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Abstract— A new methodology for the prediction of oscillator 

phase dynamics under the effect of an interference signal is 
presented. It is based on a semi-analytical formulation in the 
presence of a noisy or modulated interferer, using a realistic 
oscillator model extracted from harmonic-balance simulations. 
The theoretical analysis of the phase process enables the derivation 
of key mathematical properties, used for an efficient calculation of 
the interfered-oscillator spectrum. The resulting quasi-periodic 
spectrum is predicted, as well as the impact of the interferer phase 
noise and modulation over each spectral component, in particular 
over the one at the fundamental frequency. It is demonstrated that, 
under some conditions the phase noise at this component is pulled 
to that of the interference signal. Resonance effects at multiples of 
the beat frequency are also predicted. In addition, the effects of 
interferer phase and amplitude modulation on the oscillator phase 
dynamics have been studied and compared. For that analysis, 
efficient simulation techniques have been developed. The analyses 
have been validated with experimental measurements in a FET-
based oscillator at 2.5 GHz, obtaining excellent agreement. 

Index Terms — Microwave oscillator, frequency-domain 
analysis, interferer, injection pulling, phase noise, phase 
modulation, amplitude modulation. 

I. INTRODUCTION 

Several are the possible effects of an interferer on the local-
oscillator of a communication system. In general, the oscillation 
frequency will be pulled towards that of the interferer, so a 
quasi-periodic spectrum is obtained, with the oscillation 
frequency affected by the interferer [1-3]. Synchronization to 
the interferer may also occur if the interferer frequency is close 
enough to the oscillation frequency. Even when the oscillator is 
inside a phase-locked loop (PLLs), the interferer may pull the 
voltage-controlled oscillator (VCO) free-running frequency, 
shifting the whole hold-in range [4]. Besides these frequency-
pulling effects, the oscillator phase dynamics can be altered by 
the interferer noise [5] or modulation.  

In this work, the formulation presented in [5] for the study of 
the interferer influence on the oscillator phase noise has been 
extended to include the effect of the interferer phase and 
amplitude modulations on the oscillator phase dynamics. We 
have limited the investigation to low amplitude interferers, 
since the strong pulling effects due to a high-power interferer 
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would disrupt the communication. The study of the impact of 
the interferer on the phase dynamics of the free-running 
oscillator is the first stage of our investigation. Even if the 
frequency pulling effect can be prevented by an afterward phase 
locking or injection locking of this oscillator, the oscillator 
phase dynamics can be modified by the interferer. This is 
because beyond a specific frequency offset from the carrier, the 
phase-noise spectrum under locked conditions is approximately 
similar to that of the free-running oscillator [6, 7] (Chapters 2 
and 7, respectively). As presented in the manuscript, the 
analysis may be of practical interest in some systems where the 
local oscillator operates in free-running conditions, like 
homodyne FMCW or Doppler radars [8], based on a self-
injection-locked oscillator. These systems actually behave in 
free-running conditions due to the absence of independent 
sources. Their performance may be preserved when the local 
oscillator frequency is weakly pulled by an interferer, since the 
operation principle is based on the frequency difference 
between two signals (local and returned), generated by the same 
oscillator. In contrast, the perturbations on the free-running 
oscillator phase in the form of phase noise or undesired 
modulation can significantly degrade the circuit behavior [9]. 

The study focuses on the case in which a low power interferer 
gives rise to small frequency pulling but degrades the phase-
noise spectrum. Predicting the oscillator phase degradation in 
the presence of an interferer will help correct the prototypes at 
the design stage, so as to make them more robust against the 
interferer action. To have an impact on the oscillator spectrum, 
the interferer frequency must be close to that of the interfered 
oscillator, as otherwise the two signals will have independent 
phase variations. The analysis is involved since in the general 
case of an oscillator that is not locked to the interferer, the 
solution will be quasi-periodic, with two fundamental 
frequencies: the oscillation frequency, affected by the 
interferer, and the interferer frequency [1, 10]. In the previous 
work [7], a rigorous general formulation for the noise analysis 
of nonautonomous circuits with multiple inputs is provided. 
The formulation is derived in terms of the circuit state variables 
and stochastic analysis techniques are applied to obtain the 
power spectral density (PSD) of the circuit output variables. 
This is different from the present work, where emphasis is 
placed on the autonomous behavior of the interfered oscillator. 
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However, an efficient multirate method is used in [7] to solve 
separately the variable components corresponding to different 
time scales. Such a separation will also be necessary in the 
interferer problem tackled in this work, which considers a 
circuit with an autonomous frequency component due to the 
oscillation and a nonautonomous component due to the 
interferer.  

From a harmonic-balance (HB) simulation viewpoint [11], 
the only way to address the oscillator phase-noise analysis in 
the presence of an additional noisy fundamental is through a 
two-stage procedure. The first stage should be a two-tone 
simulation, with one autonomous fundamental, able to account 
for the small pulling effects. The second stage should be a 
phase-noise analysis of the oscillator carrier. However, under a 
small difference between the interferer and oscillation 
frequencies, the HB Jacobian matrix is usually ill-conditioned, 
leading to convergence problems and an inaccurate prediction 
of the phase-noise spectrum. 

 On the other hand, in the case of a modulated interferer, in 
ordinary envelope transient simulations of autonomous circuits, 
there is usually a shift between the actual oscillation frequency 
௢݂௦௖ and the fundamental frequency of the Fourier-series, fixed 

by the user [12]. This frequency shift introduces a phase ramp 
that contaminates the spurious modulation effects. To obtain the 
oscillation signal, the envelope time step must be sufficiently 
small to account for this frequency shift. In the presence of a 
narrow-band modulation signal, the relatively small step will 
give rise to a high computational cost. 

Here, in order to circumvent these problems, a semi-
analytical method is proposed. This method allows the 
derivation of a stochastic differential equation for the 
autonomous phase, which acts as the single state variable of the 
system. A realistic model of the interfered oscillator is used, 
based on derivatives obtained through finite differences in HB, 
calculated about the free-running point [13-15]. The analysis 
relies on the determination of the phase perturbation of the 
interfered oscillator in the presence of the undesired signal, as 
well as its own noise sources. Limit forms of the stochastic 
analysis in the frequency domain are applied to approach the 
interferer influence on the far carrier phase noise spectrum. In 
addition, a multirate method similar to the one in [7] is used to 
solve numerically the transference of the interferer phase 
modulation to the oscillation autonomous component. 

In Section II, the equation governing the oscillation phase in 
the presence of a noisy or modulated interferer will be derived. 
In Section III, a formulation based on this equation will be 
developed to analyze the effect of the interferer phase noise on 
the oscillation phase noise characteristic. Finally, in Section IV, 
the effects of phase and amplitude modulated interferers on the 
oscillation phase will be studied and compared. The 
mechanisms producing spurious modulation of the oscillator 
phase will be explained in detail. All the analytical and 
simulation results will be compared with measurements in a 
FET-based oscillator at 2.5 GHz. 

II. GENERAL FORMULATION FOR THE ANALYSIS OF THE 

INTERFERER INFLUENCE 

A. Derivation of the nonlinear model 

The analysis will be illustrated through its application to the 

FET-based oscillator at ௢݂௦௖ ൌ 2.5 GHz in Fig. 1. In the 
proposed experiment, an interference signal with carrier 
frequency ௜݂௡ enters the output port through a circulator. The 
interferer is modeled by its Norton equivalent with a current 
source ݅௚ሺݐሻ. Interference signal entering through the output 
port is a realistic situation in front-end systems. However, the 
formulation can be equally applied for other locations of the 
interference equivalent source. It will be derived in terms of the 
voltage signal ݒሺݐሻ at the transistor drain terminal, although, in 
general, the analysis can be performed for any other node of 
observation. Note that the analysis can be performed at a node 
different from the one where the interferer current source is 
connected, since its effect is modeled by means of transfer 
functions [13-15].  

In this circuit, the white noise sources are the thermal sources 
associated to resistive elements and the channel noise generated 
by the DC transconductance, whereas the colored noise source 
is the flicker source associated to the FET device. Using the 
technique in [16], the effect of all the white and colored [17, 18] 
noise sources existing in the circuit has been modeled with an 
equivalent current generator ݅௡ሺݐሻ connected in parallel at the 
transistor drain. The PSD of this current source is extracted 
from HB commercial software simulations of the free-running 
oscillator. The technique does not require the explicit 
knowledge of all the noise sources present in the oscillator. It is 
based on the fitting of a single noise source ݅௡ሺݐሻ, located at the 
node where the interferer signal enters the circuit. In a circuit-
level phase-noise analysis of the non-interfered oscillator, this 
source is fitted so as to provide the same phase-noise spectrum 
as the complete set of oscillator noise sources in the resistive 
elements and active devices. 

