
Accepted Manuscript

Global Optimality in k-means Clustering

Cristina Tı̂rnăucă, Domingo Gómez-Pérez, José L. Balcázar,
José L. Montaña

PII: S0020-0255(16)31160-4
DOI: 10.1016/j.ins.2018.02.001
Reference: INS 13406

To appear in: Information Sciences

Received date: 4 October 2016
Revised date: 22 November 2017
Accepted date: 3 February 2018

Please cite this article as: Cristina Tı̂rnăucă, Domingo Gómez-Pérez, José L. Balcázar,
José L. Montaña, Global Optimality in k-means Clustering, Information Sciences (2018), doi:
10.1016/j.ins.2018.02.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://
creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.ins.2018.02.001
https://doi.org/10.1016/j.ins.2018.02.001

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Global Optimality in k-means Clustering

Cristina T̂ırnăucăa,∗, Domingo Gómez-Péreza, José L Balcázarb, José L
Montañaa

aDepartamento de Matemáticas, Estad́ıstica y Computación, Universidad de Cantabria,
Santander 39005, Spain

bDepartment of Computer Science, Universitat Politècnica de Catalunya, Barcelona 08034,
Spain

Abstract

We study the problem of finding an optimum clustering, a problem known to be

NP-hard. Existing literature contains algorithms running in time proportional

to the number of points raised to a power that depends on the dimensionality

and on the number of clusters. Published validations of some of these algorithms

are unfortunately incomplete; besides, the constant factors (with respect to the

number of points) in their running time bounds have seen several published im-

portant improvements but are still huge, exponential on the dimension and on

the number of clusters, making the corresponding algorithms fully impractical.

We provide a new algorithm, with its corresponding complexity-theoretic anal-

ysis. It reduces both the exponent and the constant factor, to the extent that

it becomes feasible for relevant particular cases. Additionally, it parallelizes ex-

tremely well, so that its implementation on current high-performance hardware

is quite straightforward. Our proposal opens the door to potential improve-

ments along a research line that had no practical significance so far; besides, a

long but single-shot run of our algorithm allows one to identify absolutely opti-

mum solutions for benchmark problems, whereby alternative heuristic proposals

can evaluate the goodness of their solutions and the precise price paid for their

faster running times.

∗Corresponding author
Email addresses: cristina.tirnauca@unican.es (Cristina T̂ırnăucă),

domingo.gomez@unican.es (Domingo Gómez-Pérez), jose.luis.balcazar@upc.edu (José L
Balcázar), montanjl@unican.es (José L Montaña)

Preprint submitted to Information Sciences February 3, 2018

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Keywords: clustering, Voronoi diagrams, cell arrangement

1. Introduction

Assume we are given a finite set S = {~p1, . . . , ~pn} ⊆ Rd, containing n ob-

servations, for a fixed dimensionality d. Assume also that an integer value k

is given. We consider the problem that we will call “k-means globally opti-

mum clustering”: find k points, called “centroids”, ~q1, . . . , ~qk that minimize the5

within-cluster sum of squares (WCSS) obtained by adding together the square

of the Euclidian distance between each point ~pi and its closest centroid.

An equivalent way of stating the problem is the following: S is to be parti-

tioned into k disjoint subsets Sj called clusters, in such a way that the following

expression is minimized:10

cost(S1, . . . , Sk) =
∑k
j=1

∑
~p∈Sj

‖~p− ~qj‖2 , where ~qj = 1
|Sj |

∑
~p∈Sj

~p.

One popular approach to this problem is the algorithm usually known as k-

means, also called sometimes Lloyd’s heuristic [1]. To our knowledge, it was first

used in [2], and has become a standard algorithm in practice; implementations

abound, and it is available in most major Data Mining software suites.15

Lloyd’s ubiquitous heuristic consists of selecting k initial centroids ~q1, . . . ,

~qk according to some criterion (most often, randomly among the data points),

constructing each Sj as the set of points ~p that are closer to ~qj than to any

other centroid (ties can be broken arbitrarily), recomputing the centroids as

mass centers of the current Sj , and iterating until stability of the clusters. This20

heuristic is based upon the following known (and easy to prove) facts:

Fact 1. For a fixed tuple of centroids ~q1, . . . , ~qk, the clustering that minimizes

the cost is obtained by including in cluster Sj the points ~p that are closer to ~qj

than to any other centroid; points that are at equal minimal distances from

several centroids can be assigned to any of the corresponding clusters.25

Fact 2. For a fixed clustering S1, . . . , Sk, among all possible tuples of centroids,

the one that minimizes the WCSS is defined by:

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

~qj = 1
|Sj |

∑
~p∈Sj

~p, ∀j ∈ {1, . . . , k}

The first fact is clear; to argue the second, it suffices to make the partial

derivatives equal to zero and solve the equations so obtained; the sign of the30

second derivative proves minimality.

Interesting studies of the goodness of the solutions obtained by this heuristic

version of k-means, mostly in terms of the initialization criterion, are [3, 4,

5]. This is a very popular algorithm: often, we have far more observations

than a human user can look at and make sense of. “Abstracting” them out35

into a handful of “representative” centroids, maybe with an indication of the

cardinalities of the clusterings, is a way of understanding a bit of the inherent

structure of the dataset. Note that, for this process to actually make sense, we

wish a smallish k, and there is a fair number of available options in order to

choose the right one (see [6] for one successful approach).40

Most of the practical implementations of k-means offer no indication of the

quality of the locally optimal solution found. How difficult is it to come up with

the actual global solution which minimizes to optimality the expression above?

A simple approach is based on working with partial clusterings of the data

points, where single points are added sequentially to each of the clusters. This45

approach defines different uninformed search strategies depending on the order

to explore the different partial clusterings. The book [7] contains a detailed

exposition of several of these strategies. In Section 5 we compare the best of

them (in terms of speed and memory requirements) with our proposal. Needless

to say, these schemes are all exponential in the number of points since the50

problem is known to be NP-hard, see [8, 9]; it remains so for k = 2 (see [10])

and also for d = 2 (see [11]).

An interesting alternative was proposed in [12]: by plainly enumerating pos-

sible clusterings, evaluating them, and keeping the best seen so far, it is possible

to find the global optimum in time O(ndk+1). This enumeration is made via a55

reduction to one particular geometric problem for which the literature contains,

actually, several algorithms. Here we add one more step to this line of research,

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

by identifying a new algorithm for which the running times, on mildly realis-

tic problems, start to be feasible on current equipment. We report on related

literature at the end of the next section, once the notation is established.60

2. Preliminaries and Related Work

Let us describe, in a more formalized way, the approach in [12]; we start

by formalizing Fact 1 in an algebraic form that will lead to the opportunity of

employing ideas from algebraic geometry. One of the goals of the formalization

is to clarify how to handle the ambiguous case of points that are equidistant65

from several closest centroids.

Given S = {~p1, . . . , ~pn}, each from Rd, consider k candidates to centroids,

{~q1, . . . , ~qk}, each from Rd as well. Taken together, they can be seen as a tuple

of dk real numbers, so that we can refer to the whole tuple ~q = (~q1, . . . , ~qk) ∈
Rdk, with the understanding that vectors of this dimension are seen, whenever70

convenient, as tuples of k vectors of dimension d.

Definition 1. The Voronoi partition of S associated to ~q = (~q1, . . . , ~qk) ∈ Rdk

is (S1, . . . , Sk) where:

• S1 contains the data points that are at least as close to q1 as to any other

centroid: ∀j ∈ {2, . . . , k},75

‖~p− ~q1‖2 ≤ ‖~p− ~qj‖2.

Thus, points that are at the same distance of q1 and other closest centroids

are won for the S1 cluster.

• Likewise, S2 wins equidistant points to all other clusters except S1: this

cluster is made of points such that, ∀j ∈ {3, . . . , k},80

‖~p− ~q2‖2 ≤ ‖~p− ~qj‖2, ‖~p− ~q2‖2 < ‖~p− ~q1‖2.

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• In general,

Si = {~p ∈ S | ‖~p− ~qi‖2 ≤ ‖~p− ~qj‖2, ∀j ∈ {i+ 1, . . . , k},

‖~p− ~qi‖2 < ‖~p− ~qj‖2, ∀j ∈ {1, . . . , i− 1}}

That is, in case of coincident minimal distances, the point is assigned to

the centroid with smallest index. Voronoi partitions are relevant due to the

following known fact:

Fact 3. There exists ~q in Rdk such that the Voronoi partition associated to ~q is85

optimal.

