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Resumen 

 

 

La evolución tecnológica en el campo de los microprocesadores nos ha llevado a sistemas 

paralelos con múltiples hilos de ejecución simultánea, o threads. Estos sistemas son más 
difíciles de programar y presentan sobrecargas en la ejecución mayores que los sistemas 

uniprocesadores tradicionales, lo que puede limitar su rendimiento y escalabilidad. Estas 
sobrecargas se deben principalmente a los mecanismos de sincronización, el protocolo de 

coherencia y el modelo de consistencia y otros detalles requeridos para garantizar una 
ejecución correcta.  

El Capítulo 1 de esta tesis hace una introducción a los mecanismos necesarios para diseñar y 
hacer funcionar tal sistema paralelo, detallando en gran medida el trabajo reciente del área. En 

primer lugar, el apartado 1.1 estudia los mecanismos que hacen posible la construcción de 
sistemas de memoria común: El protocolo de coherencia y el modelo de consistencia del 

sistema. Estos dos mecanismos garantizan que los diferentes procesadores tienen una visión 
uniforme de la memoria del sistema, y especifican cómo puede comportarse el sistema cuando 

hay carreras en el acceso a datos compartidos. A continuación, en el apartado 1.2 se exponen 
los fundamentos de la programación paralela en tal modelo de memoria común, con énfasis 

en los mecanismos de sincronización: barreras y secciones críticas protegidas por locks. Se 
discuten las principales dificultades que presenta esta programación paralela con respecto a la 
programación single-threaded: la ley de Ahmdal, que limita la escalabilidad del sistema por la 

componente secuencial de los programas; el compromiso en cuanto al nivel de granularidad 
del paralelismo, en que una granularidad más fina permite más paralelismo pero presenta más 

overhead en la ejecución; los problemas de deadlock (interbloqueo), inversión de prioridad y 
starvation (inanición), inherentes a sistemas basados en locks; y finalmente, se analiza la 

complejidad del diseño de estructuras de datos concurrentes, especialmente por dos 
problemas: la dificultad de ampliar una estructura de datos con nuevos métodos sin conocer 

en detalle la implementación del resto de métodos, y la falta de composibilidad, es decir, que 
la construcción de una estructura de datos de un nivel superior, a partir de estructuras basadas 

en locks más sencillas, puede dar lugar a deadlock. 

Existen múltiples implementaciones alternativas de locks, que se revisan en el apartado 1.3. En 

esencia, un lock es una abstracción que protege una cierta zona de memoria o parte del 



 

código, de forma que sólo un thread pueda acceder a la zona protegida. Alternativamente, 

existen locks de lectura/escritura, que permiten un único escritor que modifique los datos, o 
múltiples lectores que accedan a la vez a los datos compartidos sin modificarlos. Hay 

implementaciones centralizadas, en que el lock es una única palabra de memoria a la que se 
accede mediante operaciones atómicas del procesador. Una implementación así genera 

contienda: todos los threads que quieren tomar el lock acceden a la misma posición de 
memoria, lo que implica múltiples invalidaciones a nivel de coherencia, empeorando el 

rendimiento del sistema. Alternativamente, existen implementaciones distribuidas, como los 
locks basados en colas: cada thread que quiera tomar el lock reserva una estructura 

denominada “nodo” en memoria, y los diferentes nodos de cada thread se enlazan en forma 
de una cola de solicitantes. En estos diseños el lock se pasa en orden de un nodo al siguiente, 

lo que evita la contienda, y además garantiza el fairness: existe una política que garantiza que 
todos los threads que pretenden tomar un lock lo consiguen hacer en un tiempo razonable, sin 
producirse starvation. En este apartado 1.3 se discuten también múltiples alternativas de 

locks, como aquellos que abortan si el lock no se toma en un cierto periodo de tiempo 
(trylocks), las implementaciones jerárquicas, o locks diseñados para comportarse 

especialmente bien en caso de existir un comportamiento patológico, como ser adquirido 
siempre por el mismo thread (biased locks). 

Una propuesta relativamente reciente que aborda los problemas de programación paralela es 

la Memoria Transaccional (Transactional Memory, TM), que se introduce en el apartado 1.4. 
Un sistema de Memoria Transaccional proporciona al programador la abstracción de una 

transacción con la que puede realizar modificaciones en memoria compartida. Las 
transacciones en memoria son análogas a las transacciones de las bases de datos, garantizando 
las propiedades de atomicidad (se ejecuta toda la transacción, o se aborta toda la transacción, 

pero no parte de ella) y aislamiento (ningún thread es capaz de ver el estado intermedio de 
otra transacción) al código que corre dentro de la transacción. Esto permite eliminar la gestión 

de locks de la tarea de programación al sustituir secciones críticas por transacciones, evitar el 
problema de deadlock, simplificar la modificación de código existente y proporcionar 

composibilidad.  

Para garantizar una ejecución correcta, el sistema de Memoria Transaccional debe ejecutar el 
código transaccional de manera especulativa, almacenando los cambios que realiza la 

transacción (el write-set) en algún tipo de buffer, y utilizar un mecanismo de validación 
(commit) que garantice que los cambios se hacen visibles a nivel global (al resto de threads) de 
forma atómica, sin que hayan ocurrido cambios en las posiciones de memoria leídas (el read-

set). Además, el sistema debe detectar las violaciones: si dos transacciones acceden de manera 
concurrente a los mismos datos en memoria (solapándose parcialmente el write-set de una de 

ellas con el read-set o el write-set de la otra) una de las transacciones debe pararse y esperar al 
commit de la otra, o abortar y reiniciarse. El mecanismo que decide la acción cuando se 

detecta un conflicto se denomina contention manager. 



 

Existen múltiples implementaciones de Memoria Transaccional, tanto en software (STM), 

como propuestas Hardware (HTM) o propuestas tanto híbridas como aceleradas por hardware 
(HyTM o HaTM), que ejecutan parte de las operaciones (como el versionado de los datos) en 

software, y otra parte (como la detección de conflictos) mediante hardware específico. Los 
sistemas hardware proporcionan un rendimiento mucho mayor, al eliminar ciertas tareas que 

pueden requerir un tiempo de ejecución lineal con el tamaño del read/write-set. Sin embargo, 
en el momento de escribir este texto, no existe todavía ninguna implementación comercial de 

sistemas HTM; El procesador Rock de Sun [22] pretendía soportar un sistema híbrido, pero su 
producción ha sido cancelada. 

En el apartado 1.4 se discuten múltiples detalles que condicionan o limitan una 
implementación de Memoria Transaccional. Uno de estos detalles es el problema de la 

privatización: Los datos compartidos pueden disponer de alguna variable que permita hacerlos 
privados y acceder a ellos sin necesidad de utilizar transacciones. Sin embargo, en múltiples 

implementaciones de STM pueden darse carreras de datos que hacen que los datos se 
modifiquen simultáneamente desde una transacción y desde el código externo, sin que se 

advierta la colisión. En el apartado 1.4.6 se discuten el problema y diferentes soluciones. Otro 
detalle es la política utilizada en el contention manager. En general, en sistemas HTM el 

contention manager es muy simple, utilizando una política sencilla que elige una transacción u 
otra en función de algún parámetro, como pueda ser el uso de un timestamp. Otra dificultad 

puede ser la ejecución de operaciones irrevocables, es decir, aquellas que no pueden 
deshacerse en caso de tener que abortar la transacción. Ejemplos de estas operaciones son la 

entrada/salida o las operaciones del sistema que operan sobre procesos. Para gestionarlo, el 
sistema debe soportar las transacciones irrevocables, es decir, transacciones que se garantiza 
que van a finalizar sin abortar, y que el contention manager siempre elige con preferencia. 

Aunque la Memoria Transaccional libera al programador de la complejidad de la gestión de 

locks, muchos de los sistemas STM actuales están internamente basados en locks de escritura 
[36, 46, 124]. Una implementación así, aunque puede bloquearse puntualmente (cuando un 

thread que ha tomado un lock es sacado temporalmente de ejecución), es más sencilla y 
flexible que una implementación no bloqueante [42]. Además, Dice y Shavit discuten [34] las 

ventajas de utilizar una implementación basada en locks de lectura/escritura, básicamente: es 
inmune al problema de la privatización; presenta una implementación interna sencilla, sin 

costosos procesos de validación; mejor fairness al implementar lectores visibles, 
especialmente en transacciones largas; y soporte sencillo para operaciones irrevocables. Sin 
embargo, el rendimiento de un sistema así está limitado por el alto coste de tomar locks de 

lectura en todas las posiciones de memoria leídas en la transacción. 

Finalmente, el apartado 1.5 se centra en la evolución del diseño de los microprocesadores. La 
tecnología actual permite niveles de integración que no merece la pena explotar con un único 

hilo de ejecución, ya que las mejoras de la arquitectura según aumenta el número de 



 

transistores proporcionan beneficios marginales. El principal problema es que las 

implementaciones actuales incorporan múltiples elementos que no se pueden escalar sin 
afectar al tiempo de ciclo, como las memorias direccionables por contenido (Content-

Adressable Memory, CAM) utilizadas en las colas de Load-Store (Load-Store Queue, LSQ) o el 
buffer de reorden (Reorder Buffer, RoB), o el tamaño del banco de registros. Esto hace que no 

pueda aumentarse el tamaño de la ventana de instrucciones (número de instrucciones en 
vuelo en el procesador) de forma acorde con el aumento del tiempo de acceso a memoria.  

En este apartado 1.5 se citan un conjunto de técnicas recientes que pretenden proporcionar 
una arquitectura con un tamaño de ventana de instrucciones muy grande, del orden del millar 

de instrucciones, para atacar el aumento en el tiempo de acceso a memoria principal. 
Conjuntamente, una arquitectura con estas técnicas se ha denominado Kilo-Instruction 

Processor [30]. Específicamente, se proponen arquitecturas basadas en checkpoints que 
eliminan el RoB y realizan la validación de todas las instrucciones correspondientes al mismo 

checkpoint conjuntamente; Mecanismos de reducción del número de registros físicos 
necesarios para un cierto tamaño de ventana; implementaciones jerárquicas de la LSQ, 

acordes con la arquitectura de checkpoints; y otras técnicas que permiten la escalabilidad de 
los recursos del procesador y su ventana de instrucción para que soporte latencias más 

grandes. Conjuntamente, estas técnicas permiten explotar el paralelismo a nivel de instrucción 
en el procesador, a pesar de la existencia de grandes latencias en la memoria principal. 

Todos los aspectos citados condicionan el rendimiento y el diseño de un sistema paralelo de 
memoria común. El objetivo de esta tesis es introducir una serie de técnicas, principalmente 

en hardware, para acelerar la ejecución de estos programas paralelos. 

El Capítulo 2 introduce un sistema de Memoria Transaccional híbrido basado en locks de 
lectura/escritura. Se ha comentado las ventajas de un sistema basado en estos locks, así como 

el problema de rendimiento que presentan en un STM. Para abordar este aspecto, se propone 
una modificación al runtime de un STM tal que, en caso de disponer de un sistema HTM 

genérico, la mayoría de la ejecución se aproveche de sus capacidades. El STM base utiliza la 
versión de lectura/escritura del lock MCS [107]. En general, se mantiene un lock por cada 
objeto transaccional y se permite la ejecución de transacciones software o hardware 

concurrentemente. Para ello, se añaden los siguientes cambios: 

• Si el soporte hardware está presente, se comienza una transacción hardware junto con 
la transacción software. 

• En cada acceso a un objeto desde una transacción hardware, se verifica el estado del 
lock, para detectar conflictos con transacciones que se ejecuten en software, y por 

tanto que tomen los locks en el modo correspondiente. Para ello, la cabecera del lock 
se modifica de forma que la transacción hardware pueda detectar conflictos con 

lectores o escritores sin necesidad de seguir la cola de punteros del lock. Si se detecta 



 

un conflicto con una transacción software, la transacción hardware aborta, ya que no 

puede esperar a que la otra llegue al commit.  

• En cada acceso a un objeto transaccional, el versionado y la detección de conflictos se 
pueden delegar al HTM. En el apartado 2.3 se discuten diferentes alternativas que 
descargan diferente cantidad del trabajo en el HTM, y proporcionan diferente 

rendimiento, junto con las implicaciones sobre los campos a modificar de las 
cabeceras. 

El sistema presentado se evalúa con el simulador GEMS [101] y mediante diferentes 

microbenchmarks transaccionales. Los resultados muestran que la aceleración hardware 
mejora el rendimiento por varios motivos. En primer lugar, la cantidad de trabajo del runtime 

que no se ejecuta gracias al soporte hardware proporciona un speedup entre 1.68× y 3.45× en 
el mejor de los modos. Además, el soporte hardware evita la congestión de lectura en la raíz 

de ciertas estructuras de datos como árboles o listas. Específicamente, la raíz de estas 
estructuras es leída en todas las transacciones, lo que genera una importante contienda a nivel 

de coherencia en el acceso al lock correspondiente en modo lectura. En cambio, con el soporte 
hardware estos accesos se reducen a una simple comprobación, que no genera invalidaciones 
de coherencia. Esto hace que la escalabilidad del sistema sea mucho mayor con el soporte 

hardware que en el STM base. Finalmente, se estudia el número de reintentos en modo 
hardware antes de revertir al modo más lento y seguro, en software. Los resultados indican 

que, a falta de algún tipo de indicación por parte del hardware (por ejemplo, del motivo por el 
que aborta una transacción), el número óptimo de reintentos crece con el número de threads 

en el sistema. Los resultados también muestran, sin embargo, que el rendimiento del sistema 
hardware sufre cuando el nivel de congestión es grande. Este problema tiene una doble raíz: 

Por una parte, al aumentar el número de transacciones hardware que abortan y pasan al modo 
software, la ejecución es más lenta. Por otra parte, la ejecución concurrente de transacciones 

hardware y software, con diferentes políticas de control de congestión, puede introducir 
starvation, lo que penaliza el rendimiento. Este aspecto se estudia en el apartado siguiente. 

El Capítulo 3 estudia los problemas de starvation causados por falta de fairness en el acceso a 
los datos entre transacciones hardware y software. En concreto, las transacciones software 

requieren tomar un lock en cada objeto accedido en el momento de hacer el commit. Las 
transacciones hardware, en cambio, solo requieren comprobar el estado de dicho lock en el 

momento de acceder al objeto. El aislamiento del sistema HTM garantiza que los accesos 
realizados (por ejemplo el acceso al lock) se mantienen inalterados hasta el final de la 

transacción. Esto se traduce en que cualquier intento por parte de otro thread de modificar la 
variable leída (por ejemplo, una transacción software que pretenda tomar el lock) se verá 

retrasado hasta después del commit de la transacción hardware.  En concreto, con el modelo 
HTM utilizado, LogTM [110], el aislamiento se garantiza en base a una extensión del protocolo 



 

de coherencia que envía confirmaciones negativas (NACK) para evitar accesos que entrarían en 

conflicto con una transacción existente.  

Claramente, el sistema HyTM propuesto favorece a las transacciones hardware. Esto, de por sí, 
no es problemático, ya que éstas son el caso más frecuente y el más rápido. Sin embargo, el 

sistema puede generar starvation en las transacciones software si un objeto es leído 
frecuentemente por transacciones hardware y pretende ser modificado por una transacción 

software. En este caso, la transacción software debería esperar a que no hubiera ninguna 
transacción hardware accediendo al objeto; sin embargo, como múltiples transacciones 
hardware pueden leer el objeto en paralelo (diferentes lecturas a nivel de coherencia no 

constituyen una violación), puede darse el caso en que siempre haya alguna transacción 
hardware accediendo en modo lectura a un objeto. Esto puede parar indefinidamente a una 

transacción software que pretenda escribirlo, generando starvation. Este problema ocurre 
frecuentemente en nuestros benchmarks en el caso de estructuras de datos con un único 

punto de entrada, como una lista o un árbol binario.  

Para abordar este problema, en el apartado 3.2 se propone un mecanismo hardware para 
reservar ciertas líneas en el directorio, basado en una estructura denominada Reservation 

Table (RT). La RT es una pequeña tabla, con unas 4 entradas, colocada junto al controlador de 
memoria. Cuando un procesador recibe un NACK a una petición de coherencia, envía una 
petición de reserva a la RT. A partir de ese punto, se registra ese bloque concreto como 

reservado para un cierto procesador, y no se atiende (a nivel de coherencia) a ninguna petición 
de otro procesador. Además, se proporciona un mecanismo de notificación, que garantiza que 

las transacciones HTM, una vez finalizada su ejecución, liberan el bloque de sus caches, 
evitando accesos consecutivos. Finalmente, se estudia el problema del deadlock en este 

sistema, mostrando cómo la implementación más sencilla de la RT puede generarlo, y se 
proporciona una política que es compatible con el sistema de timestamps del HTM base, 

LogTM. 

El sistema propuesto se ha implementado en la misma infraestructura de simulación indicada 
antes. Las evaluaciones muestran un speedup considerable en aquellas aplicaciones con mucha 
congestión, mientras que el rendimiento en los casos no congestionados no sufre. 

Especialmente, se compara el rendimiento obtenido con nuestro mecanismo, frente a una 
política que pretende abordar el mismo problema en sistemas HTM propuesta en [16]. En el 

caso de la política para sistemas HTM, la solución es abortar las transacciones hardware que 
generan el starvation. En el caso de nuestro sistema híbrido, esto aumenta el número de 

transacciones abortadas, y la proporción de transacciones que se ejecutan en software, 
reduciendo el rendimiento. Por el contrario, la RT minimiza el número de abortos y por tanto 

el paso al modo software, lo que proporciona speedups de hasta 2× en casos congestionados. 

Vista la importancia de los locks de lectura/escritura, el Capítulo 4 se centra en mecanismos 
hardware de aceleración de estas operaciones de sincronización, para reducir los overheads 



 

asociados. En concreto, existen diferentes propuestas para la implementación en hardware de 

operaciones de sincronización, que se citan en el apartado 4.1. Diferentes implementaciones 
asocian un cierto estado a cada palabra de memoria [6, 8, 32, 76, 80], construyen colas 

hardware de solicitantes para conseguir una transferencia del lock rápida [55], o asignan locks 
de lectura/escritura dinámicamente a cualquier posición de memoria arbitraria [159]. Sin 

embargo, todas estas propuestas tienen diferentes limitaciones que, a nuestro entender, 
pueden restringir su utilización a un punto de vista puramente académico o de investigación. 

En concreto, algunas de las limitaciones que encontramos en las propuestas existentes, que se 
resumen en la Tabla 4-1, son: 

• En múltiples propuestas resulta necesario añadir tags a todas las líneas de memoria o 
palabras del sistema, lo que aumenta considerablemente los recursos utilizados.  

• La mayoría de las propuestas no permiten utilizar locks de lectura/escritura. 

• La escalabilidad está restringida en múltiples propuestas a un sistema basado en un 
bus central con snoopy, o a un único CMP.  

• En la mayoría de los casos el sistema es inflexible; por ejemplo, por requerir una 
asociación estática de threads a procesadores, y fallando en el caso de migración de un 

procesador a otro; por fallar en el caso de realizarse operaciones migración de páginas 
en aquellas con locks activos; por limitar el número de locks que se pueden tomar en 

un momento dado; o por no permitir el uso de trylocks que abortan si no es tomado 
en un intervalo dado. 

En el apartado 4.2 se introduce el mecanismo del Lock Control Unit (LCU). Este sistema busca 
proporcionar un sistema hardware flexible y escalable para gestionar locks, con un overhead 

pequeño y un tiempo de transferencia del lock bajo. En concreto, nuestra propuesta utiliza una 
unidad hardware, la Lock Control Unit (que a su vez da nombre a todo el sistema) asociada a 

cada procesador. La LCU recibe las peticiones del procesador, y está compuesta de una tabla 
con múltiples entradas, utilizándose una por cada lock a gestionar, así como la lógica de 

control necesaria. El procesador utiliza nuevas instrucciones para tomar y liberar un lock en 
cualquier posición de memoria arbitraria, en modo lectura o escritura. Las entradas de la LCU 

se utilizan como interfaz con el procesador, que itera en la consulta de la entrada local 
correspondiente hasta que el lock se obtiene, y como nodos de una cola de solicitantes. 

A nivel global, existe una o varias estructuras denominadas Lock Reservation Table (LRT). Esta 
estructura es la que se encarga de orquestar el acceso a un mismo lock por parte de diferentes 

LCUs. Cada lock se asocia a una LRT de forma unívoca según su dirección física, lo que permite 
disponer de múltiples LRTs, por ejemplo una por cada controlador de memoria. Cuando una 

LCU recibe una petición para un lock en una nueva posición de memoria, envía una solicitud a 
la LRT correspondiente, en función de la dirección física del lock. Si el lock no existía 



 

previamente, la LRT asigna una nueva entrada en su tabla, y concede el lock a la LCU 

solicitante. En cambio, si el lock ya existía con una entrada en la LRT correspondiente, se 
reenvía la solicitud al último LCU solicitante. Éste guarda un puntero del nuevo solicitante, 

generándose así una cola enlazada que se utilizará para la transferencia directa del lock entre 
las diferentes LCUs. Cuando una LCU recibe la concesión del lock, el procesador local, que se 

encuentra iterando sin éxito intentando adquirirlo, lo consigue al fin y accede a la sección 
crítica. La transferencia del lock de una LCU a otra implica una notificación a la LRT 

correspondiente, para garantizar que se mantienen correctos los punteros de cabeza y final de 
la cola. Sin embargo, estas notificaciones están fuera del camino crítico de la transferencia del 

lock, lo que evita interferencias en el traspaso del mismo. 