 

Fig. 1. Schematic of the interfered oscillator operating at ݂ܿݏ݋ ൌ 2.5 
GHz based on the FET NE3210S01. The interference is modeled with 
a current source and introduced into the oscillator through a circulator 

The interferer and noise equivalent sources will be expressed 
as: 

 
݅௚ሺݐሻ ൌ 2ܴ݁ሼܷሺݐሻ݁௝ఠ೔೙௧ሽ,			ܷሺݐሻ ൌ ሻ݁௝ൣటݐ௚ሺܫ

ሺ௧ሻାఏ೒൧ 

   ݅௡ሺݐሻ ൌ 2ܴ݁ሼܫ௡ሺݐሻ݁௝ఠ೔೙௧ሽ 
(1)

with ߱௜௡ ൌ ߨ2 ௜݂௡ and the amplitude and phase components 
ሻݐ௚ሺܫ ∈ ܴ	and ߰ሺݐሻ ∈ ܴ accounting in general for modulation 
or noise processes. The noise current source ݅௡ሺݐሻ has been 
modeled by means of a single time-varying harmonic 
component ܫ௡ሺݐሻ. The introduction of the source ݅௚ሺݐሻ perturbs 
each ݍ-th harmonic component of the signal ݒሺݐሻ: 
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(2)

where each ݒ௤ሺݐሻ is a narrow band process centered at the 
frequency component ݍ ௜݂௡. While the interferer produces small 
amplitude perturbation components Δ ௤ܸሺݐሻ, the phase 
componentsߴ  ௤ሺݐሻ are unbounded in the non-synchronized state 
[1]. Now, following the semi-analytical formulation technique 
(SAF) proposed in [13-15], the Kirchhoff current law is applied 
to the observation node focusing on the equation corresponding 
to the first harmonic component. Then, the Implicit Function 
Theorem is applied to obtain an envelope-domain model of the 
oscillator dynamics in the form of a single outer-tier equation: 

ܻሾ ଵܸ ൅ Δ ଵܸሺݐሻ, ݆ሺ߱௢௦௖ ൅ Δ߱ሻ ൅ ,ݏ ܷ௥ሺݐሻ, ܷ௜ሺݐሻሿ ൌ 

																							ൌ
ሻ݁ି௝థሺ௧ሻݐ௡ሺܫ

ଵܸ ൅ Δ ଵܸሺݐሻ
 

(3) 

where ܻ  is the first harmonic total admittance at the observation 
node, and Δ߱ ൌ Δ݂ߨ2 ൌ ߱௢௦௖ െ ߱௜௡, with ߱௢௦௖ ൌ ߨ2 ௢݂௦௖ 
being the free-running frequency. The super-indexes ݎ, ݅ mean 
real and imaginary parts of the corresponding signals. The 
phase ߶ሺݐሻ ≡  ሻ represents the first-harmonic phaseݐଵሺߴ
component at the interferer frequency ௜݂௡. In this work, an 
interference phenomenon perturbing the steady state oscillation 
up to the first order will be considered. This case is quite 
realistic, since the interferer usually enters the oscillator core 
after crossing filtering paths or electromagnetic shields, which 
makes its influence on equation (3) small. Then, equation (3) 
can be approximated by a first-order Taylor series about the 
free-running state. Following a similar procedure as in previous 
work [15], this approximation yields the following equation for 
the phase shift:  

 

߶ሶ ൌ Δ߱ ൅ ߶ሻsinሾݐ௦ሺܭ െ ߰ሺݐሻሿ ൅ 

൅ܭ௖ሺݐሻcosሾ߶ െ ߰ሺݐሻሿ ൅  ሻݐሺߝ

ሻݐሺߝ ൌ ሻݐ௡௥ሺܫ௥ܪ ൅ ௡௜ܫ௜ܪ ሺݐሻ 

(4) 

with: 
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(5) 

where the simplifying relations ܽ ∙ ܾ ൌ ܽ௥ܾ௥ ൅ ܽ௜ܾ௜ and  ܽ ൈ
ܾ ൌ ܽ௥ܾ௜ െ ܽ௜ܾ௥ have been introduced. The coefficients 
,ሻݐ௖ሺܭ ,ሻݐ௦ሺܭ ,௥ܪ  ௜ are provided in terms of the derivatives ofܪ
the admittance function (3) evaluated at the free-running 
solution: 

 
௏ܻ ൌ

߲ܻሺ ଵܸ, ߱௢, 0,0ሻ

߲ܸ
, ఠܻ ൌ

߲ܻሺ ଵܸ, ߱௢, 0,0ሻ

߲߱
 

ሻݐ௦ሺܤ		 ൌ ݆
ሻݐ௚ሺܫ

ଵܸ
௎ܻೝ, ሻݐ௖ሺܤ		 ൌ െ

ሻݐ௚ሺܫ

ଵܸ
ܻ௎೔, 

(6) 

		ܻ௎ೝ,೔ ൌ
߲ܻሺ ଵܸ, ߱௢, 0,0ሻ
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According to equation (4), a constant shift of the interferer 
phase ߰ሺݐሻ will produce a shift of the same amount in the phase 
߶ሺݐሻ, which will not affect the spectrum of ݒଵሺݐሻ. Then, without 
loss of generality, in the following ߠ௚ ൌ 0 will be assumed to 
simplify the formulation. Note that, as a difference from [15], 
the coefficients ܭ௖ሺݐሻ,  ሻ are time dependent to model theݐ௦ሺܭ
effect of the interferer amplitude modulation ܫ௚ሺݐሻ. The 
admittance derivatives ௏ܻ , ఠܻ, ܻ௎ೝ,೔   in (6) can be calculated 
through finite differences in commercial HB following the 
technique described in [15]. Equation (4) provided by the SAF 
technique can be used to calculate the oscillator phase dynamics 
in the presence of a noisy and modulated interferer. 

B. Validity of the proposed model 

The first-order model is composed of the derivatives of the 
oscillator total-admittance function, calculated with respect to 
the node amplitude, frequency and interference signal, 
evaluated at the (non-interfered) free-running point. All the rest 
of circuit variables and harmonic frequencies are taken into 
account when applying finite differences to the auxiliary 
generator [13-15] used for the practical calculation of these 
derivatives. The modeling procedure is totally general and 
independent of the particular oscillator circuit and its operation 
frequency. However, there is a limitation on the interferer 
power, which should be sufficiently small for the first-order 
Taylor-series expansion to be applicable. In fact, the analysis 
presented is most relevant for a low interferer power. For too 
high power, frequency-pulling effects would be so strong that 
the oscillator would significantly impair the communication 
system. 

To evaluate the validity of the proposed approach, the 
oscillator is assumed to be injection-locked by the interference 
of a particular amplitude ܫ௚, even though this regime is not the 
object of this investigation. The synchronization bandwidth is 
calculated both through the semi-analytical method, based on 
the first-order Taylor series approximation, and using a circuit-
level harmonic-balance simulation, with the aid of one auxiliary 
generator [13-15]. The two analyses are computationally 
undemanding. If the synchronization bands agree with the two 
different methods, the first-order approximation must be a valid 
one, so it will be applicable in unlocked conditions for the 
interferer amplitude ܫ௚. The accuracy evaluation under 
injection-locked conditions takes advantage of the oscillator 
operation in a periodic regime, much simpler to analyze than 
the unlocked quasi-periodic one that is the object of this 
investigation.  

Let us consider the case of a noise and modulation-free 
interferer of amplitude and phase ܫ௚, ߰. As stated in [1], the 
oscillation can synchronize to the interferer provided the 
frequency difference |Δ݂| ൌ | ௢݂௦௖ െ ௜݂௡| is below a bifurcation 
limit, with ௢݂௦௖ being the oscillation frequency in the absence of 
the interferer. In the synchronized state, the frequency 
difference ߶ሶ ሺݐሻ between the oscillation and the interferer 
vanishes. In that case, model (4) predicts the set of interferer 
frequency values providing synchronized solutions: 



௜݂௡ ൌ ௢݂௦௖ ൅
1
ߨ2

ሺܭ௦sin	ߙ ൅ ߙ				,ሻߙ	௖cosܭ ∈ ሾ0,2ߨሿ (7) 

with ߙ ൌ ߶ െ ߰. This prediction can be validated by 
comparison with the synchronization range using a circuit-level 
HB simulation, with the aid of an auxiliary generator [19, 20]. 
The two analyses are computationally undemanding. If the 
synchronization bands agree with the two different methods, the 
first-order approximation must be a valid one, so it will be 
applicable in unlocked conditions for the interferer amplitude 
  .௚ܫ

As an example, this comparison has been carried out in Fig. 
2 for two values of the interferer amplitude. In the first case, for 
௚ܫ ൌ 0.3 mA the synchronization range predicted with equation 
(7) agrees with the one obtained in commercial HB software. 
This indicates that model (4) is valid for this interferer 
amplitude. In the second case, for ܫ௚ ൌ 1.4 mA, the 
disagreement between the results of equation (7) and the 
commercial HB software indicates that the interferer amplitude 
is too high for model (4) to be accurate.  