Proof. Let S = {S1, . . . , Sk} be an optimal partition. Let ~q = (~q1, . . . , ~qk) be the

corresponding tuple of centroids as per Fact 2. Now let us show that the Voronoi

partition {S′1, . . . , S′k} of S associated to ~q, although it may be different from

{S1, . . . , Sk}, leads to the same WCSS (thus also being an optimal partition).90

Assume by contrary that it does not. Take i ∈ {1, . . . , k} to be the smallest

index such that Si 6= S′i. Let ~p be a point in their symmetric difference (Si\S′i)∪
(S′i\Si). We distinguish two cases:

• ~p ∈ Si\S′i. Thus, ∃j > i such that ~p ∈ S′j , and therefore, ‖~p− ~qj‖2 <
‖~p− ~qi‖2. Consider now the partition constructed from {S1, . . . , Sk} by95

moving ~p from Si to Sj . It would have a WCSS with respect to ~q =

(~q1, . . . , ~qk) strictly smaller than the optimal one (because the contribution

of ~p to the sum is smaller), a contradiction.

• ~p ∈ S′i\Si. Thus, ∃j > i such that ~p ∈ Sj . Since ~p ∈ S′i and j > i

we get that ‖~p− ~qi‖2 ≤ ‖~p− ~qj‖2. Now, if ‖~p− ~qi‖2 < ‖~p− ~qj‖2 we100

can construct a new partition from {S1, . . . , Sk} by moving ~p from Sj to

Si. This new partition would have a strictly smaller WCSS with respect

to ~q = (~q1, . . . , ~qk) than the optimal one, a contradiction. We are left

with the case in which ‖~p− ~qi‖2 = ‖~p− ~qj‖2. If ~p was the only point

that distinguished the two partitions, then both partitions would have the105

same minimal WCSS with respect to ~q = (~q1, . . . , ~qk), contradicting our

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

assumption. So there must be another point, say ~p ′, such that ~p ′ is in

(Sj\S′j) ∪ (S′j\Sj) for some j ≥ i.

Following the same type of reasoning, we eventually get to a contradiction.

110

The key point of the whole approach is to reformulate each of the expressions

‖~p− ~qi‖2 ≤ ‖~p− ~qj‖2, with i < j, in the equivalent form

‖~qi‖2 − ‖~qj‖2 − 2~p · (~qi − ~qj) ≤ 0,

(and likewise for strict inequalities) where · denotes the standard dot product,

and expressing this condition as a polynomial P~p,i,j(X1, . . . , Xdk) corresponding

to that ~p, that i, and that j, where 1 ≤ i < j ≤ k:

P~p,i,j =
d∑

r=1

(
X2
r+(i−1)d −X2

r+(j−1)d

)
− 2

d∑

r=1

pr(Xr+(i−1)d −Xr+(j−1)d), (1)

where ~p = (p1, . . . , pd). Indeed, now it can be checked that for each ~p ∈ S,

~p ∈ Si if and only if: for all j < i, P~p,j,i(~q) > 0 and for all j > i, P~p,i,j(~q) ≤ 0.115

One can thus redefine the Voronoi partition associated to a point ~q in terms

of these newly defined polynomials:

Fact 4. The Voronoi partition of S associated to ~q is (S1, . . . , Sk) where:

Si = {~p ∈ S |P~p,i,j(~q) ≤ 0, ∀j ∈ {i+ 1, . . . , k},

P~p,j,i(~q) > 0, ∀j ∈ {1, . . . , i− 1}}

Note that the family of polynomials is on dk variables (the dimensionality

of the tuple of centroids) but each individual polynomial P~p,i,j , with i < j,

only uses 2d of them, corresponding to the coordinates of the two centroid120

candidates ~qi and ~qj . Also, note that the total number of polynomials at work

is l = nk(k − 1)/2.

The relevant information, hence, is the sign of each of the l polynomials,

evaluated on the tuple of centroids. For technical reasons, we will distinguish

three signs, namely, -1, 0, and 1, and structure them into “sign vectors”:125

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Definition 2. Let P = {Ps
∣∣ s ∈ I} be a family of polynomials on m variables,

indexed by some arbitrary finite index set I. The sign vector of a point ~q ∈ Rm

with respect to P is svP(~q) ∈ {−1, 0,+1}|I| where, for s ∈ I, the s-th component

of svP(~q) is

svP(~q)s =

+1 if Ps(~q) > 0,

−1 if Ps(~q) < 0,

0 if Ps(~q) = 0.

Whenever P is clear from the context, the subscript is omitted. For this

section, the family P of polynomials will be, of course, the one in equation (1),

indexed by the corresponding triples (~p, i, j). We give an example later on.

Sign vectors will play two related but separate roles. The first role is simply

to replace the conditions on the polynomials upon describing each cluster among130

those defined by ~q: simply using sv(~q)~p,i,j appropriately in Fact 4, we see that:

Fact 5. The Voronoi partition of S associated to ~q is (S1, . . . , Sk) where:

Si = {~p ∈ S |sv(~q)~p,i,j ≤ 0, ∀j ∈ {i+ 1, . . . , k},

sv(~q)~p,j,i = 1, ∀j ∈ {1, . . . , i− 1}}

So far we have not yet seen anything to gain from this approach. A brute

force algorithm can just check out all possible sign vectors, that is, all possible

clusterings, each obtained from each sign vector according to Fact 5, evaluate

their cost, and keep the best seen along. The fact that there are more possible135

sign vectors than sv(Rdk) is harmless for the correctness: in the worst case

scenario, the set of optimal partitions encountered this way may strictly include

the set of optimal Voronoi partitions associated to points in Rdk; nevertheless,

due to Fact 3, we know we cannot do any better in terms of the optimal cost. In

fact, in this brute force approach, the value 0 is easily seen to be unnecessary for140

the sign vectors, and the algorithm would test 2l sign vectors. For low enough

number of points n, this can be better than the alternative that we deploy in

the rest of this paper.

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The second role of the sign vectors, which leads to all the known algorithms

within the approach (and also to our own contribution), is as a way of classifying145

candidate centroid tuples. It is immediate from Fact 5 that the Voronoi partition

associated to ~q, actually, only depends on sv(~q). This defines an equivalence

relation on Rdk, and it suffices to find one representative from each equivalence

class, and to check all the Voronoi partitions of these representatives, to make

sure that the optimum clustering will be identified.150

Note that the same clustering may correspond to non-equivalent points.

Indeed, since the order in which we list the sets of each partition does not matter,

we may end up having different sign vectors defining the same clustering simply

because {S1, S2} and {S2, S1} represent the same clustering. But, it may also

happen that two different vector signs define the same partition, in the same155

order, as we see next.

Example 1. Let S = {−11, 0, 10} be a set of three points in R, and assume

we want to separate them into three clusters. As we shall see, there are vectors

in R3 that lead to the same clustering although they have different sign vectors.

Intuitively, the reason will be that the differing sign targets whether point 0 goes160

to the leftmost cluster or to the rightmost cluster, a decision that will be indeed

different for the two sets of centroids, but that is irrelevant as that point goes

into its own middle cluster.

First, we need to define l = nk(k − 1)/2 = 9 polynomials, 3 for each point:

P−11,1,2 = X2
1 −X2

2 − 2 ∗ (−11) ∗ (X1 −X2)165

P−11,1,3 = X2
1 −X2

3 − 2 ∗ (−11) ∗ (X1 −X3)

P−11,2,3 = X2
2 −X2

3 − 2 ∗ (−11) ∗ (X2 −X3)

P0,1,2 = X2
1 −X2

2 − 2 ∗ 0 ∗ (X1 −X2)

P0,1,3 = X2
1 −X2

3 − 2 ∗ 0 ∗ (X1 −X3)

P0,2,3 = X2
2 −X2

3 − 2 ∗ 0 ∗ (X2 −X3)170

P10,1,2 = X2
1 −X2

2 − 2 ∗ 10 ∗ (X1 −X2)

P10,1,3 = X2
1 −X2

3 − 2 ∗ 10 ∗ (X1 −X3)

P10,2,3 = X2
2 −X2

3 − 2 ∗ 10 ∗ (X2 −X3)

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Now take ~q = (−10, 0, 11) and ~q ′ = (−11, 0, 10). It can be checked that

sv(~q) = (−1,−1,−1,+1,−1,−1,+1,+1,+1),175

sv(~q ′) = (−1,−1,−1,+1,+1,−1,+1,+1,+1).

Nevertheless, the partition defined by both sign vectors is {S1, S2, S3}, where

S1 = {−11}, S2 = {0} and S3 = {10}.