El sistema de la LCU permite tomar los locks en dos modos. En primer lugar, está el modo 

ordinario, basado en la construcción de una cola, que se ha indicado antes. Además, existe un 
modo denominado overflowed locking, que permite eliminar la entrada de la LCU. Cuando no 

hay más solicitantes para un lock, se puede eliminar la entrada de manera segura, ya que los 
metadatos correspondientes están registrados en la LRT por si fuera necesario comenzar una 

cola al recibir nuevas peticiones. De esta forma, en un sistema que utilice fine-grain locking un 
mismo procesador puede tomar múltiples locks sin que el número de entradas de la LCU 

constituya un problema, ya que pocos de estos locks tendrán una cola asociada.  

El sistema propuesto también permite el uso de locks de lectura/escritura. Múltiples nodos 

consecutivos de la cola pueden recibir la concesión de un lock en modo lectura, y ésta 
concesión no se transmite al siguiente solicitante hasta que todos los lectores han liberado su 

lock, en cualquier orden. Finalmente, se propone una estructura opcional adicional, 
denominada la Free Lock Table (FLT). En los casos en que un lock es tomado repetidamente por 

un mismo thread, el lock puede guardarse en la FLT local al ser liberado, lo que permite un 
acceso más rápido en la siguiente operación y evita las notificaciones externas innecesarias. 

Existen propuestas hardware que asignan los locks al procesador solicitante. El sistema 

propuesto, por contra, asigna cada lock a un thread, no a un procesador, pero registrando el 
número de procesador desde el que realizó la petición para tareas de direccionamiento. Esto 
permite que, mediante un mecanismo de punteros apropiado, se soporten los casos en que un 

thread migra de un procesador a otro, tanto con el lock tomado, como cuando es parte de la 
cola. Especialmente, la LCU implementa un temporizador que, tras recibir un lock, lo transfiere 

al siguiente solicitante tras un periodo de tiempo si éste no ha sido tomado, evitando 
starvation temporal o deadlock en los casos de suspensión o migración del thread solicitante. 

El apartado 4.2.3 incluye un estudio detallado de la implementación del mecanismo 

propuesto. En este apartado se proponen una serie de invariantes que debe cumplir el 
sistema. También se estudia cómo se evitan las carreras de datos, por ejemplo en las 

notificaciones a la LRT cuando se transfiere un lock. Se analiza la máquina de estados a 
implementar en cada entrada de la LCU. Se estudian los casos de overflow de recursos, es 



 

decir, cómo se comporta el sistema cuando no quedan disponibles entradas en la LCU local, o 

en la LRT; El primer caso se resuelve mediante el uso de entradas especiales que solo pueden 
tomar los locks en el modo de overflow, y con políticas que garantizan que éstos locks queden 

libres para ser tomados sin necesidad de una cola; El segundo caso, se gestiona desbordando 
las entradas de la LRT a una estructura de datos en memoria principal. También se analiza 

cómo puede el mecanismo soportar los eventos de paginación o sistemas virtualizados, 
aunque en estos casos no se propone un mecanismo detallado al ser altamente dependiente 

de la implementación concreta. Finalmente, este apartado también propone dos 
optimizaciones del sistema base, por una parte para optimizar la patología en que un lock es 

tomado casi exclusivamente en modo de lectura (como la raíz de una estructura de datos) y 
por otra parte, para mejorar el rendimiento en sistemas con una estructura jerárquica, como 

pueda ser un sistema compuesto por múltiples CMPs. 

El mecanismo de la LCU ha sido evaluado en la misma plataforma de simulación, y los 

resultados se muestran en el apartado 4.3. En primer lugar, se estudia cómo se minimiza el 
número de mensajes en el camino crítico de la transferencia del lock, al requerirse una única 

notificación. Especialmente, este resultado mejora mucho el valor obtenible mediante locks 
software. Éstos dependen del protocolo de coherencia, e incluso la mejor implementación 

basada en colas requiere 4 ó 6 mensajes en función del protocolo, considerando las 
invalidaciones de coherencia involucradas. A continuación, se utiliza un microbenchmark para 

medir el tiempo de transferencia del lock con múltiples threads accediendo a la misma sección 
crítica. La latencia obtenida supera con creces cualquier lock software, y también propuestas 

hardware que no construyen una cola de solicitantes. El sistema STM basado en locks de 
lectura/escritura, utilizado como base en el Capítulo 2, se utiliza aquí como benchmark que 
utiliza fine-grain locking. Los resultados muestran que la LCU evita la congestión de lectura de 

los locks MCS originales, y que su menor overhead proporciona speedups entre 1.46× y 2.97× 
según la aplicación, con 16 threads. Finalmente, se utilizan aplicaciones paralelas tradicionales 

de las suites SPLASH-2 [157] y PARSEC [13]. Los resultados en este caso son más modestos, ya 
que la proporción del tiempo de ejecución destinado a tareas de sincronización es mucho 

menor en estos benchmarks. En promedio, el sistema consigue un speedup de 2.9% utilizando 
en cada caso la configuración óptima, con o sin FLT. 

El Capítulo 5 pasa a considerar la microarquitectura del procesador, especialmente en lo 

relativo a las tareas de sincronización basadas en locks. Este Capítulo no evalúa ninguna 
propuesta mediante simulación, sino que discute las posibilidades de organización del sistema 
considerando una arquitectura basada en Kilo-Instruction Processors. En primer lugar, se 

introduce la idea de transacciones implícitas como modelo de organización de un procesador 
basado en checkpoints, como los estudiados en la Introducción. Se muestra cómo la validación 

atómica de un checkpoint a nivel global proporciona un comportamiento similar al caso de la 
memoria transaccional. También se estudia cómo esto permite simplificar el modelo de 



 

consistencia (proporcionando un modelo de Consistencia Secuencial) al tiempo que se 

persigue un rendimiento elevado al explotarse el ILP en el resto de checkpoints en vuelo.  

Este Capítulo también estudia diferentes posibilidades para la especulación en secciones 
críticas gracias a la citada capacidad transaccional. En primer lugar, se muestra cómo un 

mecanismo de detección y eliminación de silent stores temporales permite la especulación en 
locks software. Además, se argumenta cómo esa implementación es factible, gracias a la 

implementación jerárquica de la cola de load/stores propuesta para los Kilo-instruction 
Processors. Después, se discute la implementación del mecanismo de la LCU y su interfaz con 
la microarquitectura. En concreto, es necesaria una cola llamada LCU buffer que almacena las 

operaciones de sincronización de cada checkpoint. Además, es necesario adelantar las 
adquisiciones de locks antes del commit del checkpoint en que se ejecutan, con la consiguiente 

acción de compensación (la liberación del mismo lock) en caso de abortarse la transacción. 
Finalmente, se argumenta cómo el mecanismo de la LCU propuesto en el Capítulo 4 no 

permite la especulación en secciones críticas, y se esboza una modificación con un modo de 
adquisición especulativo que sí que lo permitiera.  

Como resumen, esta tesis propone una serie de mecanismos hardware y  software para 

simplificar la programación de sistemas paralelos de memoria común y aumentar su 
rendimiento, centradas en torno a la programación con locks de lectura/escritura con 
garantías de fairness. Estas propuestas se han realizado en diferentes ámbitos: diseñando un 

sistema híbrido de Memoria Transaccional basado en estos locks; proporcionando mecanismos 
que garantizan el fairness en dicho sistema entre transacciones hardware y software; 

proponiendo un mecanismo hardware de aceleración de los locks fair de lectura/escritura; y 
estudiando la relación entre estos mecanismos de sincronización y la microarquitectura del 

procesador, centrándose en arquitecturas basadas en checkpoints. Adicionalmente, se han 
abierto varias vías de investigación, principalmente en lo relativo a implementaciones 

hardware de locks de de lectura/escritura. 
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Abstract 

 

 

Technological evolution in microprocessor design has led to parallel systems with multiple 

execution threads. These systems are more difficult to program and present higher 
performance overheads than the traditional uniprocessor systems, what may limit their 

performance and scalability. These overheads are due to the synchronization, coherence, 
consistency and other mechanisms required to guarantee a correct execution. 

Parallel systems require a deeper knowledge of the system from the programmer in order to 
achieve good performance and scalability. Traditional parallel programming has been based on 

synchronization primitives such as barriers, critical sections and reader/writer locks, highly 
prone to programming errors. Transactional Memory (TM) is a relatively recent proposal that 

seeks to remove the synchronization problems from the programmer. However, many TM 
systems still rely on reader/writer locks, and would get benefited from an efficient 

implementation. 

This thesis presents new hardware techniques to accelerate the execution of such parallel 

programs. We propose a Hybrid TM system based on reader/writer locks, which minimizes the 
software overheads when acceleration hardware is present, but still allows for correct 

software-only execution. The fairness of the system is studied, and a mechanism to guarantee 
fairness between hardware and software transactions is provided. We introduce a low-cost 

distributed mechanism named the Lock Control Unit to handle fine-grain reader-writer locks. 
Finally, we propose an organization of a parallel architecture based on Kilo-Instruction 

Processors, which helps to simplify the consistency model while allowing for high performance 
thanks to the speculative large instruction window. 

 





Table of Contents 
 

ABSTRACT    I

TABLE OF CONTENTS   V

LIST OF FIGURES   IX

LIST OF TABLES   XI

CHAPTER 1. INTRODUCTION   1
1.1. Shared-memory architectures   4

1.1.1. Memory coherence   5

1.1.2. Memory consistency   6

1.2. Fundamentals of shared-memory parallel programming   8

1.2.1. Synchronization mechanisms   8

1.2.1.1. Barriers   8
1.2.1.2. Locks and critical sections   9

1.2.2. Difficulties of parallel programming   9

1.2.2.1. Scalability and critical sections   9
1.2.2.2. Granularity   10
1.2.2.3. Deadlock   11
1.2.2.4. Priority inversion   11
1.2.2.5. Starvation   12
1.2.2.6. Complexity of concurrent data structures   12

1.3. Locking mechanisms   14

1.3.1.1. Centralized vs. queue-based locking   14
1.3.1.2. Spin-locks vs. try-locks vs. blocking locks   15
1.3.1.3. Reader-writer locking   16
1.3.1.4. Fairness issues   17
1.3.1.5. Hierarchical lock implementations   18
1.3.1.6. Pathologies of locks   19

1.3.1.6.1. Single-thread locking and biased locks   19
1.3.1.6.2. Waiting thread suspension in FIFO locks   20
1.3.1.6.3. Mostly Reader locking   20

1.4. Fundamentals of Transactional Memory   21

1.4.1. Atomic sections   21

1.4.2. The ACID properties   22

1.4.2.1. Atomicity   22
1.4.2.2. Consistency   23
1.4.2.3. Isolation   23
1.4.2.4. Durability   24

1.4.3. Programmability and composability   24

1.4.4. Update mechanism: In-place vs. deferred   25



vi · Table of Contents    

1.4.5. Conflict detection mechanism: Lazy vs. Eager, visible vs. invisible readers   25

1.4.6. Data validation and the privatization problem   26

1.4.7. Contention management   28

1.4.7.1. Abort-always policy   29
1.4.7.2. Requestor-wins policy   29
1.4.7.3. Requestor-waits policy   29
1.4.7.4. Software policies   30

1.4.8. Progress conditions   30

1.4.8.1. Wait-free, lock-free, obstruction-free and blocking progress conditions   31
1.4.8.2. Non-blocking TM   31
1.4.8.3. Lock-based TM   32

1.4.9. Nested transactions   32

1.4.10. Irrevocable transactions   33

1.4.11. Hardware Transactional Memory   34

1.4.11.1. Transactional Memory by Herlihy and Moss   34
1.4.11.2. Transactional Coherence and Consistency (TCC)   35
1.4.11.3. Bulk Transactional Memory   35
1.4.11.4. Log-based Transactional Memory (LogTM)   36

1.4.12. Software Transactional Memory   36

1.4.12.1. Software Transactional Memory by Shavit and Touitou   37
1.4.12.2. Software Transactional Memory for Dynamic-Sized Data Structures   37
1.4.12.3. Fraser’s OSTM   38
1.4.12.4. Lock-based STMs   39

1.4.13. Hardware-software Transactional Memory   40

1.4.13.1. Hardware-accelerated TM   40
1.4.13.1.1. Hardware-Accelerated TM (HATM)   40
1.4.13.1.2. Signature-accelerated TM (SigTM)   41
1.4.13.1.3. Flexible TM (FlexTM)   41

1.4.13.2. Hybrid TM   41
1.4.13.2.1. Intel’s Hybrid TM   41
1.4.13.2.2. Sun’s Hybrid TM and Rock   42

1.5. Processor microarchitecture and performance aspects   43

1.5.1. Evolution of ILP-driven microarchitectural designs   43

1.5.2. Thread-level parallelism   45

1.5.3. Kilo-instruction processor overview   46

1.5.3.1. Checkpointing mechanism and early release   46
1.5.3.2. Bi-level issue queue   47
1.5.3.3. Ephemeral registers   47
1.5.3.4. Load/store queue handling   48

1.6. Contributions of this thesis   48

1.6.1. Lock-based Hybrid TM   48

1.6.2. Fairness among software and hardware transactions   49

1.6.3. HW acceleration of locking mechanisms   49

1.6.4. Microarchitectural improvements for performance, locking and consistency   49

CHAPTER 2. LOCK-BASED HYBRID TRANSACTIONAL MEMORY   51



  Table of Contents · vii 

2.1. Advantages of reader-writer blocking TM   53

2.2. Base STM overview   53

2.3. Acceleration opportunities with a generic HTM   57

2.3.1. Avoid locking   58

2.3.2. Read set removal   61

2.3.3. Write set removal and in-place update   62

2.4. Evaluation   63

2.4.1. Evaluation infrastructure   63

2.4.2. Simulated models   64

2.4.3. Benchmarks   65

2.4.3.1. Red-black tree   65
2.4.3.2. Skip-list   66
2.4.3.3. Hash table   67

2.4.4. Performance results   67

2.4.4.1. Single-thread performance   67
2.4.4.2. Read-only transactions   68
2.4.4.3. Reader-writer transactions   70
2.4.4.4. Number of HW retries in HW transactions   72

2.5. Summary   73

CHAPTER 3. FAIRNESS IN HYBRID TRANSACTIONAL MEMORY   75
3.1. Writer starvation in Hybrid TM   77

3.2. Directory reservations   79

3.2.1. Issues with LogTM transactions   80

3.2.2. Reservation Table and fair queuing   82

3.2.3. Thread de-scheduling and migration   83

3.3. Evaluation   84

3.3.1. Performance results   85

3.4. Summary   88

CHAPTER 4. HW ACCELERATION OF LOCKING MECHANISMS   89
4.1. HW mechanisms for locking acceleration   91

4.2. The Lock Control Unit mechanism   94

4.2.1. Hardware components   95

4.2.1.1. The Lock Control Unit   95
4.2.1.2. The Lock Reservation Table   97
4.2.1.3. The Free Lock Table   97

4.2.2. General overview   98

4.2.2.1. Programming interface   98
4.2.2.2. Two locking modes   99

4.2.2.2.1. Queue-based locking   100
4.2.2.2.2. Overflowed locking   100

4.2.2.3. Write-lock acquisition, transfer and release   100
4.2.2.4. Reader locking   103



viii · Table of Contents    

4.2.2.5. The Free Lock Table   105
4.2.3. Detailed overview   106

4.2.3.1. Design invariants   106
4.2.3.2. LRT detailed overview   107
4.2.3.3. LCU state machine   109
4.2.3.4. Communication primitives   110
4.2.3.5. Thread suspension and migration   111
4.2.3.6. Types of LCU entries and forward progress   112
4.2.3.7. Management of LCU overflow   114
4.2.3.8. LRT overflow   116
4.2.3.9. Read-only locking   116
4.2.3.10. Hierarchical Locking   118
4.2.3.11. Paging, virtualization and process faulting issues   119

4.3. Evaluation   122

4.3.1. Number of messages in the critical path of lock transfer   123

4.3.2. Lock transfer time   124

4.3.3. Fine-grain locking: STM benchmarks   127

4.3.4. Traditional parallel benchmarks   129

4.4. Summary   130

CHAPTER 5. IMPLICIT TRANSACTIONAL MEMORY   133
5.1. Atomic sections and processor checkpointing   135

5.1.1. Implementation details of implicit transactions   136

5.1.2. Implicit transaction length and performance   139

5.2. Sequential consistency with implicit transactions   141

5.3. Lock speculation with implicit transactions   143

5.3.1. Dependencies through locks and critical section speculation   144

5.3.2. Critical section speculation with software locks   145

5.3.3. Critical section speculation with the LCU model   147

5.3.3.1. Implicit transactions and ordinary LCU access   147
5.3.3.2. Speculation support in the LCU   148
5.3.3.3. Implicit transactions and speculative LCU access   150
5.3.3.4. Speculative LCU accesses and HyTM   151

5.4. Speculation beyond flags and barriers   151

5.5. Summary   152

CHAPTER 6. CONCLUSIONS   155
6.1. Contributions   157

6.2. Future work   159

6.3. Publications   159

6.3.1. HyTM, kilo-instruction architectures and reader/writer synchronization   160

6.3.2. Interconnection Networks   160

CHAPTER 7. REFERENCES   163



List of Figures 
 
Figure 1-1: Example of a consistency problem. Initially A = B = 0. Can P2 load 0 from A? ............ 7 

Figure 1-2: Example of data race .................................................................................................. 8 
Figure 1-3: Example of the usage of a lock ................................................................................... 9 
Figure 1-4: Coarse (left) vs fine (right) grain locking ................................................................... 10 

Figure 1-5: Necessity of acquiring multiple locks to avoid concurrency problems, from [71] ... 13 
Figure 1-6: Example of the MCS lock structure ........................................................................... 15 

Figure 1-7: Example of the MCS reader-writer lock structure. Grey fields represent readers ... 16 
Figure 1-8: Example of the Krieger et al. reader-writer lock. Grey fields are readers ................ 17 

Figure 1-9: Incorrect implementation of a barrier using reader-writer locks ............................. 18 
Figure 1-10: Example of code that fails in the privatization problem ......................................... 27 

Figure 1-11: Example of code that fails in the publication problem ........................................... 28 
Figure 1-12: Object structure in DSTM ........................................................................................ 38 

Figure 1-13: Object structure (left) and object handle in the write-set list (right) of Fraser’s 
OSTM ........................................................................................................................ 38 

Figure 1-14: Orec organization in the word-based STM by Harris and Fraser, taken from [64] . 39 
Figure 1-15: Orec table in the HyTM system by Damron et al., taken from [33] ....................... 42 

Figure 1-16: Block diagram of an out-of-order superscalar processor ....................................... 44 
Figure 2-1: STM programmer interface ...................................................................................... 54 

Figure 2-2: STM Object structure (left) and read/write set list element (right) ......................... 54 
Figure 2-3: Three steps in a commit of a binary tree data structure. The intermediate step b) 

contains a cycle, what can lead to zombie transactions that never commit ........... 56 

Figure 2-4: Modified STM lock structure for HT Txs to detect conflicts with writing SW Txs ..... 59 
Figure 2-5: Lock implementation in the HyTM model ................................................................ 60 

Figure 2-6: Modified STM Object with a version field allowing for in-place updates ................. 62 
Figure 2-7: Left, Red-Black tree example. Right, status after the addition of node 20 .............. 65 

Figure 2-8: Skip-list example, taken from [116] .......................................................................... 66 
Figure 2-9: RB, skip and hash speedup with read-only transactions, k = 8, in linear (left) and 

logarithmic (right) scales .......................................................................................... 69 
Figure 2-10: Left: RB cycle dissection, p=0, k=8. Right: Cycles in lock accesses .......................... 70 

Figure 2-11: Skip-list performance under low (left) and high (right) contention, p = 10% ......... 71 
Figure 2-12: Transactions aborted in HW and SW modes. Skip list with k=8, p=10% ................ 71 

Figure 2-13: Hash-table speedup and abort rate with k=8, p=25% (high contention) ............... 72 
Figure 2-14: Performance with different number of HW retries of aborted transactions ......... 72 

Figure 3-1: Example of NACK messages in LogTM. Proc. B requests the memory location a, 
which has been read by processors A and C ............................................................ 78 

Figure 3-2: Pathological example of transactional code that stalls due to writer starvation ..... 78 



x · List of Figures    

Figure 3-3: Message transfer with the Reservation Table mechanism ....................................... 79 

Figure 3-4: Reservation Table structure ...................................................................................... 80 
Figure 3-5: Message transfer with the Reservation Table mechanism ....................................... 81 

Figure 3-6: Message transfer with the Reservation Table mechanism ....................................... 83 
Figure 3-7: Normalized execution time of the RB benchmark, k=11, p=10% ............................. 86 

Figure 3-8: Normalized execution time of Hash and skip, k=11.................................................. 87 
Figure 4-1: Lock Control Unit architecture .................................................................................. 95 

Figure 4-2: Contents of each LCU entry ...................................................................................... 96 
Figure 4-3: Contents of each LRT entry. The Tailid field’s composition is equal to Headid .......... 97 

Figure 4-4: Contents of each FLT entry ....................................................................................... 97 
Figure 4-5: Functions for lock acquisition and release ................................................................ 99 

Figure 4-6: Lock acquisition when the lock is free .................................................................... 101 
Figure 4-7: Enqueue when the taken lock is uncontended. LCU0 is the current owner ........... 101 
Figure 4-8: Lock transfer ........................................................................................................... 102 

Figure 4-9: Possible data race in the notification mechanism .................................................. 103 
Figure 4-10: Example of concurrent read locking ..................................................................... 104 

Figure 4-11: Races in the enqueue process .............................................................................. 108 
Figure 4-12: Simplified state machine of the LCU entries ......................................................... 110 

Figure 4-13: Detailed state machine of the LCU entries ........................................................... 110 
Figure 4-14: Example of migration. Thread t2 migrates from processor 2 to 9 while waiting .. 112 

Figure 4-15: Example of read-only locking ................................................................................ 117 
Figure 4-16: Sketch of a hierarchical implementation .............................................................. 119 

Figure 4-17: CS execution time including lock transfers. SSB vs LCU ........................................ 125 
Figure 4-18: CS execution time including lock transfers. LRT vs software locks ....................... 126 

Figure 4-19: Transaction cycle dissection of the RB benchmark with 28 max. nodes ............... 127 
Figure 4-20: Transaction execution time, 16 threads and 75% of read-only transactions ....... 128 

Figure 4-21: Application execution time ................................................................................... 129 
Figure 5-1: Execution flow example with 4 processors ............................................................. 137 
Figure 5-2: Estimation of the proportion of rollbacks in SPLASH .............................................. 140 

Figure 5-3: Sequentially consistent reordering of memory operations from 2 processors ...... 142 
Figure 5-4: Sequentially consistent reordering of checkpoints from 2 processors .................. 142 

Figure 5-5: Different checkpointing schemes with critical sections ......................................... 144 
Figure 5-6: Examples of critical sections that often admit parallel execution, from [118] ....... 145 

Figure 5-7: Example of speculative access to a lock ................................................................. 149 
Figure 5-8: Deallocation of speculative entries in the lock queue ............................................ 150 

 



List of Tables 
 

Table 2-1: Summary of operations when conflicts occur in the HyTM ....................................... 61 

Table 2-2: Single thread normalized performance (inverse of the transaction run time) .......... 68 
Table 4-1: Comparative of SW and HW locking mechanisms ..................................................... 94 
Table 4-2: Possible states of a LCU entry .................................................................................... 96 

Table 4-3: Communication primitives ....................................................................................... 111 
 





 

 

 

 

Chapter 1. Introduction 
 

 





 

 

 

 

Chapter 1 

Introduction 

 

 

The free lunch is over [148]. The traditional evolution that processor microarchitectures had 
followed during the last 20 or more years, based on higher processor frequencies, wider 

instruction windows and deeper instruction pipelines, is over. The current technological 
constraints, mainly the power wall and the memory wall, make such design lead to diminishing 

returns. Therefore, most processor architects have moved to Chip Multiprocessor (CMP) 
designs that rely on an increase of the number of processing cores, but not on their individual 

performance. This makes that traditional, single threaded programs, do not perform better 
with new generations of processors. Programmers cannot rely on the technological advances 

to make their simple code run faster; they must use a parallel programming model to exploit 
the system capabilities. 

