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4
Directionality of the Scattered Light

by an Isolated Particle

"No hay que olvidar que cuando se descubrió el
radio, nadie sabía que resultaría útil en los

hospitales. El trabajo era ciencia pura. Y esto es
una prueba de que el trabajo científico no debe

considerarse desde el punto de vista de la utilidad
directa de la misma"

—Marie Curie, 1867-1934, física polaca

4.1. Introduction

New applications in nanophotonics could be given interesting functionalities if one could
control the way these structures distribute the scattered light in space. Several years ago, M.
Kerker, D. Wang and C. Giles showed that for dipole-like particles with certain values of
their optical properties, the scattering can be suppressed in certain directions and enhanced
in others. Kerker’s study was presented for ideal point particles with dimensions negligible
compared to the incident wavelength. In this chapter, we present a formal study of the
conditions for ε and µ as proposed by the former authors as well as a generalization to finite-
size particles. Finally a generalization to other scattering directions will also be presented.
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68 CHAPTER 4. DIRECTIONALITY OF SCATTERED LIGHT

4.2. Kerker’s Theory

In the early eighties, M. Kerker and co-authors [69] presented an interesting study about the
scattering properties of particles with magnetic permeability (µ 6= 1). More specifically, the
authors considered a spherical particle much smaller than the incident wavelength, illumi-
nated by a plane wave and without any restriction for the values of its optical constants (ε
and µ). Some unusual electromagnetic scattering effects were described in this work such
as the zero-backward and the zero-forward scattering. When they presented this study, just
as when V. Veselago presented his results about the double-negative (DNG) materials [138],
the idea of a magnetic permeability different from 1 in the visible range was hypothetical
and the described effects were thought to be impossible to be observed. However, nowadays,
the engineered metamaterials have revitalized these studies [148].

In this section we will briefly review the theoretical aspects described by M. Kerker et al
[69].

4.2.1. Zero-Backward Scattering

When we considered a homogeneous and isotropic sphere of radius R and refractive index
m embedded in a homogeneous and isotropic medium illuminated by a polarized plane wave
of wavelength λ, the scattered intensity components can be written as [14]

ITE =
λ2

4πr2
|S1|2 sin2 φ ITM =

λ2

4πr2
|S2|2 cos2 φ (4.1)

where r is the distance from the particle to the observer, φ is the angle between the incident
electric field vector and the scattering plane, ITE and ITM are the two polarized components
of the scattered intensity, with the electric field parallel and perpendicular to the scattering
plane, respectively and S1 and S2 are the scattered field amplitudes that are described using
Mie theory in (2.46) and (2.47) respectively.

When substituting the expressions of S1 and S2 [14] in equation (4.1), the scattered in-
tensity components are given by
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ITE =
λ2

4πr2

∣∣∣∣∣∑
n

2n+ 1

n(n+ 1)
(anπn + bnτn)

∣∣∣∣∣
2

sin2 φ (4.2)

ITM =
λ2

4πr2

∣∣∣∣∣∑
n

2n+ 1

n(n+ 1)
(anτn + bnπn)

∣∣∣∣∣
2

cos2 φ (4.3)

where the angular dependence in the scattering plane is represented by the functions πn and
τn defined in equation (2.48). If the considered particle can be conceived as a dipole-like
particle, fulfilling the two conditions exposed in chapter 2, the previous expressions can be
reduced to

ITE =
λ2

4πr2
x6

∣∣∣∣(ε− 1

ε+ 2

)
+

(
µ− 1

µ+ 2

)
cos(θ)

∣∣∣∣2 sin2 φ (4.4)

ITM =
λ2

4πr2
x6

∣∣∣∣(ε− 1

ε+ 2

)
cos(θ) +

(
µ− 1

µ+ 2

)∣∣∣∣2 cos2 φ (4.5)

For the backward direction (θ = 180◦) the previous expressions adopt the following
forms

ITE(180◦) =
λ2

4πr2
x6

∣∣∣∣(ε− 1

ε+ 2

)
−
(
µ− 1

µ+ 2

)∣∣∣∣2 sin2 φ (4.6)

ITM(180◦) =
λ2

4πr2
x6

∣∣∣∣−(ε− 1

ε+ 2

)
+

(
µ− 1

µ+ 2

)∣∣∣∣2 cos2 φ (4.7)

