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ABSTRACT 

Purpose of review. Epigenetic mechanisms modify gene activity in a stable manner without altering DNA 
sequence. They participate in the adaptation to the environment, as well as in the pathogenesis of common 
complex disorders. We provide an overview of the role of epigenetic mechanisms in bone biology and 
pathology. 

Recent findings. Extensive evidence supports the involvement of epigenetic mechanisms (DNA 
methylation, post-translational modifications of histone tails and noncoding RNAs) in the differentiation of 
bone cells and mechanotransduction. A variety of epigenetic abnormalities have been described in patients 
with osteoporosis, osteoarthritis, and skeletal cancers, but their actual pathogenetic roles are still unclear.  
A few drugs targeting epigenetic marks have been approved for neoplastic disorders and many more are 
being actively investigated.  

Summary. Advances in the field of epigenetics underscore the complex interactions between genetic and 
environmental factors as determinants of osteoporosis and other common disorders. Likewise, they help to 
explain the mechanisms by which prenatal and postnatal external factors, from nutrition to psychological 
stress, impact our body and influence the risk of later disease. 
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Introduction: Genetics, epigenetics, and adaptation 

Like other animals, humans need molecular and functional stability to survive. Thus, cells must preserve 
their main characteristics through mitosis and cell division. Also, we need to preserve the shape and 
function of our body through generations. In fact, the appearance of deleterious genetic mutations is a 
well-known cause of disease. 

However, cells and whole organisms also need to adapt to environmental conditions. Indeed, the ability to 
adapt to different environments is key for survival. In this sense, the body reacts to environmental factors 
trying to sustain or improve body functions in the context of adverse or changing conditions.  However, 
environmental influences may also cause a number of body disturbances, either directly or as a 
consequence of adaptative responses. For example, astronauts experience a rapid loss of bone mass during 
space flights. This is an adequate response to the reduced mechanical requirements of the skeleton. 
However, it may cause troubles when they come back to gravity. 

Physiological adaptation may involve a number of genetic and non-genetic mechanisms. Spontaneous 
changes in DNA sequence may, by chance, result in a survival advantage, related to a better adaptation to 
the environment. This is the basis of biologic evolution. These responses are persistent in time, but very 
slow. They usually occur through many generations. Thus, they are not suitable when short-term 
homeostatic changes are required. Other adaptations are mediated by non-genetic biochemical 
mechanisms. For example, the stress response includes a number of changes in catecholamines, 
glucocorticoids, and other hormones that reinforce the ability of the body to fight against the adverse 
environment (either internal or external) (1). Unlike genetic changes, these modifications are fast, but 
transitory. Somewhere between those adaptative modifications lie the epigenetic changes. They may be 
relatively rapid, and at the same time stable through cell divisions and perhaps through generations. In 
fact, as described in the following sections, epigenetic marks include a number of mechanisms, triggered by 
environmental influences and other stimuli, which are capable of modifying gene activity in a stable 
manner, without altering DNA sequence. These mechanisms play a central role in another particular 
process of adaptation: the differentiation of cells, which must express and repress unique sets of genes and 
display distinct tissue-specialized functions despite the fact that all they have an identical genome (2). 

Epigenetic mechanisms 

The best known epigenetic mechanisms are DNA methylation, post-translational histone modifications and 
non-coding RNAs (ncRNA). They act as regulators of gene activity by controlling chromatin assembly and 
gene transcription, or post-transcriptionally (ncRNA’s) by controlling protein translation.  

Bone remodelling is important for repairing bone damage and maintaining mineral homeostasis. The major 
cell types involved in remodelling are osteoblasts, osteoclasts and osteocytes. Bone-forming osteoblasts 
derive from mesenchymal stem cells (MSCs), whereas osteoclasts, the bone-resorbing cells, derive from 
hematopoietic precursors. Epigenetic mechanisms drive the differentiation of both the osteoblastic and the 
osteoclastic lineages, as well as the activity of differentiated bone cells. Some examples are mentioned 
below, and the reader is referred to more comprehensive reviews of this field (3–5). 