Parallel programming makes use of multiple tasks running simultaneously on multiple 
processors, making a joint effort to complete the execution faster. Such design involves many 

difficulties, both in the hardware side (how to design a parallel machine) and in the software 
side (how to efficiently program such parallel machine). Even more, both hardware and 

software interact with each other, so the design of a given layer is dependent on the design of 
the rest of the system. This introductory Chapter will detail the main problems of parallel 

programming and the issues of designing parallel machines, along with the related work that 
targets these problems. Specifically, it introduces the main difficulties of parallel programming, 

with a special focus on synchronization mechanisms; recent proposals on Transactional 
Memory that try to simplify the programming models; and technological and architectural 

aspects than condition the design of current parallel systems. All these aspects are the base for 
the subsequent work developed in this thesis. 

There are two basic models for parallel programming. The message-passing paradigm, for 
example implemented in MPI [151], requires the programmer to explicitly declare each 

communication primitive used to communicate the processors. The shared-memory paradigm, 
by contrast, provides a shared address space that can be accessed by all of the processes, or 

“threads”, which are implemented for example using the POSIX standard [1]. The 
communication between threads occurs through shared variables, which in turn rely on the 
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underlying architecture providing the necessary coherence and consistency mechanisms to 

send the required messages. However, in this case the communication burden is hidden from 
the programmer.  

Parallel programming is inherently more difficult than serial programming. In a parallel 

program, the different tasks have to synchronize with each other to access the data to be 
processed (data partitioning) and communicate intermediate results (data sharing), all of it 

synchronizing the different execution phases (synchronization, involving task creation and 
termination). Debugging is also more complex than in serial programming, since the execution 
is not deterministic, depending on the relative speed of the different tasks. Finally, the 

architectural implementation can impose additional restrictions that the programmer or 
compiler must consider. Shared-memory machines often implement relaxed memory models 

that provide higher performance but require of explicit fences and synchronization 
instructions. Section 1.1 details the design issues and performance implications of different 

coherence and consistency models. Section 1.2 gives deeper insight into the problems and 
difficulties of parallel programming on a shared-memory architecture. One of the basic tools 

used for mutual exclusion are locks, which are further studied in section 1.3. 

Transactional Memory (TM) [70] pretends to simplify some of the difficulties of parallel 
programming. By providing the abstraction of a database transaction to the programmer, the 
problem of mutual exclusion is highly simplified. Multiple hardware TM (HTM) and software 

TM (STM) systems have been proposed, with different benefits and weaknesses. Also, Hybrid 
TM (HyTM) systems try to get an efficient implementation with low hardware costs. They are 

introduced in detail in section 1.4. 

This Chapter will also deal with the microarchitectural issues that arise when designing a high 
performance parallel system. The evolution in microarchitecture design leading to diminishing 

returns in single-processor designs, and the current performance issues are discussed in 
section 1.5. This section also presents an introduction of the Kilo-Instruction Processor 

architecture that is the base for the last Chapter of this thesis.  

Finally, this introductory Chapter is concluded with a summary of the contributions presented 

in this thesis, in section 1.6. 

1.1. Shared-memory architectures 
Shared-memory parallel machines provide a single physical view of the memory for all the 

processors. On these machines, different concurrent tasks of the same process, named 
threads, can communicate with each other by merely reading and writing memory locations. 

By contrast, on a distributed-memory machine, each processor has its own memory and 
different tasks working on the same program must communicate to each other by explicitly 

sending messages with data o synchronization. This thesis focuses on shared-memory 
machines.  
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Shared-memory architectures must provide the same view of the memory for all the 

processors in the system. This might be simple in a model that does not use data caches, in 
which all processors access the same shared memory controller. However, most systems have 

two or more levels of caches to reduce the performance penalty of the distant memory (in 
terms of processor cycles to access data). This allows for the concurrent existence of multiple 

copies of the same data block, what imposes coherence and consistency problems, detailed 
next. 

1.1.1. Memory coherence 
In a shared-memory system multiple processors can access the same block with read and write 
operations. This will generate multiple copies of the block in the different data caches, with 

multiple versions of the data as the writes occur. Informally, a coherence mechanism deals 
with the delivery of a valid version of the data to each request. 

A formal definition can be taken from [68]. A memory system is coherent if: 

1. A read by a processor P1 to a location A that follows a write by P1 to A, with no writes of A 
by another processor occurring between the write and the read by P1, always returns the 

value written by P1. 

2. A read by a processor to location A that follows a write by another processor to A returns 
the written value if the read and write are sufficiently separated in time and no other 
writes to A occur between the two accesses. 

3. Writes to the same location are serialized; that is, two writes to the same location by any 

two processors are seen in the same order by all processors. For example, if the values 1 
and then 2 are written to a location, processors can never read the value of the location as 

2 and then later read it as 1. 

Multiple coherence protocols have been developed, both in hardware and in software. A good 

survey can be found in [146]. Most machines nowadays implement hardware coherence, but 
others, such as the Cell processor [73], implement coherence between the main processor and 

the SPE units in software, requiring the programmer to reason about what is shared in each 
processing element.  

According to their implementation, there are typically two classes of coherence protocols: bus 

based or directory based. Bus-based systems can rely on a snoopy protocol. All the processors 
“snoop” a centralized bus and detect other processors’ requests and updates. This allows them 

to respond to memory requests if they have the block of data in their local caches, rather than 
waiting for the long-latency main memory access. Similarly, it allows them to detect conflicts 
with the memory writes from other processors, updating or invalidating their local caches. By 

contrast, directory based protocols can be implemented in a distributed manner, such as in the 
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DASH multiprocessor [91]. The directory contains metadata about the sharers of each block, 

and possibly about an owner who contains an updated version. Directory-based protocols are 
implemented with coherence messages, which are sent from one element to another to 

invalidate sharers upon a write, propagate updated versions of a block upon a read, and so on. 

The caches in a coherent system implement a state machine with several possible states, 
typically all or part of the MOESI states [149]. These states differ on their exclusiveness and 

ownership, as follows: 

a) Modified (M), the cache contains the only valid copy of the data, which is dirty: the 

values in main memory have not been updated yet. 

b) Owned (O), the cache contains a dirty copy of the data, with the main memory not yet 
updated. However, this copy is not exclusive; other caches can have the same block in 

shared state. The only owner is responsible for the block, meaning that any request in 
the directory will be forwarded to the owner, who serves the request. 

c) Exclusive (E), the cache is the only one in the system with a valid and clean copy of the 
block. 

d) Shared (S), the cache contains a valid copy of the block, which can be also present in 

other caches. 

e) Invalid (I), not present in the cache or invalidated by a coherence request, such as a 

remote write.  

Different implementations are typically identified with the subset of these states that are used, 
for example, MESI, MOSI or MSI. Additionally, a real protocol requires multiple transient 

states, to support the races that occur when multiple processors request a block concurrently 
with different access modes. This makes coherence protocols very complex and difficult to 
validate. Recent proposals such as [102] focus on simplifying the verifiability of the coherence 

mechanism, while they preserve the presented valid states. 

1.1.2. Memory consistency 
The memory consistency model (or, simply, the memory model) manages the correct ordering 
of memory operations to different memory locations. While the coherence protocol has to 
propagate the updates performed on memory locations to all of the required processors, the 

consistency model specifies the timing of such update.  

Let us consider the example case of two processors P1 and P2 in a coherent system, accessing a 
memory location A with an initial value of a0. A write from P1 updates A from a0 to a1. What 

happens with subsequent reads to A? By the first condition of the coherence, P1 must read the 
updated value a1. However, P2 can continue accessing its locally cached entry with the old 
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value a0 for a certain time before the updated value is propagated, and still obey the second 

condition of the coherence mechanism. This case would be a coherent system, with a relaxed 
consistency model.  

The different observed data can be especially important when multiple memory locations are 

involved and P1 and P2 use one of them to synchronize with each other. Consider the example 
in Figure 1-1 in which processor P1 updates the data in A (instruction 1) and then sets a flag in 

B to notify processor P2 that the data is ready (instruction 2). What happens if the update of 
the flag in B propagates to P2 before the update of the data in A? P2 will access the old data 0 
in A, considering it as the new one, what can lead to an unexpected program behavior. 

Observe that the problem in this case is not a coherence or architectural problem, but the 
programmer (or the compiler) not obeying to the consistency model restrictions, which would 

typically require of an especial fence instruction between instructions 1 and 2 from P1 to make 
sure that all data are correctly propagated. Several examples of possible problems with a 

relaxed model, along with a detailed study of multiple consistency models, can be found in [5]. 

 

Sequential Consistency (SC) [87] is the most desirable model since it provides the most 

intuitive programming model. SC requires that the result of any execution be the same as if the 
memory accesses executed by each processor were kept in order, and the accesses among 

different processors were arbitrarily interleaved. This is what any programmer would 
intuitively consider to be the ‘common’ behavior of a multiprocessor system if not aware of 

what a memory model is. The problem with SC is that it most often requires that memory 
operations from each program appear to be executed in-order, what may limit the system 

performance. Write buffers, multiple memory controllers or an unordered interconnect raise 
issues with possible races and might not be used in a system obeying SC. 

Other consistency models such as Total Store Order (TSO, [141], used in Sparc machines 
among others) or Processor Consistency (PC, [54], used in the x86 architecture and others) 

achieve a higher performance by relaxing these constraints, at the cost of a more complex 
programming framework. These models typically allow a processor to observe its own writes 

before they are sent to the rest of the processors, what allows for significant optimizations 
while still providing a quite intuitive memory model. More relaxed models, such as Relaxed 

Consistency (RC, [51]) allow further interleaving of writes from different processors.  

Contrary to coherence, the consistency model is visible to the programmer. Hill [72] argues for 
simple consistency models such as SC, despite its lower performance, to prevent difficult-to-

Processor P1 

1:  st  &A, 10  
2: st  &B, 1  
 

Processor P2 

beq  &B, 0, -4  
ld      &A, r1 

Figure 1-1: Example of a consistency problem. Initially A = B = 0. Can P2 load 0 from A? 
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find consistency problems. Besides, speculative execution [52] has been proven to allow for 

simple consistency models with a similar performance to the relaxed ones. 

1.2. Fundamentals of shared-memory parallel programming 
Shared-memory parallel programs make use of multiple concurrent threads, provided by a 

system library. Typically, the implementation will be specific to the operating system (such as 
Linux, Solaris or Windows threads) or follow the portable standard POSIX [1]. Such 

implementation will define, among others, the tasks of creating new threads, synchronizing 
their operations and terminating them. This section is focused on the synchronization 

mechanisms. 

1.2.1. Synchronization mechanisms 
The access to shared data must be protected to prevent different threads from updating the 

same value, overwriting each other’s modifications, without notice. An example is presented in 
Figure 1-2: The increase of the variable a in C code is translated to three ISA instructions. In the 

example execution presented on the right, a is initially 0. Two threads run the same increase 
function, but a finishes being 1, not 2. The problem is that the update of the memory location 

is not atomic; instead, both threads read the same initial value 0 (at time 1 and 2), and write 
the same updated value 1 (time 4 and 5). 

 

To overcome such problems, a proper synchronization mechanism among threads is required. 

There are two classic means of synchronization to overcome such problems: First, barriers can 
divide execution into different phases of executions in which each thread only accesses an 
assigned, individual data set. Second, locks are used to block a memory location or code 

section, reserving it for a given thread. They are presented in the next sections. 

1.2.1.1. Barriers 

Barriers provide a single synchronization point for many threads. Once a thread arrives at a 
barrier, it starts waiting (typically, using busy wait) for the remaining threads to reach the 
same point. Once all threads reach the barrier, it becomes “open” and all threads proceed, 

C code 

void increase(&a){  
  a = a + 1;  
} 

Assembler code 

ld &a, l1  
addi l1,1,l2  
st l2, &a 

Execution 

Thread 1 

1:  ld &a, l1  
2:  
3:  addi l1,1,l2  
4:  st l2, &a  
5: 

 

Thread 2 

  
ld &a, l1  
addi l1,1,l2  
  
st l2, &a 

 Figure 1-2: Example of data race 
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synchronized from the same point. Barriers are typically used in iterative parallel programs, to 

divide sections. Within each section, a thread can access its assigned data without restriction, 
for example, a block of a matrix.  

1.2.1.2. Locks and critical sections 

Locks are abstractions used to block a given data or code section. A lock provides with two 
basic operations, namely lock and unlock, that reserve or release the right to access the code 

section protected by the lock, called critical section (CS). Only one thread can take or hold a 
lock concurrently; any other call to lock will have to wait for the first thread from unlocking. 

Locks will be studied in detail in section 1.3. 

The problem presented in Figure 1-2 could be solved trivially using a lock, as presented in 
Figure 1-3. The acquisition of lock1 prevents any other thread from executing the protected 

line 3 when calling the function increase. Note that correctness must be manually ensured by 
the programmer: accesses to the protected shared variable from outside any critical section 
are allowed by the system, but incorrect. 

 

1.2.2. Difficulties of parallel programming 
Parallel programming is essentially more difficult than traditional, single-thread programming. 

Ideally, one would expect that a system running N threads should finish its work N times faster 
than the same system using a single processor. However, in this section we will cite different 

effects that limit performance and makes the task of parallel programming more complex. 
These include the overhead of the parallelization mechanisms and the effect of critical 

sections, the granularity of the data partitioning and the forward progress issues that can 
occur in parallel systems. 

1.2.2.1. Scalability and critical sections 

Amdahl’s Law studies the scalability of a system as the number of processors increases. Gene 
Amdahl [9] stated that programs contain serial sections (typically, those critical sections 

protected by global locks) that cannot be parallelizable and that limit the maximum parallelism 
available in the system. The formula derived from his argument is presented in [68]: 

1:  void increase(int &a){ 
2:       lock(&lock1);  
3:       a = a + 1;  
4:       unlock(&lock1); 
5:   } 

Figure 1-3: Example of the usage of a lock 
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Where n is the number of processors, 1=+ ps rr  and rs represents the ratio of the sequential 

portion in one program. From the formula it can be derived that the maximum speedup 

achievable with an unlimited number of processors is sr1 . For example, a program with a 95% 

of its execution in a parallel section ( 05.0=sr ) will have a maximum speedup of 20×. 

Some authors, such as John L. Gustafson [57], discuss this formula. They argue that, while the 

formula is correct, larger systems are typically used to execute programs with larger datasets, 
what provides a lower rate of serial execution rs and superior scalability. In any case, it is clear 

that critical sections are a limiting factor of the performance of parallel programs. 

1.2.2.2. Granularity 

Also related with Amdahl’s Law is the effect of the granularity of the locking mechanism. 

Consider the example codes in Figure 1-4. Both functions increment the 1000 elements of a 
fixed-size shared vector, passed as a parameter. The structure vector and the code of the 

function increase differ on each case. The left code implements a coarse-grain strategy: the 
vector is protected by a single lock, taken during the whole operation. By contrast, the right 

code makes use of a fine-grain locking mechanism: The vector contains two arrays, one of 
values and one of locks. Each value of the vector is assigned with its corresponding lock. The 
program acquires and releases each individual lock on each update. 

 

The tradeoff is clear. In the coarse-grain approach, locks are assigned to large blocks 

containing multiple entries. The update of any of the entries requires the acquisition of the 
lock of the block. In the example, a single lock is acquired in line 2, protecting the whole 

vector. This simplifies the programming, but provides lower performance due to Amdahl’s 
Law: Different values of the vector cannot be accessed concurrently, despite being 

independent, increasing the effective size of the “serial” accesses. By contrast, the fine-grain 
locking approach allows for different threads to access different sections of the same vector 

concurrently, increasing the available parallelism. However, there is a twofold cost: First, the 

1:  void increase_coarse(vector &v){ 
2:       lock(&(v.lock));  
3:       for (i=0;i<1000;i++){  
4:          v.a[i] = v.a[i] + 1;  
5:       } 
4:       unlock(&(v.lock)); 
5:   } 

Figure 1-4: Coarse (left) vs fine (right) grain locking 

void increase_fine(vector &v){ 
     for (i=0;i<1000;i++){  
        lock(&(v.lock[i]));  
        v.a[i] = v.a[i] + 1;  
        unlock(&(v.lock[i])); 
     } 
} 
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increased memory required to store the variables required for the locks. Second, the increased 

execution time in acquiring and releasing locks. Which approach is better will depend on many 
factors, including the lock implementation, the behavior of the program, the complexity of the 

code and other details. 

1.2.2.3. Deadlock 

The use of locks introduces a dependency between threads: The execution of the waiting 

threads depends on the forward progress of the lock holder. Using multiple locks to protect 
different objects or sections of the code lead to more complex designs, in which a thread can 

depend on a second thread which, in turn, is waiting for a third thread to release a lock. If a 
cyclic dependency is ever generated (the last threads requires a lock taken by the first thread 

on the chain), the system will block, since no thread can make forward progress. This situation 
is defined as deadlock. 

There are four concurrent conditions required for deadlock to occur, as studied in [136] 

1. Mutual exclusion: Multiple threads cannot access (acquire) the same contended 
resource (lock) concurrently. 

2. Hold and wait:  A waiting thread must be holding a resource (lock) while waiting for 

another one. 

3. No preemption: Once a thread acquires a lock, it cannot be externally forced to release 

it. 

4. Circular wait: A dependency cycle exists between different threads acquiring locks. 

Non-trivial parallel programs must take special care with deadlock problems. Two approaches 

exist: Either deadlock is prevented (typically, by requiring a certain order in the access to locks, 
what prevents the circular wait) or deadlock must be detected when it occurs and solved (by 

typically detecting the cyclic dependency between threads and forcing some thread to release 
a taken lock in a preemptive way).  

Preventing deadlock problems while providing good performance leads to complex designs, 

difficult to maintain and reason about. For example, Rossbach et al. [121] present the case of a 
Linux kernel file (mm/filemap.c) containing a 50 line comment only to describe the lock 

ordering used in the file. 

1.2.2.4. Priority inversion 

Soft or hard real-time systems require the use of priority-based scheduling to obey to the 

different deadlines of each task. However, locking can negatively affect the priority 
mechanism. If a low-priority thread acquires a lock, it can delay the execution of a high-priority 

thread that needs access to the same lock. Even more, the priority-based scheduler will assign 
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more resources to the higher priority task that is waiting, preventing the faster execution of 

the blocker task with lower priority. Such effect is called priority inversion, since the priority of 
the threads is effectively inverted by the access to the lock. 

The simplest solution, implemented in many operating systems, is the use of a priority 

inheritance protocol [131]. A priority value is assigned to each lock. This value will be set to the 
maximum priorities of the threads waiting to acquire the lock. Whenever a lock priority value 

is higher than the priority of the thread that acquired it, the thread’s priority is increased to 
that given by the lock. This ensures that more resources are assigned to low-priority threads 
that are blocking high-priority threads, so they can finish their critical section faster and 

release the lock. 

1.2.2.5. Starvation 

Starvation is the situation in which a thread or a group of threads stall while waiting for a 
resource, such as acquiring a lock, because of the interference of different threads. The 
paradigmatic example occurs with unfair reader-writer locks where writers starve. Reader-

writer locks will be studied with more detail in section 1.3.1.3, and fairness issues will be 
presented in section 1.3.1.4. The reader is referred to those sections to understand the 

starvation problem, and how it can affect both the thread-local progress and the global 
progress. 

1.2.2.6. Complexity of concurrent data structures 

Apart from the previous difficulties, concurrent data structures incur in additional complexities 
in terms of design and composability. To illustrate these problems, we will study a simple, fine-

grained lock-based implementation of a set based on a linked list, as presented in [71].  