Now, it turns out that existing techniques of algebraic geometry apply,

so as to compute these sign vectors, which results in the already published180

algorithms—in fact, the equivalence classes just defined are an example of the

configurations called “cell arrangements” in that context. As we show below,

one can construct a sequence of polynomial equations in such a way that by

solving all of them in turn, sufficiently many sign vectors are obtained to ensure

that one of them corresponds to the optimum clustering.185

That approach reduces optimum clustering to that general “cell enumera-

tion” problem. Then, our main point in this paper is that we can show how to

make these techniques more efficient, giving up a now unnecessary generality,

and focusing on “cell enumeration” for the particular case of our polynomials

defining the sign vectors. This is how we obtain our new nontrivial algorithmic190

improvements.

The idea that cell arrangements can be used to enumerate all Voronoi parti-

tions appeared already in [13], where the authors claim (without proof) that “all

the Voronoi partitions can be enumerated in O(ndk(k+1)/2) time by using the

hyperplane arrangement”. In a paper that appeared one year later (see [12, pp.195

335]), the authors argue that “the number of Voronoi partitions is bounded by

the combinatorial complexity of nk(k−1)/2 constant-degree algebraic surfaces”,

and therefore, “all the Voronoi partitions can be enumerated in O(ndk+1) time”,

with no further reference about which is the cell enumeration algorithm they

had in mind. We believe that the authors referred to the result in [14], which200

states that given H, an arrangement of l algebraic varieties in Rm, there exists

an algorithm for the cell enumeration problem with time complexity lm+12O(m2)

(for the particular case in which the maximal degree of polynomials in H is 2).

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

An improvement of the algorithm in [14] was presented later in [15]. Their

algorithm is based on a result along the lines of our Proposition 1 below, and205

its time complexity (for polynomials of degree at most 2, which is our case) is

lm+1(1/m)m2O(m) where, here, m = dk and l = nk(k − 1)/2. Proposition 1

basically says that instead of solving a system of l inequalities, one may solve
(
l
i

)
systems of i equations of a certain type, for all i ∈ {1, . . . , l}. Proposition

1 in [15] is similar in spirit, but it uses infinitesimals, which we would like to210

avoid. On the other hand, exploiting the algebraic side of the problem using the

Euclidean distance also appears in [16], where the authors study the minimum

value δ with which the centroids can be perturbed such that the corresponding

clustering does not change. This is also implicitly calculated in our algorithms.

If we were to use our Proposition 1 below ad litteram, we would need much215

more computational power than the naive brute force algorithm presented above:

even if we could solve each system of equations in constant time, we would

still need 4l − 1 =
∑l
i=1 3i

(
l
i

)
operations only for enumerating them. In [15],

building on top of the results from [17], the authors show that it is enough to

explore systems of at most m equations (where m is the dimensionality of the220

polynomials) if the polynomials are in general position (something that does not

hold in our case). Also, they show how infinitesimals can be used to achieve this

property if this is not the case. The library called RAGlib of Maple (which can

be freely downloaded from [18]) implements a function PointsPerComponents

that contains the key ideas in [17] for finding at least one point in each of225

the connected components defined by a set of polynomial inequalities. The

most recent version available is the result of several years of development and it

includes improvements to speed up CPU time, see [19]. However, we could check

experimentally that, for our concrete application of finding globally optimal k-

means centroids, it is very slow compared to our approach (see Section 5).230

Instead, in the following section we show how we can prune the search space

for our particular cases of interest by taking advantage of the properties of our

specific family of polynomials.

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3. Finding the Optimal Clustering

Recall that the optimal clustering can be obtained by enumerating all Voronoi235

partitions associated to points in Rdk, and that this is equivalent to finding all

elements of svP(Rdk) (see Fact 5), where P is a family of polynomials as in (1).

3.1. Solving a System of Inequalities

The process of finding one point in each equivalence class is, actually, that

of solving a system that contains both equations and inequalities: for each sign240

vector, we wish a point that makes our polynomials attain their corresponding

signs, either equality to 0, or being positive or negative.

The first step, namely Proposition 1, is to transform the system into one

containing only equations. This approach is also employed in [15]. Neverthe-

less, we choose to include an alternative proof for this particular formulation,245

because the one in that reference resorts to extending the real line with infinites-

imals through the usage of Puiseux series, and we would not be able to argue

convincingly that the result does apply to our case, which lies fully within the

real numbers. Moreover, avoiding infinitesimals will prove handy to attain much

better running times.250

Proposition 1. Let (e1, . . . , el) be a sign vector in {−1, 0, 1}l and P1, . . ., Pl

a family of polynomials in R[X1, . . . , Xm]. Consider the system of equations

defined as follows

sign(Pi) = ei, ∀i ∈ {1, . . . , l}, (2)

and assume it has solutions in Rm. Then, there exist a strictly positive ε ∈ R and

a subset I ⊆ {1, . . . , l} such that (3) has solutions, and at least one connected

component of solutions of (3) is contained in the set of solutions of (2):

Pi = eiε, ∀i ∈ I. (3)

Proof. First, without loss of generality, assume that the equations are permuted

in such a way that e1 = e2 = . . . = es = 0 and the rest of the ei are nonzero. By

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

additional multiplication by ei for the nonzero cases, system (2) can therefore

be written equivalently:

P1 = 0,

· · ·

Ps = 0,

es+1Ps+1 > 0,

· · ·

elPl > 0,

(4)

We will prove inductively that, for every r, with s ≤ r ≤ l, there is ε0 ∈ R, and

there are subsets I, J such that |J | = r, {1, . . . , s} ⊆ I ⊆ J ⊆ {1, . . . , l} and for

all ε ∈ R with 0 < ε < ε0, the system

Pi = eiε, ∀i ∈ I (5)

has solutions, and at least one connected component of solutions of (5) is con-

tained in the set of solutions of the system

sign(Pi) = ei, ∀i ∈ J ; (6)

furthermore, for all ε ∈ R with 0 < ε < ε0, there is ~x
(ε)
0 ∈ Rm that is both a

solution of (4) and (5).255

Observe that our claim follows from r = l as, in this case, J covers the whole

system (4) (any value less than the corresponding ε0 can be used as ε).

The inductive basis is r = s and there is little to argue, as we can take

I = J = {1, . . . , s} that correspond to null ei’s; let us fix ε0 = 1 but actually

any positive value will do. As we have assumed that (4) has solutions, we can260

take any of them as ~x
(ε)
0 .

For the inductive step, we need to increase by 1 the size of the set J (unless

|J | = l already). We consider two cases. The easy one is when for all ε ∈ (0, ε0)

and for all ~x that belong to the same connected component of solutions of (5)

as ~x
(ε)
0 , ~x is also a solution of (2), which includes (6) for all extensions of J .265

Then we simply add j to J for some j 6∈ J , and leave ~x
(ε)
0 unchanged.

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Otherwise, there exists ε1 ∈ (0, ε0) and ~x
(ε1)
1 that belongs to the same con-

nected component of solutions of (5) as ~x
(ε)
0 , such that ~x

(ε1)
1 is not a solution of

(2). Let f be a continuous function from [0, 1] to the connected component of

solutions of (5) that contains ~x
(ε)
0 , such that f(0) = ~x

(ε1)
0 and f(1) = ~x

(ε1)
1 .270

Since ~x
(ε1)
0 is solution of both (4) and (5), and ~x

(ε1)
1 is solution of (5) but not

of (4), there must exist j ∈ {s+ 1, . . . , l} such that the set {t | ejPj(f(t)) ≤ 0}
is not empty (we know that j /∈ J because the whole image of f consists of

solutions of (5)). Because the previous set equals (ejPj ◦ f)−1((−∞, 0]), which

is closed, we can take t0 ∈ (0, 1] minimal such that f(t0) is solution of (5) but275

not of (4) (in particular, ejPj(f(t0)) ≤ 0). Therefore, for all t ∈ [0, t0), f(t) is a

solution of (4). Since f(t0) is solution of (5), by the induction hypothesis, f(t0)

satisfies (6). Now, if ejPj(f(t0)) < 0, as ejPj(f(0)) > 0 because ~x
(ε1)
0 satisfies

(4) and f, Pj are continuous functions, the value 0 would be attained midway

through, contradicting the minimality of t0; hence, ejPj(f(t0)) = 0.280

Now we show that we can safely add j to both I and J , where the role of ε0

for the new I and J will be played by min{ε0, ejPj(f(0))}.
Fixing ε with 0 < ε < min{ε0, ejPj(f(0))},

• the system (5) for I∪{j} has solutions: since f, Pj are continuous functions

and ejPj(f(t0))) = 0, there exists t ∈ (0, t0) such that ejPj(f(t))) = ε,285

that is, f(t) is a solution of Pj(f(t))) = ejε. We define the new ~x
(ε)
0 as

f(t) for this t. Recall that f(t) is also solution of (5), and therefore, f(t)

is a solution of the system (5) for I ∪ {j}.