In general, the methylation of gene promoters is associated with repression of gene transcription, but this 
is not a constant phenomenon. Indeed, methylation of enhancers and other regulatory regions may have 
both stimulatory and inhibitory consequences. Furthermore, the methylation-related repression of some 
gene inhibitors may result in enhanced expression of their target genes. Yu compared DNA methylation in 
osteoblasts and other cells and identified methylation patterns that were related to the expression of 
genes specifically involved in bone metabolism pathways, thus supporting the involvement of methylation 
marks in the regulation of osteogenesis (6). Other studies have implicated changes in the methylation of 
Wnt pathway genes and the transcription factor runx2 during osteoblast differentiation (7,8). 
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DNA methylation and posttranslational modifications of histone tails usually act in concert to regulate gene 
transcription. For example, the methylation of lysine 27 of histones 3 (H3K27) tends to be associated with 
methylated promoters, whereas acetylation of histone tails is usually present in regions with actively 
transcribed chromatin. Several studies have explored the role of these mechanisms in the differentiation of 
MSCs (5). Specifically, the methylation of all lysines in histone 3 (K3K4, H3K27) is important for 
osteoblastogenesis. In line with this concept, methyltransferases such as EZH2, seem to contribute 
establishing the gene expression pattern characteristic of differentiated osteoblasts (9–12). Other histone-
modifying enzymes relevant for osteogenesis are the histone H4 methyltransferase Suv420h2 (13), and the 
bromodomain and extra-terminal domain (BET) protein family (14).  

Recently, long and small ncRNA’s have received a noteworthy attention due to their ability to regulate gene 
expression at the transcriptional (lncRNA´s) and posttranscriptional level (small and long ncRNA’s). Several 
studies suggest that ncRNAs are involved in osteogenic differentiation and bone pathology (15–17).  

MicroRNAs (miRNAs) are small, 21-23 nucleotides-long, RNAs that inhibit the synthesis of proteins by 
binding to target mRNAs, which results in stopping protein synthesis or even the degradation of mRNA. A 
few thousand miRNAs have been identified; each one having several target genes (17). 

Long-non coding RNAs are more than 200 nucleotides-long and regulate gene activity by a variety of 
mechanisms at both the transcriptional and post-transcriptional levels (18). 

In recent years it is becoming evident that chromatin spatial organization affects gene expression. Such 

organization determines the accessibility of transcription factors to regulatory regions. It is controlled by 

specialized proteins (cohesins, condensins, CTCF, etc.) that allow the formation of “loops” which in turn permit 

the close contact between enhancers and their target regions in distant locations  of the same 

chromosome or even in other chromosomes. Chromatine conformation is determined by a variety of 

environmental signals, DNA methylation, histone marks and other epigenetic factors. Technical 

developments are allowing to have a better understanding of the “chromosomal conformation signatures”, 

a term describing the collection of DNA contacts associated with specific gene expression profiles. These signatures 

are being actively explored as biomarkers of disease and potential predictors of drug responses (19).  

 

 
Exosomes as transmitters of epigenetic signals 

Cells exchange information and interact with each other via the secretion of a variety of factors, including 
proteins and nucleic acids, that are secreted directly into the extracellular media or contained in vesicles. 
Extracellular vesicles (EVs) are cell-derived corpuscles enclosed by a lipid bilayer with a diameter between 
30 and 1000 nm (20). EVs are classified as microvesicles, exosomes and apoptotic bodies. Microvesicles bud 
directly from the cell membrane; exosomes derive from the fusion of multivesicular endosomes (containing 
proteins and nucleotides) and the cell membrane. Exosomes can interact with target cells by activating cell 
surface receptors or by delivering their content (transcription factors, non-coding RNAs, hormones...) into 
the cytosol of target cells. In line with their regulatory role, exosomes have been implicated in bone biology 
(21). 

Exosomes regulate osteoclast and osteoblast differentiation and communication by delivering a number of 
mediators, including miRNAs (22). In theory, exosomes might deliver miRNAs in both paracrine and 
endocrine ways. As an example, osteoclast-derived miR-214-3p is transported into exosomes, enters 
circulation and, in theory, may act at distant sites. This miRNA has an inhibitory effect on bone formation 
and has been associated with  osteoporotic fractures (23,24). Other miRNAs are also known to modulate 
osteoblast differentiation (25,26). Furthermore, exosomal miRNAs may participate in muscle-bone 
communication. For instance, Qin recently proposed that myostatin decreases the production of  miR-218-
containing exosomes by osteocytes, which in turn has an inhibitory effect on osteoblasts (27). MSC-derived 
exosomes may also play a role in bone healing and regeneration (28,29).   
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Environmental influences on the osteoblastic lineage: hypoxia and mechanical loads 