“Sets” are data structures that contain multiple objects of a given type T, identified by an 
individual key, and that provide three self-defining method calls: add(), remove() and 

contains(). “List-based sets” are sets with an internal implementation of a linked-list: Objects 
are referenced by pointers in order, and the list of objects is ordered according to each 

individual key. Concurrent access to a shared set of this type implies that multiple threads will 
issue operations of the three types that will overlap their executions. In our example we 

consider a lock-based implementation for simplicity, though different implementations exist, 
blocking or lock-free. Fine-grain locking implies that a single lock is associated to each object 
on the list, instead of a single lock protecting the access to the whole list. 

The contains() method checks for the existence of a value, iterating on the list from the first 

element. To prevent following invalid pointers from objects being concurrently updated 
(removed from the set), the method acquires the locks of the intermediate elements of the list 

using lock coupling [12]: the lock of an object is taken before its link is followed; then, the 
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second object is locked before the first lock is released. In this way, only locked pointers are 

followed, preventing invalid indirections. 

Similarly, the remove() method has to concurrently lock the object to be removed and its 
predecessor in the list, to prevent an unexpected behavior when a concurrent removal of the 

predecessor or a concurrent addition in between occur. Figure 1-5, taken from [71], shows an 
example. The removal of a requires locking the predecessor, the head node. Similarly, the 

removal of b requires locking the predecessor node, a. Failing to do so could lead to b updating 
the next pointer in a to target c. That should make b non-reachable, but the concurrent update 
of the next pointer in the head node (from the remove() of a) could overwrite the action, 

making b reachable again. 

 

This example illustrates why concurrent data structures are complex to design: the 

implementation of a method depends on the implementation of the remaining methods in the 
object, as occurs with the locks requirements between add(), remove() and contains(). Proving 

the correctness of a concurrent object is nontrivial, since the interaction of different threads 
can occur in multiple ways. Also, trying to add a new method to a concurrent data structure 

might require rewriting all the previous methods to adapt to the new requirements. 

But modifying concurrent objects is not the only problem. Lock-based objects do not compose, 
this is, one cannot build a higher-level function based on lower-level objects and methods, 

without a deep knowledge of their implementation. For example, consider the case of two set 
objects with the previous implementation, and the idea of building a function that moves one 
object from one set to the other. This could be easily implemented by calling remove() in the 

first set, and add() in the second; however, this leads to two problems: 

1. Other threads can see an intermediate invalid state, in which the object is not present: 
it has been removed from one set, but not yet added to the second. 

2. The move() function can lead to deadlock if one thread intends to move an object from 
set A to set B, while other thread calls move from B to A, if the objects keys are 

consecutive. 

Figure 1-5: Necessity of acquiring multiple locks to avoid concurrency problems, from [71] 
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These two problems show the lack of composability of lock-based programs: correct fragments 

of code may fail when combined [65]. 

1.3. Locking mechanisms 
Despite the difficulties and problems presented in section 1.2.2, locks are heavily used as a 

main tool in parallel programs. Multiple implementations of locks have been developed, with 
different levels of complexity and different characteristics, from the simplest test-and-set lock 

to the complex, reader-writer queue-based implementations that support the detection of 
suspended threads. More complex locks try to solve specific performance problems, at the 

cost of more complex implementations and possibly lower performance in the common case. 
Herlihy and Shavit [71] cover in detail multiple implementations of locks. In this section we will 

review the main alternatives when implementing locks and the performance pathologies – 
uncommon behavior that differs from the expected case – that determines their performance 

in certain cases. 

In general, coherence-based software-only locks make use of at least a memory location to 

identify the status of the lock. Locks can be “free” or “acquired”, depending on the status of 
the lock variables. To modify these values without data races, the architectural ISA typically 

provides with atomic instructions such as test-and-set, or the more flexible load linked and 
store conditional (LL/SC) in Alpha [137], PowerPC [113], MIPS [78] or ARM [130], or compare 

and swap (CAS) in x86 [75], Itanium [74], SPARC [141] and other architectures. Threads 
atomically change the lock status to prevent data races that would occur if ordinary load and 

store instructions were used. 

1.3.1.1. Centralized vs. queue-based locking 

Centralized locks are those that share a fixed group of memory locations indicating if the lock 

is taken by some thread, or free. Multiple implementations follow this idea, such as Test-And-
Set (TAS) and Test-And-Test-And-Set (TATAS) locks [84] or ticket locks [106]. These locks have a 

simple implementation and fast access, but perform poorly when multiple threads contend 
trying to acquire the same lock. In such case, all waiting threads will spin-wait accessing the 

same coherence location, waiting for the lock owner to release the lock. However, the lock 
owner will update the lock line when releasing it, what invalidates all the sharers at the 

coherence level. After that, a coherence burst is generated to reload the data on the 
requestors. Such coherence traffic reduces the performance, increasing the lock transfer time 

in presence of contention. 

Queue-based locks (first proposed in [11]) prevent these performance problems. In such 

model, each requesting thread allocates a “queue node” in shared memory. These nodes are 
connected forming a queue, with the lock owner being the queue head. The lock release 

involves an update of the next node in the queue, so the next thread becomes the new lock 
owner and gains access to the critical section. With this idea, threads spin on their private 
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queue node, minimizing the number of coherence misses to two (one when the lock is 

received, and other when it is transferred to the next thread). Different approaches have been 
designed with this idea, such as MCS [106] or CLH [28] locks. 

The MCS lock [106] is presented in Figure 1-6. The lock object contains a single field, a tail 

pointer, being null when there is no lock requestor, or pointing to the last requestor qnode 
when there are any. Thread-private qnodes contain the pointer to the next element in the 

queue, and a status word that indicates the reception of the lock when modified. The first 
node in the queue, called the head of the queue, is the only lock owner. Whenever this thread 
releases the lock, it will modify the status word of the next qnode, if present, so the lock is 

transferred. Otherwise, the tail pointer is set to null, releasing the lock. 

 

1.3.1.2. Spin-locks vs. try-locks vs. blocking locks 

Spin-locks, as considered above, are those that keep threads spinning on the iterative request 
code until the lock is finally acquired. This can hurt performance, since the execution of the 

waiting thread could prevent the execution of the lock owner thread due to lack of resources. 
They are also called busy-locks. 

Blocking1

104

 locks are implementations in which, after a certain spinning time, the thread is 
suspended. In such case, the kernel of the OS is responsible to wake up the thread again when 

the lock is released and ready to be acquired. This is the implementation of many common OS 
locks, such as Solaris adaptive locks [ ]. 

Another alternative is the use of trylocks. A thread calling trylock will acquire the lock if it is 

free or, optionally, spin-wait for a given time if it is acquired. If the lock is not released within 
the timeout, the function returns without acquiring the lock, letting the programmer decide 
the next step. Such an implementation can be used to resolve deadlocks, using the trylock 

timeout as a deadlock indicator, as implemented in many databases [41] and lock-based STMs 
[36, 46, 124].  

                                                           
1 Note that “blocking” does not refer here to the forward progress condition of the lock code as 

discussed in section 1.4.8.1. Essentially, when considering the progress condition all locks are blocking, 

since a lock-free or wait-free implementation would require finding the lock always free. 

Figure 1-6: Example of the MCS lock structure 
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1.3.1.3. Reader-writer locking 

Locks protect concurrent access to shared locations to prevent update problems. However, in 
some cases, we might be interested in a read-only operation on a shared object. While such 
operation must be protected from concurrent writers, multiple threads can read the same 

object concurrently since the state is not modified. Reader-writer locks [27] implement such 
policy, allowing for multiple threads to hold the lock in a read-only mode, or a single thread in 

the write mode. 

Workloads using reader-writer locks are typically dominated by readers, this is, reading the 
values of an object without modifying it is much more frequent than updating the object. 

However, while these locks allow for multiple readers to proceed in parallel, their performance 
is generally low. The problem arises from multiple readers having to update a single common 

field in the lock word, with the coherence invalidations that it entails.  

In [107] Mellor-Crumley and Scott propose a reader-writer version of their MCS lock. An 

example of their lock organization is shown in Figure 1-7. Their implementation includes a 
reader_cnt counter, which has to be increased on each lock() and decreased on each unlock() 

called by readers. When a releasing reader decreases this value to zero, it notifies the next 
waiting writer (if present), using the next_writer pointer in the lock object. The use of the 

reader counter generates coherence invalidations that make readers conflict with each other 
at the coherence level (in the sense that they invalidate each other’s shared block), despite 

they are logically allowed to proceed in parallel. However, it is required since the acquire and 
the release order of concurrent readers is not necessarily the same. 

 

Krieger et al. propose in [82] a reader-writer version of the MCS lock that does not require a 

reader counter. Instead, it requires a double-linked list to allow for out of order readers 
release. In their queue, readers will modify the queue on release (using their two pointers in 

the qnode) to remove their node from the queue. While this prevents the coherence 
congestion in the reader counter, it still requires a field which is updated on all lock accesses (a 

tail pointer) and a more complex queue management. Their implementation is depicted in 
Figure 1-8. 

Figure 1-7: Example of the MCS reader-writer lock structure. Grey fields represent readers 
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Lev et al. propose different implementations for scalable reader-writer locks in [95]. Their idea 

is to replace the reader counter with a variation of the Scalable Non-Zero Indicator (SNZI) 
proposed in [40]. SNZI is a tree-based structure that is used to determine with a single read of 

the root node if there is any reader, independently of the actual number. Each thread is 
assigned a leaf of the binary tree in the SNZI. Whenever a thread acquires the lock in read 
mode, it sets its leaf value from FALSE to TRUE, and propagates this value towards the tree 

root. The propagation proceeds until it finds a tree node being already true. Similarly, lock 
releases set the leaf to FALSE and propagate the value only while all children are false. This 

mechanism updates the root node only when the number of readers changes from 0 to 1, or 1 
to 0, which are the interesting state changes for writers. This increases the throughput when 

the number of readers is high, since it prevents the problems of coherence congestion on a 
single location, at the cost of higher requirements (much higher memory requirements and 

longer execution time for locking and unlocking operations without contention). 

1.3.1.4. Fairness issues 

Fair implementations of locks ensure that all threads trying to access a resource eventually do 

so; unfair implementations favor a certain group, what can degenerate on starvation in a 
highly contended case. An example occurs with hierarchical locks, in which the threads are 

grouped in blocks (for example, to favor the lock transfer between threads in the same chip, in 
a multi-CMP system). If such policy is taken to the edge, a chip with multiple consecutive 

accesses to the lock would prevent any access from threads in remote chips. Those remote 
threads would stall in their spin wait, generating starvation. Another paradigmatic example is 

the case of reader-writer locks with reader preference. In such implementations, when the 
lock is in read mode, new readers can access the lock in the same mode, but writers must wait 

for all the readers to finish. If a lock is frequently accessed by readers, writers can become 
blocked, waiting for the (inexistent) case of all readers finishing their read-lock.  

An example of starvation with unfair reader-writer locks is presented in Figure 1-9. The code 
implements a barrier based on a reader-writer lock. When a thread reaches the barrier, it will 

first increase the counter of threads in the barrier (acquiring the barrier lock in write mode, 
lines 2-4). Then, it will iterate waiting for the arrived threads count to equal the required 

Figure 1-8: Example of the Krieger et al. reader-writer lock. Grey fields are readers 
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number of threads (acquiring the lock in read mode for that, lines 5-11). When the number of 

arrived threads is high, they will all iterate in the second section, maintaining the lock in read 
mode and preventing any incoming thread from modifying the counter field. This example is 

highly artificial, since the access to b.counter is atomic and does not require the read lock, but 
it illustrates the starvation problem, and how it can affect the global progress. 

 

The solution typically passes by providing a fair access to the resource, for example, 

implementing a FIFO queue for requestors (independent of their read or write access mode).  

Starvation directly affects the forward progress of the starved threads. Indirectly, it can also 

affect the overall program forward progress, if it depends on the forward progress of the 
starved thread, leading to a blocking situation. 

Fairness does not necessarily imply the use of a queue, for example ticket locks use a counter 

to determine the next thread to acquire a lock in FIFO order but with a contended, centralized 
mechanism. Similarly, fairness does not require strict FIFO order; different levels of fairness 

could be considered. For example, a lock without FIFO order, but guaranteeing starvation 
freedom of all requestors within a large timescale would be “more fair” that the simplest 
reader-preference lock that starves writers. 

1.3.1.5. Hierarchical lock implementations 

Hierarchical locks [117] improve the performance in systems with different latencies between 

processors, such as a CC-NUMA model [91] or a modern system comprising multiple CMP 
chips. The fundamental idea of a hierarchical lock is to group requestors in clusters, so that 

communication between members of the same cluster is fast (such as different cores in the 
same chip), while the communication between cores in different clusters is slow (cores in 
different chips). Then, the implementation tries to favor the lock transfer to a member of the 

same cluster on the release operation. 

1:  void barrier(barrier &b){ 
2:      unfair_writelock(&(b.lock)); 
3:      b.counter++; 
4:      unfair_writeunlock(&(b.lock)); 
5:      finished = 0; 
6:      while (finished == 0){ 
7:         unfair_readlock(&(b.lock)); 
8:         if (b.counter == b.threads) 
9:              finished = 1; 
10:       unfair_readunlock(&(b.lock));     
11:     } 
12: } 

Figure 1-9: Incorrect implementation of a barrier using reader-writer locks 

struct {  
     long counter; 
     long threads; 
     lock lock; 
} barrier; 
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The specific details depend on the lock implementation. A hierarchical backoff lock [117] can 

vary the exponential wait between requests, with lower wait times for members of the cluster 
that owns the lock. This favors the re-acquisition of the lock by a member of the same cluster. 

A hierarchical CLH queue lock [97] uses a single global queue comprised of multiple local 
queues, or ‘splices’. Neighbor requests are appended in the same local queue. The first 

requestor from each cluster appends its local queue into the global queue. Once this happens, 
subsequent local requests build a new local queue, which will be appended to the global 

queue in a later position. Since this happens before the first requestor acquires the lock, the 
maximum number of requests from a given cluster equals the number of threads in the 

cluster. This favors the transfer of locks within the same cluster, without starving other 
clusters.  

In general, any implementation of a hierarchical lock would trade the fairness of the lock with 
the locality achieved: In one end, the lock is transferred in strict FIFO order; in the other end, 

the lock is always transferred to a member of the same cluster, if requested. 

1.3.1.6. Pathologies of locks 

Pathology represents a behavior that deviates from the ordinary or expected one. When a 

pathological behavior occurs, the performance degrades because the lock implementation is 
not designed to handle such case. In this section, different pathological cases are presented 

and analyzed. 

1.3.1.6.1. Single-thread locking and biased locks 

Locks are designed by definition to be taken by multiple threads. If a lock is always taken by 
the same thread, it means that the object protected by the lock is not effectively shared and 

the lock is redundant. In such case, the lock can be removed to improve performance and 
reduce memory usage. 

However, in some cases, locks are private to a single thread, but this cannot be determined at 

compile time. The paradigmatic example comes from Java locks and the synchronized 
methods. Such methods require a lock to ensure thread-safety, but in many cases, they are 

private to a single thread. Even more important is the fact that this privacy cannot be 
determined at compile or runtime, so the locks must remain.  

Biased locking [79, 122] is a technique that assigns an owner to a given lock. While the same 
owner keeps acquiring and releasing the lock, its operations are fast. This is obtained by 

providing a fastpath in the code that does not require atomic operations. Other threads that 
want to access the same lock will require unbiasing it, which is a costly operation. 
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1.3.1.6.2. Waiting thread suspension in FIFO locks 

Queue-based locks provide FIFO order, what guarantees strict fairness in the access to a lock. 

However, in some cases this can be counterproductive. When the lock is released, it is 
transferred to the next requestor in the lock queue. If that specific lock requestor is not active, 

the lock will block, without any thread accessing the critical section. This can happen if the lock 
has been evicted by the Operating System because a higher priority task is present. Similarly, if 
there are more threads than processors and all the threads compete for a lock, many waiting 

threads will be evicted at a given moment. This generates temporary starvation, since no 
thread accesses the critical section protected by the lock and no forward progress is obtained. 

To overcome this problem, different versions of queue-based locks with eviction detection 

have been developed in [128, 127, 67]. These are queue based locks with a timestamp on each 
queue node. Waiting threads periodically update their timestamp, and check the timestamp of 

the previous node. If a given node is not updated for a long time, it means that the waiting 
thread has been evicted. In that case, the next node in the queue will detect the eviction and 

remove the useless node. This prevents the problem of granting the lock to an evicted thread, 
and also provides support for abortable locks (the trylock construct) with FIFO priority. 

1.3.1.6.3. Mostly Reader locking 

A final pathology that can be considered is the case of a reader-writer lock in which the lock is 

taken in read mode most of the time. This is the case for an object frequently read by multiple 
threads, but hardly ever updated by any of them. 

For example, consider a binary tree protected with fine-grain reader-writer locks. Each node in 
the tree contains an associated lock. This lock needs to be read-locked when the node is read 

and write-locked on a node update. For example, during a search on the tree multiple nodes 
are traversed and read-locked until the sought node is found. If such node is to be updated, it 

(and some of its predecessors, depending on the algorithm) will be write-locked. In this 
structure, the root node is read-locked on all accesses (tree lookups, updates and removals), 

but hardly ever write-locked, only when the root node or one of its immediate successors 
needs to be modified.  

Additionally, different situations might lead to read-only locking. If the protected object is 
really never accessed in write mode, the lock is redundant, since the only point in read-locking 

is to protect the object from concurrent updates. Such behavior should be detected at compile 
or run time, and the lock should be removed. However, in some cases, this issue might go 

undetected and the lock be present in the executed code. Alternatively, and highly related, a 
read/write lock might be assigned to an object which is initialized once at the beginning of the 

execution and accessed always in read mode. While these are examples of wrong coding, they 
can go unnoticed and lead to the same “mostly reader locking” pathology as discussed in the 

previous paragraph. 
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1.4. Fundamentals of Transactional Memory 
Transactional Memory aims to simplify the complexity of parallel programming. It does so by 

importing the concept of transactions from databases to shared-memory programming. 
Essentially, transactions are atomic blocks that run as if they were isolated in the system, with 

a runtime mechanism that serializes their execution and commits or aborts them as required. 
The idea was first suggested by Lomet in [96], and the first feasible implementation was 

proposed by Herlihy and Moss in [70]. A recent survey on Transactional Memory can be found 
in [88].  

There are multiple proposals to implement TM using specific hardware, known as Hardware 
Transactional Memory (HTM). The most relevant HTM proposals are Stanford’s Transactional 

Coherence and Consistency (TCC, [61]), Wisconsin’s Log-based Transactional Memory (LogTM, 
[110]) and Bulk ([18]). These systems typically extend the coherence protocol to detect 

isolation violations and to guarantee that transaction commit is seen as atomic. They will be 
detailed in section 1.4.11. 

Software Transactional Memory (STM) systems perform the necessary tasks in a software 
runtime. They typically have much higher overhead than HTM proposals since they need to 

handle the versioning and conflict detection in software, but they can run in any generic 
platform. Multiple mechanisms have been developed, to study different aspects, such as 

contention management, forward progress guarantees, update mechanism, etc. They will be 
studied in section 1.4.12. 

Finally, certain TM proposals offload some tasks to specific hardware, for example, the conflict 

detection, while other parts of the runtime run in the software-only system. There are two 
variants: Hardware-accelerated TMs (HaTM) offload some part of the runtime to a specific 

hardware, so it cannot run without such hardware. Some examples are SigTM [17] or FlexTM 
[134], discussed in section 1.4.13.1. By contrast, Hybrid Transactional Memory (HyTM) allows 
for concurrent hardware and software-only transactions, with some mechanism required to 

detect conflicts between each other. Some examples of this variant are HyTM [33] or the 
HyTM model proposed for the Rock processor [22], presented in section 1.4.13.2. 

This section introduces the main characteristics of Transactional Memory systems. Later, the 

main STM, HTM and hybrid proposals are detailed. 

1.4.1. Atomic sections 
The key idea of Transactional Memory is to provide an atomic{} abstraction to the 

programmer. The code inside the brackets of an atomic block is executed transactionally2

                                                           
2 Some authors discuss the difference between atomic blocks and memory transactions [

, 

63]. For 

example, a critical section protected by a lock is atomic with respect to the rest of the code. Along this 

text we consider them equivalent when referring to TM systems. 
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similarly to transactions in databases. This means that all of the atomic code behaves as if it 

would run in a single step, without any possible interference from other threads in the system.  

With this tool, the programmer does not need to lock and unlock objects to preserve 
correctness. Instead, all of the accesses to shared data that need to obtain a consistent view of 

the memory are performed inside a transaction. The underlying hardware or runtime will 
ensure that the transaction runs correctly. 

Internally, a transaction typically has the following phases: 

• Transaction start, which prepares the necessary data structures in the runtime or 
hardware substrate. 

• Transaction execution, which runs the code inside the atomic block. This execution will 
be, in many systems, speculative, without modifying the shared data in main memory. 

Alternatively, this execution can modify the shared memory, but maintain an “undo-
log” that allows to recover the initial state in case a violation is detected and the 

transaction has to abort.  

• Transaction commit. In this phase, the speculative execution is validated to make sure 

that it does not interfere with other concurrent transactions. If no violation is found, 
the transaction is validated (committed) and the changes are made global. Otherwise, 

the transaction is aborted, all of the changes are discarded, and the execution returns 
to the first phase. 

The set of data that a transaction modifies during its execution is called the transaction’s write-
set. Similarly, the group of memory locations read by the transaction is called the transaction’s 

read-set. Of course, both sets can overlap, and frequently do, since objects are typically read 
before being modified. 

1.4.2. The ACID properties 
The previous section states that the atomic code behaves “as if it would run in a single step”. 
Obviously, running multiple instructions in a single step is impossible; this section details the 

properties that the code execution has to guarantee to provide the expected correct behavior. 
These properties have been deeply studied in database theory, and are collectively know with 

the acronym ACID: Atomicity, Consistency, Isolation and Durability. Transactional Memory 
typically obeys only two, but all of them are presented for completion.  