From these expressions, it is easy to show that when ε = µ, the two terms between bars
are equal but with different signs and hence, the scattered intensity in the backward direction
is zero for both incident polarizations. As an example, in figure 4.1 the angular distribution of
the scattered intensity is shown for a dipole-like particle with optical properties, ε = µ = 3.
Only a TM polarization is considered because, as it will be explained, the scattered intensity
is equal for both polarization under Kerker’s condition.
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Figure 4.1: Scattering diagram for a dipole-like particle (R = 10−6λ) with optical properties
fulfilling the zero-backward condition and for a TM incident polarization

4.2.2. Zero-Forward Scattering

Now, we consider the forward direction (θ = 0◦). Equations (4.4) have the following expres-
sions

ITE(0◦) =
λ2

4πr2
x6

∣∣∣∣(ε− 1

ε+ 2

)
+

(
µ− 1

µ+ 2

)∣∣∣∣2 sin2 φ (4.8)

ITM(0◦) =
λ2

4πr2
x6

∣∣∣∣(ε− 1

ε+ 2

)
+

(
µ− 1

µ+ 2

)∣∣∣∣2 cos2 φ (4.9)

ITE(0◦) and ITM(0◦) are identically zero if the sum of the terms between bars is zero. In
this case, the relation is not as trivial as it was for the previous one. Kerker et al analyzed this
in detail and found [69] that if the optical properties (ε, µ) verified the following condition

ε =
4− µ
2µ+ 1

(4.10)

there is no scattering in the forward direction. In Figure 4.2 we include an example of the
angular distribution of the scattered intensity for a dipole-like particle with optical properties,
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Figure 4.2: Scattering diagram for a dipole-like particle (R = 10−6λ) with optical properties
fulfilling the zero-forward condition and for a TM incident polarization (TE polarization is
identical).

(ε, µ) = (0.1429, 3), according to the zero-forward scattering condition (equation (4.10)).

4.2.3. Zero-Forward Scattering and the Optical Theorem

The optical theorem for spherical particles establishes that the extinction efficiency (Qext)
and the scattering amplitude in the forward direction are related in the following way [14]

Qext =
4

x2
Re{S(0◦)} (4.11)

When a spherical particle does not scatter in the forward direction, S(0◦) is zero and then,
according to the optical theorem, the extinction efficiency should be equal to zero. The fact
that Qext = 0 implies that the particle does not scatter neither absorbs electromagnetic radia-
tion. This is only possible under the trivial condition that the optical constants of the particle
and the surrounding medium match. Furthermore, in Figure 4.2, it can be seen that, in spite
of S(0◦) = 0, the particle scatters in other directions. This apparent paradox was studied
some years ago [24]. Chýlek and Pinnick [24, 23] showed that the energy conservation
conditions for a sphere demand that



72 CHAPTER 4. DIRECTIONALITY OF SCATTERED LIGHT

|an|2 ≤ Re(an) (4.12)

|bn|2 ≤ Re(bn) (4.13)

It is easy to show that under the dipolar approximation (see equations (2.56) and (2.57))
and if the refractive index is real (there is not absorption), the scattering coefficients are
imaginary and then the previous conditions are not fulfilled. Because of this, the Rayleigh
approximation is characterized as a nonunitary approximation and the extinction efficiency
cannot be calculated using equation (2.41) or the Optical Theorem. In this case, the extinc-
tion efficiency could be estimated using the relation

Qext = Qsca + Qabs (4.14)

In a recent work [9], the authors stated that a simple modification of the approximate ex-
pression for the first two Mie coefficients can be used in order to comply the energy conser-
vation requirements established by the Optical Theorem. They proposed adding the radiative
correction [28] in such a way that the Mie coefficients, under the Rayleigh approximation,
could be expressed as

a1 =

(
−1− 3i

2
x3 ε+ 2

ε− 1

)−1

b1 =

(
−1− 3i

2
x3µ+ 2

µ− 1

)−1

(4.15)

Taking into account these considerations, energy conservation is assured and, although the
forward scattering is not zero, it is minimum with respect to other scattering angles.

