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 

Abstract—An envelope-domain methodology for the numerical 

modeling of super-regenerative oscillators (SRO) is presented. The 

main advantage is its generality of application to transistor-based 

oscillators with arbitrary topology. Initially, a stability analysis of 

the non-oscillatory steady-state solution, forced by the quench 

signal, is performed. It is based on the calculation of a linear time-

variant (LTV) transfer function, obtained by linearizing the 

circuit envelope-domain equations about the non-oscillatory 

regime. Under moderate quench frequencies, it will be possible to 

estimate the SRO normalized envelope and sensitivity function 

from the detected dominant pair of complex-conjugate poles. In 

the general case, the SRO oscillatory response is modeled with a 

numerical method, valid under linear operation with respect to the 

input signal. This is based on the calculation of the LTV impulse 

response from a time-frequency transfer function obtained under 

a small-signal sinusoidal excitation. The LTV impulse response 

enables a straightforward determination of the sensitivity time 

interval and time distance to the envelope maximum. An integral 

expression, in terms of the LTV transfer function, will provide the 

SRO response to any small signal input, with any arbitrarily 

carrier frequency and modulation. The methodology has been 

successfully validated through its application to a SRO at 2.7 GHz, 

which has been manufactured and measured.    

Index Terms— Linear-time-variant transfer function, super-

regenerative oscillator, stability.  

I. INTRODUCTION 

UPER-REGENERATIVE OSCILLATORS (SROs), which 

are periodically switched on and off by a quench signal [1]-

[5], enable a high gain amplification of a small input signal 

near the oscillator resonant frequency. This amplification is due 

to the fast amplitude growth during each oscillation start-up 

cycle [1]-[5], which is exponential in its initial stage. SROs 

have recently attracted significant attention since they can 
replace chains of several lower gain amplifiers, enabling a 

reduction of power consumption, which has a special interest at 

millimeter and Terahertz frequencies [6]-[7]. In some recent 

works [6]-[9], they have been applied for the implementation of 

compact receivers, with amplitude, frequency and phase 

demodulation capabilities. The SRO concept has also been 

extended to the implementation of low consumption active 

transponders [10]-[11], where the oscillator-based transponder 

provides a high-amplitude response to the interrogating signal. 

The high-gain amplification associated with the super-

regenerative effect allows for compact transponders with a 

long-range operation.  
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The works [2], [4]-[5] present a thorough and insightful 

formulation for the super-regenerative receiver, based on the 

approximate analytical resolution of the second-order 

differential equation system that describes the switched 

oscillator in the presence of a weak input signal. A closed-form 

expression of the solution [2] is derived, in terms of super-

regenerative and regenerative gains, sensitivity function and 
normalized envelope. These functions, which enable an in-

depth understanding of the SRO operation, have been 

fundamental for many subsequent works, exploring novel 

methodologies for SRO design and optimization [4]-[8], [12]. 

However, due to certain assumptions on the magnitude and time 

derivative of the quench signal, the analytical solution has some 

validity limitations and is usable for relatively low quench 

frequencies, in a certain quality-factor range. To predict the 

oscillator instantaneous frequency and phase, alternative ways 

such as [3] or [13] may be used.  

Another problem comes from the fact that the SRO is 

modeled in a simplified manner, by means of a resonator with 
a single voltage-controlled current source as an active element, 

or a single-loop feedback system, made up of a passive and an 

active block, with explicit transfer characteristics. These 

simplified models might not accurately represent transistor-

based oscillators, in which the models of the various 

components or blocks are not easily identified. For a more 

realistic prediction of the oscillator response, numerical 

methods, such as time-domain integration or envelope transient 

are needed. In fact, envelope transient [14]-[20] should be the 

most efficient method for the SRO analysis due to the presence 

of widely separated time scales, corresponding to the quench 
and modulation signals, on the one hand, and the oscillation and 

input carrier, on the other hand. However, the envelope 

transient simulation of SROs has been mostly limited to the 

usual simplified models. For instance, in [3], envelope transient 

is applied for the validation of an interesting frequency-domain 

analysis of a super-regenerative receiver, represented as a 

feedback system. The cross-coupled transistors, which 

constitute the active part of the switched oscillator, are modeled 

with a cubic nonlinearity and a hyperbolic-tangent gain 

function. In [21] a baseband/lowpass equivalent model of the 

SRO based on [2] is derived, which significantly reduces the 
computational cost. In addition, the works [13], [22] present 

more precise and efficient computation methods of the SRO 

response (envelope and phase) than the classical approach.  
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   The aim of this work is to provide a numerical analysis 

methodology, applicable to any SRO behaving in linear mode, 

regardless of the particular topology of the oscillator circuit, 

most often based on transistor devices. The method relies on the 

definition of an envelope-domain oscillatory LTV impulse 
response, which accurately characterizes the SRO response, in 

terms of the sensitivity time interval [2] and time value with 

maximum gain, and an oscillatory LTV transfer function. The 

functions are easily extracted through envelope-transient 

simulations at circuit level, under simple small-signal 

sinusoidal excitations. These functions enable an efficient 

prediction of the SRO response under arbitrarily modulated 

inputs signals, which is done in in-house software, without 

having to perform any circuit-level simulations. This way a 

compact behavioral model of the SRO is derived, usable on 

system-level simulations. 

 The methodology will be based on the envelope-transient 
technique [14]-[20], in combination with Zadeh’s frequency-

analysis of time-varying networks [23]-[25]. The first stage of 

this methodology consists of the identification of the time-

varying poles associated with the non-oscillatory homogeneous 

solution of the SRO, in which the circuit simply responds to the 

quench signal, without any oscillation. This is done by defining 

a LTV transfer function [23] fulfilling all the properties 

established in [23]-[25]. The time varying poles will enable the 

determination of the time references in the SRO operation, e.g., 

the time values at which the dominant complex-conjugate poles 

cross the imaginary axis (in the two senses) during the 
oscillation period. In a second stage, a procedure is presented to 

obtain the envelope-domain oscillatory LTV impulse response 

that globally characterizes the SRO behavior under a given 

quench signal, which is valid in the commonly used linear-

operation mode. This impulse response, which is not subject to 

any approximations, gives a useful insight into the circuit 

behavior, as it enables an easy identification of the sensitivity 

time interval and time distance to the envelope maximum. 

Then, an integral expression, in terms of the oscillatory LTV 

transfer function, will provide the SRO response to any small-

signal input, with arbitrary carrier frequency and modulation.  

The methodology is of general application to any SRO 
topology. As stated, the new LTV functions are extracted 

through a circuit-level envelope-transient simulation of the 

oscillator, excited with a small-signal sinusoidal source. This is 

used for either the stability analysis of the non-oscillatory 

regime forced by the quench signal, or for the SRO envelope-

domain characterization in oscillatory regime. There is no 

limiting assumption preventing the generality of the analysis 

methodology.  

All the results are validated through comparison with circuit-

level envelope-transient analyses. This ensures identical circuit-

component models in the envelope-transient simulations and in 
the specific simulations performed to extract the LTV impulse 

response and transfer function. The methodology has also been 

experimentally validated through its application to a SRO at 2.7 

GHz, which has been manufactured and measured.      

The paper is organized as follows. Section II presents the 

general envelope-domain formulation. Section III describes the 

stability analysis of the non-oscillatory solution. Section IV 

presents the envelope-domain oscillatory LTV impulse 

response. Section V describes the calculation to of the SRO 

output signal under arbitrarily modulated inputs. Section VI 

describes the experimental measurements. 

II. ENVELOPE-TRANSIENT ANALYSIS 

The modified-nodal analysis (MNA) of a given nonlinear 

circuit is based on the application to this circuit of Kirchoff’s 

laws [17], [26] taking into account the constitutive relationships 

of its elements or components. This provides the following 

general system of differential equations, in vector form [27]-

[30]: 

( ( ))
( ( )) [ ( )] ( ) ( ) 0

t
dq x t

f x t d t x d g t
dt

  


                 (1) 

where x  is the vector containing the node voltages and 

branch currents that cannot be expressed in terms of node 

voltages and/or their first order derivatives [30], f  is the vector 

of containing the linear and nonlinear resistive terms, q is the 

vector of linear and nonlinear charges and fluxes, [ ]d  is a 

matrix containing the impulsive responses of the distributed 

elements, and ( )g t are the input generators.  