 

Fig. 2. Synchronization range (SR). Comparison between SAF model 
(7) and simulation in commercial HB software. 

In this paper, the non-synchronized case, i.e. the case of an 
interferer with frequency ௜݂௡ out from the synchronization 
range, will be analyzed. Note that once model (4) is validated 
for a given value of the interferer amplitude, the interferer 
influence will decrease and eventually become negligible as the 
frequency difference |Δ݂| ൌ | ௢݂௦௖ െ ௜݂௡| grows. The narrow-
band noisy or modulated interferer considered in the subsequent 
Sections will introduce small amplitude or frequency 
perturbations, with negligible influence on the model validity. 

III. PHASE NOISE ANALYSIS 

The phase noise is given by the perturbation component of 
the phase variable ߶ሺݐሻ due to the effect of the noise sources 
present in ݅௡ሺݐሻ and ݅௚ሺݐሻ. In the absence of the interferer, 
equation (4) gets simplified and the noise current source ݅௡ሺݐሻ 
produces the same phase noise spectrum as the HB commercial 
software applied to the free-running oscillator. In order to 
calculate the phase noise of the interfered oscillator, in the first 
place the steady-state solution in the absence of interferer 
modulation and noise sources must be analyzed. 

A. Phase dynamics in the absence of interferer modulation and 
noise sources 

In this case, equation (4) represents an autonomous system 
that can be written as: 

 ߶ሶ ൌ Δ߱ ൅ ߶	௦sinܭ ൅ ߶	௖cosܭ ൌ ݃ሺ߶ሻ (8)

with ܭ௖,  ௦ being constant coefficients. The phase shiftܭ
becomes a constant value ߶ ൌ ߶௦, fulfilling ݃ሺ߶௦ሻ ൌ 0, only 
when the free-running frequency synchronizes to the interferer. 
Then, in the more general unsynchronized conditions ݃ሺ߶ሻ ്
0, ∀߶ must be fulfilled, implying that ߶ሺݐሻ grows or decreases 
monotonically. This fact, together with the system autonomy, 
produces an accumulation effect of the numerical error 
associated to the time integration resolution of equation (8). As 
it will be explained in Section III.B, this error may produce 
qualitative changes on the predicted spectrum about the free-
running frequency in the presence of the interferer. To 
overcome this problem, the following procedure is followed. 
Let us assume that ݃ሺ߶ሻ ൐ 0, ∀߶. The case ݃ሺ߶ሻ ൏ 0, ∀߶ is 
symmetric. The time required by the phase variable to pass 
through an arbitrary interval ሾ߶௔, ߶௕ሿ is given by: 

 

ܶሺ߶௔, ߶௕ሻ ൌ න
݀߶
݃ሺ߶ሻ

థೌ

థೌ
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				ൌ ଴ሺ߶௕ݑ െ ߶௔ሻ ൅ ሺ߶௕ሻݍ െ  ,ሺ߶௔ሻݍ
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1

݃ሺ߶ሻ
ൌ ଴ݑ ൅ ,෤ሺ߶ሻݑ ଴ݑ				 ൌ

1
ߨ2

න ߶ሺ߶ሻ݀ݑ
ଶగ

଴
, 

ሺ߶ሻݍ ≡ නݑ෤ሺ߶ሻ݀߶ ሺ߶ሻݍ			, ൌ ߶ሺݍ േ  ሻߨ2

(9)

Note that the ߶-periodic function ݑሺ߶ሻ has been separated 
into its dc component ݑ଴ and the term ݑ෤ሺ߶ሻ fulfilling 

න ߶෤ሺ߶ሻ݀ݑ
ଶగ

଴
ൌ 0 (10) 

From the definition of ݃ሺ߶ሻ, the phase shift fulfills: 

௕ܶ ൌ ܶሺ߶, ߶ ൅ ሻߨ2 ൌ ߨ଴2ݑ ൅ ߶ሺݍ ൅ ሻߨ2 െ ሺ߶ሻݍ ൌ 

           ൌ ,ߨ଴2ݑ ∀߶ 
(11) 

Property (11) implies that ߶ሶ ሺݐሻ is periodic, since: 

 
߶ሶ ሺݐ ൅ ௕ܶሻ ൌ ݃ሾ߶ሺݐ ൅ ௕ܶሻሿ ൌ ݃ሾ߶ሺݐሻ ൅  ሿߨ2

                            ൌ ݃ሾ߶ሺݐሻሿ ൌ ߶ሶ ሺݐሻ 
(12)

Considering (11)-(12), the phase variable can be expressed 
as: 

 ߶ሺݐሻ ൌ ߱௕ݐ ൅ ෍ ௡ܲ݁௝௡ఠ್௧
ே

௡ୀିே

, 				߱௕ ൌ ߨ2 ௕݂ ൌ /ߨ2 ௕ܶ (13)

The components ሼ ௕݂, ܲି ே,… , ேܲሽ 
can be calculated in the 

frequency domain by introducing expression (13) in equation 
(8) and solving the resulting HB system: 

  ߱௕ ൅ ݆݊߱௕ ௡ܲ ൌ ௡ሺܩ തܲ, ߱௕ሻ,				݊ ൌ െܰ,… ,ܰ (14)

where തܲ is the vector containing the harmonic components ௡ܲ 
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and each ܩ௡ is the ݊-th harmonic component of the ௕ܶ-periodic 
signal ݃ሾ߶ሺݐሻሿ. System (14) contains 2ܰ ൅ 1 equations and 
2ܰ ൅ 2 unknowns ሼ ௕݂, തܲሽ. It can be balanced by making use of 
the autonomy of equation (8). Due to this autonomy, solution 
(13) fulfills (8) for any arbitrary constant time shift ߬ of the 
form: 

߶ሺݐ ൅ ߬ሻ ൌ ߱௕ሺݐ ൅ ߬ሻ ൅ ෍ ௡ܲ݁௝௡ఠ್
ሺ௧ାఛሻ

ே

௡ୀିே

ൌ 

ൌ ߱௕ݐ ൅ ෍ ௡ܲሺ߬ሻ݁௝௡ఠ್௧
ே

௡ୀିே

,			 ௡ܲሺ߬ሻ ൌ ൜ ௡ܲ݁௝௡ఠ್ఛ,			݊ ് 0	
଴ܲ ൅ ߱௕߬,			݊ ൌ 0

 

(15)

Then, we can select ߬ to fix ଵܲ
௜ሺ߬ሻ ൌ 0, where the superindex 

݅ means imaginary part. This additional equation is combined 
with system (14) to balance the number of equations and 
unknowns, yielding an algebraic system solvable by a number 
of optimization techniques, like Newton-Raphson. Once the 
unknowns ሼ ௕݂, തܲሽ are calculated, expression (13) is used to 
obtain the process ݒଵሺݐሻ in (2), providing the spectrum nearby 
the interference frequency ௜݂௡. The envelope of this process is 
ଵܺሺݐሻ, which can be expanded in Fourier series as: 

ଵܺሺݐሻ ൎ ଵܸ݁௝థ
ሺ௧ሻ ൌ ଵܸ݁௝ఠ್௧exp ൝ ෍ ݆ ௡ܲ݁௝௡ఠ್௧

ே

௡ୀିே

ൡ ൌ 

																	ൌ ෍ ଵܺ
௞݁௝௞ఠ್௧

ெ

௞ୀିெ

 

(16)

where expression (13) has been applied. Then, the spectrum of 
 :ሻ has the formݐଵሺݒ

 
ሻݐଵሺݒ ൌ ଵܺሺݐሻ݁௝ఠ೔೙௧ ൌ ෍ ଵܺ

௞݁௝ఠೖ௧
ெ

௞ୀିெ

, 

																߱௞ ൌ ߨ2 ௞݂ ൌ ሺߨ2 ௜݂௡ ൅ ݇ ௕݂ሻ 

(17)

