the synchronization threshold
of the Winfree model with its averaging approximation (the
Kuramoto-Sakaguchi model). The results indicate that the
predictions of averaging are more inaccurate as |q| grows,
changing in opposite directions depending of the sign of q.

In future studies, it would be interesting to find techniques to
efficiently analyze the Winfree model with nonsinusoidal PRC,
as well as for frequency distributions other than the Lorentzian
one. The study in Ref. [15] for a uniform distribution of
natural frequencies is valuable, but it is difficult to extend
it to nonvanishing q. On the other hand, Eq. (14) permits
us to use the mean field Eq. (11) with other pulse types
and to investigate, for example, the impact of asymmetric, or
multimodal pulses on collective synchronization. Generalizing
the model by considering other sources of heterogeneity is also
an interesting venue for future research.
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