In circuits containing two different time scales, system (1) 

can be efficiently solved using the envelope-transient method 

[14]-[20]. This is the case of SROs, schematically represented 

in Fig. 1. In this circuit, the oscillation is switched on and off 

by a quench-signal ( )qV t  at the frequency q, which is much 

lower than the oscillation frequency o. The fast amplitude 

growth during each oscillation start-up cycle enables a high-

gain amplification of a small input signal at the carrier 

frequency . The input frequency  must be relatively close to 

o to achieve amplification. As shown in Fig. 1, two different 

time scales can be distinguished: a slow time scale, 

corresponding to the quench signal, input modulations and 

frequency difference | |o  , and a fast time scale 

corresponding to the high frequency .  

 

SRO
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, ,x f q
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Fig. 1. General representation of the SRO indicating the different signals and 

time scales.  

 

In the envelope-transient method, the circuit variables 

[including ( )x t , ( )f t , ( )q t  and ( )g t ] are represented in a 

Fourier series with time varying coefficients, which can have 

an arbitrary time variation. Assuming a representative variable 

( )y t , the envelope-domain representation is as follows: 

( ) ( )
NH

jk t

k

k NH

y t Y t e 



                               (2) 

where  is the high fundamental frequency and ( )kY t  are the 

time-varying harmonic coefficients. In the remainder of the 
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manuscript, low case will be used for full time-domain state 

variables and capitals will be used for time-varying Fourier 

coefficients. These coefficients (or complex envelopes) must 

vary slowly in comparison with  since for a coefficient 

bandwidth larger than /2 the envelopes will overlap, and the 

system solution will not be unique [17]. This requirement is 

analogous to the bandwidth constraint in the lowpass equivalent 

of bandpass signals [31]. Under this situation, the only 

limitation of (2) would be associated with the possible existence 

of a frequency component that is not considered in this 

representation. This can be an additional high-frequency 

oscillation that is neither taken into account in the frequency 

basis nor in the envelope time variation. Nevertheless, the 

possible presence of additional oscillation frequencies should 

be detectable through a complementary stability analysis [32]-

[36].  

To derive the envelope-transient formulation, the variable 

representation (2) is introduced in the MNA of (1). It is taken 

into account that the derivatives of the reactive elements q are 

expressed: 

 ,( ) ( )
NH

jk t

m m k

k NH

q t Q t jk e 


                     (3) 

where m refers to a particular reactive element. After 

substitution into (1) and elimination of the exponentials 
jk te 

, 

one obtains the following general expression of the envelope-

transient system [14]-[20]: 

     
 

 

( )
( ) ( )

( ) ( ) ( ) 0

dQ X t
F X t j Q X t

dt

D t X t G t

  

  

                                 (4) 

where F  is the vector containing the time-varying harmonic 

components (at k) of the resistive elements, Q  is an analogous 

vector, corresponding to the reactive elements,  j  is the 

matrix accounting for the derivatives of the complex 

exponential terms in (2),  ( )D t  is the matrix containing the 

time-varying harmonic components of the impulse responses, 

associated to the distributed elements, and G  is the vector of 

input sources. System (4) is a differential equation system in the 

slowly-varying Fourier components of the circuit state 

variables, which can be integrated at a much larger time step 

than the ordinary transient analysis. It is thus more efficient. Its 

practical resolution, after discretizing the time variable, through 

an error-minimization algorithm, is explained in detail in [17], 

[19], [27]-[29].  

In the SRO analysis, the fundamental frequency  of the 

envelope-domain representation (2) will be the carrier 

frequency of the existing high-frequency independent source. 

In ordinary operation of the SRO, the vector ( )G t  will contain 

the quench signal ( )qV t , as a baseband component, and the low-

pass equivalent of the bandpass input signal vin(t), at the carrier 

frequency . It can be written as: 
*( ) 0 ( ) ( ) ( ) 0

T

in q inG t V t V t V t   
                    (5) 

When applied to the SRO, system (4) is homogeneous with 

respect to the oscillation frequency, so it will exhibit two 

different solutions: an oscillatory solution, ( )oX t , switched on 

and off by the quench signal, and a non-oscillatory one, ( )qX t . 

The low-frequency solution ( )qX t , without any oscillation, 

results from the forcing by the quench signal ( )qV t  at the 

frequency q. It is conceptually analogous to the dc solution for 

which any free-running oscillator can be solved. The signal 

( )qV t  constitutes a baseband term, so ( )qX t  will be at baseband 

too. To enable the oscillation start-up, ( )qX t  should be 

unstable during a time interval of the quench-signal period Tq. 

On the other hand, the oscillatory solution ( )oX t  will contain 

high frequency components. The number of harmonic 

components in (2) will be NH = 1, in the linear mode, and 

NH > 1, in the logarithmic mode, due to the generation of 

harmonic content by the oscillation signal [1].  
TABLE I 

DIFFERENCES BETWEEN THE NEW ANALYSIS PROCEDURE AND THE 

CONVENTIONAL ENVELOPE-TRANSIENT 

Method Characteristics 

Circuit-level 
envelope 
transient 

- Individual envelope-transient simulation for 
each particular (modulated) input signal. 
- No information about the frozen or non-frozen 
behavior of the SRO. 
- No direct information on the sensitivity 
interval.  
- Simulation time of an impulse response in Fig. 

9(b): 1.85 s 

Envelope-
domain LTV 
impulse 
response and 
transfer function 

- The LTV functions are easily calculated 
through circuit-level envelope transient 
simulation under sinusoidal excitations only. 
- Information on SRO frozen or non-frozen 
behavior from time-varying poles of LTV 

transfer function ( , )sH t    

- Full characterization of sensitivity interval 
and gain response through the evaluation of the 

oscillatory LTV impulse response ( , )h t  , as 

shown in the algorithm of Table II. 
- Calculation of response to arbitrarily 
modulated input signals using the extracted 

oscillatory LTV transfer function ( , )H t  , as 

shown in the algorithm of Table III. 
- Simulation time of an impulse response in Fig. 
9(b): 0.65 s 

 

Without any small high-frequency perturbation, system (4) 

converges towards ( )qX t . This situation is conceptually 

identical to that in the time-domain analysis of free-running 

oscillators, which requires a small perturbation of the unstable 

dc solution to initiate the transient to the oscillatory regime. 

However, in the presence of a high-frequency input or 
perturbation, system (4) may converge to either the oscillatory 

or non-oscillatory solution. This depends on the integration 

time step. In the non-oscillatory solution, the time-varying 

phasors are sampled at the rate of the quench signal. In the 

oscillatory solution, they are sampled at the rate of envelope of 

the oscillation pulses. Obtaining the oscillatory solution 
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requires a small integration time step (though still much larger 

than in a standard time-domain integration), so that the 

envelope-domain system may be able to capture the oscillation 

dynamics. This integration should account for the difference 

between ω and the oscillation frequency ωo, expressed as 

| |o  , and be able to provide the envelope of the oscillation 

pulse. 

   The new investigation provides an analysis methodology of 

SROs in two stages. The first stage is a stability analysis of the 

non-oscillatory solution ( )qX t . The second stage is the 

calculation of the SRO envelope-domain oscillatory LTV 

impulse response and oscillatory LTV transfer function, which 

fully characterize the SRO response in linear mode. Differences 

between the new analysis procedure and the conventional 
envelope-transient method are summarized in Table I.  

III. LTV TRANSFER FUNCTION OF THE NON-OSCILLATORY 

SOLUTION 

As stated in the previous section, in the absence of 

perturbations, system (4) admits a solution ( )qX t  at the 

frequency q  of the quench signal, without any oscillation. This 

section presents the stability analysis of ( )qX t  and shows how 

the results of this analysis can be used to identify the SRO 

functions defined in [2], more specifically, the normalized 
envelope of the homogeneous solution p(t), the sensitivity 

function s(t) and the super-regenerative gain Ks. 