• the connected component of solutions of (5) for I ∪ {j} that contains

~x
(ε)
0 is included in the set of solutions of (6) for J ∪ {j}: by the induction290

hypothesis, the connected component of solutions of (5) for I that contains

~x
(ε)
0 is included in the set of solutions of (6) for J . Besides, all solutions

of Pj = ejε must be solutions of sign(Pj) = ej .

• for the newly defined ~x
(ε)
0 we have: ~x

(ε)
0 is solution of (5) for I ∪ {j} and

solution of (4) since t ∈ (0, t0).295

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

This concludes the proof.

Therefore, given an arbitrary vector ~e = (e1, . . . , el) in {−1, 0, 1}l and an

arbitrary family of polynomials P = {P1, . . . , Pl} in Rm, if ~e ∈ svP(Rm) then

there exists ε > 0 and a subfamily PI = {Ps | s ∈ I} (for some I ⊆ {1, . . . , l})
such that the system Pi = eiε,∀i ∈ I has solutions. Moreover, at least one300

connected component of solutions of the later system is contained in sv−1P (~e).

This way, instead of dealing with systems that, most often, include inequal-

ities, we reduced the problem to various systems of equations only. But, on

one hand, we drastically increased the computational time (since the number

of systems to be solved is exponential in the number of polynomials), and on305

the other hand, instead of having to find just one ~x in sv−1P (~e), we must now go

through all connected components of a big number of systems.

In the sequel, we show how to express our problem with systems of just

linear equations. This will have a triple positive effect:

• basic linear algebra tells us that a compatible linear system that has more310

equations than variables can be reduced to an equivalent one that has at

most as many equations as variables by eliminating all redundant infor-

mation, and this will save us considerable time;

• linear systems are faster to solve;

• the space of solutions of a linear system has at most one connected compo-315

nent, so that the corresponding issue for applying Proposition 1 becomes

irrelevant.

3.2. Obtaining a Linear System of Equations

We apply a change of variables such that, on one hand, the systems of

equations to be solved become linear, and on the other hand, the number of320

variables is kept relatively small. As we shall see, the transformation we employ

is not reversible.

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Consider the family P = (P~p,i,j)~p∈S,1≤i<j≤k of polynomials with kd variables

X1, . . . , Xkd defined as in (1). We observe that P~p,i,j = P~p,1,j − P~p,1,i for all

2 ≤ i < j ≤ k. We perform the following change of variables:325

Yi =
∑d
r=1X

2
r+(i−1)d, for all i ∈ {1, . . . , k}, and

Zi+(j−2)d = Xi −Xi+(j−1)d, for all i ∈ {1, . . . , d} and j ∈ {2, . . . , k},
We get P ′ = (P ′~p,i,j)~p∈S,1≤i<j≤k polynomials in R[Y1, . . . , Yd, Z1, . . . , Z(k−1)d].

It is easy to check that

P ′~p,1,i = Y1 − Yi − 2

d∑

r=1

prZr+(i−2)d,∀i ∈ {2, . . . , k}

P ′~p,i,j = P ′~p,1,j − P ′~p,1,i,∀1 < i < j ≤ k
(7)

Note that the new family of polynomials has dimensionality k + (k − 1)d,330

whereas the old system has dimensionality kd.

Let I be the index set I = {(~p, i, j) | ~p ∈ S, 1 ≤ i < j ≤ k}; fix an order on

its elements, say o : I → {1, . . . , l} with l = nk(k − 1)/2.

Fact 6. Let P = {Ps | s ∈ I} be a family of polynomials in R[X1, . . . , Xdk] as

in equation (1) and (e1, . . . , el) a sign vector in {−1, 0, 1}l. Consider the system335

of equations defined by

sign(Ps) = eo(s), ∀s ∈ I, (8)

If (8) has solutions, then the following system

sign(P ′s) = eo(s), ∀s ∈ I, (9)

also has.

The proof of this fact is a straightforward application of the transformation

defined above. Note that the converse does not hold in general.340

Our objective will be now to enumerate all vectors in svP′(Rk+(k−1)d). In-

deed, we want to traverse svP(Rdk). For each such sign vector, there is a solution

of (8). The corresponding system (9) has solutions by Fact 6, which would give

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

us the same sign vector, the object we actually need. Thus, by enumerating

svP′(Rk+(k−1)d), we include all of svP(Rdk). Again, we might end up obtaining345

more sign vectors than we actually need, but as we argued before, this does not

affect the correctness of the result.

Corollary 1. Let (e1, . . . , el) be a sign vector in {−1, 0, 1}l and the family

P ′ = {P ′s | s ∈ I} of polynomials in R[X1, . . . , Xm] with m = k + (k − 1)d

as in equation (7). Assume that the system of equations defined as in (9) has

solutions in Rm. Then there exist a strictly positive ε ∈ R and a subset I ⊆ I
such that (10) has solutions, and all solutions of (10) are solutions of (9):

P ′s = eo(s)ε, ∀s ∈ I. (10)

Furthermore, consider

P ′s = eo(s), ∀s ∈ I. (11)

This system has solutions if and only if (10) has solutions.

Proof. The first claim about (10) is a direct consequence of applying Proposi-

tion 1 to a system of linear equations, in which the space of solutions can have350

at most one connected component (see [20, Theorem 16.1.1]). The second claim

just corresponds to the fact that, as the equations are linear and ε > 0, we can

freely multiply or divide the solution values by ε and apply distributivity as

needed.

355

3.3. Reducing the Number of Equations

According to Corollary 1, in order to enumerate all the sign vectors in

svP′(Rk+(k−1)d), one can check, for all subfamilies PI of the original family

PI , for positive ε ∈ R, and for all sign vectors ~e in {−1, 0, 1}l, whether the sys-

tem (10) (or, equivalently, (11), where we do not need ε anymore) has solutions.360

If it does, any solution ~x ∈ Rk+(k−1)d satisfies sv(~x) = ~e.

As we mentioned before, this implies checking a huge number of systems.

But, any compatible system of type (11) that has more equations than variables

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is necessarily equivalent to a smaller one, in which at most k+(k−1)d equations

(that is, the number of variables) of the original one are present. Thus, we may365

simply ignore bigger systems, since their solutions will eventually appear in our

enumeration anyway. This leads to the following fact.

Fact 7. In order to enumerate the elements of svP′(Rk+(k−1)d), one can check,

for all I ⊆ I with |I| ≤ k + (k − 1)d and for all ~e = (e1, . . . , el) in {−1, 0, 1}l,
whether the system P ′s = eo(s),∀s ∈ I has solutions. If it does, any solution370

~x ∈ Rk+(k−1)d satisfies sv(~x) = ~e.

3.4. Global Optimum Clustering Algorithm

All the ideas presented above are encapsulated in Algorithm 1. Note that

each (sub)system P ′s = eo(s),∀s ∈ I as in Fact 7 depends only on l′ = |I| of the

l components of the sign vector ~e. Therefore, it is enough for the algorithm to

go through vectors in {−1, 0, 1}l′ instead of all vectors {−1, 0, 1}l. With this in

mind, we need a bit of additional notation to finally express our algorithm. Let

o(I) = {i1, . . . , il′} and hI : Rl′ → Rl be a function such that if ~b = (b1, . . . , bl′)

then

hI(~b)i =

0, if i /∈ o(I)

bj , if i = ij ∈ o(I)

The correctness of this algorithm is a direct consequence of Fact 7. In the

sequel, we discuss its time complexity. For this, we define g : N3 → N by

g(x, y, z) =

y∑

i=0

zi
(
x

i

)
.

The following result holds.

Theorem 2. Given S ⊂ Rd a set of cardinality n, the number of Voronoi

partitions into k clusters is, at most, g(l,m, 3), and the number of operations375

necessary to generate each of the partitions is at most m3 + m2l, where m =

k + (k − 1)d and l = nk(k − 1)/2.