4.2.4. Identity TM-TE polarization under Kerker’s Conditions

As it was mentioned above, the zero-backward and zero-forward scattering conditions pro-
posed by Kerker et al [69] are based on the fact that the electric and the magnetic contribu-
tions to the total scattered intensity cancel each other. In this case, the switching from a TE to
a TM polarization or viceversa has no effect on the overall scattering as it could be observed
in some of the previous figures. If the electric and magnetic terms are not equivalent, the
angular distributions of the scattered radiation differ completely from one polarization to the
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other. To illustrate this, we plot in Figure 4.3 the scattering diagrams for a small particle for
two different cases: in the first case the optical constants satisfy the zero-forward condition
(ε, µ) = (−5,−1) and in the second case they don’t (ε, µ) = (−3,−5). We see that the
angular distributions for the first case (squares) are equal for both polarizations, but different
for the second one.

4.3. Exception to the Zero-Forward-Scattering The-

ory

The theory proposed by Kerker et al. [69] has a trivial exception. When the particle has
optical properties, relative to the surrounding medium, equal to 1, (ε, µ) = (1, 1), this is
particle and surrounding medium are equal, the zero-forward scattering condition is satisfied
but the particle, as it is obvious, does not scatter in any direction.

However, this is not the only exception. We stated in [11] that another one occurs when
the electric permittivity and the magnetic permeability are both equal to −2 (ε = µ = −2).
In Figure 4.4, the polar distribution of the scattered intensity by a dipolar particle (R =

10−6λ) and optical properties (ε = −2, µ = −2) is shown. The two incident polarizations
are considered, with the incident electric field parallel (TM) or perpendicular (TE) to the
scattering plane. Although the optical constants correspond to a double-negative or left-
handed particle, they both hold Kerker’s conditions: the zero-backward (ε = µ) and the
zero-forward condition (Equation (4.10)). In spite of this the scattering diagram exhibits a
maximum in the forward direction.

The explanation of this lies in the fact that two Mie resonances, an electric and a magnetic
dipolar mode, appear simultaneously. In Figure 3.2(b), an electric dipolar and a magnetic
dipolar resonance appear as two straight branches coinciding at (ε, µ) = (−2,−2). The
very high values that the scattering intensity attains, due to the excitation of those modes,
make that the electric and magnetic contributions cannot be compensated in the forward
direction anymore and hence the forward-scattering is not zero anymore. As a consequence,
these values for the optical properties constitute an exception to the zero-forward-scattering
condition.

This is a singular point. This means that only where the two resonances overlap, this
singularity can be observed. For this reason, it should be analyzed only from a mathematical
point of view and not as a real situation. In Figure 4.5, we plot the scattering diagrams for
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Figure 4.3: Scattering diagram for a particle with R = 10−6λ and optical constants fulfill-
ing (squares) or not (circles) the zero-forward condition (equation (4.10)) for both incident
polarizations:(a) TM and (b) TE
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Figure 4.4: Scattering diagram for a very small particle (R = 10−6λ) with optical properties
(ε, µ) = (−2,−2) and for both incident polarizations.

a dipole-like particle (R = 10−6λ) for several values of the optical constants neighboring
the exception ε = µ = −2. Every pair (ε, µ) fits the Kerker condition given by equation
(4.10). The singular point (ε, µ) = (−2,−2) is also included for comparison. Both incident
polarizations, parallel (TM) and perpendicular (TE) to the scattering plane are considered.
Although the values of the electric permittivity and the magnetic permeability are very close
to those of the singular point, there is no scattered light in the forward direction as long as
equation (4.10) is satisfied. With this figure, it can be concluded that the exception only
appears for the intersection of the dipolar electric and the dipolar magnetic branches (Figure
3.2(b)).

4.4. Size effects on the Kerker’s Conditions

Conditions for zero-forward or zero-backward scattering have been presented for dipole-like
particles, but what happens when the particle size increases? In this section, we present the
evolution of the Kerker’s conditions as a function of the radius of the scatterer in order to
analyze if the mentioned scattering features can still be observed. However, while finite, the
considered particles are still very small compared with the incident wavelength.
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Figure 4.5: Scattering diagram for a very small particle (R = 10−6λ) for both incident polar-
izations:(a) TM and (b) TE and for several pairs of values of the optical constants around
(ε, µ) = (−2,−2) that verify Kerker’s condition for zero-forward scattering. (ε, µ) =
(−2,−2), the latter requiring the left general scale, which is huge in comparison with the
rest.
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Figure 4.6: Polar scattering diagrams, in logarithmic scale, for a spherical particle with optical
properties (ε, µ) = (−3,−3) and illuminated by a TE-polarized incident light. Several particle
sizes have been considered.