Mechanical loading is essential to maintain bone anabolism. Epigenetic mechanisms and several signalling 
pathways appear to be involved in mechanotransduction (30). Mechanical stimulation influences the 
methylation of a number of genes involved in intracellular signalling, including G proteins (31). On the other 
hand, the demethylation of the sonic hedgehog promoter is required for the loading-induced osteogenesis 
in mice (32). Additionally, a negative feedback loop (with the participation of the methyl-CpG-binding 
domain protein 2 (MBD2), a “reader” of methylated cytosines)  to prevent excessive osteogenesis with 
loading has been suggested from experiments using the osteocytic cell line MLO-Y4 (33). Both histone 
deacetylases 4/5 and the miR17-92 cluster appear to be required for the periostal bone formation induced 
by loading, in vitro and in vivo  (34,35). A few studies also suggest that non-coding RNAs may be involved in 
muscle-bone communication (27,36,37).  

There is emerging evidence for a role of oxygen availability in skeletal cell activity. Hypoxia influences the 
differentiation of MSCs. The sirtuin family of histone deacetylases may be involved in the response to 
varying oxygen levels.  For example, hypoxia induces an inflammatory response in human osteoblasts 
which can be attenuated epigenetically by the histone deacetylase sirtuin 6 (38).  Additionally, sirtuin1 may 
protect osteoblasts against hipoxia (39). 

 
 
The developmental origin of bone disorders 

The “developmental origins of health and disease”  concept proposes that when the fetus or infant is 
exposed to adverse environmental influences, its metabolism becomes altered in a lasting way, resulting in 
increased vulnerability to later disease (40). In this line, a number of studies show that fetal under-
nutrition, indicated by low birth weight, may be associated not only with adverse childhood outcomes, but 
also with increased adult prevalence of osteoporosis, diabetes mellitus, and cardiovascular disorders (41).  
In several studies, including a meta-analysis, birth weight has been associated with later bone mass. In 
general, the association is stronger with bone mineral content (BMC) than with bone mineral density 
(BMD), thus suggesting that early life events have a higher influence on skeletal size than on bone 
volumetric density (42). Among maternal nutrients, vitamin D has received greatest attention. Maternal 
vitamin D status has been found to correlate with fetal development (43) and with bone mass of offspring 
during childhood or young adulthood (44). However, the relationship of early life growth with fractures in 
later life is still unclear (45). 

Preliminary evidence suggests that the influence of early life environment on bone is mediated by 
epigenetic factors. In rodents, maternal vitamin D status influences DNA methylation state in the germline, 
which is transmitted to unexposed second generation (46). Also, studies in a British mother-offspring 
cohort found an association of the methylation levels of several genes (such as eNOS, RXRA and CDKN2A) in 
cord blood and bone mass at 6-9 years (47,48), but replication in other cohorts is pending. 

Socioeconomic status and other social factors influence bone mass. Indeed, social deprivation during early 
life (both pre- and post-natal) has a negative impact on the skeleton. The mechanisms involved are likely 
multiple and include nutritional deficiencies, psychological stress responses and persistent low-degree 
inflammation (49). Those responses may be mediated, at least in part, by epigenetic mechanisms, including 
the methylation of genes encoding the glucocorticoid receptor and several cytokines. Those changes result 
in exaggerated or persistent secretion of glucocorticoids and pro-inflammatory cytokines that promote 
bone resorption and inhibit bone anabolism (50). 
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Epigenetics and osteoporosis: experimental models 

A few studies have explored the role of epigenetic mechanisms in experimental models of osteoporosis, 
usually in ovariectomized rodents. Only scarce data are available about the changes in epigenetic marks 
following estrogen loss (15) and a full picture of the “osteoporotic epigenome” is still lacking. Nevertheless, 
a number of interventions targeting histone modifiers and readers have been explored.  