Proof. The upper bound for the number of Voronoi partitions can be obtained

by simply counting the number of times we reach line 10 of the algorithm, that

is, 3
(
l
1

)
+ 32

(
l
2

)
+ · · ·+ 3m

(
l
m

)
= g(l,m, 3)− 1.380

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In order to find a solution, the algorithm needs to solve a system of linear

equations (this can be done in m3 operations, where m = k + (k − 1)d is the

number of variables), and then, for each solution found, it has to evaluate its

sign vector. Since there are l = nk(k−1)/2 polynomials in Rm, the total running

time for this operation is m2l.385

Corollary 2. Given S ⊂ Rd a set of cardinality n, Algorithm 1 outputs a global

optimum clustering in time O(nk+(k−1)d+1).

Proof. The result follows from Theorem 2, by multiplying the total number of

Voronoi partitions visited with the time spent on getting and evaluating the ac-390

tual partition, and taking into account that g(x, y, 3) is bounded by O(xy).

Indeed, by replacing the values of l and m into O(lm)(m3 + m2l), we get

O((nk(k − 1)/2)k+(k−1)d((k + (k − 1)d)3 + (k + (k − 1)d)2nk(k − 1)/2), which

is exactly O(nk+(k−1)d+1) if k and d are treated as constants.

A complexity-theoretic comparison with the previous work is provided in395

Table 1 in the end of Section 4, together with the corresponding comparison

with our subsequent contributions in the forthcoming sections. Beyond the dif-

ferences in running time predicted by that analysis, one important property of

this whole approach, hence shared as well by Algorithm 1, is the following: the

only interaction between all the different clusterings tested is at the time of find-400

ing which one is best. Finding each candidate clustering and evaluating its cost

is a task fully independent of the analogous task for other candidate clusterings.

This means that all these algorithms are highly parallelizable. Indeed we take

advantage of this possibility and we report in Section 5 execution times of our

implementation on massively parallel hardware.405

4. Particular Cases of Special Interest

Note that our approach is better than the one in [12] only when k ≤ d.

Indeed, in most cases of interest, the dimensionality of the data tends to be

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

high, whereas the user would wish not to be overwhelmed with a large number of

clusters. So, for a given dimensionality d ≥ 2, it makes sense to use our algorithm410

for any k ∈ {2, . . . , d}. The case of d = 1 can be efficiently solved by dynamic

programming (see [21, 22]) in O(n2k). The use of dynamic programming has

also been employed to cope with the general case (d > 2) in [23, 24] leading to

improved k-means like algorithms.

An interesting particular problem is that of “binary splitting”, that is, sepa-415

rating the data points into exactly two clusters; in our notation, this corresponds

to the special case of k = 2. For this case, we present an algorithm that re-

turns the global optimum clustering in O(nd+2), which may not seem much of

an improvement over Algorithm 1 in theory, but it makes a lot of difference in

practice as we shall see in Section 5.420

4.1. Binary Splitting (k = 2)

We know from Proposition 1 that in order to go through all feasible sign

vectors corresponding to the polynomials {P1, . . . , Pl} defined by our initial

data points S, we can solve instead systems like (3) for subsets I ⊆ {1, . . . , l}
and some strictly positive ε ∈ R. Taken together, these solutions cover all425

equivalence classes of tuples of centroids. Therefore, that solution yielding best

cost of the corresponding clustering tells us the global optimum. As we did in

the general case, we show that for k = 2 it is not necessary to check all the

subsets of I ⊆ {1, . . . , l} (a quite large number, although note that l = n for

k = 2), but a much smaller family.430

Theorem 3. Consider the family of polynomials P = {P~p,1,2
∣∣ ~p ∈ S} in R2d,

defined as in (1), but restricted to k = 2. Let ε ∈ R be positive. Then, there is a

second family of n polynomials P ′ = {P ′i
∣∣ 1 ≤ i ≤ n} in R2d and an invertible

2d× 2d matrix M such that the following holds:

1. For each ~x ∈ R2d, svP(~x) = svP′(M~x) ∈ Rn.435

2. For every I ⊆ {1, . . . , n}, and every ei ∈ {−1, 0,+1} for i ∈ I, there is

J ⊆ I, with |J | ≤ d + 1, such that ~x is a solution of P~pi,1,2 = eiε, ∀i ∈ I

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

if and only if M~x is a solution of

P ′i = ei ∀i ∈ J. (12)

3. The solution of this system {P ′i = ei
∣∣ i ∈ J}, if it exists, can be obtained

by solving successively two linear systems of dimension d.

Proof. The matrix M and the new family of polynomials are defined via the

following change of variables:

Yr = (Xr −Xr+d)/ε, for all r ∈ {1, . . . , d},440

Zr = Xr +Xr+d, for all r ∈ {1, . . . , d}.
It is easy to check that the reverse transformation is:

Xr = (Zr + εYr)/2, for all r ∈ {1, . . . , d},
Xr+d = (Zr − εYr)/2, for all r ∈ {1, . . . , d}.

In this way, the new family of polynomials and the matrix associated to the445

transformation become:

• P ′ = {P ′i
∣∣ 1 ≤ i ≤ n}, with

P ′i =

d∑

r=1

Yr(Zr − 2p(i)r),∀i ∈ {1, . . . , n} (13)

where, in order to simplify subindexes, we write as p
(i)
r = (~pi)r, the r-th

component of ~pi ∈ S (we keep this notation for the current proof).

• M = (mij)1≤i,j≤2d is a matrix defined by

mij =

1/ε if i = j ≤ d

−1/ε if i = j − d

1 if i = j > d or i = j + d

0 otherwise

To prove the first claim, consider a component of svP(~x), that is, the sign of

some P~pi,1,2(X1, . . . , X2d) =
∑d
r=1 (Xr −Xr+d)(Xr +Xr+d − 2p

(i)
r) evaluated

on ~x. We have

P~pi,1,2(X1, . . . , X2d) =
d∑

r=1

εYr(Zr − 2p(i)r) = εP ′i (Y1, . . . , Yd, Z1, . . . , Zd),

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

i.e., its sign coincides with that of the corresponding component of svP′(M~x),

because ε > 0.450

The second and third claims will follow from the following additional trans-

formation. Fix I = {i1, . . . , il′} and the corresponding ei, so that we are working

with the transformed system {P ′i = ei
∣∣ i ∈ I}. By deducting the first equation

from all the others, this system of equations becomes:

d∑

r=1

Yr(Zr − 2p(i1)r) = ei1 ,

− 2
d∑

r=1

(p(i2)r − p(i1)r)Yr = (ei2 − ei1),

. . . = . . . ,

− 2
d∑

r=1

(p(il′)r − p(i1)r)Yr = (eil′ − ei1),

In matrix notation,455

d∑

r=1

Yr(Zr − 2p(i1)r) = ei1 ,

A · Y = b

(14)

where Y = (Y1, . . . , Yd)
T , b = (ei2 − ei1 , . . . , eil′ − ei1)T and A = (ajr)j,r with

ajr = −2(p
(ij+1)
r − p(i1)r) for all j ∈ {1, . . . , l′ − 1} and r ∈ {1, . . . , d}.

Since the rank of A is at most d, the system of equations A · Y = b either

has no solutions, being inconsistent, or, if it does have one or more solutions

and l′− 1 > d, it must be the case that one of the equations can be written as a460

linear combination of other equations, and can be eliminated while maintaining

an equivalent system. This can be repeated as long as we have more than

d equations. Then, J is simply the set of indexes of the equations left over.

Note that the equations in A · Y = b correspond bijectively to the equations

in both the original system {P~pi,1,2 = eiε
∣∣ i ∈ I} and the transformed one,465

{P ′i = ei
∣∣ i ∈ I}. Hence, the solution can be found by solving {P ′i = ei

∣∣ i ∈ J}.
The same transformation explains how to solve it with a standard linear

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

equation system solver. Solving A · Y = b (restricted to J , of course) provides

us with values for the Y variables. Then, substituting them into
∑d
r=1 Yr(Zr −

2p
(i1)
r) = ei1 , we obtain one linear equation on Z1, . . . , Zd, and we simply solve470

it as well.

The algorithm that outputs the global minimal clustering for k = 2 is de-

scribed below (Algorithm 2). Its correctness is a direct consequence of Theo-

rem 3, and its time complexity is given by the following theorem.

Theorem 4. Given S ⊂ Rd a set of cardinality n, the number of Voronoi par-475

titions into two clusters is, at most, g(n, d+ 1, 3), and the number of operations

necessary to generate each of the partitions is at most (d+ 1)3 + (d+ 1)2n.

The proof is very similar to the one of Theorem 2, and we omit it.