A. Foundations of the stability analysis 

The stability of the solution ( )qX t  is analyzed by introducing 

into the circuit a small-signal sinusoidal current source ip(t) at 

the frequency  [29]-[30]. In the presence of this small-signal 

source, the vector of state variables is expressed as [31]:  

1 1( ) ( ) ( ) ( )j t j t

qx t X t X t e X t e 

          (6)   

The system response to the small-signal source ip(t) can be 

characterized by linearizing (4) with respect to this source and 

obtaining an LTV impulse response h(t,) [23]-[25], where t 

corresponds to the quench-signal rate and  indicates the instant 

when the impulse is applied. The output signal, in terms of a 
particular state variable xm(t), corresponding, for instance, to a 

node voltage, can be expressed as: 

( ) ( , ) ( )m s px t h t i d  




                                                          (7) 

where the subindex s is used to refer to functions associated 

to the non-oscillatory solution. Then, a slowly-varying transfer 
function at the slow time rate t can be obtained doing [23]: 

( )( , ) ( , ) j t

s sH t h t e d   


 



                                                (8) 

The above function can also be written in terms of the 

complex frequency s [23]-[25], with a formally identical 
expression: Hs(t,s). The LTV network will be stable if the 

function Hs(t,s) is analytic and bounded in the right half side of 

the complex plane (RHS) and in the imaginary axis for all time 

t [25]. In fact, as stated in [25], the network will be stable if the 

poles of Hs(t,s), whose location varies with time, do not cross 

to the right-hand side of the complex plane (RHS). The time-

varying poles of systems with two different time scales have 

also been formally derived in [39], where the analysis departs 

from a system of multirate partial differential equations. In [32], 

time-varying poles of circuits driven with modulated inputs 

have been calculated through identification procedures. 
As shown in [23]-[25], the LTV transfer function Hs(t,s) of 

the linearized-system can be obtained by introducing an input 

signal
j te 

 and calculating the ratio between the resulting output 

, ( )mx t at the frequency  and the input j te  : 

, ( )
( , )

m

s j t

x t
H t

e




                      (9) 

To determine the transfer function (9), expression (6) is 

introduced in (2). Because 1 1( ),  ( )X t X t   are small, it is 

possible to perform a first-order Taylor series expansion of the 

two vectors    ( ) ,  ( )F X t Q X t  in (2) about the non-

oscillatory solution ( )qX t . This Taylor-series expansion 

provides the following linear differential-equation system: 

 

 

 
 

 

0

1

0

0 0

1

0 0

( )
( )

( ) ( )
( ) 0

q

q q

p

Q X td
X t

dt X

F X t Q X t
j X t I

X X


 
  

  

   
     

   

       (10) 

where the Jacobian matrixes contain the derivatives of the 

baseband reactive elements and resistive elements and pI  is a 

vector containing Ip. Taking (9) into account, the time-variant 

transfer function, associated to the mth state variable, 
, ( , )s mH t 

, is calculated as: 

1, ,

,

( ) ( )
( , )

m m

s m j t

p

X t x t
H t

I e







                                      (11) 

where Ip is the magnitude of the small-signal current source and 

the sub-indexes 1, m indicate the component at the positive 

frequency  of the mth state variable. For a better insight, system 

(2) will be particularized to a circuit without distributed 

elements, though all results are equally applicable to a circuit 

containing these elements. Because 
1, ( )mX t  in (11) is a 

solution of (10), any possible transfer function will fulfill the 

linear differential equation system with time-varying 

coefficients in (10). This is in full agreement with Zadeh’s 
theory [23]-[25].  

B. Frozen and non-frozen behavior 

Several cases can be distinguished [23]-[25]: a “frozen 

system”, for which the time derivatives of the envelopes are 

negligible ( ) 0X t  , an “intermediate” system that is non-

frozen but exhibits variations at a time rate much lower than the 

carrier frequency   and a faster system, at higher time rate, but 

still enabling the variable representation (6). If the system is 

frozen, its stability properties will be identical to those obtained 

by eliminating the time derivative in (10) and replacing the time 

variable in the quench signal with an artificial parameter , 

which should be swept in the same range as the original time 

variable.  
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In an intermediate system, it should be possible to apply a 

perturbation approach similar to the one in [24], which would 

allow the calculation of the transfer function as a series: 

, , ,1 , ,2( , ) ( , ) ( , ) ...s m s m s mH t H t H t                            (12) 

where the first function , ,1( , )s mH t   corresponds to the 

solution of the frozen system, given by:  

 
 

 
1

0 0

1,1

0 0

( ) ( )
( )

q q

p

F X t Q X t
X t j I

X X




   
   

   

        (13) 

And the rest of terms are calculated in the following recursive 

form: 

 
 

   

1,

1

0 0 0

1

0 0 0

( )

( ) ( ) ( )
( )

n

q q q

n

X t

F X t Q X t Q X td
j X t

X X dt X






 

      
   

       

 (14) 

Note that systems (10) and (12)-(14) are two different ways 

of computing the same result, though the expansion (12)-(14) is 
an approximation of (10). In fact, as the frequency of the quench 

signal increases, the accuracy of the approach (12) degrades and 

becomes inapplicable, due to the high value of the time 

derivative in (10). Other effects, including the circuit 

stabilization, may arise. Stabilization as the frequency of the 

quench signal increases is a natural phenomenon since when 

entering and exiting the unstable region very quickly due to a 

high-frequency quench signal, the oscillation will not have 

enough time to start up. 

C. Application example 

The analysis in (10) and (12)-(14) will be illustrated through 

its application to the simple circuit shown in Fig. 2. It contains 

a single resonator and a negative-resistance element. The 

quality factor of the RLC resonator is about Qo = 12. To 

compare with [2], the quench signal will be directly introduced 

in the cubic nonlinearity that describes the active device. Note 

that this direct introduction is not possible in practice. The 
active device will be modeled with the following function: 

  3( ), ( ) ( ) ( ) ( )i v t a t a t v t bv t                      (15) 

In the linear mode, the coefficient b can be neglected. The 

time-varying coefficient a(t) is given by: 

( ) cos( )dc p qa t A A t                (16) 

where Adc is defined as a positive quantity, Ap is the peak 

amplitude of the time-varying quench signal and q  is the 

frequency of this signal. Introducing a small signal current 

source ip(t), at the frequency , in the circuit of Fig. 2, system 

(10) particularizes to: 

,1

,1 ,1

,1 ,1 ,1 ,1

( )
( ) ( )

1 (1 )
( ) ( ) ( ) ( ) ( )

c

L L

p

c c L c

V t
I t j I t

L

Ij RC
V t a t V t I t V t

C R C





 

 
     

 

      (17) 

The transfer function considered is the following: 

,1( , )
( , )

c

p

V t
Z t

I


                      (18) 

The effect of q on Z(t,ω) will be analyzed comparing the 

results obtained through the integration of (17), which is a 

particularization of (10) to the circuit in Fig. 2, and through the 

perturbation method in (12)-(14). This will illustrate the system 

deviation from the “frozen” conditions when increasing q. 

Fig. 3 presents the waveforms of the Z(t,ω) magnitude 

obtained for the same excitation frequency 

 = 2π 2.56e9 rad/s and two different values of the quench 

frequency. Results obtained with (17) are compared with those 

obtained with the approximation (12)-(14). For fq = 1 kHz [Fig. 

3(a)], the system behaves as frozen. In a frozen situation, the 

time-derivatives in (17) are so small that they have no impact 

on the circuit behavior. Thus, the function (18) obtained by 

using the voltage 
,1( , )cV t  from the integration of (17) agrees 

with the function (18) obtained by solving (17) for 
,1( , )cV t   

under the conditions ,1 ,1( ) ( ) 0L cI t V t  .  

For   fq = 1 MHz [Fig. 3(b)], the system is non-frozen, since 

the function Z(t,ω) is different from the one obtained neglecting 

the time derivatives, shown in Fig. 3(a). In Fig. 3(b), the 

function Z(t,ω) obtained after one iteration of the perturbation 

method in (12)-(14) is nearly overlapped with the one obtained 

through the integration of (17) (which is a particularization of 

(10) to the circuit in Fig. 2) .  

 

C LR
 ip(t)a(t)

 
 

Fig. 2. Oscillator based on a negative resistor. Element values are C = 15.0642 
pF, L = 0.2473 nH, R = 50 , a(t) = Adc  +  Ap cos(ωqt) where Adc = 0.01 Ω-1 and 

Ap = 0.0337 Ω-1. The quality factor of the RLC resonator is about Qo = 12.  
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Fig. 3. Comparison between the waveforms of the ( , )Z t   magnitude obtained 

through integration of (17) and through the perturbation method in (12)-(14) for 

different values of the quench frequency q. The waveforms have been 

calculated for the excitation frequency  = 2π 2.56e9 rad/s. (a) Quench 

frequency fq = 1 kHz. (b) Quench frequency fq = 1 MHz. 

D. Practical analysis method 

   From a practical viewpoint, the stability analysis of the 

solution ( )qX t  is performed by introducing a small-signal 
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sinusoidal current source ip(t) at a sensitive location, such as a 

device node [32]-[36]. Note that unlike ordinary large-signal 

stability analyses [34]-[36] there are no concerns about 

frequency commensurability since ip(t) is the only high 

frequency source and the variables are represented in terms of 

a single fundamental frequency .  