Equation (17) implies that ݒଵሺݐሻ is a multi-tone signal 
containing the components ଵܺ

௞ at the intermodulation 
frequencies ௞݂ ൌ ௜݂௡ ൅ ݇ ௕݂. For this reason, ௕݂ will be called 
the beat frequency. The oscillator free-running frequency is 
pulled from ௢݂௦௖ to ௢݂௦௖

ᇱ ≡ ଵ݂ ൌ ௜݂௡ ൅ ௕݂. This theoretical result 
has been verified for the case of an interferer with amplitude 
௚ܫ ൌ 	0.2 mA and frequency ௜݂௡ ൌ ௢݂௦௖ ൅ 10 MHz. In the first 
place, the unknowns ሼ ௕݂, തܲሽ have been calculated by solving 
system (14) with ܰ ൌ	5 harmonics, together with the additional 
equation ଵܲ

௜ ൌ	0. Then, the phase shift ߶ሺݐሻ has been properly 
sampled and introduced in the function ଵܺሺݐሻ ൎ ଵܸ݁௝థ

ሺ௧ሻ to 
obtain ܯ ൌ	10 coefficients ଵܺ

௞ of the Fourier series (16) at the 
frequencies ݇ ௕݂. 

The spectrum in Fig. 3 contains the frequency components of 
the interfered oscillator spectrum at ௞݂ ൌ ௜݂௡ ൅ ݇ ௕݂, with ௜݂௡ 
and ௕݂ being the interferer and beat frequencies, respectively. 
In the SAF the value of the beat frequency ௕݂ is calculated 
through numerical resolution of system (14). For comparison, 
the spectrum of the time-varying first harmonic component 
ଵܺሺݐሻ has been obtained in HB commercial software using the 

envelope transient technique [21-23]. The beat frequency ௕݂ 

calculated through both techniques may differ slightly due to 
fact that the envelope-transient method takes into account the 
interferer effect at all the harmonic terms ݍ ௜݂௡ with െܳ ൑ ݍ ൑
ܳ, and the SAF only takes into account the interferer effect at 
the fundamental frequency ௜݂௡. This discrepancy becomes more 
evident for the high-order components ݂ ௞ ൌ ௜݂௡ ൅ ݇ ௕݂, as ݇  gets 
increased. In this figure, the harmonic components ଵܺ

଴ and ଵܺ
ଵ 

corresponding respectively to the interferer and the free-
running component are indicated. Observe that the free-running 
frequency has been pulled from its unperturbed value ௢݂௦௖ ൌ
௜݂௡ െ	10 MHz to ௢݂௦௖

ᇱ ≡ ଵ݂ ൌ ௜݂௡ ൅ ௕݂, with ௕݂ ൎ െ8 MHz. 
Note that the frequency pulling phenomenon can be observed 
even in the presence of a small amplitude interferer, provided 
that the frequency difference | ௜݂௡ െ ௢݂௦௖| is small enough, as 
demonstrated in [1]. 

The frequency domain technique (13)-(14) represents a 
significant advance from previous work [14], where equation 
(8) was solved through a time integration technique. Apart from 
avoiding the already mentioned accumulation of numerical 
error, the new method is less computationally costly due to the 
small number of unknowns ሼ ௕݂, തܲሽ to be calculated.  

Note that in the case of a phase-locked loop (PLL) or an 
injection-locked oscillator the situation would be different. In 
those cases, the admittance function ܻ in (3) has a dependence 
on the amplitude and phase components of the reference or 
external generator signal [16, 24]. This dependence removes the 
system autonomy of the interfered system quasi-periodic 
solution. Therefore, the interfered system does not remain 
invariant under phase shifts, providing different phase noise 
results than the autonomous case, which will be the one 
analyzed here.  

 

Fig. 3. Spectrum of the first harmonic component ଵܺሺݐሻ of the drain 
voltage ݒሺݐሻ in the presence of an interferer with ܫ௚ ൌ 	0.2 mA and 
∆݂ ൌ െ10 MHz. 

B. Phase perturbation due to the noise sources 

Let ߶ሺݐሻ ൌ ߶଴ሺݐሻ be the phase shift in absence of noise 
sources. The interferer phase noise will be modeled by the input 
source time-varying phase ߰ሺݐሻ, considered as a small 
amplitude stochastic process, whereas its amplitude ܫ௚ remains 
constant. The noisy components introduced by the local sources 
and the interferer perturb the steady state ߶଴ሺݐሻ in the form 
߶ሺݐሻ ൌ ߶଴ሺݐሻ ൅ Δ߶ሺݐሻ. Provided Δ߶ሺݐሻ is small, equation (4) 
can be linearized about ߶଴ሺݐሻ obtaining: 
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								Δ߶ሶ ሺݐሻ ൌ ܾ଴ሺݐሻሾΔ߶ሺݐሻ െ ߰ሺݐሻሿ ൅  	,ሻݐሺߝ

		ܾ଴ሺݐሻ ≡
݀݃ሾ߶଴ሺݐሻሿ

݀߶
ൌ ሻݐ߶଴ሺ	௦sinܭ ൅  ሻݐ߶଴ሺ	௖cosܭ

(18)

Equation (18) shows that the phase perturbation is governed by 
a linear time-variant (LTV) stochastic differential equation 
determined by the ௕ܶ-periodic function ܾ଴ሺݐሻ and the noise 
sources ߝሺݐሻ and ߰ሺݐሻ. Here, this equation will be solved by 
means of a time-frequency formulation, expressing the 
variables in a Fourier series with fundamental frequency ௕݂, in 
terms of time-varying harmonic components. Following this 
procedure, the term of local noise sources ߝሺݐሻ is expressed as 
[25]:  

ሻݐሺߝ			 ൌ ሻݐ௪ሺߝ ൅ 〈∗ଶሻݐ௪ሺߝଵሻݐ௪ሺߝ〉				,ሻݐ௖ሺߝ ൌ Γߜሺݐଵ െ  ,ଶሻݐ

ሻݐ௪ሺߝ			 ൌ ෍ ሻ݁௝௡ఠ್௧ݐ௡ሺܧ
ே

௡ୀିே

, 

ሻൌනݐ௡ሺܧ			 			,௡ሺ݂ሻ݁௝ଶగ௙௧݂݀ܧ
ࣜ/ଶ

ିࣜ/ଶ
௟ܧ௞ሺ݂ሻܧ〉	

∗ሺ݂ሻ〉 ൌ
Γ
2ܰ

௞ߜ
௟  

(19)

where ߜ௞
௟  is the Kronecker delta, ߝ௪ሺݐሻ and ߝ௖ሺݐሻ represent 

respectively the contributions of the local white and colored 
noise sources, and ܧ௡ሺݐሻ, ߰ሺݐሻ and ߝ௖ሺݐሻ are uncorrelated base-
band stochastic processes with bandwidth ࣜ. The structure of 
the PSD function 〈|ߝ௖ሺ݂ሻ|ଶ〉 depends on the type of colored 
sources present in the circuit. Due to the structure of the noise 
sources, the phase perturbation is a cyclo-stationary process that 
can be expressed as: 

Δ߶ሺݐሻ ൌ ෍ Θ௡ሺݐሻ݁௝௡ఠ್௧
ே

௡ୀିே

, 

Θ௡ሺݐሻ ൌ න Θ௡ሺ݂ሻ݁௝ଶగ௙௧
ࣜ/ଶ

ିࣜ/ଶ
݂݀ 

(20)

where each time-varying harmonic Θ௡ሺݐሻ is a base-band 
process with bandwidth ࣜ. Introducing expression (20) in 
equation (18) and equating the terms that correspond to the 
same harmonic order the following linear time-invariant (LTI) 
system of stochastic differential equations is obtained: 

݆݊߱௕Θ௡ሺݐሻ ൅ Θሶ ௡ሺݐሻ ൌ ෍ ሻݐ௡ି௟Θ௟ሺܤ
ே

௟ୀିே

െ ሻݐ௡߰ሺܤ ൅ 

																														൅ܧ௡ሺݐሻ ൅ ݊								,ሻݐ௖ሺߝ௡଴ߜ ൌ െܰ,…ܰ 

(21)

with each ܤ௡ being the harmonic component of ܾ଴ሺݐሻ at the 
frequency ݊ ௕݂. These harmonics can be numerically obtained 
through equation (18) from the components ሼ ௕݂, തܲሽ. The noisy 
process ݒଵሺݐሻ is obtained by introducing expression (20) in 
expansion (16): 