Corollary 3. Given S ⊂ Rd a set of cardinality n, Algorithm 2 outputs a global

optimum binary clustering in O(nd+2).480

Maintaining the set E of feasible sign vectors is a step that can be skipped

for k = 2. As we shall shortly see, we only make use of it as a baseline for the

general clustering problem (k > 2).

4.2. Reducing k-clustering to 2-clustering

In order to explain how the k-clustering problem can be reduced to the

2-clustering problem we need to introduce some notation. As before, let S =

{~p1, . . . , ~pn} in Rd and let us fix k > 2. We define a family of projection functions

prij : Rdk → R2d, with 1 ≤ i < j ≤ k, by

prij(x1, . . . , xdk) = (x(i−1)d+1, . . . , xid, x(j−1)d+1, . . . , xjd).

Let P = (P~p,i,j)~p∈S,1≤i<j≤k be a family of nk(k − 1)/2 polynomials in485

R[X1, . . . , Xdk] defined as in (1) and P ′ = (P ′~p,1,2)~p∈S be the family of n poly-

nomials in R[X1, . . . , X2d] defined as in (1) for the particular case of the 2-

clustering problem.

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Recall that for the index set I = {(~p, i, j) | ~p ∈ S, 1 ≤ i < j ≤ k} we have

arbitrarily fixed an order o : I → {1, . . . , l} on its elements (l = nk(k − 1)/2).490

Now we make this order explicit by setting

o(~pt, i, j) = t+ n ∗ (j − i− 1 + (i− 1) ∗ k − i ∗ (i− 1)/2), (15)

for all t ∈ {1, . . . , n} and for all i, j ∈ {1, . . . , k} with i < j. Note that o is a

bijection.

An important observation is that given ~p in S, P~p,i,j only uses 2d of its

variables, being transformable to P ′~p,1,2 for all 1 ≤ i < j ≤ k. More formally,495

P~p,i,j(~x) = P ′~p,1,2(prij(~x)).

With this notation, we have the following lemma.

Lemma 5. If (e1, . . . , el) is a feasible sign vector with respect to P, then

(e1, . . . , en), (en+1, . . . , e2n), . . . , (en(k(k−1)/2−1)+1, . . . , enk(k−1)/2) are all feasi-

ble sign vectors with respect to P ′ if the order of polynomials in P is given by500

the bijection o defined as in (15).

Proof. Let ~e = (e1, . . . , el) be a feasible sign vector with respect to P and let

~x = (x1, . . . , xkd) in Rdk be such that sv(~x) = ~e. Since the order of polynomials

in P is given by o, we have that sign(P~pt,i,j(~x)) = es, where s = o(~pt, i, j) is a

number in {1, . . . , l} for all t ∈ {1, . . . , n} and for all i, j ∈ {1, . . . , k} with i < j.505

More precisely, s = t + n ∗ (j − i − 1 + (i − 1) ∗ k − i ∗ (i − 1)/2), and thus,

s = t+ nσ(i, j) where σ(i, j) := j − i− 1 + (i− 1) ∗ k − i ∗ (i− 1)/2. Note that

σ : {(i, j) | 1 ≤ i < j ≤ k} → {0, . . . , k(k − 1)/2− 1} is a bijection. Therefore,

(e1+nσ(i,j), . . . , en+nσ(i,j)) = (sign(P~p1,i,j(~x)), . . . , sign(P~pn,i,j(~x)))

= (sign(P ′~p1,1,2(prij(~x))), . . . , sign(P ′~pn,1,2)(prij(~x)))510

= (sign(P ′~p1,1,2(~y)), . . . , sign(P ′~pn,1,2)(~y)),

where ~y = prij(~x).

Hence, each (e1+ns′ , . . . , en+ns′) for s′ in {0, . . . , k(k− 1)/2− 1} is a feasible

sign vector with respect to P ′, which concludes our proof.

Lemma 5 ensures that the Algorithm 3 is correctly outputting at least all515

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

feasible sign vectors with respect to P (it may also output non feasible sign

vectors, but those will not affect the solution to the k-clustering problem).

In order to evaluate the time complexity of Algorithm 3, we need some

further technical results.

Lemma 6. Let H = (H~p)~p∈S with H~p = {~x ∈ R2d | P~p,1,2(~x) = 0}, where each520

P~p,1,2 is defined as in (1) for the particular case of k = 2. Then the number of

cells in the cell arrangement defined by H is bounded by 2g(n, d, 2), and thus, it

is of order O(nd).

Proof. Notice that P~p,1,2 =
∑d
r=1 (X2

r −X2
r+d) −

∑d
r=1 2pr(Xr −Xr+d) can

be written as P~p,1,2 = Z −∑d
r=1 2prYr, where Z =

∑d
r=1 (X2

r −X2
r+d) and525

Yr = Xr −Xr+d.

With this change of variables, we would have a cell arrangement in which all

the algebraic varieties are hyperplanes in Rd+1. Then, one could use the result

by H. Edelsbrunner (see [25] Lemma 1.2 on page 7) to bound the number of

cells by
d+1∑

i=0

i∑

j=0

(
d+ 1− j
i− j

)(
n

d+ 1− j

)
.

Next, we show that in fact, because all hyperplanes pass through the origin,

the dimension can be further decreased to d, while paying a small cost for it.

After applying the above mentioned change of variables, H is a cell arrange-

ment in Rd+1 over the following set of variables: {Yr | ∀r ∈ {1, . . . , d}} ∪ {Z}.530

We shall consider the cell arrangement H′ = H ∪ H where H = {~x ∈ Rd+1 |
P (~x) = 0} and P = Z. Clearly, the number of cells in H is smaller than the

number of cells in H′. In order to evaluate the number of cells in H′, note

that H divides each of the cells in H′ in at most two cells. We shall consider

then the following two cell arrangements H0 and H1, where Ha = (Ha
~p)~p∈S ,535

Ha
~p = {~x ∈ Rd | P a~p (~x) = 0} and P a~p = a−∑d

r=1 2prYr (a ∈ {0, 1}), correspond-

ing to points in Rd+1 being either in H or outside H. According to Lemma 1.2

on page 7 in [25], the number of cells in H0 and H1 is bounded by

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

d∑

i=0

i∑

j=0

(
d− j
i− j

)(
n

d− j

)
.

By some straightforward calculation, this sum can be shown to be equal to
∑d
i=0 2i

(
n
i

)
, which concludes the proof.540

The complexity of Algorithm 3 is therefore given by the following result.

Theorem 7. Given S ⊂ Rd a set of cardinality n, the number of operations

necessary to generate each of the partitions is of order O(ndk(k−1)/2).

Proof. According to Theorem 4, the total number of operations needed to out-545

put the set E is (d+1)2(d+1+n)g(n, d+1, 3). The second part of the algorithm

needs |E|k(k−1)/2 operations. By Lemma 6, |E| is bounded by 2g(n, d, 2). The

total running time of the algorithm is therefore bounded by

(d+ 1)2(d+ 1 + n)g(n, d+ 1, 3) + (2g(n, d, 2))k(k−1)/2.

Since g(x, y, z) ≤ zyxy(y + 1), we can conclude that the total number of550

operations is of order O(ndk(k−1)/2).

A comparison of the complexity-theoretic analysis of the algorithms consid-

ered appears in Table 1.

Algorithm 1 The algorithm Algorithm 2 Algorithm 3

in [12]

general O(nk+(k−1)d+1) O(nkd+1) O(ndk(k−1)/2)

k = 2 O(nd+3) O(n2d+1) O(nd+2)

k = 3 O(n2d+4) O(n3d+1) O(n3d)

Table 1: Time complexity comparison

5. Experimental results

Implementations of the algorithms introduced in this paper can be found at555

https://github.com/domingoUnican/optkmeans.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

As far as we know, this is the first implementation that finds the optimum

clustering of multidimensional input data, so there was nothing to compare it

with in a direct manner. However, the essence of both our algorithms and

the one in [12] is finding all elements of svP(Rm) given a certain family P of560

polynomials on m variables; the RAGlib library of Maple allows for an easy

implementation of these tasks, including the algorithm described in [15]. Thus,

we ran a set of preliminary experiments on a Windows laptop equipped with

Maple and found that the algorithm in [12], already with the very modest values

of k = 2, d = 2 and n = 5, was more than 10000 times slower than Algorithm 1,565

even if its theoretical time complexity was the same, O(n5). This was to be ex-

pected as this comparison is unfair, since the RAGlib-based algorithm is solving

a much more general problem. We consider that it does not make sense to pro-

ceed further with this comparison at larger values of the parameters. Therefore,

we implemented two existing exponential algorithms: one based on backtrack-570

ing (see Uniform cost search on page 75 in [7]) and the other one based on a

depth first search (see Depth-first search on page 77 in [7]). Their time and

space complexities are reported below.