The objective is to calculate the LTV transfer function in (11)

. With this aim, the frequency  of the sinusoidal source ip(t) is 
swept and, at each sweep step, the linearized envelope-domain 

system is integrated at the rate of the quench signal. Note that 

we are integrating a differential equation system in the 

envelopes 
1( )X t , instead of the full time-domain system. The 

integration time step should be chosen to properly sample the 

solution ( )qX t  forced by the quench signal. However, this time 

step must be sufficiently large to prevent convergence to the 

oscillatory solution.     
The practical stability analysis is carried out through pole-

zero identification [32],[34]-[38]. As stated, the frequency  is 

swept, performing an envelope-domain integration at each 

frequency step. This provides a sequence of functions 

, ( , )s m iH t  , where i represents a counter of the frequency 

sweep. However, the pole-zero identification is carried at each 

time value tn, where n represents a counter of the time steps. 

Note that both variables  and t are actually discrete and the 

counter specified above (either i or n) simply distinguishes the 

parameter considered in each case. The pole-zero identification 

is performed by fitting the function , ( , )s m nH t   with a quotient 

of polynomials. Thus, pole-zero identification is applied at each 

time step tn. To achieve the SRO operation, the dynamical poles 
associated to the non-oscillatory solution must shift to the RHS 

for a fraction of the quench-signal period Tq. 

   The pole-zero identification of Z(t,ω) provides the time-

varying poles under both frozen and non-frozen conditions. 

These are distinguished by comparing the poles obtained under 

a time-varying quench-signal, represented versus the time t, 

with those obtained replacing the time-varying quench signal 

with a dc source depending on an artificial parameter . In the 

case of a frozen behavior, the poles will be overlapped in the 

two simulations, when traced in terms of  and t, respectively.    

   To illustrate this, the function (18) has been identified for the 

same two values of the quench frequency considered in Fig. 3. 

In Fig. 4, the real part of the complex-conjugate poles has been 

traced versus time. For fq = 1 KHz, in Fig. 4(a), the poles agree 

with the ones that would be obtained by making the coefficient 

a in (16) depend on the artificial parameter : a(η) = Adc + 
Ap cos(ωqη), represented with diamonds. In the time intervals 

fulfilling a(t) + 1/R <0, the system is unstable, with the 

complex-conjugate poles at the resonance frequency located on 

the RHS.  

   For fq = 1 MHz, the circuit behaves in non-frozen conditions 

since the poles traced versus t are different from those traced 

(in diamonds) versus , as shown in Fig. 4(b). There is an 

increase in the number of poles, though some of these poles are 

cancelled with zeroes. The circuit is non-frozen, though the 

pattern of the non-cancelled poles is still the same as the one in 

Fig. 4(a). For much higher quench frequencies, the dynamic 

effects become more relevant and the poles shift to RHS for a 

shorter interval of the quench period. For fq = 10 MHz, in Fig. 

4(c), the circuit is stable, as can be easily confirmed with 

standard time-domain integration.  

The increase in the number of poles under non-frozen 

conditions is due to the discretization of the time variable when 
numerically solving equation (10). Assuming a Backward-

Euler integration rule, applied to (10), the vector of state 

variables 
1( )nX t  depends on the input current Ip and the vector 

1 1( )nX t  , corresponding to the previous time sample. 

Recursively proceeding like this, one would obtain an 

expression of 
1( )nX t  linearly depending on only Ip. In this 

calculation each increment 1( )n kX t   is multiplied by a matrix 

term involving inversions of frequency- and time-dependent 

matrixes, as gathered from (10). These inversions of frequency 

dependent matrixes evaluated at tn, to tnk justify the increment 

in the number of detected poles. However, the impact of 

previous points decreases with k, as they give rise to higher 

order effects. One must also take into account that the applied 
pole-zero identification is based on a fitting of the transfer 

function , 1,( , ) ( ) /s m n m n pH t X t I    with a quotient of 

polynomials, which is done in a “black-box” way. As the time 

derivatives become more significant, the transfer function 

, ( , )s m nH t   becomes more complex and a higher polynomial 

order is required to perform the fitting.  This is also consistent 

with the more significant magnitude variations of Z(t,) in Fig. 

3, as the quench frequency increases.  

Under non-frozen conditions, the identification procedure is 

subject to numerical errors, which are inherent to the time 

discretization used in the practical computation of the linearized 

system (10). However, the method is useful for the distinction 
between frozen and non-frozen behavior, for the determination 

of the reference times at which the critical pair of complex-

conjugate poles cross from the LHS to the RHS and vice versa, 

and for the prediction of stabilization effects. Under sufficient 

continuity versus the time variable, it will also be applicable to 

identify the SRO functions, as shown in the next subsection. 
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Fig. 4. Real part of the complex-conjugate poles of the circuit in Fig. 2, traced 

versus time, for different quench frequencies. The poles obtained through a 

static analysis in terms of the dummy variable  are superimposed, as a 

reference, in diamonds. (a) fq = 1 kHz. (b) fq = 1 MHz. (c) fq =10 MHz.  

E. Identification of SRO functions 

The SRO functions p(t), s(t) and Ks defined in [2] enable great 

insight into the SRO operation and lead to an approximate 

closed-form expression of its input-output relationship. As 

shown in the following, these functions can be extracted from 

the pole analysis in the previous sub-section. This will be 

possible provided that the frequency of the quench signal is not 

too high to prevent an accurate pole-zero identification.  

First, the relevant transition times in the SRO operation are 

identified from the time variation of the critical pair of complex-

conjugate poles. The time origin t = 0 is established at the time 

value for which the real part of the poles changes from negative 

to positive (Fig. 4). This reference time approximately 

constitutes the center of the sensitivity interval [2]. Starting 

from this time value, the duration of the time interval with the 

critical poles on the RHS defines the time tb, at which the 

oscillation envelope reaches its maximum amplitude.  

At a second stage, the real part of the poles σ(t) obtained 

through the identification of function (11) is fitted with a 

Fourier series, which can be done due to its periodicity. This is 

expressed as follows: 

0

1

( ) cos( ) sin( )
N

n n

n

t a a n t b n t  


                                 (19) 

where N is the number of the harmonic terms used to fit σ(t). 

No more than 4 harmonic terms have been necessary in any of 

the cases considered in this work. Then, the SRO normalized 

envelope [2] is calculated with the following expression:  

( ) exp ( )

b

t

t

p t d  
 

  
 
 
                                                    (20) 

which exhibits a maximum value equal to 1 at tb. The integral 

in the exponent is easily calculated thanks to the Fourier-series 

expression of σ(t). 

The above analysis has been applied to the circuit in Fig. 2. 
Using the poles resulting from the identification in Fig. 3(b), 

corresponding to the quench frequency fq = 1 MHz, one obtains 

the normalized envelope function p(t) shown in Fig. 5(a). It is 

compared with the analytical function in [2] and with the 

oscillatory solution of system (17). To obtain this oscillatory 

solution, the time step must be sufficiently small to enable the 

integration of the envelope of the SRO pulse. For this 

integration, the constant term Ip in (17) is replaced with a short 

small-signal impulse ( )pI t  , in the envelope scale. The 

impulse duration should be much shorter than the period of the 

quench signal. The impulse duration should be chosen to ensure 

that the integration method recognizes the impulse and does not 

overpass it. In this particular case the integration time step is 

t = 2 ns and the pulse duration is 2.1 ns. The waveform in Fig. 

5(a) actually corresponds to the envelope-domain LTV impulse 

response of the SRO, evaluated at the time . However, 

provided that tb is not too small in comparison with the quench 

period Tq, the integration enables an estimation of the system 

homogeneous solution. In fact, by just multiplying this 

envelope by a constant factor, it overlaps with the function p(t).  

The results obtained when applying the short impulse at 

different time instants  within the sensitivity interval are shown 

in Fig. 5(b). This way we are performing a numerical 

calculation of particular samples of the oscillatory LTV impulse 

response of the SRO in linear mode. For each impulse, at a 

given time , an envelope-transient simulation is performed at 

a sufficiently fine time step. A shift in the time value  at which 

the impulse is applied gives rise to a change in the envelope 

magnitude. In each case, the maximum envelope magnitude is 

obtained at the time instant tb at which the poles cross from the 

RHS to the LHS. This is the time value for which the poles have 

spent the longest on the RHS, so the signal has been able to 

grow to its maximum amplitude. Due to the relatively large tb, 

the distinct envelopes (resulting from the application of the 

small impulses) agree with p(t) when simply multiplied by 

scalar factors.   

As a further accuracy evaluation, Fig. 5(c) compares the 

oscillation pulse obtained through both (20) and the envelope 

transient method, with the one obtained through standard time-

domain integration. 