ଵܺሺݐሻ ൌ exp ൝ ෍ Θ௡ሺݐሻ݁௝௡ఠ್௧
ே

௡ୀିே

ൡ ෍ ଵܺ
௞݁௝௞ఠ್௧

ெ

௞ୀିெ

ൌ 

										ൌ exp ൝෍Θ௡ሺݐሻ݁௝௡ఠ್௧

௡ஷ଴

ൡ ෍ ଵܺ
௞݁௝ሾ௞ఠ್௧ା஀బሺ௧ሻሿ

ெ

௞ୀିெ

ൎ 

											ൎ ෍ ଵܺ
௞ሺݐሻ݁௝௞ఠ್௧, ଵܺ

௞ሺݐሻ ൌ ଵܺ
௞݁௝௵బሺ௧ሻ

ெ

௞ୀିெ

 

(22)

where high order terms in the perturbation harmonics Θ௡ሺݐሻ 
have been neglected. Equation (22) shows that the harmonic 
components ଵܺ

௞ሺݐሻ become time varying due to the effect of the 
noise sources. In particular, the phase noise about ௢݂௦௖

ᇱ ≡ ଵ݂ is  
given by the PSD ଵܵሺ݂ሻ of the normalized process ଵܺ

ଵሺݐሻ/
| ଵܺ

ଵ| ൌ ݁௝௵బሺ௧ሻ [7, 18, 25-27]. As stated in [18, 26, 28], far 
enough from the carrier, the PSD  ଵܵሺ݂ሻ can be approached by 
the second order moment 〈|Θ଴ሺ݂ሻ|ଶ〉. This moment is obtained 
by translating system (21) to the frequency domain. Assuming 
small interferer amplitude, harmonic components ܤ௡ with |݊| ൐
1 are neglected, obtaining the system: 

ሺെߨ2݆ ௕݂ ൅ ݂ሻΘିଵሺ݂ሻ ൌ ଵΘ଴ሺ݂ሻିܤ െ ଵ߰ሺ݂ሻିܤ ൅  ,ଵሺ݂ሻିܧ

Θ଴ሺ݂ሻ݂ߨ2݆ ൌ ଵΘଵሺ݂ሻିܤ ൅ ଴Θ଴ሺ݂ሻܤ ൅ ଵΘିଵሺ݂ሻܤ ൅ 

																																																൅		ߝ௖ሺݐሻ ൅ ଴ሺ݂ሻܧ െ  ,଴߰ሺ݂ሻܤ

ሺߨ2݆ ௕݂ ൅ ݂ሻΘଵሺ݂ሻ ൌ ଵΘ଴ሺ݂ሻܤ െ ଵ߰ሺ݂ሻܤ ൅  ଵሺ݂ሻܧ

(23)

The second equation of system (23) shows that the direct 
conversion between the interferer phase noise ߰ሺݐሻ and Θ଴ሺݐሻ 
is due to the harmonic component ܤ଴. In unsynchronized 
conditions, this component can be calculated as: 

଴ܤ ൌ
1

௕ܶ
න ܾ଴ሺݐሻ݀ݐ
்್

଴
ൌ
1

௕ܶ
න

݀݃ሾ߶଴ሺݐሻሿ

݀߶
ݐ݀ ൌ

்್

଴
 

						ൌ
1

௕ܶ
න

݀݃
݃

௚ሺ்್ሻ

௚ሺ଴ሻ
ൌ
1

௕ܶ
log

݃ሺ ௕ܶሻ
݃ሺ0ሻ

ൌ
1

௕ܶ
log

߶ሶ଴ሺ ௕ܶሻ

߶ሶ଴ሺ0ሻ
ൌ 0 

(24) 

where ݃ ൌ ߶ሶ଴ has been applied. Consequently, there is no 
direct conversion from the interferer phase noise ߰ሺݐሻ to Θ଴ሺݐሻ. 
This is a key result that is in contrast with the synchronized 
case, where ߶଴ becomes constant and ܾ଴ሺݐሻ in (18) agrees with 
its dc value ܤ଴. The application of the property ܤ଴ ൌ 0 to 
system (23) allows, after some algebra, the extraction of the 
following intuitive equation that models the phase noise at the 
pulled free-running frequency in the presence of the interferer: 

〈|Θ଴ሺ݂ሻ|ଶ〉ൎ ቈ
ߙ

ଶሺ݂ଶߨ൅4ߙ െ ௕݂
ଶሻ
቉
ଶ

〈|߰ሺ݂ሻ|ଶ〉 ൅
〈ሺ݂ሻ|ଶߝ|〉

ଶ݂ଶߨ4
 (25) 

where ߙ ൌ  ଵ|ଶ acts as a sensitivity coefficient thatܤ|2
determines the influence of the interferer phase noise, ݂ is the 
frequency offset from the carrier at ଵ݂ ൌ ௢݂௦௖

ᇱ  and the second 
term is the oscillator’s own phase noise. Equation (25) is valid 
for large enough values of the frequency offset ݂. In order to 
obtain equation (25) small interferer amplitude has been 
assumed. In other cases, system (21) should be translated to the 
frequency domain considering a higher number ܰ of harmonic 
coefficients ܤ௡. In the absence of an interferer ߙ becomes zero 



and equation (25) agrees with the free-running oscillator phase 
noise. The introduction of the interferer provides ߙ ൐ 0, 
increasing the level of the phase noise characteristic, since it 
adds a term proportional to the interferer phase noise. The 
interferer influence is most noticeable when its phase noise 
characteristic is higher than that of the free-running oscillator. 
In that case, equation (25) predicts that the phase noise 
characteristic about ௢݂௦௖

ᇱ  is pulled towards the interferer phase 
noise curve. This behavior has been verified in Fig. 4, where the 
measured phase noise spectrum and the one predicted by 
equation (25) (SAF) have been compared. In the measurement, 
the Direct Spectrum Technique has been applied, using the 
phase noise measurement personality in an Agilent PSA 
Spectrum Analyzer E4446A (option 226).The resolution 
bandwidth and video bandwidth of the measured spectra is 
RBW = 10 kHz and VBW = 10 kHz (respectively). For the 
analysis, an interferer with ௜ܲ௡ ൌ െ29 dBm and ௜݂௡ ൌ ௢݂௦௖ ൅ 3 
MHz has been introduced. Due to the pulling effect, the 
oscillation frequency is shifted to ௢݂௦௖

ᇱ ൌ ௜݂௡ െ ௕݂, with ௕݂ ൎ 2 
MHz. The interferer is not represented. Instead, its measured 
phase noise from zero offset frequency is traced for 
comparison. As predicted by (25), the oscillator phase noise is 
pulled to that of the interferer. Equation (25) also demonstrates 
a resonance effect, with maximum phase noise at an offset 
frequency about ௕݂. Note that the singularity predicted by (25) 
at ௕݂ is fully consistent with the presence of a steady-state 
spectral line at ଶ݂ ൌ ௢݂௦௖

ᇱ ൅ ௕݂. In the measurement, several 
resonances at frequency offsets ݇ ௕݂ for ݇ ൐ 1 are observed, 
corresponding to the intermodulation components ଵܺ

௞ of the 
interfered spectrum predicted in Section III.A. In order to obtain 
an intuitive result, in the derivation of equation (25) only the 
terms ܤ௞ up to ݇ ൌ 1 have been considered. Therefore, only the 
first resonance at ௕݂ can be predicted. The rest of resonances 
could be obtained by considering the corresponding coefficients 
݇ ௞ forܤ ൐ 1 when translating system (21) to the frequency 
domain. 

Note that the key property (24) has enabled the prediction of 
a phase noise spectrum which is qualitatively different to that 
of the synchronized case, where the phase noise characteristic 
agrees with that of the interferer up to a frequency offset from 
the carrier [5]. The result ܤ଴ ൎ 0 is numerically obtained when 
using ߶଴ሺݐሻ calculated from the frequency domain technique 
(13)-(14), while this result is often unobserved when solving 
equation (8) through time integration, due to the cumulative 
numerical error. 

 

Fig. 4. Phase noise in the presence of an interferer with ௜ܲ௡ ൌ െ29 
dBm and ݂݅݊ ൌ ܿݏ݋݂ ൅ 3 MHz. The phase noise characteristic about 

௢݂௦௖
ᇱ  is pulled towards the interferer phase noise characteristic and noise 

resonances appear at ݇ ௕݂ frequency offsets. 