4.4.1. Influence of Particle Size on the Backward Direction

The zero-backward condition states that a particle with equal electric permittivity and mag-
netic permeability (ε = µ) does not scatter in the backward direction. Mathematically, it
has been easy to demonstrate this statement for Rayleigh particles, but it is less easy to
demonstrate it for finite-sized particles. In Figure 4.6, the scattering diagrams for an isolated
particle, with optical properties in the negative range satisfying the zero-backward condi-
tion (ε, µ) = (−3,−3) are plotted for several radius. The polar distribution of the scattered
intensity is independent from the incident polarization, then we have only considered a TE-
polarized incident beam. As can be seen, zero scattering in the backward direction is still
observed for every particle size. This means that in this direction the electric and magnetic
terms are compensated and then the zero-backward condition keeps for the analyzed range
of R.
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4.4.2. Influence of Particle Size on the Forward Direction

The influence of particle size on the zero-forward scattering condition is more complex than
for the previous case. As the scatterer grows, while obliging the optical constants to satisfy
the forward condition given by equation (4.10), the scattered intensity distribution in the
scattering plane starts to present non-null values in the forward direction. This is because
as R increases, the first two Mie coefficients acquire more complex expressions than the
ones given by equations (2.56), (2.57). Furthermore, higher order coefficients cannot be
neglected anymore. The electric and magnetic contributions to the far field differ in the
forward direction and cannot cancel each other. However, if the particle size is finite but still
very small compared with the incident wavelength, it is possible to find pairs (ε, µ) for which
light scattering in the forward direction is minimum.

As it was shown in Chapter 2, for values of R ∈ [0.01λ, 0.05λ] (corresponding to the
nanometric range whan λ is in the visible part of the spectrum), the first four Mie coefficients,
a1, b1, a2 and b2, reproduce very accurately the scattered intensity by a sphere, which can be
written as

ITE =
λ2

4πr2

∣∣∣∣32 (a1π1(cos θ) + b1τ1(cos θ)) +
5

6
(a2π2(cos θ) + b2τ2(cos θ))

∣∣∣∣2 sin2 φ

(4.16)

ITM =
λ2

4πr2

∣∣∣∣32 (a1τ1(cos θ) + b1π1(cos θ)) +
5

6
(a2τ2(cos θ) + b2π2(cos θ))

∣∣∣∣2 cos2 φ

(4.17)

In Figure 4.7, the polar distribution of the scattered intensity for spherical particles of
different sizes is plotted. Different values of the electric permittivity and the magnetic per-
meability in the double-negative range (ε < 0, µ < 0) were chosen such that a minimum
in the forward direction, with respect to the other scattering angles, appears. These values
are summarized in table 4.1. The incident beam is linearly polarized with the electric field
perpendicular to the scattering plane, this is a TE polarization. A TM incident polarization
produces similar distributions, according to the TE-TM identity characteristic explained be-
fore. We have chosen the negative-negative range for the optical constants. However, other
similar pairs can be obtained for other ranges. For low values of R, the scattered intensity in
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Figure 4.7: Polar scattering diagrams, in logarithmic scale, for a spherical particle illuminated
with a TE linearly polarized incident beam. For each particle size, optical properties, in the
negative-negative range, are such that the scattered intensity is minimum in the forward direc-
tion. Table 4.1 summarizes the values for each particles size.

the forward directions is considerably smaller compared with other angles. As R increases,
the minimum becomes less pronounced. This occurs due to the increasing influence of the
quadrupolar terms, a2 and b2, especially for R > 0.03λ.

At this point, we have shown that, though non zero-forward scattering can be obtained
for finite-size particles, it is possible to find pairs (ε, µ) for which forward scattering is mini-
mum. The obvious next step is to analyze whether these pairs fulfill or not the zero-forward
condition or other similar mathematical relation. For this purpose, in Figure 4.8 the magnetic
permeability is plotted versus the electric permittivity, in such a way that each point of the
figure corresponds to a minimum in the forward scattering for an incident TE polarization.
Several particle sizes are considered to analyze the evolution of that minimum with R. These
minima are obtained searching the minimum of the scattered intensity (Equation (4.16)) in
the forward direction for the same range of ε and µ. This range is [−0.1,−8] with a grid-
space equal to 0.005. The values are chosen in the negative-negative range because more in-
teresting scattering features occur in this interval, as we showed in Chapter 3. This study can
be generalized for other ranges and similar results would be obtained. It must be remarked
that some discontinuities are observed around ε(µ) = −2 and ε(µ) = −1.5. These are due
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R \ λ ε µ