Criterion Uniform-Cost Depth-First

Time bd bm

Space bd bm

Optimal? Yes No

Complete? Yes No

Table 2: Evaluation of search strategies. b is the branching factor; d is the depth of solution;

m is the maximum depth of the search tree

We tested our algorithms on the User Knowledge Modeling Data Set, which

can be found online on the UCI Machine Learning Repository (see [26] for more575

details). It is a smallish real dataset with students’ knowledge status about

the subject of Electrical DC Machines, and it contains 258 instances with 5

attributes, each of these attributes being a real number in the [0, 1] interval.

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In order to evaluate the performance for specific k and d, we ran the algo-

rithms with the first n instances over the first d attributes for increasing n and d,580

and the time elapsed (expressed in seconds on a natural logarithmic scale) was

plotted against the number of points. We show first a comparison between the

running times of Algorithm 1 and Algorithm 2 for k = 2 with d = 2, 3, 4, 5 and

the other two existing algorithms: UniformCost and Depth-First (Figure 1).

Figure 1: Running times for k = 2

The top horizontal line represents a seven days time limit (imposed by the585

supercomputing center we used). Note that although the UniformCost algo-

rithm outperforms all other algorithms for small values of n, it runs out of

memory very quickly (it cannot handle more than 40 points).

Then, we show a comparison between Algorithm 3 and the two exponential

algorithms (UniformCost and Depth-First Search) for k = 3 and d = 2, 3, 4, 5.590

In this case, Algorithm 1 turns out to be very slow (we were able to plot its

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

running time only for very small values of n).

Figure 2: Running times for k = 3

Algorithm 3 was implemented only for the specific case of k = 3 so we could

count on specific further optimizations. For example, we took advantage of some

trivial observations in order to avoid checking all ~e ∈ E3. The first remark is595

that one of the three clusters is fixed when given two sign vectors in E (knowing

the sign of P~p,1,2 and P~p,1,3 for all points ~p in S, we can already construct S1).

This allows to calculate one of the centroids and also to partially evaluate the

WCSS. Experiments indicate that a great proportion of the clusterings can be

shown to be not optimal just by using this partial evaluation of the WCSS. A600

second improvement is using the fact that not all vectors ~e in E3 define a feasible

sign vector for the set of polynomials defined in (1) (some combinations of signs

for P~p,1,2, P~p,1,3 and P~p,2,3 are incompatible; for example, if P~p,1,2(~x) < 0 and

P~p,1,3(~x) > 0 than P~p,2,3(~x) > 0 must also hold, so any sign that says otherwise

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

may be discarded). In other words, the converse of Lemma 5 is clearly false.605

Indeed, we could experimentally check that implementing these kind of rules

significantly improved the performance of the algorithm.

All the experiments were done on ALTAMIRA, the supercomputing node

at the University of Cantabria within the Spanish Supercomputing Network.

More precisely, we used an HPC cluster, integrating IBM-idataplex dx360m4610

servers, each one with 2xE5-2670 Intel Sandybridge Xeon processors, 64GB

RAM, 500GB HD and all of them interconnected with InfiniBand FDR10 cards

and switches from Mellanox in fat tree topology, completing a system with more

than 2500 cores and 10 Terabytes of memory. The peak capacity exceeds 50

Tflops.615

A list of optimal WCSS values for k = 2 and k = 3 with different dimensions

and number of points is available at https://github.com/domingoUnican/

optkmeans. This information can be used as a benchmark repository and could

be extended to include other datasets usually employed in testing partitional

clustering methods based on the Euclidean distance (for example, those used620

in [27] or [28]).

6. Conclusion

Obtaining the optimum global k-clustering of a set of multidimensional

points is a problem known to be NP-hard. Existing faster, practical algo-

rithms employ different heuristics to get a local optimum. The issue is that625

the solution obtained by these algorithms could be quite far from the opti-

mal one. It is easy to find examples in which k-means is unable to return

the right answer, no matter how the centroids are instantiated. For instance,

given S = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 5), (3, 2)} and k = 2, if the two cen-

troids are initialized with values from the original set of observations S, k-630

means never encounters the optimum clustering (given by the following par-

tition: S1 = {(0, 0), (0, 1), (0, 2)}, S2 = {(0, 3), (1, 5), (3, 2)}). Note that this

particular example can be generalized to demonstrate the sub-optimality of

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

heuristic k-means solutions. More precisely, by multiplying the six points in S

by ε, we can make the k-means algorithm to perform arbitrarily poorly with635

respect to the global optimal solution (for any real number δ, if ε =
√

6δ, the

difference between any solution returned by k-means and the global optimal one

is at least δ). The initial choice of centroids is actually essential for this class

of algorithms: if they are randomly chosen among the data points, the ratio

between the obtained solution and the optimal one can be made arbitrarily bad640

(see [29], page 4); on the other hand, choosing a good set of seed points could

lead to log k or even constant factor approximations for the k-means objective

(see k-means++ [30] and [31]).

In certain applications, reaching the guaranteed global optimum may be

desirable. Also, in order to empirically estimate the “goodness” of any (new or645

existing) clustering algorithm, one needs to know which is the actual optimum

value. For example, we could experimentally check how the k-means algorithm’s

output is affected by the number niter of initial random initializations of the

centroids. We obtained a 51.43 error rate for niter = 1, 9.16 error rate for

niter = 10, 0.66 error rate for niter = 100 and no errors for niter = 1000.650

Other applications may require an online version of the algorithms presented,

in which new points are added or some points are changed while all possible

Voronoi partitions are precomputed for the initial set of points. If changes af-

fect only a small number of points, of order O(log n), one solution is to consider

all precomputed clusterings and to try all different possibilities for including655

the new points in each of the clusterings. Notice that each of the algorithms

presented in this work enumerate all possible clusterings and require O(n) op-

erations per sign vector, so the running time is better comparing with running

from scratch. Other advantages of this method are: it only needs to keep the

sign vectors and it does not require to solve any new system of equations. Un-660

fortunately, it is only useful when there are only a few changes. A little more

complicated is when the number of different points grows. Notice that the algo-

rithms do not need the points to be in any order, so new points can be processed

at the end. However, this only speeds up the algorithm by a small constant,

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

because it is necessary to place the new points in the previously computed clus-665

ters and to find new clusterings solving new systems of equations. Another

improvement is by using Gauss triangulation. Fact 6 gives a relation between

the sign vectors and solving linear systems. Assuming that there is only one

new point in the dataset, it is possible to save all partial Gauss triangulations

and use them to solve new systems. This improves the running time by a factor670

of O(k).

Our contribution is two fold. On one hand, we propose algorithms that

improve, in several particular cases of interest, the theoretical computation time

of the state-of-the art globally optimum clustering algorithm, and on the other

hand, we provide actual implementations that can be freely used by researchers675

in order to contrast their clustering algorithms against the optimum.

Acknowledgments

We acknowledge Santander Supercomputación support group at the Uni-

versity of Cantabria who provided access to the Altamira Supercomputer at

the Institute of Physics of Cantabria (IFCA-CSIC), member of the Spanish Su-680

percomputing Network, for performing simulations. This work was supported

by Ministerio de Economia y Competividad (MINECO), Spain [grants number

MTM2014-55262-P and MTM2014-55421-P].

References

[1] S. P. Lloyd, Least squares quantization in PCM, IEEE Transactions on685

Information Theory 28 (2) (1982) 129–137.

[2] J. B. MacQueen, Some methods for classification and analysis of multi-

variate observations, in: Proceedings of the 5th Berkeley Symposium on

Mathematical Statistics and Probability, Vol. 1, University of California

Press, 1967, pp. 281–297.690

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[3] D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seed-

ing, in: Proceedings of the eighteenth annual ACM-SIAM symposium on

Discrete algorithms, SODA ’07, Society for Industrial and Applied Mathe-

matics, Philadelphia, PA, USA, 2007, pp. 1027–1035.

[4] C. Zhang, S. Xia, K-means clustering algorithm with improved initial cen-695

ter, in: Knowledge Discovery and Data Mining, 2009. WKDD 2009. Second

International Workshop on, 2009, pp. 790 –792. doi:10.1109/WKDD.2009.

210.