The bromodomains and extra-terminal domain (BET) family include proteins that act as chromatin state 
readers by binding to acetylated histones and regulate gene expression. They are important for the 
expression of NFATC1, a master regulator of osteoclastogenesis. Consequently, pharmacological inhibition 
of BETs suppresses pathologic bone loss in inflammatory arthritis and post-ovariectomy models (51). 
Similarly, the sirtuin activator resveratrol has a beneficial effect on bone mass in ovariectomized rodents. 
The mechanisms involved may include the regulation of miRNA-338, which in turn targets RUNX2, a master 
driver of osteoblast differentiation (52). NMP is a bromodomain inhibitor that also has a positive effect on 
skeletal homeostais in vitro and in ovariectomized rats (53). Ezh2 (enhancer of zeste homolog 2), is 
methyltransferase for lysine 27 of histone 3 (H3K27).  Ezh2 inactivation promotes the expression of bone-
related gene regulators and Ezh2 inhibitors alleviate the loss of bone mass induced by estrogen deficiency 
(54).   

Sulphorapheno, present in many plants, also has beneficial effects in ovariectomized mice. The mechanism 
of action is unclear, but may involve TET, a family of proteins participating in the conversion of methyl-
cytosines into hydroxymethyl-cytosines, which may reactivate the transcription of repressed genes (55). 

 
Epigenetics and osteoporosis: human studies 

A few studies have explored the association of DNA methylation in adults with osteoporosis. Thus, an 
hypomethylation of Alu elements in DNA extracted from blood cells has been associated with low bone 
mass in postmenopausal women (56). However, it is worth emphasizing that methylation and other 
epigenetic marks are tissue-specific. Therefore, blood cells do not necessarily are a good index of the status 
of other cells more relevant to bone homeostasis. This is an important issue when critically appraising 
epigenetic association studies (57,58). Indeed, a recent large epigenome-wide study did not reveal 
consistent associations between DNA methylation in blood cells and BMD (59).  However, in a genome-
wide methylation screening of bone tissue samples of patients with either osteoporotic hip fractures or hip 
osteoarthritis, we found significant differences in the methylation of a number of genes, which were 
enriched in the Wnt signaling pathway and other pathways related to skeletal development (60,61). This is 
in part consistent with GWAS data. Indeed, several regions  showing differential methylation overlap with 
the genes with polymorphisms associated with skeletal phenotypes in several GWAS. That is the case of 
several genes associated with BMD (such as A disintegrin-like and metallopeptidase with thrombospondin 
type 1 motif 18 -ADAMTS18-, claudin 5 -CLDN5), genes associated with bone mineral content (NK2 
homeobox 2 -NKX2-2), with hip geometry (cadherin 2 -CDH2-, neuregulin 1 -NRG1) or with body shape and 
composition (hedgehog interacting protein  -HHIP-, high mobility group AT-hook 2 -HMGA2-, zinc finger 
protein 678 -ZNF678-, Iroquois homeobox 2 -IRX2) (see the Catalog of published genome-wide association 
studies at https://www.ebi.ac.uk/gwas). Reppe et al. suggested that the methylation of SOST and DKK1 
(genes encoding the Wnt pathway inhibitors sclerostin and dickkopf 1, respectively) is involved in the 
pathogenesis of osteoporosis (62). Since bone is a heterogeneous tissue, it is unclear which cells are 
actually showing the differentially-methylated regions. Nevertheless, because of their relative abundance, 
osteocytes and other cells in the osteoblastic lineage are appealing candidates. In fact, many cells, including 
mesenchymal stem cells (MSCs, the precursors of osteoblasts) suffer methylation changes with aging 
(63,64) that might impair their differentiation capacity. Furthermore, MSCs from osteoporotic patients 
show distinct methylation and gene transcription signatures (7).  

Biomarkers that can be measured in accessible body fluids, such as blood or urine, are appealing from a 
practical point of view. Among them, miRNAs, which regulate a number of bone cell activities (reviewed in 

https://www.ebi.ac.uk/gwas/
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(65)), can be measured in blood, are relatively stable, and are the focus of great attention (66). Studies of 
miRNA  in bone samples of patients with osteoporosis and controls have produced conflicting results, with 
generally poor replication (67). Nevertheless, a partially replicated set of miRNAs measured in plasma has 
been proposed to distinguish patients with osteoporosis and/or fractures and controls (68–70). Although 
these are promising results, replication of the performance in other independent groups of patients is 
needed to confirm their role as useful biomarkers for diagnostic or prognostic purposes. The usefulness as 
early markers of drug response is also worth exploring.  