In order to obtain the sensitivity function and the super-

regenerative gain [2], one can perform several operations on 

p(t). The sensitivity function can be obtained as follows: 

0

0

( ) exp ( )

(0)
exp ( ) exp ( )

( )

b

b

t

t t

t

s t d

p
d d

p t

  

     

 
  

 

  
     

   
   



 

                    (21) 

And the super-regenerative gain is given by: 
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0

1
exp ( )

(0)

bt

sK d
p

  
 

   
 
                                              (22) 

Then, the system output to a given input signal vin(t) can be 

estimated from the approximate input-output relationship 

derived in [2]. 
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Fig. 5. Response of the SRO in Fig. 2. (a) Normalized envelope function 

obtained from the real part of the dominant poles (t), as shown in (20). It is 

compared with the one given by the analytical expression in [2] and with the 

results of envelope transient, after the introduction of a small current impulse 

( )pI t  . (b) Application of the impulse at different time instants , giving 

rise to a change in the envelope magnitude. (c) Comparison of the oscillation 

pulse obtained with time-domain integration and with envelope transient when 

applying a short-duration sinusoidal signal at the 2.56 GHz. 

F. Application to a transistor-based oscillator 

As a second example, a transistor-based oscillator at 

fo = 2.7 GHz is considered. The circuit is shown in Fig. 6. It is 

based on the transistor NE3210S01 and has been built on 

Rogers 4003C substrate (εr = 3.55, H = 32 mils). Complete 

models are used for the transistor and the transmission lines. 

Bias capacitors and inductors are considered ideal, since the 
scattering-parameter models available for these components 

were ill suited for both envelope-transient analysis and transient 

simulation.  

Fig. 7 shows the variation of the output-oscillation amplitude 

versus the gate-bias voltage VGG at the drain bias voltage VDD 

= 0.7 V. As gathered form Fig. 7, the circuit oscillates for 

VGG  > −0.57 V in static conditions. The whole oscillation curve 

is stable.  

For the SRO operation, the dc source is replaced with a 

sinusoidal source of the form: vq(t) = Vdc + Vp cos(ωqt), where 

Vdc = 1.584 V  and Vp = 1.06 V. The stability properties, under 

this quench signal, are analyzed using (11). With this aim, a 

small-signal current source ip(t) is connected in parallel with the 

drain terminal. Fig. 8(a) and (b) present the time variation of the 

real part of the dominant pair of complex-conjugate poles at the 

oscillation frequency for two different values of the quench 

frequency: fq1 = 1 kHz and fq2 = 8 MHz. In both figures, the real 

part of the poles has been traced versus time. The poles obtained 

in static conditions have also been represented (with diamonds), 

as a reference. These poles have been calculated by replacing 

the sinusoidal quench-signal source with a DC source, 

expressed as: vq(η) = Vdc + Vp cos(ωqη). For  fq1 = 1 kHz [Fig. 

8(a)], the circuit behaves as frozen, since the poles are 

overlapped with the “static” ones. For fq2 = 8 MHz [Fig. 8(b)], 

the pattern is more complex, with the numerical increase in the 

number of poles that is characteristic of the non-frozen 

behavior. The most significant effect is the positive time shift 

of the unstable time interval, corresponding to a delay with 

respect to the static situation. To validate this result, the circuit 

is excited with an input source at , providing a short impulse 

( , )pulsev t   in the envelope time scale. This impulse is applied at 

a time instant  within the sensitivity interval, and an envelope-

transient simulation of the transistor-based SRO is carried out. 

The magnitude of the envelope of the output signal is shown in 

Fig. 8(c). Fig. 8(d) presents an expanded view that allows 

comparing the envelope magnitude with the variation of the 

static poles and the poles predicted through (11). The time tb at 

which the envelope exhibits its maximum magnitude should 

agree with the time at which the poles cross from the RHS to 

the LHS. This maximum is well predicted by the poles obtained 

from (11), whereas the static poles cross at a smaller time value 

t < tb.  
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DC-Bl ock50 
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DC-Bl ock

Ld
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Matching-Network

2.2 nH
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Fig. 6. Transistor-based oscillator. It is based on the transistor NE3210S01 and 

has been built on Rogers 4003C substrate (εr = 3.55, H = 32 mils). The 

oscillation at the frequency fo = 2.7 GHz is switched on and off through a 

sinusoidal quench signal, introduced in the gate bias line. 

 

Fig. 9 shows the SRO response to small-signal voltage 

impulses injected at distinct time values within the sensitivity 

period. Two different values of Vdc have been considered: 

Vdc = −1.564 V in Fig. 9(a), and Vdc = −1.584 V in Fig. 9(b), 

with Vp = 1.06 V in the two cases. The simulations have been 

carried out exciting the circuit with an input impulse ( , )pulsev t   

and performing an envelope transient simulation for each . The 

solutions should correspond to the oscillatory LTV impulse 

response of the transistor-based SRO in linear mode, when 

evaluated at the particular  values. In the case of Vdc = −1.564 

V, the sensitivity period and the envelope are relatively distant, 
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so the solution envelope should approach that of the 

homogeneous oscillatory solution. However, the solution 

envelope is slightly altered due to the effect of the applied 

impulse. This effect is more significant for Vdc = −1.584 V, in 

Fig. 9(b). In this case, the poles are on the RHS only for a short 

time interval in comparison with the quench period Tq. As a 

result, the sensitivity interval is too close to the oscillation-

envelope maximum, which prevents an accurate identification 

of the normalized envelope p(t) through envelope-transient 

simulations. The envelope response first decays and then grows 

because the pulses are inserted before the poles cross to the 

RHS. A general numerical methodology to characterize the 

SRO behavior in linear mode will be presented in the next 

section. It enables a global investigation of the SRO response 

and should be usable to develop an accurate behavioral model, 

applicable in system-level simulations.  
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Fig. 7. Variation of the output-oscillation magnitude versus the gate-bias 

voltage VGG for the drain bias voltage VDD = 0.7 V. The circuit oscillates for 

VGG  >  0.57 V in static conditions. 
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Fig. 8. Stability analysis of the transistor-based oscillator, under the quench 

signal vq(t) = Vdc + Vp cos(ωqt), where Vdc = 1.584 V  and Vp = 1.06 V for two 

different values of the quench frequency q. The poles obtained through a static 

analysis in terms of the dummy variable  are superimposed, as a reference, in 

diamonds. (a) fq = 1 kHz. (b) fq = 8 MHz. (c) Validation through an envelope-

transient analysis for fq = 8 MHz. (d) Expanded view comparing the variations 

of the static poles and the poles predicted through (11) with the magnitude of 

the envelope resulting from the application of an impulse ( , )pulsev t  . 

 

1

N
o
rm

a
liz

e
d

 

m
a

g
n

it
u

d
e

Time (ns)
40 60 80 100 120
0

0.5

(a)

(b)

0

0.5

1

N
o
rm

a
liz

e
d

 

m
a

g
n

it
u

d
e

Vdc = -1.564 V

Vdc = -1.584 V

Vpulse

Vpulse

Vp = 1.06 V

Vp = 1.06 V

Time (ns)
40 60 80 100 120

Fig. 9. Response of the transistor-based SRO to impulses injected at distinct 

time values within the sensitivity period, calculated with circuit-level envelope-

transient simulations. Two different values of Vdc are considered, with 

Vp = 1.06 V and fq = 8 MHz. (a) Vdc = 1.564 V. (b) Vdc = 1.584 V. 
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IV. OSCILLATORY LTV IMPULSE RESPONSE OF THE SRO IN 

LINEAR MODE 

An envelope-domain LTV impulse response of the SRO in 

oscillatory regime is derived in this section. The time-domain 

impulse response is denoted h(t,), where  indicates the instant 

when the impulse is applied. The envelope-domain impulse 

response is denoted as ( , )h t  . Lower case is used for full time-

domain variables and capitals are used for envelope-domain 

variables.  