1.4.2.1. Atomicity 

The code inside a transaction is indivisible. This means that it cannot be partially executed; 
instead, it must run with an “all or nothing” policy. If the transaction commits, all of its changes 

are made globally visible. If, by contrast, the transaction aborts, all of its changes must be 
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reverted, with no side effects. This conditions the execution of transactions with “undoable” 

operations, such as Input/Output operations. 

1.4.2.2. Consistency 

Transactions move the shared memory state from one consistent state to another. While 

internally transactions could operate with inconsistent memory states, both the initial and 
final states must be consistent.  

This property is dependent on the specific application, since the meaning of a consistent state 

of the memory is not initially known. As explained in [88], it typically depends on a collection 
of invariants on data structures. For example, asserting that numCustomers contains the 

number of items in the Customer table, or that the Customer table does not contain duplicate 
entries. Transactional Memory does not typically implement consistency, since it is the 

programmer’s responsibility to define what a consistent state is. Harris and Peython-Jones 
incorporate this functionality in Haskell STM in [66]. 

1.4.2.3. Isolation 

Isolation requires that different concurrent transactions do not interfere with each other 
during their execution. This could happen if two transactions pretend to modify the same 

memory location, or one transaction tries to read a memory location that has been 
speculatively modified by another transaction. If this happens, a violation is detected, and one 

of the concurrent transactions is forced to wait or abort to preserve the isolation property. 

While isolation is a property that comes from the database world, there are certain differences 

in transactional memory. While all database accesses are considered part of a transaction (or a 
transaction composed of a single operation), in TM transactional and non-transactional code 

can coexist. In this case, two different approaches have been considered, regarding the 
interaction of transactional and non-transactional code [100]: 

• Weak isolation: non-transactional code can access intermediate data from a 
transaction. Similarly, memory updates coming from non-transactional code are not 

detected as isolation violations. 

• Strong isolation: transactions are guaranteed to be isolated from both transactional 
and non-transactional code. Therefore, non-transactional code is not allowed to 
update the read or write set of a transaction until it commits, or forces an abort if it 

does so. 

Martin et al. [100] explain how the programming languages and software verification 
communities have long used the term “atomic” to mean “in isolation”, and the transactional 

memory community has largely adopted this usage. Therefore, it is common to find the 
expressions “weak atomicity” and “strong atomicity” to refer to the properties just explained. 



24 · Chapter 1: Introduction 

We will use both manners equivalently in this text. They also show how simply translating lock-

based code to transactional memory by replacing locks by transactions is incorrect and can 
deadlock under any of the two isolation models. 

Typically, weak atomicity is maintained by software TM systems, while strong atomicity is 

provided by hardware TM systems that extend the coherence protocol for both transactional 
and non-transactional accesses. It is the programmer’s responsibility to guarantee a correct 

execution if both transactional and non-transactional code accesses the same shared data in a 
weakly atomic model. Providing strong atomicity in STM systems require complex mechanisms 
such as augmenting non-transactional memory accesses to detect conflicts [10], what impacts 

the overall performance.  

1.4.2.4. Durability 

Durability is the property of surviving system crashes. Such property is crucial for databases, 
where the system state must be recoverable after an event that crashes the database server, 
such as a power failure or hardware failure. To guarantee durability, a transaction log must be 

maintained and recorded in real time, so the system state can be recovered after an 
unexpected crash. 

Since memory transactions are part of a program execution, and this program will not survive 

a system crash, durability is not a property maintained by TM systems. 

1.4.3. Programmability and composability 
Section 1.2.2.6 discussed some difficulties of lock-based parallel programming. This section 

shows how Transactional Memory targets them and simplifies parallel programming. 

The first problem is a complex programmability. Specifically, it is difficult to modify existent 
lock-based shared data structures, for example, adding a new method to an existent lock-
based set structure. The problem in such case is that concurrent calls to different methods of 

the same shared object can concurrently modify it. Therefore, a given method cannot expect 
to find the object in a consistent view, but can find intermediate changes from other method. 

This is prevented by the isolation and consistency properties of Transactional Memory. Since 
transactions are isolated, there is an underlying mechanism that guarantees that each method 

call behaves as if it was the only one running, without concurrent calls. Since all transactions 
are consistent, they can expect to find the shared object in a valid state, independently of the 

concurrent ongoing transactions. This removes the problems of locking races to validate the 
correctness of a method in presence of concurrent methods. 

The second problem is composability: correct fragments of code may fail when combined. This 
problem does not arise with Transactional Memory: transactions do compose, this is, they can 

be safely nested one into another. The transactional properties (atomicity, isolation, 
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consistency) are guaranteed at the outermost level, what prevents any incorrect execution 

between different threads running concurrent transactions. Deadlock is inexistent, since the 
transactional runtime detects violations and aborts transactions if needed. Forward progress 

should be provided, either naturally by the underlying mechanisms, or by using a specific 
contention manager. 

1.4.4. Update mechanism: In-place vs. deferred 
Since multiple transactions can try to update the same memory location, there must be a 
mechanism to guarantee that only one of them succeeds and the others abort (if the location 

is part of the read sets) or are serialized in a proper order. Different mechanisms for safe 
memory update have been developed, which can be broadly grouped into two versions: in-

place update (or eager update), or deferred update (or lazy update). 

In the first case, in-place update, transactions write their memory changes to the actual 
memory location when they modify it. This requires that transactions record the old values (in 
some sort of undo-log) to be able to recover the original state if the transaction aborts. Also, a 

protection mechanism is required to prevent other transactions from reading or modifying the 
updated memory location. This has the advantage of providing fast commits, since the 

transaction has already updated the main memory. 

By contrast, deferred update mechanisms save the changes contained in the transaction’s 
write set in a write buffer. If the transaction successfully commits, the write buffer contents 

are moved to the corresponding memory locations. This requires a copy on commit, so the 
commit operation takes longer. 

1.4.5. Conflict detection mechanism: Lazy vs. Eager, visible vs. 
invisible readers 
Two transactions conflict when the write set of one of them overlaps with the read or write set 
of the other one. Read-set overlapping is not a problem since multiple transactions are 

allowed to read the same data concurrently. 

To be able to detect conflicts, the TM system must add some metadata to the memory 

contents. In the case of STM systems, these metadata are typically object locks (such as [36, 
46, 124]) or orecs (ownership records, such as those in [64, 33]) in the object header. If the 

STM detects conflicts with a word-level granularity, these locks or orecs will be typically 
contained in a hash table, accessed using the memory address as the hash key. HTM systems 

typically extend the coherence hardware with Read/Write bits, use specific buffers to contain 
the read and write sets, or use some signature-based mechanism to detect the conflicts. 

Lazy conflict detection mechanisms (generally called optimistic mechanisms) search for data 

conflicts at commit time. Under this model the transaction runs speculatively and, at commit 
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time, the object metadata are checked to be correct (either by acquiring a lock, validating a 

timestamp or propagating some coherence updates, for example). Optimistic mechanisms do 
not typically require to read-lock objects; instead, the read set is validated with some different 

mechanism, such as checking an update counter or an object pointer that is changes on each 
update. This mechanism has the benefit of additional concurrency, and also progress 

guarantees: at least the committing transaction is guaranteed to progress. However, under this 
model, starvation can happen, especially for long transactions.  

By contrast, eager conflict detection (generally named pessimistic) checks for data conflicts 
earlier, typically on each data access. Pessimistic concurrency control typically requires the 

acquisition of object reader-writer locks at runtime, what is known as encounter-time locking. 
A conflict is detected when a thread finds an object lock taken. This implies that the object is 

being modified by another transaction, known as the blocker transaction. These mechanisms 
allow for less concurrency, since the eager data blocking prevents other accesses, but the 

blocker transaction can fail and have to abort. However, if conflicts occur they are detected 
and handled earlier, preventing the aborted transaction from making more useless work. In 

general, pessimistic concurrency control mechanisms are preferred when the conflict rate is 
high, since they provide a better performance due to the eager conflict detection and 

resolution. 

Regarding object readers, there are two possible implementations. Invisible readers do not 

allow determining if a given transaction is reading an object. Instead, the reader transaction 
will have to validate its read set at commit time to determine if it is still valid. This is the most 

common approach in STM systems. In these systems, the writer has to update the object’s 
metadata to allow readers to detect a conflict. Such update can be, for example, in the form of 

a version counter (like the global clock version used in TL2 [36] or tinySTM [120]) or an 
updated pointer in the object header to the new data block after writing (used in systems such 

as DSTM [69] or Fraser and Harris’ OSTM [47, 48]). By contrast, in a system with visible readers, 
any transaction can determine at a given moment if there is a reader for a memory location. 

This happens typically in HTM models that leverage the coherence protocol (such as LogTM 
[110]), and in STM systems with per object reader-writer locks (such as TLRW [34]) or lists of 

readers.  

1.4.6. Data validation and the privatization problem 
As presented in section 1.4.5, transactions need to detect conflicts between their own read 

and write sets and other transactions’ write set. However, there are cases in which the 
validation mechanism can fail to detect a real logical conflict, and lead to unexpected program 

behavior. This happens in systems with invisible readers in which transactions convert shared 
objects to private. The problem is therefore known as the ‘privatization problem’, and it is 

explained next with the example in Figure 1-10. 
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In the example, two threads run concurrent transactions Tx1 and Tx2. The object x is initially 0 
and shared. Tx1 privatizes the object (this would be equivalent, for example, to removing the 

object from a list or queue) and later works in the object (line 4). By contrast, Tx2 modifies the 
object, but only if it is still shared (line 2). Intuitively, one would expect to find a final result of 

x = 1 (if Tx1 serializes before Tx2) or x = 43 (if Tx1 serializes after Tx2). However, we will 
consider now two cases that can lead to x = 0 or x = 42. 

In a system with lazy update, the transaction Tx2 can execute before Tx1. At commit, the 
validation phase finds that x_shared (part of the read set) is correct. However, before 

committing its write set updates, thread 1 runs lines 1-4. The update of x_shared in line 2 does 
not conflict with Tx2, which uses invisible readers and, moreover, has already validated the 

read set. The later update of x in line 4 does not conflict either, since it is a non-transactional 
access. Finally, Tx2 updates shared memory with its write set changes, overwriting the 

previous private update by thread 1, and leading to x = 42. 

The second case occurs if the system uses early update. In such case, Tx2 can run lines 1-3 
updating x to 42 and recording the old value in its undo-log. Before Tx2 attempts to commit, 
thread 1 runs lines 1-4 and updates x to 43. The commit of Tx2 detects a conflict in x_shared 

and restores the original value from the undo-log, leading to x = 0. 

An additional problem can occur in any of both cases. Since thread 1 modifies the object 
outside any transaction, it can temporarily move it to an inconsistent state (This does not 

happen in the example in Figure 1-10 where x is a single variable, but could occur if we 
considered more complex objects). In such case, Tx2 could read an inconsistent view of the 

memory status, leading to a ‘zombie’ transaction with an unexpected result, which is doomed 
to fail, but could not reach the validation phase if the execution flow depends on the accessed 

data. 

Multiple solutions to the privatization problem have been studied in different sources. Spears 

et al. identify in [142] multiple techniques:  

1. Data can be statically partitioned between transacted and non-transacted parts of the 
heap, with explicit marshalling between them. This is the approach in Haskell STM. 

Figure 1-10: Example of code that fails in the privatization problem 

// Initially x=0, x_shared=true 

//Transaction Tx1 

1:  atomic{ 
2:      x_shared = false; 
3:  } 
4:  x++;  
 

 

//Transaction Tx2 

1:  atomic{ 
2:      if(x_shared) 
3:   x = 42; 
4:  } 
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2. STM-aware libraries can be used for private accesses (like line 4 in Figure 1-10) with 

the overhead that that it entails. This approach is taken in the Java STM in [133] that 
uses whole-program analyses and JIT optimizations to reduce the performance penalty 

of memory barriers in non-transactional code.  

3. Synchronization barriers can be added such that data is not used both in private mode 
and in shared mode between barriers.  

4. Explicit fences can be required after transactions that make parts of the heap private. 
This is used, for example, in McRT-STM [124]. 

5. Pessimistic concurrency control can be used so that if Tx1 is serialized after Tx2 then 

Tx1 will not commit until Tx2 has committed, or aborted and cleaned up. This option 
will be studied later in Chapter 2. 

The dual of the privatization problem is known as the publication problem [3, 108]. The 
publication problem typically arises with compiler optimizations: an object is accessed before 

validating if it is private or not. Although making these operations inside a transaction should 
provide a correct behavior thanks to the isolation property, data races similar to those in the 

privatization problem can occur, leading to an erroneous behavior. An example is presented in 
Figure 1-11, in which the variable x is initially private. Intuitively, both r2 and r3 should finish 

with values of 0 or 43, depending on the ordering of transactions Tx1, Tx2 and Tx3. However, 
the explicit software prefetch in Tx2, or even a possible memory reordering in Tx3 (since there 

is no memory fence between the accesses to x_shared and x, this case depends on the 
consistency model) can lead to a result of 42. 

 

1.4.7. Contention management 
The contention management policy refers to the mechanism employed when a conflict is 

detected. These conflicts occur between two transactions, with at least one of them being a 
writer. If a writer transaction conflicts with multiple other readers, each pair of conflicts is 

considered individually. 

Figure 1-11: Example of code that fails in the publication problem 

// Initially x=42, x_shared=false 

//Transaction Tx1 

1:  x++;  
2:  atomic{ 
3:      x_shared = true; 
4:  } 

 
 

 

//Transaction Tx3 

1:  atomic{ 
2:      r3 = 0; 
3:      if(x_shared) 
4:   r3 = x; 
5:  } 
 

 

//Transaction Tx2 

1:  atomic{ 
2:      tmp = x; 
3:      r2 = 0; 
4:      if(x_shared) 
5:   r2 = tmp; 
6:  } 
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To handle the conflict, there are two possibilities. The first one is to make one of the 

transactions wait. For example, a transaction has write-locked an object, when other 
transaction pretends to read the same object. In this case the second transaction can wait for 

the object to be unlocked, and then access it. The second option is to abort one of the 
transactions involved. In the previous example, the reader might abort the writer transaction 

that has locked the object; when the abort finishes, the reader can access the object. 

Typically, HTM systems employ simple policies. In HTM, conflicts are typically detected when a 
coherence request arrives, so the action to be taken should be fast. STM systems, by contrast, 
tend to use more complex contention managers. In this section we will consider three simple 

policies, followed by a study of some managers typically used in STM. 

1.4.7.1. Abort-always policy 

This policy is used in systems such as TCC [61], a HTM with deferred update and lazy conflict 
detection. When a transaction commits, its updates are broadcasted on the system bus, and 
remote processors snoop this bus to detect conflicts with their read or write sets. Once the 

commit starts, it is guaranteed to succeed. Then, if a conflict is detected, the processor that 
detects the conflict by snooping the bus aborts its transaction. 

This policy guarantees forward progress, since there is always at least one committing 

transaction. However, it is unfair, favoring shorter transactions that commit faster, and can 
lead to starvation of threads running long transactions. 

1.4.7.2. Requestor-wins policy 

The ‘requestor-wins’ policy is used for systems with eager conflict detection, but is very similar 
to the previous one. In these systems, a requestor sends a coherence request for a block that 

has been accessed by another transaction. When the conflict is determined, the coherence 
requestor wins and receives the coherence grants for the block. The receiver of the request is 

forced to abort the transaction and restart again. 

This policy prioritizes non-transactional accesses in a strongly-atomic model, making 

transactional code to abort when a non-transactional thread requests access to some address. 
Also, this is the simplest policy to use when a write-buffer is used, where transactional stores 

are kept private. However, it can introduce livelock when two or more transactions pretend to 
modify the same data: Each transaction is restarted, retries the conflicting update and makes 

the other transaction restart again. The solution requires some contention mechanism, such as 
using an exponential backoff between transactions retries. 

1.4.7.3. Requestor-waits policy 

This policy is used in systems such as LogTM [110] with eager update and eager conflict 
detection. A conflict is detected when a requestor processor pretends to perform an access 
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that conflicts with a remote transaction. The remote processor that detects the conflict sends 

a NACK message that forces the requestor to retry. This stops the requestor, preventing the 
access to the contended data. Eventually, the transaction commits, and subsequent requests 

are satisfied. 

The benefit of this policy is that it reduces the number of required aborts, stopping threads 
instead of repeating their work. The problem with this policy is the possibility of introducing 

deadlock if a cyclic wait is formed (involving different memory addresses). Some mechanism is 
required to preventively abort some transactions to prevent such deadlock. The original 
LogTM model, for example, makes use of a timestamp based on the clock of each processor. 

This timestamp is piggybacked on each request. When a transaction makes an older 
transaction wait, and receives a NACK from an older thread, it is aborted, guaranteeing that a 

cycle is never formed.  

1.4.7.4. Software policies 

Software contention managers tend to be more elaborate since the software runtime is more 

flexible and can decide the action to take with more data. Multiple implementations have 
been proposed for different STM systems. Some of the most commonly used advanced policies 

are: 

• Polite [69]: A transaction that detects a conflict retries the conflicting operation 
multiple times with an exponential backoff wait. If the conflict persists after a 

threshold, the transaction aborts. 

• Karma [126]: The transaction that has accessed a larger number of objects receives 

priority when deciding which one should abort. 

• Greedy [56]: Uses visible reads and favors transactions with earlier start time to 

provide livelock and starvation freedom. 

1.4.8. Progress conditions 
As discussed before, concurrent programs contain multiple threads that interact with each 

other. Therefore, these threads can obstruct the execution of each other. One example has 
been presented in Figure 1-5, where one thread has to lock part of a data structure to 

guarantee correctness; concurrent threads that need to access such data will find the lock 
taken and will have to wait for the unlock call. Similarly, in lock-free data structures, different 

methods can modify concurrently an object’s data, modifying each other’s execution path and 
leading to livelock.  

Each method of an object will provide a given progress condition, that defines the worst-case 
behavior in presence of concurrent accesses to the same object. If all of an object’s methods 

satisfy a given condition (for example, they are all wait-free) the object is also said to 
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guarantee such progress condition. Transactional memory systems also have progress 

conditions, defining the worst-case behavior when multiple transactions conflict with each 
other. 

In section 1.4.8.1 different progress conditions are presented. Subsequent sections deal with 

progress conditions present in different TM implementations. 

1.4.8.1. Wait-free, lock-free, obstruction-free and blocking 

progress conditions 

Wait-free is the most restrictive progress condition. It requires that a method call finishes the 

execution in a finite number of steps. Therefore, the implementation cannot depend on the 
object state, nor obviously can rely on locks. This does not mean that the execution finishes in 

a fixed amount of time, since cache misses, page faults or thread de-scheduling can delay the 
finalization. 

Lock-free objects guarantee that some method call finishes infinitely often in a finite number of 

steps. In this case different concurrent methods may disturb each other, but the 
implementation must be such that at least one of the methods manages to progress. 
Informally, lock-free algorithms guarantee system-wide progress, while wait-free ones 

guarantee per-thread progress. Obviously, implementations with locks are not lock-free, since 
the eviction of a lock owner can starve all of the remaining threads. However, algorithms that 

do not use locks are not necessarily lock-free: consider the classical example of Dekker 
synchronization [38] between two threads, in which a thread accesses a critical section and 

then passes the turn to the other thread. If one thread is temporarily halted, the other thread 
will not be allowed to enter the critical section infinitely often.  

A more relaxed condition is obstruction-freedom. A method is obstruction-free if, from any 

point after which it executes in isolation, it finishes in a finite number of steps. This means that 
no method can move the object data into a state in which exclusively it can progress, since all 
methods should be able to progress if they run in isolation. Also, with this progress condition, 

different active threads can cause livelock if they interfere with each other. 

Finally, lock-based (or blocking) implementations are the less restrictive ones. They are the 
simplest to program, but they can only guarantee forward progress for the thread that 

acquires a lock. If such thread is suspended, it can block any other thread that requires access 
to the same lock. 

1.4.8.2. Non-blocking TM  

Initial efforts on Transactional Memory aimed towards non-blocking runtimes. This guarantees 
that, even if two transactions conflict in their data access, one of them will proceed in a finite 

amount of time. This is the most restrictive model, since wait-free implementations are 
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obviously impossible: two conflicting transactions cannot concurrently proceed in a finite 

amount of steps. 

Commonly, many lock-free TM implementations will record object ownership at commit time. 
This means that the transaction is about to modify such object if the transaction commits 

successfully. If a given transaction acquires ownership but it is later evicted, a non-blocking 
implementation allows for other committing transactions to “help” the evicted one to commit 

or abort. This ensures that the active transactions can proceed, at the cost of aborting other 
evicted committing transactions. 

Multiple early TM systems are lock-free. For example, DSTM [69], Rochester STM [99] and 
Harris and Fraser’s STM [64] are all nonblocking. Most hardware proposals that use deferred 

update and lazy conflict detection are nonblocking (since speculative data are kept private 
until commit, what cannot affect other transactions), such as TCC. 

1.4.8.3. Lock-based TM 

Ennals [42] argued that lock-free TM implementations add an unnecessary overhead and 
complexity to the system, since the progress conditions they pursue are unnecessary in most 

cases. In a TM system, the OS scheduler should be aware of the status of different transactions 
to prevent the eviction of transactions in a critical section. Moreover, such eviction would be 

typically brief, so starvation would be temporary. Furthermore, lock-based implementations 
can provide higher performance, what amortizes the penalty of the possible temporary 

starvation. 

Multiple lock-based TM systems have been developed. All of these systems use a two-phase 

locking mechanism [43] to guarantee correctness: In the first grow phase locks are taken, and 
in the second shrink phase locks are released, guaranteeing that no lock is released before 

another one is taken. Transactions can be linearized in the mid point when all locks are taken. 
For example, TL2 [36], TinySTM [46] or the Intel STM compiler [124] are internally based on 

write-locks. Other proposals argue for the benefit of reader-writer locks, such TLRW [34]. 
Additionally, there are hardware proposals such as LogTM [110] that are also blocking, since 

they extend the coherence protocol to “block” the access to memory using NACK messages. 