The phenotype of a cell or an individual is the result of complex interactions between genetic and acquired 
factors, some of them mediated by epigenetic mechanisms (figure 1). A few examples of the interaction 
between genetics and epigenetics have been recently revealed in the bone field. Thus, some genetic 
polymorphisms associated with BMD modulate the binding of miRNAs to the regulatory regions of genes 
important for the skeleton, such as FGF2, RANK, osteonectin or histone deacetylases (71,72). Genetic 
variants located on pre-miRNA promoters may also influence the expression of miRNAs which target bone-
active genes (73,74). 

 
Epigenetics and osteoarthritis 

Several candidate gene and epigenome-wide studies, have assessed epigenetic changes and their potential 
relation with osteoarthritis (OA) development and progression.  This field has been recently reviewed (75–
77) and only some findings are highlighted here. 

Candidate gene studies have globally shown hypomethylation of the promoter regions and, subsequently, 
an increased expression of certain genes. Some genes, such as ADAMTS4, MMP3, MMP 9 and MMP 13, are 
involved in matrix degradation; others, such as IL 8 or IL1 b, are involved in the inflammatory response, and 
others are signaling or transcription factors. Demethylation and increased expression of sclerostin has also 
been reported in OA chondrocytes (76). 

Cross-sectional genome-wide methylation studies have reported a highly variable number of differentially 
methylated sites. Nevertheless,  there is trend for enrichment  of methylated CpGs at enhancers, while 
promoters CpGs were depleted (77). Also, several studies pointed to transforming growth factor beta 
(TGFb) and fibroblast growth factor (FGF) as consistent signals.   

A few studies have explored the interaction of epigenetic variation on genetic susceptibility to OA and gene 
transcription patterns. They showed that several established OA susceptibility loci  operate as methylation 
quantitative trait loci (mQTL), indicating that genetic variants affect allele specific gene expression via 
modulation of DNA methylation in cartilage (75). However, there is no clear overlapping between regions 
showing differential methylation in epigenome-wide studies and genes associated with OA in GWAS. Thus, 
much more research is needed to elucidate the interactions between genetic and epigenetic risk factors. 

A few studies have been carried out in non-cartilage OA tissues. One of them, characterizing the 
methylome of subchondral bone, identified that 44% of the genes differentially methylated in cartilage 
were also differentially methylated in subchondral bone, thus reinforcing the role of bone, and not only 
cartilage, in OA development. Gene ontology analysis revealed a strong TGFb signature and 
overrepresentation of genes involved in cytokine pathways (78).  

Among the noncoding RNAs, miRNAs have been the most frequently investigated. miR-140, important for 
chondrogenesis and osteogenesis, is decreased in OA chondrocytes. Besides, several miRNA have been 
reported to be down regulated in OA cartilage with increased expression of their target genes, frequently 
involved in catabolic pathways. Also, there is interest in exploring the role of miRNAs released from tissues 
into body fluids as biomarkers in OA. Thus, circulating miR-let7e has been suggested as a potential marker 
of hip OA (79). However, genome-wide screening of differentially expressed miRNA shows almost no 
overlap between results of different studies and much more data are needed prior to introduce miRNA 
analyses in clinical practice.  
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Studies in vitro also suggest a role of histone modifying enzymes in OA. For example, the expression of type 
2 collagen, the most abundant collagen in cartilage, is increased by histone acetyl transferases p300/CBP 
(75), whereas DOT1L, an enzyme involved in histone methylation, appears to have a protective influence  
on cartilage health in vitro and in vivo (80). 

 
Epigenetics and skeletal cancer 

Epigenetic changes play important roles in carcinogenesis and influence the initial steps in neoplastic 
transformation by altering genome stability and regulating gene expression. The detailed review of this 
field is out of the scope of this article, but some data illustrating the implication of epigenetic mechanisms 
in bone tumors follow. 

Multiple myeloma (MM) is characterized by the clonal expansion of plasma cells in bone marrow. Most 
cases appear to be preceded  by a presymptomatic stage (monoclonal gammopathy of uncertain 
significance, MGUS)   which starts and evolves in relation to a number of genetic and epigenetic changes 
(81,82).  A global genome-wide hypomethylation pattern is frequently found in cancer cells, and 
predisposes to the reactivation of transposable elements and transcription of previously silenced pro-
oncogenic genes. On the other hand, specific DNA hypermethylation of tumor suppressor genes may also 
contribute to tumor progression.   These abnormalities have been observed in many cancers  and appear to 
be also associated with the initiation of plasma cell dyscrasias and the progression from MGUS to MM, as 
well as the emergence of chemotherapy resistance (81).   