A. Formal derivation of the oscillatory LTV impulse response 

From LTV system theory [23]-[25], the output under an 

arbitrary small-signal input vin(t) is given by: 

( ) ( , ) ( )out inv t h t v d  




                                                      (23) 

The LTV transfer function associated with h(t,) is calculated 

as: 

( )( , ) ( , ) j tH t h t e d   


 



                                                 (24) 

Then, the output signal can be obtained from [23]-[25]:   

1
( ) ( , ) ( )

2

j t

out inv t H t v e d  






                                      (25) 

Where vin(ω) is the Fourier spectrum of the time-domain 

signal vin(t).  In the envelope domain, the aim will be to get a 

relationship between the Fourier transform of the low pass 

equivalent vin(t), denoted as Vin(ω), and the low-pass equivalent 

of the output signal ( )outV t . The spectrum of vin(t) is given by 

*( ) ( )in p in pV V      , where the particular carrier 

frequency p has been considered. Replacing this expression 

into (25), one obtains: 

*1
( ) ( , ) ( ) ( )

2

j t

out in p in pv t H t V V e d     






         (26) 

Next, the change of variables p   and ' p  

is used in  (26): 
/ 2

/2

/2

* '

/ 2

( ) ( , ) ( )
2

( , ' ) ( ') '
2

p

p

j t B

j t

out p in

B

j t B

j t

p in

B

e
v t H t V e d

e
H t V e d





















   

   





                     (27) 

where B is the analysis bandwidth, about the reference 

frequency p. Representing the output signal in terms of its low 

pass equivalent: 
*( ) ( ) ( )p pj t j t

out out outv t V t e V t e
 

  , one derives 

the following envelope-domain relationship: 
/2

/2

1
( ) ( , ) ( )

2

B

j t

out p in

B

V t H t V e d






                            (28) 

To obtain the LTV impulse response, it is taken into account 

that the Fourier transform of an impulse applied at time  is 
je  

. Thus, the envelope-domain LTV impulse response, 

denoted as ( , )h t  , is obtained from 

/2

( )

/2

1
( , ) ( , )

2

B

j t

p

B

h t H t e d 


 



                                 (29) 

In the following, a methodology for the practical calculation 

of ( , )h t   is provided. 

B. Practical analysis methodology 

The numerical procedure for the practical calculation of (29) is 

composed of two steps, described in the following and shown 

in the algorithm of Table II. The code has been written in 

MATLAB.  

Step 1. Calculation of the transfer function H(t,ω) 

For the calculation of ( , ) ( , )pH t H t   , one should 

replace the original circuit input with a small-signal sinusoidal 

source vin(t), at the high-frequency frequency . In the positive 

spectrum, the sinusoidal input is represented as 
j t

inV e 
, where 

Vin is a constant value. The function H(t,ω) is obtained as the 

ratio between the output-signal envelope at , expressed as 

( , )outV t  , and Vin. That is: 

( , )
( , ) out

in

V t
H t

V


                                                    (30) 

To calculate the LTV transfer function H(t,ω) in (30), one 

sets the magnitude of the sinusoidal input source to the low 

level that should be used in the practical application. This is 

because due to the oscillation quenching there can be a high 

sensitivity to the input signal and the possible nonlinear 

behavior at the application input power should be detected at 

this stage. Indeed, quench signals leading to a logarithmic 
operation mode are easily identified at this stage and should be 

discarded.  

To calculate (30) the frequency  of the input sinusoidal 

source vin(t) is swept in the interval (min, max) and, at each 

sweep step, an envelope-domain integration is carried out.  This 

will provide the double entry function H(tn,ωi), where n goes 

from 1 to the maximum number of time samples N and i is a 

counter of the frequencies considered in the sweep, covering the 

interval (min, max). The time values t1 to tN should be identical 

for each frequency i. The sampling time step t must be small 

enough to enable the oscillation start-up in all cases, though 

overlapping bandwidths must be avoided to ensure the validity 

of the low-pass representation. Therefore the total bandwidth in 

the frequency sweep must fulfil B = fmaxfmin > 2/t, where 

f = /(2).  

Regarding the frequency sweep in the interval (min, max), it 

is convenient to use a higher concentration of frequency 

samples about the resonance frequency, which is done by 

reducing the frequency step in the middle region through a 

suitable sweep plan. This central frequency interval with more 

significant variations of the transfer function is easily 

determined through a simple inspection of these transfer 
functions.  

The function H(t, ω) fully agrees with H(t, Ω + ωp), since p 

is just a shift with respect to the baseband frequency Ω. It is 

well suited to make p agree with the central frequency of the 

SRO resonance interval. The function H(t, Ω + ωp) is obtained 

by simply replacing the original frequency column with Ω = ω 

‒ ωp. The double entry function H(t, Ω + ωp) is exported form 

the envelope-transient circuit-level simulator and read in the in-

house software. 
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As an additional comment, both (11) and (30) are LTV 

transfer functions, but they are conceptually very different. The 

function (11), used for the stability analysis, is obtained by 

linearizing the SRO about the non-oscillatory periodic solution 

( )qX t , forced by the quench signal. The input considered in 

(11) is a small-signal sinusoidal current source ip(t), introduced 

at a sensitive node. This is because the purpose of this transfer 

function is to analyze the stability variations of the non-

oscillatory solution under the effect of the quench signal, so we 

need controllability and observability [36]. Otherwise unstable 

poles might be numerically cancelled with RHS zeroes. Instead, 

function (30) is obtained linearizing the SRO about the 

oscillatory solution ( )oX t . The input considered in (30) is a 

small-signal sinusoidal source vin(t), introduced at the location 

of the input signal to be amplified.  

The above methodology has been applied to the transistor-

based oscillator in Fig. 6, under a sinusoidal quench signal of 

the form vq(t) = Vdc + Vp cos(ωqt). The amplitude of the input 

sinusoidal signal is Vin = 0.1 mV. The integration time step is 

t = 1 ns.  

Representing the magnitude and phase of the low-pass 

equivalent H(t, Ω + ωp) versus  one obtains the set of transfer 

functions in Fig. 10. Each trace corresponds to a different time 

value in the envelope-transient integration interval, given by 

(50 ns, 600 ns), with the time step 1 ns. Fig. 10(a) and (b) are 

obtained for Vdc = −1.584 V and Vp = 1.06 V. Fig. 10(a) presents 

the magnitude of the resonance curves, whereas Fig. 10(b) 
presents the phase of these curves. Fig. 10(c) shows the 

magnitude of the resonance curves obtained for Vdc = −1.56 V, 

which evidence a nonlinear behavior. A quantitative detection 

of the nonlinear mode is carried out by just inspecting the 

harmonic content, at multiples of the oscillation frequency, that 

is, by evaluating 
,| ( ) | /out k inV t V .  

Once the double entry function H(tn, Ωi + ωp) is available in 

the in-house software, the impulse response ( , )h t   is 

calculated, for each , by means of a loop in the time variable tn 

(going from t1 to tN), as described next.  
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Fig. 10. Function H(t,ω) corresponding to the transistor-based oscillator in Fig. 

6. The quench frequency is fq = 8 MHz and Vp = 1.06 V. Each trace corresponds 

to a different time value in the envelope-transient integration interval, given by 

(50 ns, 600 ns), with the time step 1 ns. (a) Magnitude of H(t,ω) for Vdc = −1.584 

V. (b) Phase of H(t,ω) for Vdc = −1.584 V. (c) Magnitude of H(t,ω) for Vdc = 

−1.56 V. 

  

Step 2. Loop in tn for the calculation of ( , )h t   

The usual inverse Fourier transform is applied to a function 

depending only on frequency. However, the function 

( , ) ( , )pH t H t    in (30) also depends on the time t. Our 

way to deal with this additional dependence is to parametrize 

the time t, which, as indicated, is discretized in the samples t1, 

tn, … tN.  At each time tn, the corresponding value ( , )nh t   of 

the LTV impulse response ( , )h t  is calculated as: 

max

min

( )1
( , ) ( , )

2

p

n

p

j t

n n ph t H t e d

 



 

 




 



        (31) 

The whole function ( , )h t  for a particular  is given by a 

sequence of time values ( , )nh t  , where t1, tn, … tN. 

 The above method has been applied to calculate the 

envelope-domain LTV impulse response of the transistor-based 

SRO of Fig. 6. In Fig. 11 the results are compared with those 

obtained through circuit-level envelope-transient simulations, 

where several short-time impulses are applied at different time 

values . To estimate the LTV impulse response through 
envelope-transient simulations, an input pulse has to be 

introduced in the circuit at the time . This involves an actual 

realization of the envelope-domain impulse and a circuit-level 

simulation for each  value. Instead, the new LTV impulse is 

obtained by simply performing a sequence of IFT under the 

variation of , since all the information on the SRO response is 
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contained in the oscillatory LTV transfer function. For the 

specific  values considered in Fig. 11, the results of (30)-(31) 

should agree with those provided by envelope-transient 

simulations, as validated in that figure. 
TABLE II 

ALGORITHM FOR THE CALCULATION OF THE LTV IMPULSE RESPONSE ( , )h t   

Read Time_vector  

 
 
 

Reading of the vector of time 

values exported from ADS 

Read Frequency_vector  
 

Reading of the frequency 
vector exported from ADS. 
Prior to exporting, this 
frequency vector is translated 

doing f = fsweepfp, where fsweep 
are the frequencies in the 
sweep. 

 
fx = Frequency_vector 

 

Definition of the frequency 
vector 

T = max(Time_vector)-

min(Time_vector) 
Calculation of the duration of 
the time interval 
 

N = 

length(Time_vector) 
Calculation of the number of 
time points 

 
tau = 

linspace(tau1,tau2,tau

_points) 

Definition of the vector of tau 

values considered in ( , )h t  . 