0.01 -1.06 -4.55

0.02 -1.07 -4.55

0.03 -1.09 -4.55

0.04 -1.11 -4.55

0.05 -1.13 -4.55

Table 4.1: Pairs of values for the optical constants (ε, µ as a function of the particle size for
which light scattering presents a minimum in the forward direction as shown in Fig. 4.7

to the excitation of the electric (magnetic) dipolar and quadrupolar resonances appearing for
these values, respectively. The resonant behavior produces an important enhancement of the
scattered intensity and several changes in its polar distribution.

As can be seen in Figure 4.8, the pairs (ε, µ) which produce a minimum scattered intensity
in the forward direction follow a relation similar to the one proposed by Kerker et al [69] for
dipole-like particles (included in the figure for comparison). However, as the particle size
increases the calculated pairs are increasingly shifted from the Kerker’s relation. For this
reason, we fitted our results to an expression similar to equation (4.10) letting the coefficients
depend on the radius of the particle.

µ =
b(R) + c(R)ε

a(R)ε+ 1
(4.18)

While equation (4.10) is symmetric with respect to a ε − µ interchange, this symmetry
tends to disappear as the particle size increases. After checking both forms (ε as a function
of µ or viceversa), we can conclude that equation (4.18) is the best option.

In Figure 4.9, the fitting coefficients are plotted as a function of the radius of the particle.
For very small particles, the values are not far from those given by equation (4.10) [69].
However, as the scatterer grows, the differences between the small-particle limit values and
the fitted ones become bigger. Their evolutions are similar: as R increases, the values of
the coefficients tend to lower values or to more negative values in the case of c(R). How-
ever c(R) does not change as much as a(R) or b(R), with a variation around 2.5% while the
others change around 10% in the considered range of R. The evolution of these coefficients
can be related with the resonance’s shift as particle size changes, which was explained in
Chapter 3. Analyzing in detail the expressions for the forward scattering, it can be observed
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Figure 4.8: Pairs (ε, µ) for which the forward scattered intensity of a sphere is minimum
for several values of the radius. For comparison, Kerker’s conditions for dipole-like particles
(R→ 0) is also included as a dashed line. A magnified inset shows the evolution clearly

.
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Figure 4.9: Evolution of the fitting coefficients (Eq. (4.18)) for the pairs (ε, µ) which minimize
forward scattering (TE polarization). Solid lines correspond to the values of the Kerker et al.
condition [69]

.
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that the coefficients a(R), b(R) and c(R) depend on the spectral position of the electric, elec-
tric+magnetic and magnetic dipolar resonances, respectively. Then, we can relate the pro-
nounced evolution of a(R) with the high sensitivity of the electric dipolar resonance with
particle size (Figure 3.5), while the magnetic mode is less sensitive in this size range produc-
ing an almost constant evolution of c(R). Finally, the combination of electric and magnetic
resonances’ evolution give a smooth change of b(R) with R.

All these results were calculated for a linearly polarized incident beam with the electric
field perpendicular to the scattering plane (TE polarization). As it was showed above, the
same behaviors can be observed if the incident beam is polarized with the electric field
parallel to the scattering plane (TM polarization).

4.5. Generalization of the Minimum Light Scattering

for other Scattering Angles

A general analysis of the polar distribution of the scattered intensity by a particle with optical
constants in the double-negative range (ε < 0, µ < 0) suggests the possibility of extending
the previous study to other scattering angles. Choosing certain angles different from 0◦

and 180◦, we have found pairs (ε, µ) which produce a minimum scattered intensity with
respect to other angles within the scattering plane. As an example, in Figure 4.10, we plot
the scattering diagrams of a very small spherical particle (R = 0.01λ) illuminated by a TE
polarized incident beam. The optical constants are in the double-negative range in such a way
that light scattering reaches a minimum at representative angles like 30◦, 60◦,120◦ and 150◦.
Each diagram shows a double-lobe structure with the position of the minimum depending
on the particular values of the electric permittivity and the magnetic permeability. By tuning
the optical constants of the material, the minimum position in the scattered intensity can be
changed.