1.4.9. Nested transactions 
Nested transactions are transactions called inside another transactional section. Supporting 

transaction nesting is required for the modularity of the TM system, since otherwise 
transactions would not be allowed to call other functions without knowing if they start a 

transaction or not.  

There are two possible variants of nested transactions, derived from database transactions. 

Closed nesting is the most intuitive version. It maintains atomicity and isolation at the 



1.4  Fundamentals of Transactional Memory · 33 

outermost level. By contrast, open nesting [156] releases the atomicity and isolation of internal 

transactions when they commit. Therefore, the changes of an internal transaction are made 
visible before the external transaction commits. This allows for greater concurrency and 

performance, at the cost of a much more complex implementation. Open-nested transactions 
commonly require compensating actions, triggered if the outermost transaction aborts. For 

example, an open-nested internal transaction could be used to atomically allocate memory 
using malloc; the compensating action would be to release such memory calling free if the 

external transaction aborts. In this example, multiple concurrent transactions might call malloc 
using open nesting without conflicting with each other, increasing the parallelism. However, 

reasoning about compensating actions is a very subtle task, highly prone to errors, what 
removes the alleged simplicity of programming of Transactional Memory 

Regarding the implementation, most TM systems only support closed-nesting. The simplest 
implementation uses flat-nesting, making no difference between different levels of nesting. In 

this case, conflict detection and aborts are performed at the external level, requiring a 
complete restart even if conflicts occur in an intermediate internal transaction. More elaborate 

implementations can maintain different status checkpoints for the different nesting levels. This 
allows for partial aborts, preventing a complete abort if a conflict is detected in an internal 

transaction. 

1.4.10. Irrevocable transactions 
Transactional execution is by its own nature, speculative. If a conflict is detected between two 

or more transactions, one of them will be selected as a victim and delayed, or aborted and 
restarted. Aborts are unavoidable when two transactions speculatively modify a common 

memory location. However, some operations cannot be undone in the case of an abort, 
because their effects are globally visible at the time of being performed. Especially, this is the 

case of IO operations when accessing to disk, GPU, network and other devices. Such 
operations are called irrevocable. Other operations must be globally visible because they are 

related with the OS state, such as memory handling with malloc and free or process 
termination. A naïve TM implementation would simple forbid these operations inside 
transactions, but this reduces the effectiveness of the transactional block. 

One simple solution is to delay the irrevocable operations until the transaction is safe to 

commit. Commit handlers for HTM are proposed in [105] as a mechanism to register the 
irrevocable operations that have to be performed, and delay them until commit. Other 

systems also employ a similar mechanism [111, 160]. Although these mechanisms suffice for 
many simple cases, they are not general: Composed operations, such as an output which 

depends on a previous input, cannot be performed, since the control flow of the transactional 
execution cannot depend on the irrevocable actions. 
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An alternative mechanism consists of running irrevocable operations eagerly, but adding 

compensation actions in case of a transaction abort [62, 105, 111, 160, 138]. These 
compensation actions undo the effect of the globally-visible irrevocable operation; for 

example, a malloc syscall can be undone with the corresponding free. However, several issues 
arise with this implementation. First, the design of an irrevocable action is not always possible, 

since some operations such as IO cannot be undone. Second, the compensation action might 
have unexpected interactions with other transactional code, leading to unexpected results. 

Finally, derived from the previous case, the use of compensation actions makes the 
programming model more complex, what is against the simplicity idea that drives 

Transactional Memory. 

Finally, other solutions [61, 143] propose the notion of irrevocable (or inevitable) transactions. 

Irrevocable transactions are guaranteed to commit, and can therefore omit the versioning 
task. However, a single irrevocable transaction can exist at a given moment; otherwise, a 

conflict between two irrevocable transactions would not be solved, since none of them can 
abort. Simple implementations such as TCC [61] permit execution of the irrevocable 

transaction only, if it exists. More elaborate mechanisms [143], allow irrevocable and ordinary 
transactions to run in parallel, but the conflict resolution mechanism always favors the 

irrevocable one in case of conflict. The clear problem with this implementation is that it 
precludes any parallelism within irrevocable transactions, even when they do not conflict with 

each other. 

1.4.11. Hardware Transactional Memory 
Hardware Transactional Memory (HTM) implementations rely on specific hardware to provide 

the atomicity and isolation properties of transactions. Since such hardware always has a 
limited size, HTM systems must take care of resource overflow. This section reviews the most 

influential HTM proposals. 

HTM typically relies on a checkpointing mechanism in order to restore the processor 

architectural state. Such mechanism has been largely used in microarchitectural designs, in 
order to tolerate branch misspredictions and speculation failures. Most HTM designs leverage 

such checkpoints save the architectural status at the beginning of a transaction and restore it 
after a transaction abort. With the checkpoint restoration (and the memory, if required), the 

processor returns to the exact status that it had at the beginning of the transaction. 
Checkpoint mechanisms are further discussed in section 1.5.3.1. 

1.4.11.1. Transactional Memory by Herlihy and Moss 

The first viable proposal of Hardware Transactional Memory was introduced by Herlihy and 
Moss in 1993 [70]. They suggested the use of a small cache for speculative transactional 

accesses. If the transaction commits, the values of the transactional cache are made globally 
visible and other processors can snoop them. If it aborts, these values are discarded. The 
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transaction size is limited by the buffer size, with overflow not allowed. This means that the 

programmer must be aware of the buffer size, to prevent exceeding the capacity. A variant of 
this original model is being considered by AMD for inclusion in their hardware, as presented in 

[37]. 

1.4.11.2. Transactional Coherence and Consistency (TCC) 

Transactional Coherence and Consistency [59] is a system that leverages memory transactions 

to simplify the coherence and consistency mechanisms. In this model, all the code is 
transactional, with speculative updates being buffered in a per-processor transactional write 

buffer. The system makes use of a centralized broadcast bus, where memory updates are lazily 
broadcast on transaction commit. Remote processors snoop this bus to detect transaction 

conflicts and abort. When the transaction size exceeds the capacity of the transactional write 
buffer, the overflowing processor acquires exclusive ownership of the bus in a form of “stop 

the world” mechanism. This halts any other remote transaction that cannot access main 
memory, until it is released at commit time. 

The scalability problem derived from the centralized bus was attacked in [20]. This work 
extends the same idea to a directory-based system where multiple directory controllers are 

present. Transaction commits “reserve” those directories controller that are written on the 
transaction and, when all of them are reserved, the transaction is safe to commit. Directory 

controllers update the memory changes to the coherence sharers, what allows for conflict 
detection and transaction abort. 

1.4.11.3. Bulk Transactional Memory 

Bulk [18] is a HTM proposal using a similar hardware to the one in TCC. The bulk system is both 
applicable to HTM or other systems that use atomic commit of multiple operations, such as 

Thread-Level Speculation (TLS, [140, 145, 60]) or checkpointed multiprocessors (detailed later 
in section 1.5.3). Bulk introduces the idea of using a Bloom filter [14] to encode the read and 

write-set information. Two filters named signatures are used to record the read and write set 
contents. Each signature represents a superset of the accessed memory locations, with a fixed 

length of some Kbits. Instead of detecting conflicts at line-level, Bulk looks for conflicts in the 
transaction signatures. This simplifies the implementation, since it removes the need for 

tagging with read/write bits L1 cache and broadcasting invalidations of the transaction, and 
removes the overflow problem. Instead, the write signature is broadcast on transaction 

commit. Remote processors check it against their local read or write signatures to detect 
conflicts and abort if required. This mechanism has some possibility of false transaction aborts, 

but reduces the network traffic and simplifies the implementation. The evaluations show that 
such false abort is negligible, with global performance being competitive to other proposals. 
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1.4.11.4. Log-based Transactional Memory (LogTM) 

Log-based Transactional Memory [110] is a HTM system with eager versioning and eager 
conflict detection. The L1 caches are augmented with Read/Write bits, which are set when a 
transactional operation accesses or modifies a memory line. Transactional memory updates 

are made in-place, and the old memory values are recorded in a per-thread undo-log located 
in shared memory. The transaction conflict detection is eager, adding NACK messages to the 

coherence mechanism as described in section 1.4.7.3. These NACK messages are also used to 
maintain transaction isolation. The transaction commit is fast, since the transactional memory 

updates are not speculative: The only task in the transaction commit is to flash-clear the R/W 
bits in the L1. By contrast, transaction abort requires stepping through the log, restoring each 

modified memory update before isolation is released. 

Resource overflow is handled in a smart way in LogTM. There is no problem with the per-
thread undo log, since it is stored in main memory. When a “transactional writer” has to evict 
transactionally modified data due to cache resource overflow, it sends the block to main 

memory in a special “sticky” state. In this state, the memory contains the updated data, but 
the directory controller still records the “transactional writer” as the block owner. Thus, when 

a request for the block is received, it is forwarded to the “transactional writer”, who can defer 
the request (with a corresponding NACK message) or decide to abort. 

Different versions of the LogTM system have been proposed. Multiple pairs of R/W bits can be 

used to support different levels of nested transactions, with both open and closed nesting, as 
presented in [111]. LogTM-SE (Signature-edition) [158] replaces the R/W bits in the L1 with 

read and write signatures, as detailed in section 1.4.11.3 for the Bulk proposal. LogTM-VSE 
[150] proposes additional hardware to virtualize the transactions allowing for migration 

(copying the transaction signatures to the new processor) and supporting context switching 
and paging. 

1.4.12. Software Transactional Memory 
Software Transactional Memory (STM) systems employ a runtime that performs the required 
actions to provide the correct behavior for user transactions. This means that data versioning, 
conflict detection, contention management, atomicity and isolation requirements and any 

other required task are handled in software-only functions, similar to database 
implementations. 

This section reviews the most important STM proposals. While there have been a multitude of 

systems proposed, we review here those that have obtained a larger visibility and more affect 
this work. Thorough reviews can be found in [88] and [15]. 
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1.4.12.1. Software Transactional Memory by Shavit and Touitou 

Shavit and Touitou proposed in 1995 the first software version of a TM, coining the term 
Software Transactional Memory [132]. They propose a nonblocking system which requires that 
transactions declare in advance the locations that will be accessed. This allows for transactions 

to acquire all required locks in advance, in a given order (according to their increasing memory 
addresses) to prevent deadlock. Once a transaction has acquired all locks, it is guaranteed to 

commit. 

To provide nonblocking properties, the system must guarantee that transactions proceed once 
they have acquired their locks. If a transaction is preempted once it has the locks acquired, it 

can block other transactions requiring the same locks. In this case, the blocked transactions 
use the “helping” mechanism described in section 1.4.8.2, running the code of the blocker 

transaction that already holds the locks. Once the blocker transaction commits, locks are 
released and other transactions can proceed. 

This system does not provide much flexibility, since it requires the programmer to know the 
accessed locations in advance. Subsequent sections focus on dynamic systems in which 

transactions access any location. 

1.4.12.2. Software Transactional Memory for Dynamic-Sized Data 

Structures 

Dynamic-STM (DSTM, [69]) is a deferred update obstruction-free system that does not require 
the programmer to declare accessed locations in advance. It introduces an explicit selectable 
congestion manager. It also introduces the use of “early release”, this is, the possibility of a 

transaction to remove unnecessary accessed objects from the read set, to decrease the 
conflict rate. While this characteristic can be used to increase performance, it is very risky 

since it can lead to incorrectly synchronized programs, and removes the claimed simplicity of 
Transactional Memory. 

DSTM is available for Java and C++. Read objects are tracked on a read-only table that records 

the pairs of object-version identifiers. Transactional memory updates are handled by cloning: 
when an object is open for reading, a private copy of the object is allocated with the new 

content. The different versions are accessed by means of a double indirection in the object 
header, which follows the structure presented in Figure 1-12. Atomicity in transaction commit 
is handled by atomically modifying the single transaction status word from ACTIVE to 

COMMITTED, after validating that all read objects remain unmodified. Obstruction freedom is 
obtained by transactions being able abort the owner transaction and to duplicate the object 

locator in case of a conflict. 



38 · Chapter 1: Introduction 

 

1.4.12.3. Fraser’s OSTM 

Keir Fraser presented in his PhD [47] an object-based STM providing lock-free progress 
guarantees. Each object contains a header with a pointer to the current data, as presented in 
Figure 1-13 on the left. Each transaction maintains two lists for read and written objects. These 

lists record the locations of the object header and the original data field, and, in the case of the 
write list, the new data field. The structure of the object handles of the write-set lists is 

presented in Figure 1-13, on the right. The read-set list is analogous, but both old and new 
object pointers point to the same data block. 

 

Transaction commit is performed by “reserving” each of the modified objects in the write set. 
To do this, “bit stealing” is used in the object header pointer. Since valid pointers are always 

odd (due to the machine word alignment requirements), the last bit is used to indicate if a 
given object is reserved. Reserved objects contain a pointer to the owner’s transaction 

descriptor, with the last bit set to 1. Such bit has to be checked on every object access to 
prevent data races. Once all the write set is reserved in this manner, the read set is validated 
(checking that both old and new pointers are the same) and transaction commits, updating 

each object’s header pointer to the new actual content. 

Transaction commit is lock-free, since it employs the helping mechanism introduced in section 
1.4.8.2. Threads that find an object reserved (determined by last bit of the header pointer) 

access the owner’s transaction descriptor and help it proceed with the commit. While this can 
make that multiple threads perform the commit of a single transaction in parallel, it provides 

the desired lock-free properties. 

Two variants of this system have been proposed. First, the word-based WSTM system 

proposed in [64] by Harris and Fraser has a similar behavior, but the versioning and conflict 

Figure 1-13: Object structure (left) and object handle in the write-set list (right) of Fraser’s OSTM 

obj.reference

old object

new object
data

data

object
Header

Object handle

next handle

Original
object

Modifiable
copy of the

object

object data

Header

Figure 1-12: Object structure in DSTM 

Start transaction

new_object

old_object

data

data

TX status



1.4  Fundamentals of Transactional Memory · 39 

detection mechanisms are applied at the memory word-level. To avoid tagging each memory 

word with an additional header, there is a single ownership record (orec) table. This table is 
accessed for each location by means of a hash function. Each location in the table contains a 

version number to determine if there have been changes in the associated memory words, 
instead of using the data pointers to detect changes. The system structure is presented in 

Figure 1-14, obtained from [64]. The same bit stealing mechanism is used in orecs to 
distinguish between transaction descriptor pointers and object version numbers.  

The second derived system is a reader-writer lock-based version of the initial OSTM. This 
system contains an additional lock field in the object header. This last version is the one used 

as the base model for our proposal, and it is detailed in section 2.2. 

 

1.4.12.4. Lock-based STMs 

As discussed in section 1.4.8.3, multiple STM systems are nowadays being designed with a 

lock-based runtime. The management of locks is made in the internal runtime, what hides the 
complexity from the programmer. Deadlock is either prevented by acquiring the locks in order, 

or avoided by aborting transactions if a try-lock operation timeouts.  

Different systems that rely on a mutual exclusion locking mechanism are Transactional 
Locking II (TL2, [36]), tinySTM [46] or the Intel C++ STM [124]. These systems use invisible 

readers and suffer from the ‘privatization problem’ what requires some explicit mechanism for 
the programmer to handle it. 

Additionally, other systems have been developed by using reader-writer locks. Dice and Shavit 
discuss many benefits for such design in [34]. Among them, they specify a simpler validation of 

the read and write set (“what you lock is what you get”), stronger progress properties 
(especially for long transactions), implicit privatization and support for irrevocable transactions 

[143]. Their proposal relies on a simplified single-line reader/writer lock that assigns one word 
of the line to each possible reader.   

Figure 1-14: Orec organization in the word-based STM by Harris and Fraser, taken from [64] 
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1.4.13. Hardware-software Transactional Memory 
Hardware Transactional Memory systems can be limited in many ways – such as running 
certain OS operations inside a transaction or not allowing unbounded transactions due to 
virtualization constraints. Additionally, their hardware requirements are in many cases 

excessive, or impose overheads in non-transactional code, such as adding new metadata to 
every coherence line. On the other hand, STM systems are inherently slower than HTM, due to 

the overheads of bookkeeping, validation and commit in software-only systems, but still are 
more flexible than HTM systems. 

With these concerns, multiple systems have been developed to use both hardware supported 

operations and STM code [17, 33, 85, 135, 109] seeking for a cost-effective solution. We can 
distinguish several characteristics in these systems:  

• The hardware-dependency determines if the system can run transactions in a 
software-only mode if the hardware is not available. Hardware-dependant systems 

require the hardware to execute part of the transactional runtime. Therefore, the code 
compiled for such systems cannot be run in ordinary systems, what restricts their 

portability. Hardware-independent systems allow for correct but slower execution if 
the required hardware is not present. 

• The hardware-specificity determines if the system requires some specific hardware 
(such as [125, 135, 17]) or it relies on a generic, bounded HTM for the hardware 

acceleration (such as [33] or the hybrid proposal for the Rock processor [22] detailed 
in [35]). Generic systems rely on the bounded HTM, and revert back to a software-only 

solution if the hardware capabilities are exceeded. 

In general, we will refer to Hardware-Accelerated TM systems (HaTM) when the system runs a 

modified STM that relies on a specific hardware to offload some tasks, and Hybrid TM systems 
(HyTM) when the system is hardware-independent and allows for HTM and STM transactions 

running concurrently. Both options are detailed in the next sections. 

1.4.13.1. Hardware-accelerated TM 

Hardware-accelerated Transactional Memory systems run the required operations in an 

ordinary STM, but offload some tasks to a specific hardware. In this section we consider the 
most influential proposals. 

1.4.13.1.1. Hardware-Accelerated TM (HATM)  

Hardware-Accelerated TM [125] introduces “mark bits”, new per-thread metadata added to 
each memory blocks (for example, for each 16-byte block on each line). These bits are set on 
transactional reads, and cleared when coherence events occur with the given line. If the bits 

remain set at commit time, they prevent much of the validation operations. Otherwise, the 
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original STM mechanisms must be used. The system is oriented towards providing a small 

legacy for future generations of processors: if the mechanism is not present (equivalent to 
reading always 0 in the mark bits), the system still behaves correctly. 

1.4.13.1.2. Signature-accelerated TM (SigTM)  

In [17] the authors propose SigTM, a HaTM system that uses signatures for conflict detection. 
Any other task is run in software, allowing for flexible implementations such as different 
contention management policies. The system is focused in providing strong isolation, what is 

granted by the coherence extensions: All coherence requests are checked against the local 
signature, what allows for fast conflict detection between transactional and non-transactional 

code. 

1.4.13.1.3. Flexible TM (FlexTM)  

Rochester’s FlexTM [134] is a HaTM that accelerates the Rochester STM [99]. It introduces 
several possible hardware accelerations to offload different tasks of the STM runtime, some of 

them already introduced in previous works: 

1. A signature mechanism for the read or write sets, similar to SigTM. 

2. A per-thread Conflict Summary Table (CST) that records the identifiers of conflicting 
transactions. 

3. Programmable Data Isolation, a coherence extension that provides isolation by hiding 
transactional updates to remote threads. It is based on a MESI protocol, and includes 

new coherence states and transitions, specific for transactional status of cache lines. 

4. Alert-on-Update, a conflict-detection mechanism that allows to “mark” memory 
locations and to receive an asynchronous exception when they are modified by a 
remote thread. 

Depending on which of these mechanisms are used, FlexTM can implement different conflict 

detection mechanisms (eager or lazy), conflict managers and commit protocols. 

1.4.13.2. Hybrid TM 

Hybrid Transactional Memory systems allow for hardware-accelerated transactions or 

software-only transactions to run concurrently in the system. To do this, hardware 
transactions must check the software metadata in order to detect conflicts. The two main 

hybrid systems that have been developed are described next. 

1.4.13.2.1. Intel’s Hybrid TM 

The Hybrid model developed by Kumar et al. in [85] accelerates the execution of the object-
based DSTM system, discussed earlier in section 1.4.12.2. It makes use of a bounded HTM that 
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cannot run long transactions, given the size limitations of the buffer that keeps transactional 

data. The ISA contains the ordinary load/store instructions, plus the transactional versions of 
these. The transactional objects in DSTM are extended so hardware transactions can detect 

conflicts with software ones. 

The system can run each transaction in the accelerated HW mode, or the original SW one. 
Typically, transactions are started in HW, and those that exceed the resources fall back to the 

slow SW mechanism. The system allows for SW and HW transactions to run concurrently, each 
one with a different update policy. HW transactions update the objects in place, while SW 
transactions use the original deferred update mechanism. New fields are added to the object 

metadata for HW transactions to detect conflicts with SW ones, and vice versa. When a 
conflict is detected, one of the involved transactions is aborted. In this case, ordinary 

load/store instructions are used even in the HW mode, to prevent that the atomicity does not 
allow the aborted SW transaction read its own status word. 

1.4.13.2.2. Sun’s Hybrid TM and Rock 

The hybrid TM system proposed in [33] implements a word-level hybrid system that can use 
any generic HTM as the hardware support. The transactional runtime begins a hardware 
transaction and relies on the strong atomicity of the HTM to provide correct execution and 

prevent software transactions from reading invalid metadata. Each memory word in the 
system is associated to an ownership record (orec) in a single table, addressed with a hash 

function, as depicted in Figure 1-15. Software transactions must acquire these orecs in read or 
write mode. Hardware transactions only need to validate that there is no conflict with ongoing 

software transactions, by checking the corresponding orec field. 

 

The check of conflicts against software transactions introduces an overhead in Hardware 

transactions. If all of the transactions are running in Hardware, such check is unnecessary. In 
[94] the authors proposed an improved system, PhTM, which considers different phases of 
execution: HARDWARE, HYBRID, SOFTWARE, SEQUENTIAL and SEQUENTIAL-NOABORT. The 

HARDWARE mode allows only for HW transactions and removes the need of checking the orec 

Figure 1-15: Orec table in the HyTM system by Damron et al., taken from [33] 
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metadata; if most transactions are short and can be run in the HTM, it allows for the maximum 

performance. The SEQUENTIAL and SEQUENTIAL-NOABORT modes allow for a single 
transaction at the time, what allows for irrevocable operations inside the transaction. 