(The interval is tau1, tau2) 
 

for k = 1:length(tau) Beginning of the loop that 
calculates a sequence of 

functions ( , )h t  , one for 

each  
 

     for n = 1:N Beginning of the loop that 

calculates ( , )h t    

Exp_wtau = exp(-

1i*2*pi*fx*tau(k)) 
Definition of the exponential 

function 
je  

 

 
Read f,H(tn,f) Reading of the function

, [ ,2 ( )]n pf H t f f 

exported from ADS 
h(n) = IFT(tn,H.* 

Exp_wtau) 
Calculation of the following 
IFT integral:  

max

min

( )

( , )

1
( , )

2

p

n

p

n

j t

n p

h t

H t e d

 



 








 





 
 

     end  
end  

 

   Fig. 12 shows the magnitude of the output-signal envelope, 

obtained when sweeping the time  in (30)-(31). The whole 

analysis in Fig. 12, using (30)-(31), takes 12.18 s in a computer 
with 16 GB RAM, intel® Core™ i7-6700 CPU at 3.4 GHz. This 

analysis is much more complete than the one in Fig. 11, which 

only considers four input pulses. Note that the pulses in Fig. 12 

are represented only for illustration purposes, since (30)-(31) 

directly provides the LTV impulse response at each particular  

value. These impulses, obtained through the IFT of 
je  

, have 

also been represented in Fig. 12. Many  values have been 

considered due to the negligible computational cost.  
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Fig. 11. Transistor-based SRO. Comparison between LTV impulse responses 

obtained through circuit-level envelope-transient simulations (Fig. 9(b)) and 

with the numerical method in (30)-(31), departing from the transfer-function in 

Fig. 10(a) and Fig.10(b). 
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Fig. 12. Transistor based SRO. Normalized magnitude of the output-voltage 

envelope when sweeping the time  in (30)-(31). The sensitivity interval has 

been considered as the one comprised between the τ values at which the 

maximum envelope magnitude is 0.1Vmax, where Vmax is the maximum 

magnitude obtained when sweeping  through the whole interval. This interval 

is (68 ns, 80 ns). The maximum sensitivity is obtained at  = 74 ns. The 

sensitivity interval has also been calculated by evaluating the maximum of the 

oscillatory LTV impulse response ( , )h t  , in terms of the time t, under variation 

of the impulse time , in dashed line. The whole analysis takes 12.18 s in a 

computer with 16 GB RAM, intel® Core™ i7-6700 CPU at 3.4 GHz. 

 

C. Comparison with previous SRO models 

     The LTV impulse response fully characterizes the SRO 

behavior under a given quench signal. The reference time t = 0 

is taken from the middle time of the sensitivity interval. This is 

calculated by evaluating the maximum of the oscillatory LTV 

impulse response ( , )h t  , in terms of the time t, under 

variations of the impulse time . This maximum, expressed as 

max [ ( , )]t h t  , is represented versus , which in the transistor-

based oscillator gives rise to the dashed-line curve of Fig. 12(a). 

This calculation is straightforward using (30)-(31) but would be 

very demanding when based on a sequence of circuit-level 
envelope transient simulations.  

   If an equivalence with the conventional model is wished, the 

normalized envelope p(t) can be approximated by the impulse 

response ( , )h t  , normalized to 1. The normalized envelope 

p(t) is the homogeneous solution of the SRO, whereas ( , )h t  is 

calculated under an impulse excitation, so there is a certain error 
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here. However, the functions ( , )h t   have approximately the 

same shape except near the impulse time . In fact, when 

varying  through the sensitivity interval, there is a scaling 

effect of the output signal, this meaning that they approximately 

overlap when multiplied by suitable constant scalars (except 

near the impulse time ). The super-regenerative gain can be 

obtained from p(0), as shown in equation (22). The constant 

factor K0 0 of [2] can be obtained through fitting.  

   In Fig, 12 the sensitivity interval is (68 ns, 80ns), centered 

about  = 74 ns. The maximum amplitude of the output pulse is 

obtained when injecting the impulse at  = 74 ns. The results 

are also consistent with the predictions through pole-zero 

identification in Fig. 8. 

D. Hang-over effects 

The method is able to predict the hang-over effects. However, 

it is applicable to SROs in the linear operation. With the 

transistor-based SRO, we did not observe hang-over in linear 

mode, only in logarithmic mode. With the negative-resistor 

oscillator in Fig. 2 it was possible to observe hang-over effects 

when replacing the sinusoidal quench signal with a sawtooth 
signal. Fig. 13(a) presents the sawtooth quench signal. Fig. 

13(b) shows the oscillatory LTV transfer function 

( , )pH t  traced versus  for different t values in a time 

interval comprising 5 quench periods, given by (0, 1 µs), with 

the time step 1 ns. At some t values, the magnitude of 

( , )pH t  exhibits several local maxima, which is indicative 

of hang-over effects [1], [2]. Next, a short-duration sinusoidal 

signal has been applied at the time 50 ns. Fig. 13(c) compares 

the output signal obtained with (30)-(31) and with standard 

time-domain integration. As can be seen, there is a very good 
agreement. Fig. 13(d) presents an expanded view of the first 

output pulse. The result is successfully compared with standard 

time-domain integration. 
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Fig. 13.  Prediction of hang-over effects. (a) Sawtooth quench signal. (b) 

Oscillatory LTV transfer function H(t,ω) traced versus  for different t values 

in a time interval comprising 5 quench periods. (c) Output pulses obtained with 

H(t,ω) and with standard time-domain integration. (d) Expanded view of the 

first output pulse. The result is compared with standard time-domain 

integration. 

V. OUTPUT SIGNAL UNDER AN ARBITRARY INPUT 

MODULATION  

Let a modulated input signal be considered. It will be 

expressed in terms of its low pass equivalent as: 

,( ) 2Re ( ) j t

in inv t V t e 


    . For convenience, this low-pass 

equivalent will be redefined with respect to p, by doing: 
( )

,( ) ( ) pj t

in inV t V t e
 




 . Then, the output signal is obtained from 

the LTV transfer function by means of the following integral:  
/2

/2

1
( ) ( , ) ( )

2

B

j t

out p in

B

V t H t V e d






                          (32) 

The time interval and number of samples must be the same 

in Vin(t) and ( , )pH t  , which is directly handled in the in-

house software. Remember that ( , )pH t   is obtained 

through (30) by means of a frequency sweep, applied to a small-

signal sinusoidal input 
j t

inV e 
. If the carrier frequency  does 
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not agree with p, the low pass equivalent calculated with (32) 

will be 
( )

,( ) ( ) pj t

out outV t V t e
 




 . 

In a manner similar to what was described in the previous 

sub-section, once the double entry function H(tn, Ωi + ωp) is 

available in the in-house software, the output envelope ( )outV t

is calculated by means of a loop in the time variable tn (going 

from t1 to tN). At each time step, the following IFT integral 

function is calculated: 
max

min

1
( ) ( , ) ( )

2

p

n

p

j t

out n n p inV t H t V e d

 

 










                    (33) 

The whole function ( )outV t  is given by the sequence of time 

values ( )out nV t , where t1, tn, … tN. 

Thus, once the LTV transfer function ( , )pH t   is 

available, the output signal under any arbitrary input is 

calculated through the integral expression (33). To clarify the 

various steps of the procedure, the algorithm has been 

summarized in Table III. 

For illustration, the method has been tested under an on-off 

keying modulation and a QPSK modulation. In the two cases, 

the LTV transfer function in Fig. 10(a) and Fig. 10(b) will be 

used for the calculation of the output signal. 

Initially, an on-off keying modulation at the carrier frequency 
f = 2.7 GHz, with the modulation frequency fmod = 800 kHz and 

the quench frequency fq = 8 MHz, has been considered. Fig. 

14(a) shows the magnitude of the envelope of the input signal. 

Fig. 14(b) shows the magnitude of the envelope of the output 

signal. The results obtained through (33), using the LTV 

transfer function in (30), are overlapped with those obtained 

through a circuit-level envelope-transient simulation in 

commercial software. Fig. 14(c) compares the results of the 

LTV transfer function with standard time-domain integration 

and Fig 14(d) presents the same comparison based on an 

expanded view of a single pulse.  

In a second test, a QPSK signal at the carrier frequency f = 2.7 
GHz has been considered. The symbol period agrees with the 

quench period and is given by Ts = Tq = 125 ns. Fig. 15(a) 

shows the magnitude of the output signal, obtained through (33) 

and by means of circuit-level envelope-transient simulations, 

with overlapped results. Fig. 15(b) compares the phase of the 

input and output signals. In agreement with the derivations in 

[5], the SRO is able to follow the phase shifts.  