A number of histone modifications have been described in MM, and overexpression of Class I HDAC, 
particularly HDAC1, is associated with poor prognosis in MM (83). miRNAs may act as oncogenes or as 
tumor-suppressors depending on their target transcripts. For example, inactivation of the tumor-
suppressive miR-194-2192 cluster and miR-203 which target the IGF pathway is associated with the 
pathogenesis of MM (84,85). Exosomes containing miRNAs have also been suggested as mediators of the 
influence of non-hemopoietic cells present in the marrow, such as stromal cells and adipocytes, on 
neoplastic and non-neoplastic plasma cells (86). 

Complex interactions between genetic and epigenetic abnormalities are involved in carcinogenesis. Thus, 
DNA instability caused by global hypomethylation may promote the accumulation of mutations and 
chromosomal abnormalities, while mutations of genes coding proteins involved in maintaining the 
epigenetic marks may further aggravate the epigenetic aberrations (87,88). 

Several oncogenic and tumor suppressor miRNAs have been reported in osteosarcoma, which is the most 
common primary bone malignancy (89).  For instance, miR-16 inhibits cell proliferation by targeting IGF1R 
and the Raf1-MEK1/2-ERK1/2 pathway in osteosarcoma (90), and miR-193a-3p and miR-193a-5p, which act 
through down-regulation of the Rab27B and SRR genes, have been suggested as biomarkers for the 
diagnosis of osteosarcoma and as potential candidates for the treatment of metastases (91). Emerging 
evidence also suggests that some lncRNAs facilitate development and progression of osteosarcoma by 
influencing cell growth, invasion, metastasis and cell apoptosis (92). Abnormal gene methylation likely 
contributes to the neoplastic transformation of osteoblasts. In fact, whereas estrogen receptors are 
expressed in osteoblasts, they are absent in osteosarcoma. A recent study has shown that this is associated 
with increased methylation of the gene. Treatment with the demethylating agent decytabine reverses 
those changes and inhibits the proliferation of osteosarcoma cells transplanted into mice (93). 

Chondrosarcoma (CS) accounts for more than 20% of primary bone neoplasms.  Hamm et al showed that 
loss of DNA methylation was accompanied by an increase in invasiveness of rat chondrosarcoma cells in 
vitro, as well as by an increase in tumor growth in vivo. In particular, sox-2 and midline (two genes that may 
function in tumorigenesis) were expressed at low levels in control cells but became overexpressed upon 5-
aza-2-deoxycytidine treatment (94). Silencing tumor-related genes by hypermethylation also has a 
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significant influence on tumorigenesis in CS via dysregulating various cell networks, including cell cycle, 
apoptosis, cell adherence and cell-to-cell interaction pathways (95).   

The fact that epigenetic changes are generally reversible makes them an attractive therapeutic target, so, 
not unexpectedly, epigenetic-based therapies are being extensively studied for a variety of cancers.  

 
Therapeutic potential and perspectives 

There are a number drugs that directly target epigenetic mechanisms. For example, the DNMT inhibitors 
azacytidine and decitabine have been approved for the myelodisplastic syndrome. Many other molecules 
able to inhibit DNA methyl-transferases are being studied. On the other hand, drugs modifying histones, 
including inhibitors of histone acetyltransferases (such as curcumin),  histone deacetylases, histone 
methyltransferases and histone demethylases are being studied (96).  

In vitro assays and animal models revealed that several histone deacetylase inhibitors have beneficial 
effects in the regulation of bone remodeling. They promote osteoblast activity and suppress osteoclast 
resorption by interfering the RANKL pathway (97). 
 
Sirtuins are a class of enzymes with histone deacetylase activity. A number of activators, including 
resveratrol, are under study. Resveratrol has an anabolic effect on bone tissue and in animal models of 
osteoporosis. The effect may involve the interaction with SOST and FOXO genes (98). 