The curves of Figure 4.10 are symmetric with respect to the forward-backward direction,
because of that we have limited our analysis to the upper hemisphere (from 0◦ to 180◦).

The existence of these pairs (ε, µ) that minimize light scattering at scattering angles dif-
ferent from 0◦ and 180◦ allow to extend the previous study, made for θ = 0◦, to these other
angles. Figure 4.11 summmarizes the results we found. The pairs (ε, µ) that produce mini-
mum light scattering at: (a) 30◦, (b)45◦, (c)60◦, (d)120◦, (e)150◦ and (f) 170◦ were obtained
in the negative-negative range (ε ∈ [−0.1,−8], µ ∈ [−0.1,−8] with a grid-space equal to
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Figure 4.10: Polar diagrams of the scattered intensity for a spherical particle with R = 0.01λ
and optical constants in the negative-negative range (labeled in the figure) which produce a
minimum scattering at certain scattering angles. The particle is illuminated with a linearly
polarized incident plane wave with the electric field perpendicular to the scattering plane (TE
polarization)

.
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Figure 4.11: Pairs (ε, µ) which produce minimum light scattering at: (a) 30◦, (b)45◦, (c)60◦,
(d)120◦, (e)150◦, (f)170◦. Several particle sizes are considered. The position of the electric
and magnetic dipolar resonances for a dipole-like particle ((ε, µ) = (−2,−2), respectively)
are plotted in each figure. Also the bisection (ε = µ) has been included for θ = 120◦, 150◦ and
170◦. TE incident polarization has been considered.
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0.005). Different values of the radius of the particle are considered in order to analyze also
the evolution of the curves with particle size. Two different behaviors can be identified. The
pairs for which light scattering is minimum at 30◦, 45◦ or 60◦ follow a relation similar to
those corresponding to the forward direction and can be fitted to an equation like equation
(4.18). Although for large scattering angles the agreement is poor and other expressions are
more suitable, we can conclude that the optical constants (ε, µ) which produce minimum
light scattering in the forward hemisphere (−90◦ < θ < 90◦) evolves following a relation
like equation (4.18). On the other hand, pairs which produce minimum light scattering in the
backward hemisphere (90◦ < θ < 270◦) cross the point (-2,-2) with a positive slope, as can
be seen in Figure 4.11 (d), (e) and (f). The tendency, in this region, is that as the scattering
angle increases, the curves tend to the relation ε = µ, that is the zero-backward condition
proposed by Kerker et al [69].

The transition between the two behaviors is smooth, reaching an intermediate behavior
at 90◦. The curve corresponding to minimum light scattering at 90◦ is unique because these
minima appear for a combination ε − µ at which the particle scatters like an electric or a
magnetic dipole depending on the incident polarization (TM or TE respectively).

The curves are not strong size-dependent, as can be observed. Still, it is interesting to
remark that the curves in the backward hemisphere are more sensitive to particle size than
those in the forward hemisphere. However, as the scattering angle approaches 180◦ the
sensitivity decreases. It can be seen that the influence of the electric and magnetic dipolar
resonances is still observed and each curve presents a discontinuity at (ε = µ = −2).

As before, the results, presented in Figure 4.11, for scattering angles different from 0◦

and 180◦ correspond to an incident polarization with the electric field perpendicular to the
scattering plane. If we repeat this complete study with a TM polarization, this is, with the
incident electric field parallel to the scattering plane, the pairs (ε, µ) follow the behavior
plotted in Figure 4.12.

While for the cases of θ = 0◦ or θ = 180◦, the two orthogonal polarizations produce
similar results when the scattering angle differs from these values the difference between
TE and TM polarizations increases, as can be seen. In order to analyze this in more detail,
in Figure 4.13 we plot, as a comparison, the pairs (ε, µ) that minimize light scattering for a
sphere (R = 0.03λ) at some of the scattering angles considered previously and for both polar-
ization states. For scattering directions different from the forward or the backward one, the
pairs that minimize light scattering differs for both polarizations except in the surroundings
of (ε = µ = −2) where the differences become negligible. As we have mentioned several
times through this chapter, in the vicinity of this point, depending on the particle size, the
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Figure 4.12: Pairs (ε, µ) which produce minimum light scattering at: (a) 30◦, (b)45◦, (c)60◦,
(d)120◦, (e)150◦, (f)170◦. Several particle size are considered. The position of the electric and
magnetic dipolar resonances for a dipole-like particle(ε = −2 and µ = −2, respectively) are
plotted in each figure. Also the bisection (ε = µ) has been included for θ = 120◦, 150◦ and
170◦. TM incident polarization has been considered
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Figure 4.13: Double-negative (ε, µ) pairs that minimize light scattering at certain scattering
angles (0◦, 60◦,120◦ and 180◦) for a spherical particle of radius R = 0.03λ and for TM (cir-
cles) and TE (squares) incident polarization. The dipolar (dashed lines) and the quadrupolar
(dotted lines) electric and magnetic resonances are labeled because their appearance produce
discontinuities in the curves.