Fig. 15(c) shows an expanded view of the amplitude and 

phase variations corresponding to two oscillation pulses. The 

90º phase increment in the input signal is properly followed by 

these two oscillation pulses. When the oscillation is off, there is 

a small output signal at , due to the presence of the small input 

signal at the same frequency, with the input power Pin = ‒57 
dBm. Then, the output signal exhibits a near-flat phase during 

the constant phase states of the QPSK modulation. However, 

during the oscillation grow up and decay there are significant 

phase changes, less pronounced when the pulse amplitude is 

about its maximum. The phase changes are due to the variation 

in the instantaneous-oscillation frequency. Since the 

fundamental frequency of the envelope-domain equations and 

LTV transfer function is kept fixed to , this variation gives rise 

to a time-varying phase (t), which adds up to the phase 

changes induced by the QPSK-modulated input signal. The 

phase variations are strong in this transistor-based oscillator due 

the quench-signal modulation effects, since the resonance takes 

place between the inductor LD and the transistor output 

capacitance. The apparent phase discontinuity in the transistor-

based oscillator is due to the wrap to 180º to 180º. 

Nevertheless, the phase increment induced by the QPSK signal 
is properly tracked by the SRO. 
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Fig. 14. Response to an on-off keying signal at the carrier frequency 

f = 2.7 GHz, at the modulation frequency fmod = 800 kHz. The quench frequency 

is fq = 8 MHz. (a) Magnitude of the envelope of the input signal. (b) Magnitude 

of the envelope of the output signal. Results obtained through (33), using the 

LTV transfer function in (30), are overlapped with those obtained through a 

circuit-level envelope-transient simulation in commercial software. (c) 

Comparison of the results of the LTV transfer function with standard time-

domain integration. (d) Expanded view of a single pulse. 
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Fig. 15. QPSK signal at the carrier frequency f = 2.7 GHz. The symbol period 

agrees with the quench period and is given by Ts = Tq = 125 ns. (a) Magnitude 

of the output signal, obtained through (33) and by means of circuit-level 

envelope-transient simulations, with overlapped results. (b) Comparison of the 

phase of the input and output signal. In the time intervals of interest, which are 

the ones with a pulse amplitude different from zero, the output phase predicted 

through (33) is overlapped with the one obtained through envelope-transient 

simulations. (c) Expanded view of the phase variations during two oscillation 

pulses. The 90º phase increment in the input signal is properly followed by these 

two oscillation pulses.  
 

TABLE III 

ALGORITHM FOR THE CALCULATION OF THE SRO OUTPUT UNDER 

ARBITRARILY MODULATED INPUT SIGNALS 

 
Read Time_vector  
 

Reading of the vector of time 
values exported from ADS 

T = 

max(Time_vector)-

min(Time_vector) 

Calculation of the duration of the 
time interval 
 

N = 

length(Time_vector) 
Calculation of the number of 
time points 

 
Vin_t=A_t*exp(phase_

t) 

Definition of the complex-
envelope of the arbitrarily 
modulated input signal 
 

Read 

Frequency_vector 
 

Reading of the frequency vector 
exported from ADS. Prior to 
exporting, this frequency vector 

is translated doing f = fsweepfp, 
where fsweep are the frequencies 

in the sweep. 
  

fx = 

Frequency_vector 

 

Definition of the frequency 
vector 

Vin_W = FFT(Vin_t) Calculation of  ( )inV   through 

FFT of ( )inV t  

for n = 1:N Beginning of the loop that 

calculates ( )out nV t  

Read f,H(tn,f) Reading of the function

, [ ,2 ( )]n pf H t f f  exported 

from ADS 
Vout(n)  = 

IFF(tn,H.* Vin_W) 
Calculation of the following IFT 
integral:  

max

min

( )

1
( , ) ( )

2

p

n

p

out n

j t

n p in

V t

H t V e d

 

 












  
 

end  

VI. MEASUREMENTS 

The transistor-based SRO has been experimentally 

characterized under an on-off keying modulation. The carrier 

frequency is f = 2.7 GHz, the modulation frequency is 

fmod  = 800 KHz and the quench frequency is fq = 8 MHz. The 

transistor is biased at the drain voltage Vd = 0.6 V and consumes 

the dc current Id = 0.066 A. The quench signal values are 

Vp = 455 mVpp, Vdc = 270 mVdc and fq = 8MHz 

 The measurement set-up is shown in Fig. 15(a) and the 

photograph of the measured prototype is shown in Fig. 15(b). 
The RF input signal is generated using the ANRITSU 

MG3710A Vector Signal Generator, setting a square-pulse 

modulated signal with a carrier frequency of f = 2.7 GHz, a 

modulation frequency fmod = 800 kHz and an output power of 

PRF = ‒37 dBm. A directional coupler and an attenuator of 10 

dB have been connected to the vector signal generator output to 

obtain the SRO input power Pin = 57 dBm. The transmitted 

port of the directional coupler has been directly connected to a 

DSO90804A Digital Storage Oscilloscope to observe the 

modulated input signal as well as the SRO output.  

 Fig. 17(a) presents the sinusoidal quench signal, which has 

been generated with the Agilent 81180B Arbitrary Waveform 

Generator. The RF signal, RFin(t), in Fig. 17(b) was obtained by 
simply connecting the transmitted port of the directional 

coupler to the oscilloscope. Fig. 17(c) presents the attenuated 

RF signal spectrum, measured by directly connecting the output 

of the 10 dB attenuator to the Agilent E4407B Spectrum 

Analyzer. Note that prior to its introduction into the SRO, the 

RF signal passes through the coupled port of the directional 

coupler with 10 dB attenuation and an attenuator of 10 dB.    

   The measured output signal is shown in Fig. 18(a). The “on” 

and “off” intervals are clearly distinguished by the magnitude 

of the output pulses. There are small-amplitude output pulses in 

the off intervals, due to noise. Fig. 18(b) compares the measured 
output amplitude with the one obtained through (33). Fig. 18(c) 

presents an expanded view of a single pulse. Measurement 

results are compared with those obtained through (33), and with 

circuit-level envelope-transient simulations. The disagreement 

with respect to the experimental results is considered relatively 

small and is attributed to inaccuracies in the models of the 

active and passive elements contained in the SRO circuit.   
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Fig. 16. (a) Measurements setup. The RF input signal is generated using the 

ANRITSU MG3710A Vector Signal Generator. A directional coupler and an 

attenuator of 10 dB have been connected to the generator output to obtain 

Pin = −57 dBm at the SRO input. The transmission port of the directional 

coupler has been directly connected to a DSO90804A Digital Storage 

Oscilloscope to observe the modulated input signal as well as the SRO output. 

(b) Photograph of the measured prototype built on Rogers 4003C substrate (εr 

= 3.55, H = 32 mils). 
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Fig. 17. Experimental characterization of the SRO, using the set-up in Fig. 16. 

(a) Sinusoidal quench signal with Vp = 455 mVpp, Vdc = 270 mVdc and fq = 

8MHz, generated with the Agilent 81180B Arbitrary Waveform Generator. (b) 

Input signal, RFin(t), extracted from the transmitted port of the directional 

coupler. (c) Input-signal spectrum, measured by directly connecting the output 

of the attenuator to the spectrum analyzer. 
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Fig. 18. Experimental output signal. (a) Time-domain measurement. (b) 

Comparison of the magnitude of the experimental output signal with the 

predictions by (33). (c) Expanded view of a single pulse. Comparison of the 

measurement results with those obtained through (33), and with circuit-level 

envelope-transient simulations. 

VII. CONCLUSION 

An envelope-transient methodology for the analysis and 

modeling of super-regenerative oscillators has been presented. 

In a first stage, the stability of the non-oscillatory solution 

forced by the quench signal is analyzed through the calculation 

of its time-variant poles. This allows establishing the reference 

times of the SRO, specifically, the central time of the sensitivity 

interval and the time value at which the output envelope reaches 

its maximum magnitude. In a second stage, the full SRO 

response in linear regime is modeled with an LTV impulse 

response and its associated LTV transfer function. The 

calculation requires the frequency sweep of a small signal 

sinusoidal source in an envelope-transient simulation. The LTV 

impulse response enables a straightforward identification of the 

sensitivity interval and other essential characteristics of the 

SRO performance. The LTV transfer function enables the 

calculation of the SRO output under any small-signal input, 

with arbitrary carrier frequency and modulation. The results 

have been successfully validated with circuit-level envelope-

transient simulations and with measurements.  
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