The bromo and extra terminal (BET) family include several proteins that bind to the acetylated lysine of 
histones (some members also recognize other histone modifications, such as butylation or crotonylation) 
and have been associated with several neoplastic and non-neoplastic disorders. BET proteins act as a 
scaffold for molecular complexes that regulate the accessibility of transcription factors to chromatin.  
Additionally, BETs interact with other non-histone acetylated proteins, in particular transcription factors, 
modulating their transcriptional activity (99).  BET-inhibiting drugs are being tested for atherosclerosis and 
several types of cancers. They have also shown beneficial effects in a mouse model of post-ovariectomy 
osteoporosis, with complex effects on both the osteoblast and the osteoclast lineages (14). 

These compounds targeting epigenetic marks display some promising effects and may likely find a place in 
the therapy of disorders, such as cancer, in which the target tissue has a very abnormal rate of cell 
proliferation in comparison with normal tissues. However, the lack of genomic specificity is a considerable 
limitation for treating non-neoplastic disorders. Hence, compounds targeting specifically disease-driving 
genes are needed for the sake of efficacy and safety. In this line, the so-called SAHA-PIPs are a novel class 
of epigenetically active small molecules created by conjugating selective DNA binding pyrrole-imidazole 
polyamides (PIPs) with the histone deacetylase inhibitor SAHA. They appear to have some degree of 
selectivity and modulate the transcription of certain clusters of genes (96). Furthermore, the development 
of new epigenetic tests and international collaborations building large molecular libraries may help to carry 
out high-throughput screening of thousands of molecules, and, luckily, some of them may show specificity 
for bone-active targets. 

Another approach which, although less developed so far, may be more promising in the future due to its 
target selectivity, is the use of RNA inhibitors, based on mimicking or inhibiting miRNAs. They may have a 
role in treating systemic skeletal disorders. In fact, the efficacy of small RNA inhibitors has already 
confirmed in other non-neoplastic diseases. RNA-based therapies might be particularly useful in local 
disorders and regenerative procedures. In fact, miRNA-related molecules have shown some efficacy in 
preclinical models of fracture and bone defects. In some cases, they were bound to inert scaffolds, whereas 
other researchers have tested if miRNA transfection potentiates the regenerative capacity of MSCs (100). 
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Conclusion 

As summarized in this review, there is considerable evidence for the role of epigenetics mechanisms in 
bone biology, and specifically in the differentiation of bone cells. However, their actual pathogenetic role in 
osteoporosis and other skeletal disorders is still unclear (table 1).  

Advances in this field may uncover new therapeutic targets by identifying novel genes that play a role in 
bone pathophysiology, whose function can be later modified to improve skeletal health. Such gene 
modulation may take place through the direct modulation of epigenetic mechanisms, or by other means, 
such as small molecules or antibodies.  

Advances in the field of epigenetics underscore the complex interactions between genetic and 
environmental factors as determinants of osteoporosis and other common disorders. Likewise, they help to 
explain the mechanisms by which a variety of external factors, from nutrition to psychological stress, 
impact our body. Although the intergenerational heritability of the epigenetic modifications is still unclear 
in mammals, a growing body of evidence supports that DNA methylation and other epigenetic marks driven 
by the prenatal environment have an important influence on the risk of disease in later life.  
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Table 1. Highlights of the results of epigenetic studies in patients with skeletal disorders. 

• Several genes of the Wnt and other developmental pathways are differentially methylated in 

osteoporotic bone 

• Some circulating miRNAs may have a role as biomarkers in osteoporosis 

• Genes related to matrix degradation, and others encoding inflammatory cytokines and TGFb show 

specific methylation marks in the joints of patients with osteoarthritis 

• There is a trend for overall hypomethylation in cancer cells, with specific  hypermethylation  of the 

promoters of tumor supresor genes 

• Bone cancer cells show abnormal miRNA signatures  
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FIGURE 1. Diagram showing that the epigenome is determined by a variety of factors, both genetic and 
environmental. Epigenomic mechanisms may help cells to adapt to a changing environment, but it may also 
cause deleterious phenomena that eventually result in disease. Both pre- and postnatal environmental 
factors influence the epigenome. Of course, genetic abnormalities and some environmental factors may 
have a negative impact on health independently of epigenomic changes. A common issue in clinical 
epigenomics studies is to establish of the epigenomic changes are cause or consequence of the disease.  
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