electric and magnetic dipolar resonances are excited. When this occurs, the two orthogonal
contributions to the scattered intensity (Equation (4.4)) tends to be equivalent and then by
switching from TE to TM, or viceversa, no effect is produced in the overall scattering. How-
ever, at the exact point where the resonances match, light scattering is not minimum and the
curves are discontinuous.

4.6. Conclusions

The control of the direction of the scattered electromagnetic radiation of a certain scatterer
could be quite useful for futuristic applications, for instance optical communications. The
first studies about this control were performed by Kerker et al [69] where light scattering
of a dipole-like particle could be suppressed either in the forward or the backward direction
by tunning its optical constants. This chapter has been devoted to the analysis of these
conditions, from which we have obtained interesting results. Some of them are summarizes
as follows.
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• It has been checked that under Kerker’s conditions there is a TE-TM identity. That is,
the switching from a perpendicular to a parallel incident polarization does not produce
any change in light scattering.

• The zero-forward condition involves an apparent paradox with the Optical Theorem.
However, this paradox can be easily explained from a mathematical point of view.
Chýlek and Pinnick showed that the dipolar approximation used by Kerker et al is a
non-unitary approximation and hence the Optical Theorem cannot be applied [24]. In
addition, Alù and Engheta stated that by including the radiative correction [28] to the
Mie coefficients the energy conservation is assured under the zero-forward condition.

• The zero-forward condition has an important exception when (ε, µ) = (−2,−2). For
these values of the optical constants, two dipolar resonances, one electric and one
magnetic, are excited. This produces that the electric and the magnetic contributions
cannot be compensated each other and high amounts of electromagnetic radiation are
detected in the forward direction.

Kerker’s conditions were enunciated for dipole-like particles, this is R → 0. We have
also wanted to observe the evolution of these conditions as particle size increases, and even
if similar conditions can be deduced for other scattering angles different from 0◦ and 180◦.
From this analysis, these are the main conclusions:

• As particle size increases in a range R ∈ [0.01, 0.05]λ, minimums on the scattered
intensity, instead of zeros, can be observed for certain pairs (ε, µ) either on the forward,
the backward or other scattering directions.

• While the minimum in the backward direction is more stable as R increases, the one
on the forward direction becomes strongly less sharp with the size.

• The zero-backward condition proposed by Kerker et al (ε = µ) is still representative
for the pairs (ε, µ) producing minimum scattered intensity in the backward direction
when particle size is in the considered range. On the contrary, while the zero-forward
conditions (equation (4.10)) reproduce the behavior of the pairs (ε, µ) minimizing the
forward light scattering, it does not fit with the values. A similar equation to equa-
tion (4.10) but with their parameters depending on R is proposed. This new curve
reproduce accurately both the behavior and values of the optical constants.
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• We have obtained pairs (ε, µ) for which the scattered intensity is minimum at different
scattering angles in the upper hemisphere (0◦ < θ < 180◦). The symmetry of the
scatterer involves that similar results should be obtained for the bottom hemisphere.

• For scattering angles in the forward hemisphere (−90◦ < θ < 90◦), the pairs (ε, µ) that
minimize the scattered intensity follow a similar behavior as that described by equation
(4.10). If the scattering angles are in the backward hemisphere (90◦ < θ < 270◦) the
curves have a positive slope and tend to the zero-backward condition as the scattering
angle approaches to 180◦. The evolution from one to other behavior is smooth with an
intermediate behavior at 90◦.

• As in the forward and backward cases, pairs (ε, µ) minimizing scattered intensity at
different scattering angles depend slightly on particle size. However, while pairs are
polarization-independent for the forward and backward cases, for different scattering
angles these pairs are different depending on the incident polarization.
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