[5] R. Ostrovsky, Y. Rabani, L. J. Schulman, C. Swamy, The effectiveness of

Lloyd-type methods for the k-means problem, Journal of the ACM (JACM)700

59 (6) (2012) 28.

[6] D. Pelleg, A. W. Moore, X-means: Extending k-means with efficient esti-

mation of the number of clusters, in: Proceedings of the Seventeenth Inter-

national Conference on Machine Learning, ICML ’00, Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2000, pp. 727–734.705

[7] S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd

Edition, Pearson Education, 2003.

[8] D. Aloise, A. Deshpande, P. Hansen, P. Popat, NP-hardness of Euclidean

sum-of-squares clustering, Machine Learning 75 (2009) 245–248. doi:http:

//dx.doi.org/10.1007/s10994-009-5103-0.710

[9] P. Drineas, A. Frieze, R. Kannan, S. Vempala, V. Vinay, Clustering large

graphs via the singular value decomposition, Machine Learning 56 (2004)

9–33. doi:http://dx.doi.org/10.1023/B:MACH.0000033113.59016.96.

[10] S. Dasgupta, The hardness of k-means clustering, (Technical Report

CS2008-0916). University of California. (2008).715

[11] M. Mahajan, P. Nimbhorkar, K. Varadarajan, The planar k-means

problem is NP-hard, in: Proceedings of the 3rd International Work-

shop on Algorithms and Computation, WALCOM ’09, Springer-Verlag,

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Berlin, Heidelberg, 2009, pp. 274–285. doi:http://dx.doi.org/10.1007/

978-3-642-00202-1_24.720

[12] M. Inaba, N. Katoh, H. Imai, Applications of weighted Voronoi diagrams

and randomization to variance-based k-clustering (extended abstract), in:

Symposium on Computational Geometry, 1994, pp. 332–339. doi:http:

//doi.acm.org/10.1145/177424.178042.

[13] S. Hasegawa, H. Imai, M. Inaba, N. Katoh, Efficient algorithms for725

variance-based k-clustering, in: Proceedings of the First Pacific Confer-

ence on Computer Graphics and Applications, 1993, pp. 75–89.

[14] J. Canny, Improved algorithms for sign determination and existential

quantifier elimination, Comput. J. 36 (5) (1993) 409–418. doi:http:

//dx.doi.org/10.1093/comjnl/36.5.409.730

[15] S. Basu, R. Pollack, M.-F. Roy, A new algorithm to find a point in every

cell defined by a family of polynomials, in: Quantifier elimination and

cylindrical algebraic decomposition (Linz, 1993), Texts Monogr. Symbol.

Comput., Springer, Vienna, 1998, pp. 341–350.

[16] K. Sabo, R. Scitovski, An approach to cluster separability in a partition,735

Information Sciences 305 (2015) 208 – 218. doi:http://dx.doi.org/10.

1016/j.ins.2015.02.011.

[17] F. Rouillier, M.-F. Roy, M. Safey El Din, Finding at least one point in each

connected component of a real algebraic set defined by a single equation,

J. Complexity 16 (4) (2000) 716–750. doi:http://dx.doi.org/10.1006/740

jcom.2000.0563.

[18] M. Safey El Din, RAGlib A library for real solving polynomial systems of

equations and inequalities, INRIA (2013).

URL http://www-polsys.lip6.fr/~safey/RAGLib/distrib.html

[19] C. Le Guernic, F. Rouillier, M. Safey El Din, On the practical computation745

of one point in each connected component of a semi-algebraic set defined by

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

a polynomial system of equations and non-strict inequalities., Tech. rep.,

INRIA (2004).

[20] J. E. Goodman, J. O’Rourke, Handbook of discrete and computational

geometry, CRC press, 2010.750

[21] R. E. Jensen, A dynamic programming algorithm for cluster analysis, Op-

erations Research 17 (6) (1969) 1034–1057.

[22] H. Wang, M. Song, Ckmeans.1d.dp: Optimal k-means clustering in one

dimension by dynamic programming, The R Journal 3 (2) (2011) 29–33.

[23] L. Bai, J. Liang, C. Sui, C. Dang, Fast global k-means clustering based on755

local geometrical information, Information Sciences 245 (2013) 168 – 180.

doi:http://dx.doi.org/10.1016/j.ins.2013.05.023.

[24] A. Likas, N. Vlassis, J. J. Verbeek, The global k-means clustering algorithm,

Pattern Recognition 36 (2) (2003) 451 – 461. doi:http://dx.doi.org/

10.1016/S0031-3203(02)00060-2.760

[25] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag

New York, Inc., New York, NY, USA, 1987.

[26] H. T. Kahraman, S. Sagiroglu, I. Colak, The development of intuitive

knowledge classifier and the modeling of domain dependent data, Know.-

Based Syst. 37 (2013) 283–295. doi:http://dx.doi.org/10.1016/j.765

knosys.2012.08.009.

[27] J.-Y. Chen, H.-H. He, A fast density-based data stream clustering algorithm

with cluster centers self-determined for mixed data, Information Sciences

345 (2016) 271 – 293. doi:http://dx.doi.org/10.1016/j.ins.2016.01.

071.770

[28] A. Pakrashi, B. B. Chaudhuri, A Kalman filtering induced heuristic opti-

mization based partitional data clustering, Inf. Sci. 369 (C) (2016) 704–717.

doi:10.1016/j.ins.2016.07.057.

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[29] P. Awasthi, M. florina Balcan, Center based clustering: A foundational

perspective (2013).775

[30] D. Arthur, S. Vassilvitskii, K-means++: The advantages of careful seed-

ing, in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA ’07, Society for Industrial and Applied Math-

ematics, Philadelphia, PA, USA, 2007, pp. 1027–1035.

URL http://dl.acm.org/citation.cfm?id=1283383.1283494780

[31] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,

A. Y. Wu, A local search approximation algorithm for k-means clustering,

Computational Geometry 28 (2) (2004) 89 – 112, special Issue on the

18th Annual Symposium on Computational Geometry - SoCG2002.

doi:http://dx.doi.org/10.1016/j.comgeo.2004.03.003.785

URL http://www.sciencedirect.com/science/article/pii/

S0925772104000215

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TAlgorithm 1 Global optimum clustering

1: input: S = {~p1, . . . , ~pn} a set of n points in Rd, k = the number of clusters

2: m = k + (k − 1)d //the number of variables

3: l = nk(k − 1)/2 //the number of polynomials

4: let I = {(~p, i, j) | ~p ∈ S, 1 ≤ i < j ≤ k}, and o : I → {1, . . . , l} a bijection

5: let P ′ = (P ′s)s∈I be the family defined as in (7)

6: min =∞
7: for all l′ in {1, . . . ,m} do

8: for all I ⊆ I with |I| = l′ do

9: for all ~b in {−1, 0, 1}l′ do

10: ~e := hI(~b)

11: if ∃ ~x ∈ Rm solution of (11) then

12: let {S1, . . . , Sk} be the partition defined by svP′(~x)

13: if cost(S1, . . . , Sk) < min then

14: min = cost(S1, . . . , Sk)

15: save {S1, . . . , Sk} as the optimal partition

16: end if

17: end if

18: end for

19: end for

20: end for

21: Output: min and the optimal partition

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 2 Global optimum clustering for k = 2

1: input: S = {~p1, . . . , ~pn} a set of n points in Rd

2: let P ′ = {P ′i | 1 ≤ i ≤ n} be the family defined as in (13)

3: min =∞, E = ∅
4: for all l′ in {1, . . . , d, d+ 1} do

5: for all J ⊆ {1, . . . , n} with |J | = l′ do

6: for all ~b ∈ {−1, 0,+1}l′ do

7: ~e := hJ(~b)

8: if ∃ ~y ∈ R2d solution of (12) then

9: let {S1, S2} be the partition defined by svP(M−1~y)

10: if cost(S1, S2) < min then

11: min = cost(S1, S2)

12: save {S1, S2} as the optimal partition

13: end if

14: add svP(M−1~y) to E

15: end if

16: end for

17: end for

18: end for

19: Output: min and the optimal partition

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 3 Global optimum clustering for k > 2

1: input: S = {~p1, . . . , ~pn} a set of n points in Rd

2: Let E be the set obtained while running Algorithm 2 on S

3: min =∞
4: for all ~e in Ek(k−1)/2 do

5: let {S1, . . . , Sk} be the partition defined by ~e

6: if cost(S1, . . . , Sk) < min then

7: min = cost(S1, . . . , Sk)

8: save {S1, . . . , Sk} as the optimal partition

9: end if

10: end for

11: Output: min and the optimal partition

38