This HyTM model has been proposed for the Rock architecture [22]. The Rock chip contains 16 

cores that implement a checkpoint-based architecture with Hardware scouting, described in 
[21]. In this architecture, the checkpointing mechanism and the write buffer used for the 

hardware scout is also employed for the HTM. The limited size of the write buffer makes the 
HTM bounded. The performance of a hybrid TM model with this CMP is studied in [35].  

1.5. Processor microarchitecture and performance aspects 
The historical improvements in processor performance have been largely due to two different 
reasons. On the one hand, the technological improvements have led to faster circuits and a 

larger scale of integration. On the other hand, the microarchitectural changes (allowed by 
these technological improvements) have improved the internal behavior of the processor, 
exploiting growing rates of parallelism. A good historical survey can be found in [68].  

1.5.1. Evolution of ILP-driven microarchitectural designs  
Early processors would sequentially step through all the phases of each instruction execution, 

typically some of fetch, decode, read of registers, ALU operation, and register or memory 
writeback. A pipelined architecture improves the performance by executing multiple 
consecutive instructions, each of them in a consecutive phase, increasing the maximum 

utilization of each of the processor’s units. A pipelined (or ‘scalar’) processor can access the 
register file to read operands of an instruction, while the next instruction is being decoded, 

and the previous instruction is accessing the ALU. This mechanism achieves a performance 
increase thanks to exploiting the so-called Instruction-Level-Parallelism (ILP).  

However, ILP imposes several challenges in the processor design. The main challenges are data 

dependencies and branch prediction. Data dependencies occur when any of the input 
(operands) registers of an instruction are the output (result) of a recent previous instruction, 

which is yet in execution. This causes a ‘stall’ in the processor pipeline, since the execution 
cannot be performed until the operands are ready. Branches suffer a similar problem. First, the 
jump address is not known until it is calculated, what is typically solved with a Branch-Target-

Buffer (BTB). Additionally, the processor needs to use a predictor of whether to jump or not on 
a conditional branch, since the fetch stage of the instruction following the branch is executed 

before the condition is evaluated. 

Superscalar processors further exploit ILP by allowing multiple instructions to be executed in 
parallel in each phase of the execution. This implies that the processor has multiple execution 

units (fetch, ALUs, etc) in order to allow for parallel processing. A good survey of such 
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architectures can be found in [139]. However, such a design increases the impact of data 

dependencies between near instructions.  

To target the data dependencies problem, an out-of-order (OOO) execution model allows 
executing instructions when their operands are ready, rather than following the fetch order. 

Figure 1-16 shows a simplified block diagram of an OOO superscalar processor. Since multiple 
versions (old and new) of a given register might need to be accessed concurrently, OOO 

architectures require of a virtual-to-physical register renaming mechanism, such as Tomasulo’s 
algorithm [152]. This implies that the actual number of physical registers will largely exceed 
the number of virtual registers, visible to the programmer. A “Re-Order Buffer” (ROB) tracks 

the instructions being executed and their relative order, and is used to forward data 
dependencies between in-flight instructions. The number of instructions that can be 

concurrently in-flight, recorded in the ROB, is known as the “instruction window” size. While 
instructions are executed out of order, the ROB follows a strict FIFO discipline. The processor 

does not retire (commit) an instruction until all the previous ones have completed. This in-
order commit of instructions preserves the notion of sequential execution to the programmer. 

 

In an out-of-order design some instructions can get ‘stuck’ in the pipeline while other non-
dependent instructions proceed. These instructions are typically loads that suffer long-latency 

misses (such as L2-cache misses). The OOO model tolerates such case, as long as the ROB does 
not get filled. In such case, the instruction fetch must halt until the long-latency miss is served, 

with an associated performance drop. 

The performance drop that is caused by a large latency of main memory accesses is known as 

the “memory wall”, since it severely limits the achievable performance of a single processor 
and becomes a “wall” in the increase of processor performance. Multiple techniques have 

been proposed to deal with this performance limitation, among them, instruction prefetching 
techniques, runahead execution [112], scout threads and kilo-instruction processors [30]. 

Other current limitations of uniprocessor microarchitecture design are the “power wall” and 
fault-tolerance. The former limits the maximum chip frequency (since the dynamic power in 

CMOS technologies grows quadratically with the frequency) and the number of active 

Figure 1-16: Block diagram of an out-of-order superscalar processor 
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transistors in a chip, due to leakage currents that increase power. The latter is caused by the 

large current scale of integration, which is prone to soft and hard errors. While really 
important, these aspects are not part of the focus of this thesis. 

1.5.2. Thread-level parallelism 
The beginning of this Chapter discussed that current technologies limit the performance of the 
single-processor approach. The current scale of integration allows for 32 nm transistor half-

pitch size, what allows for more than a billion (109) transistors in a single chip. The ITRS 
predictions [25] believe that Moore’s Law will continue at its current pace, doubling the 

transistors budget every two years, at least until 2013, and continue from that point with a 
slower pace. 

With such a large transistor count, a naïve resizing of previously existent processor designs 

leads to diminishing performance increases. Simply redimensioning the structures in the 
processor is each time more costly and less efficient. For example, increasing the maximum 
fetch from 4 to 8 instructions per cycle requires at least doubling the resources of the 

processor, but has a small impact in the achieved performance. Increasing the instruction 
window size requires augmenting the ROB and the load/store queues, which are Content-

Addressable Memories (CAM) that typically grow quadratically in power consumption and 
area. Increasing the size of the processor caches leads to higher access times, what can 

negatively hit performance. 

With such a scenario, cost-efficient designs rely on exploiting Thread-Level Parallelism (TLP): 
Running multiple concurrent threads in the same chip. Two general TLP techniques have been 

applied: Simultaneous Multi-Threading (SMT) and Chip-Multi-Processors (CMP). 

Simultaneous Multi-Threading (SMT) [153] shares the processor resources between multiple 

hardware thread contexts. Each context contains its own state (private register file, for 
example), but the execution units (fetch, branch predictors, ALUs, Load/Store queues, etc.) are 

shared among all the threads. The processor fetches instructions from the instruction flow of 
all of the running threads, and executes them concurrently, depending on the availability of 

execution units. When one of the threads stalls due to cache misses, other threads can 
proceed with their execution. This allows for higher utilization of the processor resources, 

which would be otherwise stopped when execution stalls due to long-latency misses. 

On the other hand, Chip Multi-Processors (CMPs) integrate multiple processors or “cores” in 

the same chip. Each of these cores has its own execution resources and local caches. Typically, 
a second or third-level cache can be shared between all the processors in the same chip. 

Finally, it is also common to find designs that combine both approaches, such as the Niagara 

[81] processor with 8 cores and 4 hardware threads on each core, 32 threads overall, or its 
successor Niagara 2, with 8 cores and 8 hardware threads on each core, 64 threads overall. 
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While these techniques are more cost-efficient than the single-processor approach, they incur 

two problems. First, they impose the burden of programming multi-threaded parallel 
applications in order to exploit the chip performance. The problems and complexities of 

parallel programming have been deeply discussed in previous sections. It is widely agreed that 
simplified mechanisms to program these architectures are desirable for widespread adoption. 

Secondly, the performance increase that can be expected from a multithreaded application is 
limited by the amount of serial code present in the application, as studied by Ahmdal’s Law 

and presented in section 1.2.2.1. Parallel applications with highly-independent threads, such as 
web or database servers that use different threads to attend different requests, will exploit 

nicely this so-called throughput-computing; other applications with higher interaction between 
the different threads will have a limited scalability. For this reason, implementing high 

performance processor architectures, even in highly-parallel systems, is still a concern. The 
next section details the implementation of kilo-instruction processors, which target the 
memory wall with a large instruction window. 

1.5.3. Kilo-instruction processor overview 
Kilo-instruction processors (KiP) [30, 31] target the memory wall by implementing a large 

instruction window, of one thousand or more in-flight instructions. As discussed in section 
1.5.2, simply scaling the resources of an ordinary out-of-order processor is not affordable due 
to nonlinear increases in area and power. The architecture of Kilo-instruction processors 

introduces efficient mechanisms to reduce the resource utilization in order to handle large 
instruction windows efficiently. The main mechanisms are detailed next. 

1.5.3.1. Checkpointing mechanism and early release 

The CAM implementation of the ROB becomes a scalability limit. In the KiP architecture, the 
ROB is removed and substituted by a checkpointing mechanism. The processor takes periodical 

checkpoints of the architectural state of the processor, typically on long-latency instructions 
such as L2 misses or hard-to-predict branches. These checkpoints typically consist of a copy of 

the live physical registers, this is, those that can be accessed by future instructions. On an 
exception, interrupt and branch or data missprediction, the processor restores the status to 

the checkpoint before the faulty instruction, discarding all of the instructions fetched after 
such checkpoint was taken. 

With this checkpointed architecture, the processor does not require a ROB to reorder the 

instructions in the execution unit. Each instruction has an associated checkpoint. The 
checkpoints implement counters for the number of pending instructions. Instructions commit 
out-of-order [29] and update the register file or save stores in the Load/Store Queue (LSQ). 

The instruction commit is not globally visible until checkpoint commit: the updated physical 
registers would be deallocated if the checkpoint was restored, and the LSQ retains the updates 

until the checkpoint commits. When a checkpoint counter decreases to 0, all of the associated 
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instructions have successfully committed and the checkpoint itself can commit, making all the 

associated memory updates in the LSQ visible. Therefore, all of the instructions in a checkpoint 
commit out-of-order, but their architectural changes are made visible at the checkpoint 

commit. Of course, different checkpoints must commit in order, to maintain the image of 
sequential execution to the programmer. 

Finally, a performance improvement is the use of a pseudo-ROB structure, similar to a ROB but 

only contains the most recently fetched instructions. This structure allows for fast recovery of 
instructions that fail very quickly. It allows to simplify both the recovery process in such early 
fails and the implementation of the issue queue, as discussed next. 

1.5.3.2. Bi-level issue queue 

The issue queue holds an instruction while the instruction is waiting for its input data operands 

and execution resources. The issue queue is a very expensive resource: It is on the critical path 
for instruction execution and is one of the major energy consumers in the processor core. 
When a load instruction suffers a long-latency data miss, that instruction and all of the 

instructions that depend on the loaded value will occupy the issue queue slots for a long time. 

To prevent such occupation, KiP architectures implement a two-level issue queue. Long-
latency instructions, detected when they exit the pseudo-ROB without input data, are 

removed from the issue queue and moved to a secondary FIFO queue, called Slow-Lane 
Instruction Queue (SLIQ). Also, any instruction that depends on a prior long-latency instruction 

is moved to the SLIQ. When the long-latency data arrives, the processor starts to issue those 
instructions that had been deferred to the SLIQ in FIFO order. Other similar approaches that 

exploit two queues for fast and slow instructions are the Waiting Instruction Buffer [90] and 
the Slice Data Buffer [144]. 

1.5.3.3. Ephemeral registers 

As presented in section 1.5.1, a large instruction window requires a large physical register file, 
in order to support the required register renaming mechanism for all the in-flight instructions. 

The larger the instruction window, the larger the register file. The register file is a complex 
structure whose upsizing largely increases the power and area requirements. 

Kilo-Instruction Processors rely on a mechanism named ephemeral registers to reduce the 
number of concurrently used physical registers. First, the register renaming phase does not 

allocate a physical register for a given instruction, but a virtual tag. Each virtual tag contains a 
counter, which is increased on each subsequent use of the logical register, and decremented 

on commit of an instruction that accesses it. After the corresponding logical register is 
redefined, the virtual register and its associated physical register can be released if the counter 

reaches zero. Altogether, these techniques allow for a late allocation of physical registers, after 
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the issue stage, and an early release, before the renaming instruction commits, effectively 

reducing the required register file size. 

1.5.3.4. Load/store queue handling 

The load/store queue (LSQ) is a critical element when addressing the instruction window size. 

Each load has to search the store queue for older stores matching the load address, and if 
found, the load should use the value from the store queue instead of the cache. As a 

consequence, each issued store must check whether a younger load with a matching address 
has already executed, potentially violating program semantics. Instruction commit must be 

performed in order, maintaining program semantics. Finally, the LSQ must be searched for 
conflict when coherence invalidations are received in the local cache. For these reasons, LDQs 

are typically implemented as Content-Addressed Memories (CAMs), with limited scalability. 

Multiple proposals target the lack of scalability of the LSQ. Pericàs et al. propose an epoch-
based LSQ [115] that exploits execution locality in a distributed implementation of Kilo-
Instruction processors [114]. This queue is split in two sections, a High Locality Queue (HLQ) in 

the out-of-order core, and a Low Locality Queue (LLQ), which is divided into multiple sections 
in the slow in-order cores. Loads and stores are moved from the HLQ to a LLQ when they are 

known to depend on a long-latency operation. Most LSQ hits occur between recent 
instructions, so the small HLQ is implemented as a CAM, and suffices most of the requests. The 

large LLQ is implemented with multiple banks, and relies on a filtering (hashing) mechanism to 
reduce the required amount of searches on each access. Similarly, most requests from each 

section of the LLQ are served locally. 

There are other related hierarchical implementations proposed. The store queue in CPR [7] 
introduced the idea of hierarchical implementation. It implements a small L1-CAM queue for 

recent stores and a large and slow L2 CAM store queue, which uses a direct-mapped structure 
to filter most requests. The proposal in [50] uses a hierarchical implementation that breaks the 
L2 queue into two pieces: A FIFO queue for ordering, and a cache for forwarding data.  

1.6. Contributions of this thesis 
The work in this thesis derives from the limitations of reader/writer locks and STM systems 

based on those locks, and the microarchitectural implications of such locking mechanisms. The 
main contributions of this thesis are described next. 

1.6.1. Lock-based Hybrid TM 
Chapter 2 introduces a mechanism to build a hybrid TM system that relies on a reader-writer 
lock-based STM, which can be accelerated using a generic HTM. The base system provides 
interesting properties, such as immunity to the privatization problem, but its performance is 

poor due to the overhead of reader locking. The necessary changes to implement a hybrid TM 
system are discussed. The hybrid model presented in this Chapter removes the overheads of 
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the STM, maintains the STM mode for long transactions or transactions with forbidden 

operations, and allows for concurrent STM/HTM transactions committing in parallel. 

1.6.2. Fairness among software and hardware transactions 
The HyTM introduced in Chapter 2 presents different fairness properties for different types of 

transactions. Specifically, the use of different contention management policies leads to uneven 
progress conditions. In the studied model, the STM transactions employ a per-lock FIFO queue 

to ensure that starvation never happens. However, the HTM model relies on the coherence 
mechanism, what can lead to writer starvation. 

Chapter 3 introduces the Reservation Table (RT), a low cost distributed mechanism that 

prevents the fairness problems in the HyTM model. Evaluations show that this model improves 
the performance up to 2.7× in a highly congested skip-list benchmark, improving the base 

mechanism and previously proposed models. 

1.6.3. HW acceleration of locking mechanisms 
The locking mechanism necessary in parallel programming (including the STM and HyTM 

mechanisms discussed earlier) imposes ultimately an overhead on the execution time. Chapter 
4 introduces the Lock Control Unit (LCU), a distributed mechanism loosely based on the 

Reservation Table. The LCU is a distributed mechanism that achieves a very low lock transfer 
time, supports reader/writer locking, and does not fail in many of the common corner cases 
that make other hardware schemes proposed for locking unfeasible. Evaluations with different 

benchmarks show that the LCU outperforms previous proposals, while still providing more 
flexibility. 

1.6.4. Microarchitectural improvements for performance, locking 
and consistency 
High-performance parallel architectures rely on some form of large-instruction window 

mechanism, such as the kilo-instruction processors presented in section 1.5.3. Chapter 5  
discusses how parallel machines based on kilo-instruction processors can leverage the 
checkpointing mechanism to increase the performance and simplify the consistency and 

locking operations. Additionally, it is discussed how the presented LCU mechanism can be 
adapted to a checkpointed microarchitecture with implicit transactions, and an alternative 

implementation with speculative locking capabilities. 
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This Chapter will discuss the advantages of a reader-writer lock-based implementation of 
Software Transactional Memory, and propose a Hybrid TM model based on such approach.  

2.1. Advantages of reader-writer blocking TM 
Software Transactional Memory has been initially developed by people coming from the field 

of parallel programming and data structures. Therefore, it is not surprising that most of the 
initial STM proposals ([132, 69, 64]) focus on lock-free or obstruction-free mechanisms. Ennals 
[42] argues that a blocking implementation of TM (as discussed in section 1.4.8.1) can be 

effective, with a simpler design that pays back the cost of the lock-free mechanism. 

Besides the benefits of simplicity in the implementation, reader-writer locking mechanisms 
introduce additional benefits, as discussed in [34]. Systems based on reader-writer locks are 

immune to the privatization and publication problems. Specifically, the races presented in 
section 1.4.6 cannot happen if the reading transaction locks the object in read mode. In the 

example in Figure 1-10, both transactions Tx1 and Tx2 would acquire a lock on x_shared with 
different access mode during their commit. Therefore, there can be no race during the commit 

operation, and both transactions are completely serialized.  

There are more benefits on a system based on reader-writer locks. Irrevocable transactions 

[143] can be easily implemented with these locks and encounter-time locking. The read locks 
acquired by the irrevocable transaction guarantee that any conflict with another transaction is 

detected eagerly, what is required to guarantee forward progress. Additionally, such system 
provides stronger progress properties, especially for long transactions, which are likely to 

abort in a system with lazy validation mechanisms based on data versioning. 

The main problem associated with reader-writer locking is the low performance compared 
with other mechanisms, as discussed in [124]. 

2.2. Base STM overview 
The base STM is a lock-based version of Fraser’s Object-based STM, introduced earlier in 
section 1.4.12.3. The system is programmed as a C library that has to be compiled along with 



54 · Chapter 2: Lock-based Hybrid Transactional Memory 

the user code. The API is shown in Figure 2-1. The source code of the base STM is available 

online [26]. Running transactions are represented by tx_id transaction records.  

 

This STM requires that all accessed objects within a transaction are declared as transactional, 

with the type stm_blk. Such work would be typically part of the compiler (as proposed in other 
systems, such as the Tanger C compiler [45] or the prototype C++ compilers from Intel and 

Sun), but the used system still requires the programmer to do it manually. Each object contains 
a header with a lock and a pointer to the current data of the object, as presented in Figure 2-2. 

MCS reader-writer locks (presented in section 1.3.1.3) are used to provide concurrent reader 
or exclusive writer access and fairness guarantees. Lock fairness is useful to prevent starvation, 
since otherwise readers or writers could stop each other as will be studied later on. 

 

The STM makes use of a cloning mechanism. On each write access, a new per-thread private 
data block is allocated with the original content copied. All updates are made on the private 

data version of the object, leaving the original data block in place, accessible for other 
transactions. The read and write sets are maintained as a single unified ordered list of 

accessed objects. The elements of this list are as depicted in Figure 2-2 right, similar to the 
original OSTM structure. Different elements are linked with the next pointer. Both old and new 

pointers are the same when the object is in read mode, and they differ when the object is 
modified. The list is ordered according to the object header virtual address. 

Two alternative implementations for lock acquisition exist. A strictly pessimistic model 
acquires all object locks in their corresponding mode the first time that an object is accessed. 

Figure 2-1: STM programmer interface 

Begin transaction:  stm_tx *new_stm_tx(tx_id *tx, stm *mem, sigjmp_buf *penv); 
Commit Transaction:  bool commit_stm_tx(tx_id *tx); 
Validate transaction:  bool validate_stm_tx(tx_id *tx); 
Abort transaction:  void abort_stm_tx(tx_id *tx); 

Read STM block b:  void *read_stm_blk(tx_id *tx, stm_blk *b); 
Write STM block b:  void *write_stm_blk(tx_id *tx, stm_blk *b); 

Allocate STM block:  stm_blk *new_stm_blk(tx_id *tx, stm *mem); 
De-allocate STM block b:  void free_stm_blk(tx_id *tx, stm *mem, stm_blk *b); 

 

Figure 2-2: STM Object structure (left) and read/write set list element (right) 
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Conflicts are detected in the lock acquisition, and a timeout mechanism (using a trylock) 

determines when to abort. This implementation introduces serialization dependencies 
between transactions that can limit the performance: If a transaction accesses an object in 

write mode, followed by a read access by another transaction, the reading transaction must 
wait for the commit of the writing one before proceeding. However, if the reading transaction 

was going to finish before, it could be better to use the current data content and proceed with 
the execution. If the reading transaction serializes before the writing transaction, the 

execution is correct without involving any wait. To prevent those dependencies between 
readers and writers, the second locking mode delays the lock acquisition to the commit phase. 

This is the alternative used by the base STM. Even more, locks are taken in order thanks to the 
ordered list in the read/write set, what prevents any deadlock possibility. 

Conflict detection remains as eager as possible, considering the acquisition of locks at commit 
time. If an object is accessed, the current data pointer is recorded as part of the read/write set. 

If the same object is accessed again, the read/write set list is searched and the original object 
is retrieved, along with a check of the data pointer. If the object pointer differs from the 

recorded pointer, the object has been updated in the meanwhile, and the transaction aborts. 
Finding a lock taken does not imply a conflict nor aborts the transaction in case of a timeout, 

since the order of acquisition prevents any deadlock problem. 

At commit time, a two-phase locking protocol is used. In the first grow phase, all the locks in 

the read/write set list are acquired, along with a validation of the data pointers of all accessed 
objects. This guarantees the consistency of the transaction. Then, all the modified objects are 

updated by upgrading the object pointer to the new data block. Finally, in the shrink phase, all 
locks are released.  