Table I shows that, as expected from the theoretical analysis, 
the interfered oscillator measured phase noise is pulled towards 
that of the interferer as ௜ܲ௡ increases. The measurements have 
been compared with the results of equation (25).  

TABLE I 
PHASE NOISE @ 1 MHZ VERSUS INTERFERER POWER 

௜ܲ௡ Phase noise prediction (25) Measured phase noise 

-29 dBm -119.7 dBc/Hz -119 dBc/Hz 
-28 dBm -115.45 dBc/Hz -117 dBc/Hz 

-24 dBm -115 dBc/Hz -115 dBc/Hz 

IV. ANALYSIS OF THE EFFECT OF THE INTERFERER 

MODULATION 

A. Phase modulation 

In this Section, the influence of a phase-modulated (PM) 
interferer on the free-running oscillation will be analyzed. The 
modulation signal is modeled by the input source time-varying 
phase ߰ሺݐሻ, considered as a stochastic process, whereas the 
amplitude component ܫ௚ is fixed to a constant value. As a 
difference from the previous phase noise analysis, in this case 
the magnitude of ߰ሺݐሻ is not always small, and therefore 
linearization (18) is not applicable. In the presence of the 
interferer phase modulation, equation (4) becomes: 

 
߶ሶ ൌ Δ߱ ൅ ߶௦sinሾܭ െ ߰ሺݐሻሿ ൅ ߶௖cosሾܭ െ ߰ሺݐሻሿ ≡ 

									≡ ݃ሾ߶ െ ߰ሺݐሻሿ 
(26)

In order to study the modulation effect, the components 
corresponding to the noise sources have been removed from 
(26). In the following technique, these components can be 
included to analyze the noise-modulation combined effect, in a 
straightforward way.  

In the case that the modulation signal ߰ሺݐሻ contains 
frequency components of the order of ௕݂, equation (26) can be 
directly solved through time integration, as it has been done in 
[14] using a less elaborate SAF. Nevertheless, that method may 
become computationally demanding when the modulation 
signal ߰ሺݐሻ is a narrow-band process with bandwidth ࣜ ≪ ௕݂. 
In such cases, the use of time-frequency methods is advisable 
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[21-23]. Here, the solution ߶ሺݐሻ to equation (26) has been 
expressed considering that the process ߰ሺݐሻ modulates the 
components ሼ ௕݂, തܲሽ in (13). These components are narrow band 
processes whose time variation is slow when compared with 
௕ܶ ൌ 1/ ௕݂: 

 							߶ሺݐሻ ൌ ߱௕ሺݐሻݐ ൅ ෍ ௡ܲሺݐሻ݁௝௡ఠ್
ሺ௧ሻ௧

ே

௡ୀିே

 (27)

with ߱௕ሺݐሻ ൌ ߨ2 ௕݂ሺݐሻ. Introducing expression (27) in equation 
(16), the spectrum in the presence of a PM interferer is obtained: 

 			 ଵܺሺݐሻ ൎ ଵܸ݁௝థ
ሺ௧ሻ ൌ ෍ ଵܺ

௞ሺݐሻ݁௝௞ఠ್బ௧
ெ

௞ୀିெ

 (28)

with ߱௕଴ being the beat frequency in absence of modulation 
ሺ߰ ൌ 0ሻ. The harmonic components ଵܺ

௞ሺݐሻ become time 
varying due to the effect of the modulation signal. In particular, 
as stated in the previous Section, the PM spectrum about the 
oscillation frequency ௢݂௦௖

ᇱ ≡ ଵ݂ is given by the term ଵܺ
ଵሺݐሻ. To 

obtain this term, in the first place, a quasi-static analysis of the 
effect of the narrow-band PM interferer on the phase shift ߶ሺݐሻ 
will be carried out. Using this analysis, the expression of ଵܺ

ଵሺݐሻ 
in terms of the time-varying components ሼ ௕݂ሺݐሻ, തܲሺݐሻሽ will be 
obtained. Finally, a technique to simulate these components 
will be derived. 

1) Quasi-static approach 

To illustrate the effect of the PM interferer on the oscillation 
component ଵܺ

ଵሺݐሻ, the case of a step phase modulation signal 
has been considered. In this case, the process ߰ሺݐሻ is given by 
the deterministic signal:  

 ߰ሺݐሻ ൌ ൜
ݐ											,0	 ൏ ௦ݐ
߰ଵ, ݐ ൒ ௦ݐ

 (29)

To clarify the effect of the step modulation, the evolution of 
the system trajectory in the phase-space ሺ߶, ߶ሶ ሻ	has been shown 
in Fig. 5(a). For ݐ ൏  ௦, the trajectory lies on the curveݐ
ሺ߶, ݃ሺ߶ሻሻ, and the time domain expression for the phase 
variable is given by equation (13): 

߶ሺݐሻ ≡ ߶଴ሺݐሻ ൌ ߱௕଴ݐ ൅ ଴ܲ ൅෍ ௡ܲ݁௝௡ఠ್బ௧

௡ஷ଴

, ݐ ൏  ௦ (30)ݐ

At ݐ ൌ ,߶௦ the trajectory jumps to the curve ሺݐ ݃ሺ߶ െ ߰ଵሻሻ. 
The time domain expression for the phase variable beyond this 
point is: 

߶ሶ ൌ ݃ሺ߶ െ ߰ଵሻ → 	߶ሺݐሻ ≡ ߶ଵሺݐሻ ൌ ߶଴ሺݐ ൅ ߬ሻ ൅ ߰ଵ ൌ 

																	ൌ ߱௕଴ݐ ൅ ଴ܲሺ߬ሻ ൅ ߰ଵ ൅෍ ௡ܲሺ߬ሻ݁௝௡ఠ್బ௧

௡ஷ଴

 
(31)

where ߬ is a constant time shift due to the system autonomy 
and with ௡ܲሺ߬ሻ defined in (15). When compared to expression 
(30), equation (31) shows that the effect of the step PM is to 
shift the phase of the components ௡ܲ for ݊ ് 0 and to make the 
amplitude of the dc component jump from ଴ܲ to ଴ܲሺ߬ሻ ൅ ߰ଵ. 
The order of magnitude of this jump can be bounded by 
applying the continuity property at ݐ ൌ  :௦ݐ

߶଴ሺݐ௦ሻ ൌ ߶ଵሺݐ௦ሻ → |Δ ଴ܲ| ൌ | ଴ܲሺ߬ሻ ൅ ߰ଵ െ ଴ܲ| ൌ 

									ൌ อ෍ ௡ܲ݁௝௡ఠ್௧ೞሺ1 െ ݁௝௡ఠ್ఛሻ
௡ஷ଴

อ ൑ 2෍| ௡ܲ|
௡ஷ଴

 
(32)

Equation (32) shows that the phase jump |Δ ଴ܲ| due to an 
arbitrary modulation step is limited by the amplitude 
components | ௡ܲ|. The amplitude of the components ௡ܲ for ݊ ്
0 is directly proportional to the interferer power. Therefore, in 
the case of a low power interferer, |Δ ଴ܲ| will remain small for 
any arbitrary value ߰ଵ of the step PM. In the following, these 
results will be applied to obtain an expression of the modulated 
harmonic component ଵܺ

ଵሺݐሻ at the oscillation frequency. 

 

Fig. 5. Quasi-static approach. Effect of the step interferer on the 
evolution of the system trajectory in the phase-space. 

2) Effect of the PM interferer at the oscillation frequency  

The multi-tone spectrum in the vicinity of the oscillation 
frequency ௢݂௦௖

ᇱ  is obtained as in (16) from the time varying 
harmonic component ଵܺሺݐሻ which, in the presence of a PM 
interferer, becomes: 

			 ଵܺሺݐሻ ൎ ଵܸ݁௝ఠ್
ሺ௧ሻ௧exp ൝ ෍ ݆ ௡ܲሺݐሻ݁௝௡ఠ್

ሺ௧ሻ௧

ே

௡ୀିே

ൡ ൌ 

				ൌ ଵܸ݁௝
ሾఠ್ሺ௧ሻ௧ା௉బሺ௧ሻሿexp ൝෍ ݆ ௡ܲሺݐሻ݁௝௡ఠ್

ሺ௧ሻ௧

௡ஷ଴

ൡ ൌ 

				ൌ ଵܸ݁௝
ሾఠ್ሺ௧ሻ௧ା௉బሺ௧ሻሿ ൅ ܱሺߙሻ,			ߙ ൌ ෍݆ ௡ܲሺݐሻ݁௝௡ఠ್

ሺ௧ሻ௧

௡ஷ଴

 

(33)

where expression (27) for the phase shift ߶ሺݐሻ has been 
applied. In equation (33), the signal ଵܺሺݐሻ is generated by the 
addition of two terms. Comparing this result with equation (28) 
it is seen that the first term ଵܸ݁௝

ሾఠ್ሺ௧ሻ௧ା௉బሺ௧ሻሿ is contributes 
entirely to ଵܺ

ଵሺݐሻ. The second term ܱሺߙሻ produces PM 
harmonic components at ௞݂, for ݇ ൌ െܯ,…  Derivation .ܯ,
(29)-(31) showed that the amplitudes of the components ௡ܲ for 
݊ ് 0 remain small for a narrow band low power PM interferer. 
Then, the contribution of ܱሺߙሻ to the term ଵܺ

ଵሺݐሻ can be 
neglected, obtaining: 

ଵܺ
ଵሺݐሻ ൎ ଵܸ݁௝ఝ

ሺ௧ሻ,			߮ሺݐሻ ൌ ሾ߱௕ሺݐሻ െ ߱௕଴ሿݐ ൅ ଴ܲሺݐሻ (34) 
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Approximation (34) shows that the PM interferer modulates the 
phase ߮ሺݐሻ of the harmonic component ଵܺ

ଵ at the oscillation 
frequency ௢݂௦௖

ᇱ . Note that, in the previous quasi-state analysis, 
the effect of a step phase modulation of arbitrary magnitude ߰ଵ 
on the oscillation phase is: 

 Δ߮ ൌ ଴ܲሺ߬ሻ ൅ ߰ଵ െ ଴ܲ ൌ Δ ଴ܲ (35)

where |Δ ଴ܲ| is limited by the small amplitude components | ௡ܲ|, 
as described in (32). Considering this case as a quasi-static 
approximation of a narrow band PM interferer, result (35) 
suggests that such modulation will produce a small perturbation 
on the phase ߮ ሺݐሻ. In order to verify this effect, in the following, 
a technique to simulate the time-varying phase ߮ሺݐሻ in the 
presence of the PM interferer will be derived. 

3) Time-frequency simulation technique 

In the first place, the function ߶ሺݐሻ in the presence of a 
narrow band PM interferer is expressed in terms of a bi-variate 
function: 

 

							߶ሺݐሻ ൌ ߶෠ሺݐ,  ,ሻݐ

߶෠ሺݐଵ, ଶሻݐ ൌ ߱௕ሺݐଵሻݐଶ ൅ ෍ ௡ܲሺݐଵሻ݁௝௡ఠ್
ሺ௧భሻ௧మ

ே

௡ୀିே

 
(36)

with ߱ ௕ሺݐଵሻ ൌ ߨ2 ௕݂ሺݐଵሻ ൌ /ߨ2 ௕ܶሺݐଵሻ and the time variables ݐଵ 
and ݐଶ representing the slow and fast scales, respectively. 
Applying the same procedure to the nonlinear function 
݃ሾ߶ െ ߰ሺݐሻሿ in (26) we obtain: 

 

								݃ሾ߶ െ ߰ሺݐሻሿ ൌ ݃ሺݐሻ ൌ ො݃ሺݐ,  ,ሻݐ

ො݃ሺݐଵ, ଶሻݐ ൌ Δ߱ ൅ ,ଵݐ௦sinൣ߶෠ሺܭ ଶሻݐ െ ߰ሺݐଵሻ൧ ൅ 

																								൅ܭ௖cosൣ߶෠ሺݐଵ, ଶሻݐ െ ߰ሺݐଵሻ൧ 

(37)

In  [7, 22] the method to obtain the equation governing the 
bi-variate process ߶෠ሺݐଵ,  ଶሻ associated with a generic ordinaryݐ
differential equation (ODE) is derived. When applying this 
derivation to equation (26), the following Partial Differential 
equation (PDE) is obtained: 

 
߲߶෠ሺݐଵ, ଶሻݐ

ଵݐ߲
ቤ
௧భୀ௧మ

൅
߲߶෠ሺݐଵ, ଶሻݐ

ଶݐ߲
ቤ
௧భୀ௧మ

ൌ ො݃ሺݐଵ, ଶሻ|௧భୀ௧మ (38)ݐ

In order to get the equation associated to the slow time scale 
,ଵݐଵ, function ො݃ሺݐ  :ଶሻ is expressed asݐ

 ො݃ሺݐଵ, ଶሻݐ ൌ ෍ ଵሻ݁௝௡ఠ್ݐ௡ሺܩ
ሺ௧భሻ௧మ

ே

௡ୀିே

 (39)

Now, introducing expressions (36), (37) and (39) in (38) and 
equating the terms that correspond to the same harmonic order 
the following system of first-order ODEs is obtained: 

ሾ߱௕ሺݐଵሻ ൅ ሶ߱ ௕ሺݐଵሻݐଵሿሾ݆݊ ௡ܲሺݐଵሻ ൅ ௡଴ሿߜ ൅ ሶܲ௡ሺݐଵሻ ൌ ଵሻ (40)ݐ௡ሺܩ

with ݊ ൌ െܰ,… ,ܰ. The set ሼ ௕݂, തܲሽ containing 2ܰ ൅ 2 
components is the set of state variables of system (40). In 
accordance with analysis (15), the additional equation ଵܲ

௜ ൌ 0 
is included to balance the number of equations and variables. 
System (40) can be solved through Backward-Euler time-

integration. Using this technique, the ODEs in (40) are 
discretized at each time value ݐଵ, providing an algebraic system 
of the form: 

௡ሾܪ  ௕݂ሺݐଵሻ, ௡ܲሺݐଵሻሿ ൌ ,ଵሻݐ௡ሺܩ ݊ ൌ െܰ,… , ܰ (41)

where the unknowns ௕݂ሺݐଵሻ, തܲሺݐଵሻ must be solved for each ݐଵ. 
The components ܩ௡ሺݐଵሻ are calculated in three steps: 
a) The function ߶෠ሺݐଵ, ଶሻ is constructed from ሼݐ ௕݂ሺݐଵሻ, തܲሺݐଵሻሽ as 

indicated in equation (36). The time variable ݐଶ takes 2ܰ ൅
1 equally spaced samples in the interval ሾ0, ௕ܶሺݐଵሻሿ. 

b) The function ො݃ሺݐଵ, ,ଵݐଶሻ is constructed from ߶෠ሺݐ  ଶሻ as inݐ
equation (37). 

c) The harmonic components ܩ௡ሺݐଵሻ are calculated as: 

 ሼܩ௡ሺݐଵሻሽ௡ୀିேே ൌ ௧࣠మሼ ො݃ሺݐଵ, ଶሻሽ (42)ݐ

with the operator ࣠ ௧మ representing the Fast Fourier Transform 
(FFT) in the ݐଶ variable. Once system (40) is solved, the set of 
state variables ሼ ௕݂ሺݐሻ, തܲሺݐሻሽ is introduced in equation (35) to 
obtain the slow varying phase ߮ሺݐሻ providing the phase 
modulation at the oscillation frequency ௢݂௦௖

ᇱ . This technique has 
been applied to simulate the effect of a sinusoidal PM interferer 
with with ௜ܲ௡ ൌ െ25 dBm, Δ݂ ൌ െ3.6 MHz. The modulation 
frequency and index are  ௠݂ ൌ 100 kHz and ∆߰௠ ൌ 0.3 rad, 
respectively. In Fig. 6, the simulated and measured spectra of 
the PM interferer and the harmonic component ܺ ଵ

ଵሺݐሻ have been 
compared. The resolution bandwidth and video bandwidth of 
the measured spectra is RBW = 10 kHz and VBW = 10 kHz 
(respectively).  

As predicted by the quasi-static analysis, the sideband 
components about ݂ ௢௦௖

ᇱ  due to the PM are highly attenuated with 
respect of those of the interferer. If these sidebands are too 
small, their observation in the measured spectrum can be tricky 
due to the noisy spectrum. 

 

Fig. 6.  Comparison between the simulated and measured spectra of 
the sinusoidal PM interferer and the harmonic component ଵܺ

ଵሺݐሻ. An 
interferer with ܲ ௜௡ ൌ െ25 dBm, Δ݂ ൌ െ3.6 MHz has been introduced. 
The modulation frequency and index are  ݂݉ ൌ 100 kHz and ∆߰ ൌ
0.3 rad, respectively 

In the analysis of Fig. 6, the simulation technique predicts a 
12 dB attenuation of the PM sidebands, whereas in the 
measurement 17 dB attenuation is observed. The discrepancy 
in the PM case is attributed to a combination of several facts. 
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The phase perturbation due to the phase-modulated interferer is 
simulated by integrating the envelope transient equation (40) in 
the slow time scale ݐଵ. The oscillation is not phase-locked to the 
interferer. This means that system (26) is autonomous and 
therefore, for each time value, it remains invariant under a 
perturbation along a particular direction of the space ሺ߶, ߶ሶ ሻ. As 
a consequence, the possible components of the numerical noise 
along this direction are accumulated, generating discrepancies. 
As observed in Fig. 8, these discrepancies are much smaller in 
the AM modulation case, where no numerical integration is 
required.  

B. Amplitude modulation 

The case of an amplitude modulated (AM) interferer will be 
analyzed by expressing the equivalent current source ݅ ௚ሺݐሻ as in 
(1), with the amplitude ܫ௚ሺݐሻ being a narrow-band process 
modeling the AM. Without loss of generality, in the absence of 
PM the interferer phase ߰ሺݐሻ can be set to zero. As a result, 
equation (4) becomes: 

 ߶ሶ ൌ Δ߱ ൅ ߶	sin	ሻݐ௦ሺܭ ൅ ߶ (43)	cos	ሻݐ௖ሺܭ

The phase shift ߶ሺݐሻ can be expressed using structure (13) 
with the components ሼ ௕݂, തܲሽ being modulated by the interferer 
amplitude ܫ௚ሺݐሻ: 

 
									߶ሺݐሻ ൌ ߱௕ሺݐሻݐ ൅ ෍ ௡ܲሺݐሻ݁௝௡ఠ್ሺ௧ሻ௧

ே

௡ୀିே

 

	߱௕ሺݐሻ ൌ ߨ2 ௕݂ൣܫ௚ሺݐሻ൧, ௡ܲሺݐሻ ൌ ௡ܲൣܫ௚ሺݐሻ൧ 

(44)

Assuming that the interferer amplitude ܫ௚ሺݐሻ remains small, 
approximation (33)-(34) is applicable to obtain the term ଵܺ

ଵሺݐሻ 
providing the component at the oscillation frequency. Note that, 
as a difference from the case of the PM interferer, in this case 
the magnitude of the resulting phase modulation ߮ሺݐሻ at the 
oscillation frequency is not limited by condition (32). The time 
evolution of the phase shift ߶ሺݐሻ can be simulated for a 
realization of ܫ௚ሺݐሻ using the technique described in Section 
IV.A.3 and then calculate the term ଵܺ

ଵሺݐሻ from equation (34) to 
obtain the spectrum ଵܺ

ଵሺ݂ሻ about the oscillation frequency ௢݂௦௖
ᇱ .  

Deeper insight on the effect of the AM interferer can be 
gained by taking into account that, in the case of a narrow-band 
AM interferer, the phase modulation ߮ሺݐሻ in (34) produces a 
spurious frequency modulation (FM) of the oscillation 
component that can be approximated by:  

 

ሶ߮ ሺݐሻ ൎ ߱௕ൣܫ௚ሺݐሻ൧ െ ߱௕଴ → 

																										→ ߮ሺݐሻ ൎ න ߱௕ൣܫ௚ሺݏሻ൧݀ݏ െ ߱௕଴ݐ
௧

଴
 

(45)

with ߱௕଴ being the beat frequency value for a given arbitrary 
value ܫ௚଴ of the interferer amplitude. In (45) the contribution of 
the terms ሶ߱ ௕ሺݐሻ and ሶܲ଴ሺݐሻ to ሶ߮ ሺݐሻ have been neglected. This is 
because, due to the system autonomy, the beat frequency 

௕݂ൣܫ௚ሺݐሻ൧ may vary freely with the interferer amplitude whereas 
߱௕ሺݐሻ and ଴ܲሺݐሻ are slow-varying signals whose time 
derivatives are comparatively small. The function ݂ ௕൫ܫ௚൯ can be 
easily calculated with the frequency domain technique 

described in Section III. This function has been represented Fig. 
7 for the case of an interferer with Δ݂ ൌ െ3.6 MHz. For the 
analysis, system (14) has been solved with ܰ ൌ	5 harmonics. 

 

Fig. 7.  Variation of the beat frequency ௕݂൫ܫ௚൯ for an interferer at ݂ ௜௡ ൌ

௢݂௦௖ ൅ 3.6 MHz.  

In order to compare the effect of AM and PM interferers, the 
function ௕݂൫ܫ௚൯ of Fig. 7 has been used to analyze the FM 
produced at the oscillation frequency by a sinusoidal AM 
interferer of the form: 

ሻݐ௚ሺܫ  ൌ ௚଴ܫ ൅ Δܫ௚	sin	2ߨ ௠݂(46) ݐ

where ܫ௚଴ produces an interferer power ௜ܲ௡ ൌ െ25 dBm, ௠݂ ൌ
100 kHz and Δܫ௚ has been set to produce the same modulation 
power spectrum about ௢݂௦௖

ᇱ  as in the previous PM example of 
Fig. 6. Introducing the signal (46) into expression (45), the 
sidebands of the FM component ଵܺ

ଵሺݐሻ ൎ ଵܸ݁௝ఝ
ሺ௧ሻ at ௠݂ have 

been obtained, with the result of Fig. 8.  The resolution 
bandwidth and video bandwidth of the measured spectra is 
RBW = 10 kHz and VBW = 10 kHz (respectively). The mean 
amplitude value ܫ௚଴ has been marked in Fig. 7. Comparing Fig. 
6 and 7, it is observed that the relative sidebands of the AM 
interferer are much lower than in the PM case and produce a 
similar spurious modulation at the oscillation component. This 
indicates that, in this case, the oscillation phase is more 
sensitive to the AM interferer than to the PM one due to the free 
variation of the beat frequency with the interferer amplitude. 
Note that the discrepancies between simulation and 
measurements appearing in Fig. 6 are much smaller in the AM 
modulation case, where no numerical integration is required. 
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Fig. 8.  Comparison between the simulated and measured spectra of 
the sinusoidal AM interferer and the harmonic component ଵܺ

ଵሺݐሻ. An 
interferer with ܲ ௜௡ ൌ െ25 dBm, Δ݂ ൌ െ3.6 MHz has been introduced. 
The modulation frequency and index are ݂݉ ൌ 100 kHz and 
௚଴ܫ/௚ܫ∆ ൌ 1%, respectively 

Finally, in Fig. 9 the measured phase noise spectrum in the 
presence of a sinusoidal PM interferer with ௜ܲ௡ ൌ െ25 dBm, 
Δ݂ ൌ െ3.6 MHz has been introduced. The modulation 
frequency and index are  ௠݂ ൌ 1 MHz and ∆߰ ൌ 1 rad, 
respectively. As predicted by the theoretical analyses of 
Sections III-IV, the components of the PM interferer perturb the 
phase noise spectrum in the vicinity of the frequency offsets ௠݂ 
and | ௢݂௦௖ᇱ െ ௜݂௡|. For comparison, the phase noise simulation 
using equation (25) has been superimposed. If the PM 
modulation index is low enough, superposition principle 
applies and the PSD of the phase perturbation resulting from 
simulation (41) can be added to the phase noise PSD, 
considering that both processes are uncorrelated. The spurious 
PM components are better observed in the spectrum analyzer 
than in the phase-noise characteristic. For this reason, we 
consider more accurate to compare the simulated PM effect 
with the signal power spectrum, as in Fig. 6.  

 

Fig. 9.  Phase noise spectrum in the presence of a sinusoidal PM 
interferer with ௜ܲ௡ ൌ െ25 dBm, Δ݂ ൌ െ3.6 MHz. The modulation 
frequency and index are  ݂݉ ൌ 1 MHz and ∆߰ ൌ 1 rad, respectively 

V. CONCLUSION 

The influence of the interferer phase noise and modulation 

on the free-running oscillator spectrum has been analyzed. A 
semi-analytical formulation has been derived for the oscillation 
phase noise. This leads to a simple and insightful equation 
describing the pulling effect of the interfered oscillator phase 
noise towards that of the interference signal. The cases of PM 
and AM interferers have been studied, providing efficient 
simulation techniques to predict their effects on the oscillation 
spectrum. The mechanisms producing spurious modulation of 
the oscillator phase have been explained in detail. All the 
predictions have been verified by measurements in a FET-based 
oscillator at 2.5 GHz.  
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