Each thread contains a transaction descriptor. This descriptor contains the status of the 

transaction, a pointer to the read/write set list and a pointer to jump back to the start of the 
transaction using a call to siglongjmp in case of an abort. The pointer to be used in such call is 

recorded at the start of the transaction. The descriptor also contains data regarding memory 
allocation and garbage collection, along with a pool of pre-allocated data chunks. This system 
might fail in presence of the ABA problem: A memory location is changed from its original 

value A to B, and then back to A; an external observer, based solely on the object value, might 
erroneously believe that the object has never been changed if it only observes the extreme 

values, A. In  our case, if a data block is modified and removed while other transactions still 
point to it in their read/write set lists, the reuse of the same memory for the same object (on a 

subsequent modification) would lead to incorrect execution. In such case, the validation phase 
of the other transactions would suffer a false positive since both pointers in the object header 

and the read/write list are equal, and the conflict would go undetected. To prevent this ABA 
problem, the STM uses a generational garbage collector (GC) which does not reuse a block 

until it is safe to do so. 
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The base STM system allows for ‘zombie’ transactions, this is, transactions that have read 

inconsistent values and are doomed to abort, but that have not yet detected so. In managed 
languages like C# or Java all such failures could be detected by the runtime system. The 

problem comes from the early access to the object data, but not to the lock status, what can 
lead to accessing inconsistent objects, breaking the isolation of other transactions. While these 

transactions fail the validation at commit time, the inconsistency of the read values could lead 
to accesses to deallocated memory locations (what is allowed by the used GC implementation) 

or start a cyclic execution that follows loops in the data structures, which never reaches 
commit. It is the responsibility of the programmer to detect such cases and abort the 

transaction, for example, with periodic calls to validate_stm_tx.  

In any case, the STM runtime includes two characteristics to mitigate the problem of zombie 

transactions. Firstly, a signal handler to detect the cases in which an invalid pointer is followed 
to a deallocated memory area. In such case, a SIGSEGV exception is triggered, and the 

associated handler performs a validation of the ongoing transaction (which must fail, since it 
has read intermediate data of another transaction). Secondly, on each read or write access, 

the object is recorded in the read/write set list. Subsequent accesses to the same object find it 
in the list and check that the recorded old pointer is still valid. If the inconsistent state comes 

from a partial commit from another transaction, eventually such transaction would finish 
commit and one of the objects will be updated, what makes the inconsistency visible.  

An example is presented in Figure 2-3 with a binary tree structure. Each transactional object 
comprises one of the tree nodes, along with the two pointers to the next objects. In the 

example, a transaction moves the node C to the head of the tree, what involves adding a 
pointer from C to A, and removing the pointer from B to C. The commit phase must write-lock 

both B and C. The intermediate step b) contains a cycle, what is inconsistent since trees do not 
contain cycles by definition. Another transaction that makes a search on the same tree can 

observe the state in b), and never finish. However, the modifying transaction will eventually 
update the object B, breaking the cycle (state in c), or abort, restoring the initial state in a). 

This update is detected in the next access to B in the cycle, and the zombie transaction aborts. 
With these two mechanisms, the benchmarks presented in section 2.4.2 do not require any 

validation from the user. 

 

Figure 2-3: Three steps in a commit of a binary tree data structure. The intermediate step b) 

contains a cycle, what can lead to zombie transactions that never commit 

A

B

C D

A

B

C D

A

B

C D

a) b) c)



2.3  Acceleration opportunities with a generic HTM · 57 

This version of the STM clearly differs with the other ones presented in section 1.4.12.3. With 

respect to the lock-free OSTM, this version does not fail in the privatization problem discussed 
in section 1.4.6. With respect to the WSTM, this model has a different granularity and does not 

introduce aliasing in the access to the metadata. Such aliasing has been studied to increase the 
number of false conflicts due to the “birthday paradox” in [161]. 

2.3. Acceleration opportunities with a generic HTM 
The performance of the base STM with pessimistic concurrency control is poor, as will be 
detailed in section 2.4. The present section discusses the performance penalty when compared 

with a pure hardware TM system. Then, the different acceleration opportunities that can be 
achieved using a generic, bounded HTM are studied. 

A lock-based STM adds four main overheads when compared with running the same 

transactions on a native HTM (as discussed in [17]). First, the locking mechanism itself is not 
necessary in a HTM system. Second, transactions need to maintain the read-set and write-set 
lists. This introduces a list-search for each object accessed, and an increase in the used 

memory. In HTM systems the hardware itself tracks the objects accessed in the transaction 
(with read and write bits, signatures or other mechanisms). Third, on commit, the lists have to 

be traversed to lock and validate the objects. Fourth, the indirection-based object structure 
makes it necessary to copy entire objects when opening them for update even if only a single 

field is going to be touched. In HTM these copies are implicitly managed and at a finer 
granularity. 

Next, it is proposed the construction of a hybrid TM system that removes these costs by 

combining the base STM with a generic HTM system. A progressive approach is used: initially, 
the STM new_stm_tx and commit_stm_tx functions are modified to start a ‘sympathetic’ HTM 

transaction when each transaction is started. Transactions are initially attempted in this 
‘hardware mode’, being called hardware-transactions or HW-Tx. The HW-Tx will follow the 
same execution path as the original code: It invokes the same STM-library operations as 

normal, preventing double compilation of the transaction’s implementation. If the transaction 
aborts a given number of times, it will be retried in the original, slow SW-only mode without 

the wrapped HTM transaction. Both HW and SW transactions will be allowed to run 
concurrently in the system.  

Many runtime operations are unneeded when running in HW-accelerated mode. Instead of 

providing two different execution paths for HW-Txs and SW-Txs (as proposed in [33, 85]) we 
will progressively analyze the different steps that can be dynamically removed from the HW-

accelerated execution path. In any case, if HW resources are exceeded then the HW 
transaction is aborted and fallen back to SW execution. This progressive approach allows us to 
observe the implications of every architectural change and its effect on the global system 
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performance. In addition, we will compare the system with a faster ordinary STM which fails in 

the privatization problem. 

The design uses an ordinary HTM supporting strong atomicity between transacted and non-
transacted accesses. It is assumed that all memory accesses are implicitly transacted when 

running inside a transaction, this is, no ‘escape code’ is required or ever used. It is also 
assumed that the ISA provides a new instruction (named InHWTx in this work) to determine 

whether or not execution is inside a HW transaction. These requirements are already satisfied 
by most HTM proposals. The HTM does not need to be unbounded, this is, it is not required to 
support any corner execution case. Instead, the HTM can fail in reasonable cases, such as long 

transactions that exceed the capacity of a write buffer, or when transactions call certain OS 
services such as memory allocation or I/O. In such case, the transaction will be aborted and 

restarted, until the abort threshold is reached and it is moved to the software-only mode. 
Ideally, in these cases the STM should be used directly; however, this implies that the HTM 

notifies the software about the abort reason (a transaction conflict or an unsupported 
operation). While such capability has been proposed for some systems [21], it is absent in 

most HTM proposals [18, 59, 110] so it is not required in the design. 

When making performance-related decisions, the design assumes that per-cache line conflict 
detection is used and that updates are eager. These latest assumptions affect performance, 
not correctness. The evaluations will be performed using the LogTM HTM, whose 

characteristics have been discussed in section 1.4.11.4. Next, sections 2.3.1 to 2.3.3 
progressively introduce the possible improvements of the base STM when using a HTM 

acceleration mechanism.  

2.3.1. Avoid locking 
As the underlying HTM mechanisms provide transaction atomicity and data collision detection, 

locking is un-needed when running transactions in HW. However, since the system allows for 
concurrent HW and SW transactions, locking cannot be removed. SW transactions require 

locks for correctness, and SW-locked objects must be respected by HW-Txs. Also, SW-Txs 
should not acquire a lock if this conflicts with a HW-Tx accessing the object. Therefore, it is 

clear that SW transactions must still use the lock to protect the data, and that HW transactions 
must check the lock status to detect conflicts with SW transactions. 

As discussed earlier, the design approach is to leave the same STM interface and modify the 

internal implementation to make use of the HTM capabilities. The locks are maintained in the 
object header, but modified lock and unlock operations are used, along with a modified lock 
structure. The problem with the original MCS lock is that the lock header fields depicted in 

Figure 2-2 allow a HW transaction to determine if there are active readers (depending on the 
reader_count value) but it is not known whether the lock is acquired in write mode or not. The 

absence of readers with a non-null next_writer pointer does not guarantee that the lock is 
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taken in write mode, since it can have been already released, but the pointer not having been 

updated yet. Therefore, the HyTM will use a modified version of the lock that includes a writing 
field as depicted in Figure 2-4. This flag is set when the lock is acquired in write mode in 

software transactions, in their commit phase. 

 

With this configuration, HW transactions must just check for collisions with SW ones: a HW 

read_lock operation must conflict with an active SW writer, and a HW write_lock operation 
must conflict with any active SW reader or writer. Similarly, SW transactions must conflict with 

existent HW writers when trying to acquire a read lock, and with existent HW readers or 
writers when acquiring a write lock. To this extent, we modify the lock acquisition functions as 

depicted in Figure 2-5. The code will first determine if a HW transaction is running (lines 3 and 
17). In such case, it will check the corresponding fields of the lock (writing in any case, and 

reader_cnt if it is a write lock). If a conflict is detected, the HW transaction is aborted and 
restarted (lines 8, 21). Waiting for the lock to be released is meaningless, since the update of 

the writing or reader_cnt fields in the lock release would constitute a violation of the isolation 
of the transaction, and cause a HW abort. If no conflict is detected, the execution returns 

without acquiring the lock: as we will detail later, the strong atomicity of the HTM will prevent 
any further problem. Since HW Txs do not update the lock, the unlock operations (lines 29, 38) 
do not need to perform any action. 

The strong atomicity of the HW transaction will ensure that the checked value is maintained 

during the transaction, preventing any update from SW transactions or aborting the HW 
transaction. The exact behaviour depends on the details of the HTM. In a direct-update, early-

detection HTM system (such as LogTM [110], used in our evaluations), the coherence 
extensions providing strong atomicity will prevent any SW-Tx from acquiring a lock in a 

conflicting mode once it has been checked by the HW-Tx. In this case, the STM transaction 
would have to wait for the HTM to commit and release the protected locations, specifically, 

the conflicting field of the lock header. A HTM with lazy detection (like TCC [59] or Bulk [18]) 
would favour SW-Txs, aborting the HW-Tx once the lock fields are remotely updated by the 
SW-Tx. In any case, conflicting transactions are never allowed to proceed in parallel. 

Figure 2-4: Modified STM lock structure for HT Txs to detect conflicts with writing SW Txs 
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Table 2-1 summarizes the actions involved when the lock is held by a thread in reader or writer 
mode and a new thread arrives generating a collision. The references to HTM “aborts” could 

be delays, depending on the HTM implementation. When two transactions try to lock the 
same object in read mode, they can proceed in parallel: SW-Txs just increase the reader_count 

field, while HW-Txs check the writing field which is null. 

Since HTM typically detect conflicts with a cache line granularity, it is important that the 

different fields accessed stay on different cache lines. This implies that cache-padding must be 
used to ensure that writing, reader_count, and the rest of the header are allocated in different 

lines. While this involves a significant overhead, it is also a requirement of other HyTM models 
such as [33]. 

Figure 2-5: Lock implementation in the HyTM model 

  1: void rd_lock(mrsw_lock_t *lock, mrsw_qnode_t *qn) { 
  2: 
  3:    if (InHWTX) {  
  4:        if (!(lock->writing)) { 
  5:            // Nothing else to check, just return 
  6:        } 
  7:        else { 
  8:            ABORT_HW_TRANSACTION();  
  9:        } 
10:    }else {  
11:        […] //The ordinary "SW-only” code from [107] 
12:    }   
13: }  
14: 
15: void wr_lock(mrsw_lock_t *lock, mrsw_qnode_t *qn) {  
16:  
17:    if (InHWTX) {   
18:        if (!(lock->writing) && (lock->reader_count == 0)) {   
19:            // Nothing else to check, just return  
20:        } else {  
21:            ABORT_HW_TRANSACTION();   
22:        }  
23:    }else {   
24:        […] //The ordinary "SW-only” code from [107] 
25:        lock->writing = 1; 
26:    }   
27: }  
28: 
29: void rd_unlock(mrsw_lock_t *lock, mrsw_qnode_t *qn) { 
30: 
31:    if (InHWTX) {  
32:        // Nothing to check, just return  
33:    }else {  
34:        […] //The ordinary "SW-only” code from [107] 
35:    }   
36: }  
37: 
38: void wr_unlock(mrsw_lock_t *lock, mrsw_qnode_t *qn) { 
39: 
40:    if (InHWTX) {  
41:        // Nothing to check, just return  
42:    }else {  
43:        lock->writing = 0; 
44:        […] //The ordinary "SW-only” code from [107] 
45:    }   
46: } 
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The use of HTM transactions introduces some complexity in the management of zombie 
transactions. Consider again the example presented in Figure 2-3 in page 56, with a reading 

zombie transaction caused by a writing transaction that temporarily generates a cycle in a 
shared tree structure. In the original STM, the committing transaction eventually finishes and 

the cycle is broken. However, if the reading transaction is a HW-Tx and the HTM is eager (such 
as LogTM, the model in the evaluations), the committer can be delayed, since the update to 

node B conflicts with the ongoing transaction. In this case, a deadlock occurs: The SW-Tx 
cannot complete commit because it is prevented by the strong isolation of the HTM. 

Conversely, the HW-Tx never commits because it is in a cycle caused by the SW-Tx. To prevent 
these situations, the runtime in this mode automatically validates the HW-Txs. This occurs 

when the read/write set is searched with a hit each certain number of times (we used 25 hits 
in our evaluations). 

2.3.2. Read set removal 
The second acceleration technique comes from the fact that the explicit read-set list can be 
elided in HW transactions. Such transactions still need to check the locks of read objects for 

two reasons: to avoid reading write-locked objects and to prevent any further SW-Tx write-
locking the object. Therefore, instead of building up a read-set list, in HW-TXs the read_stm_blk 
call will check that the lock is in the appropriate status (writing = false) and return the data 

Table 2-1: Summary of operations when conflicts occur in the HyTM 

 Current lock 
holder: 

HW writer SW writer 

 Lock status: reader_count=0 
writing=false 

reader_count=0 
writing=false 

HW 
writer 

Check: writing== false & reader_count ==0 
Action: HTM aborts on real data collisions Explicit abort after check of writing 

SW 
Writer 

Action: HTM coherence extensions prevent 
SW-Tx from modifying writing 

Use of the ordinary lock queue system 

a) Writer-writer conflict 

 Current lock 
holder: 

HW reader SW reader 

 Lock status: reader_count=0 
writing=false 

reader_count=1 (+) 
writing=false 

HW 
writer 

Check: writing== false & reader_count ==0 
Action: HTM aborts on real data collisions Explicit abort after check of reader_count 

SW 
Writer Action: HTM coherence extensions prevent 

SW-Tx from modifying writing 
Use of the ordinary lock queue system 

b) Reader-writer conflict 

 Current lock 
holder: 

HW writer SW writer 

 Lock status: reader_count=0 
writing=false 

reader_count=0 
writing=true 

HW 
reader 

Check: writing== false 
Action: HTM aborts on real data collisions Explicit abort after check of writing 

SW 
reader Action: HTM coherence extensions prevent 

SW-Tx from modifying reader_count 
Use of the ordinary lock queue system 

c) Writer-reader conflict 
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pointer to the shared object. This prevents any further software writer committing changes to 

the block before the HW commit, thanks to the strong atomicity. 

This operation decreases overhead for two reasons: 

- The transaction log is reduced to the write set. Though a search on each access is still needed, 

it is much faster. 

- The same applies to the validation: the number of validation steps is reduced to the modified 
objects count only. 

2.3.3. Write set removal and in-place update 
Applying the idea of removing the private log to the write set would prevent the object copy 
on the first access and would provide updates in place. However, as detailed in section 2.2, SW 

transactions rely on the update of the data pointer to detect conflicts on the validation step. 
HW transactions do not need to allocate a new data block, but modifying the object without 

updating the data pointer would not allow SW transactions detect HW updates. 

To overcome this drawback, we add an additional version counter in the object header, as 

depicted in Figure 2-6. This field is set to 0 when the object is first instantiated (in any HW or 
SW transaction) and increased on every call to write_stm_blk by a HW-Tx. SW-Txs record the 

value of this word in their entry on the read/write set. The validation process in software 
transactions implies now checking both the data pointer and the version field. Special care is 

needed to handle version overflows, what could lead to the ABA problem in software 
transactions. A simple solution is to abort HW-Txs on counter overflow and clear the counter 

on SW updates (to minimize overflows). 

With this optimization, HW transactions make their updates in place, do not maintain a 

software copy of their read or write sets, and consequently avoid any search on these sets. As 
our experimental results will show later, this last system provides the highest performance 

since it removes most of the overheads of the original STM. 

Figure 2-6: Modified STM Object with a version field allowing for in-place updates 
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2.4. Evaluation 
This section details the infrastructure and benchmarks used to validate the correctness and 

performance of the used models. Then, it presents the results that show how the hybrid model 
removes most of the STM overheads, while still preserving its original code as a “fallback” 

option in case of frequent rollbacks. 

2.4.1. Evaluation infrastructure 
The proposed system has been implemented and simulated with GEMS [101]. GEMS is a 

simulator that implements a detailed model of the memory hierarchy and interconnection 
network, in a module called Ruby, and a detailed model of an out-of-order processor, in 

another module called Opal. Ruby implements a specific language to describe coherence 
operations, SLICC, what simplifies the development and validation of coherence protocols. 

Coherence operations are defined in SLICC, what is later translated to C++ by the 
corresponding parser, prior to the module compilation.  

GEMS is based in the full-system simulator Simics [98]. Simics alone provides fast and accurate 
execution of a full system based on different architectures. This allows for the booting and 

execution of an unmodified OS, such as running Solaris on a simulated Sun Sparc system. 
Simics is completely accurate, this is, it implements all the necessary interrupts, I/O and disk 

interaction, etc, so that the simulated code is not aware of the simulation infrastructure and 
no modification is required. By contrast, Simics focuses on speed, not providing any detailed 

model of the memory hierarchy, processor microarchitecture and other internal system 
details. GEMS is a timing-first model: Its internal model simulates all the details of the 

processors microarchitecture, memory hierarchy and other details. Once an operation is ready 
to commit in GEMS (such as an instruction commit in the processor pipeline), Simics is 
instructed to proceed with the execution. Therefore, GEMS makes use of the accurate model 

of Simics, being allowed to elide some operations which are complex to simulate and 
irrelevant for our study, such as DMA operation, booting and switching off the machine, disk 

operation, etc. 

GEMS includes a model of the LogTM transactional memory protocol, based on a MESI 
coherence protocol. The LogTM model does not make use of the Opal module. Therefore, a 

complex out-of-order processor is not simulated. Such model resembles a simple in-order 
core, what has been already used by many works on HTM and HyTM such as [61, 110, 24, 33]. 

Additionally, a simple “network multiplier” was used to consider the different relative speed 
between the processor cycle and the network cycle. With this network multiplier set to 4, the 
processor is capable to process 4 instructions per cycle when no L1 miss occurs, halting in such 

case until the miss is satisfied. Each processor has private 64KB L1 and 1 MB L2 caches, with 
64-bytes per cache line. Cache latencies and network parameters have been set to resemble 

those of the Sunfire E25K [2]. The system contains 16 processors, except for cases in which a 
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larger model is evaluated with 32 processors. The number of threads varies, leaving at least 

one processor empty for OS tasks. A distributed directory is used, with one directory controller 
per processor.  

The STM implementation was extended to use the LogTM ISA, modifying only the STM library 

and not the applications using it. The STM library was modified so that HW-Txs never call the 
system malloc and free functions present in the garbage collector. Instead, HW transactions are 

aborted if the local pool of pre-allocated chunks is exhausted. Three reasons support this:  

• First, it prevents some limitations on the base simulator. Although the HTM simulates 

unbounded transactions, there are various low level operations (related with OS 
locking, as discussed in [155]) which cannot occur transactionally.  

• Second, it prevents congestion problems in the garbage collector (GC), and eventually 
in the OS, when a HW transaction modifies some global structure. Specifically, the GC 

should run as escape code to prevent dependencies among different transactions, 
with the corresponding compensation actions. However, this was not implemented in 

the used version of the simulator and requires tight coupling between the STM and the 
HTM, what is against the idea of a HyTM based on a general HTM.  

• Finally, it models a HTM system more restricted than the original, unbounded, LogTM 
model. Ongoing work, such as the Rock processor [22, 21], suggests that commercial 

HTM will be bounded and will not allow certain operations inside HW-Txs.  

2.4.2. Simulated models 
The proposed hybrid system was implemented in the base STM library. Conditional 

compilation directives allow for the evaluation of the different intermediate steps that have 
been discussed in section 2.3. Then, the evaluation considers the following versions: 

• The original, software only, STM system (labelled sw in the plots), which is expected to 
be limited by the cost of read-locking. 

• A version eliding the locks in HW, but maintaining both read and write sets (rw), as 

discussed in section 2.3.1. 

• A version that avoids entries in the read set (noread), as discussed in section 2.3.2. 

• A full accelerated version, without read and write sets (nowrite), as presented in 
section 2.3.3. 

A real HyTM system would only use the last version, but we simulate all of them to evaluate 

the effect introduced by each change. The original OSTM presented in section 1.4.12.3 is also 
profiled (labelled fraser). This OSTM provides higher performance than the SW-only lock-based 
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STM, at the cost of failing in the privatization problem. Its comparison points out the 

performance costs of the privatization safety property based on pessimistic concurrency 
control. 

2.4.3. Benchmarks 
The proposed model has been evaluated with three microbenchmarks: red-black tree (RB), 
skip-list (skip) and hash-table (hash) data structures. The problem sizes are specified by a key k, 

similarly to other works in the area [36, 48, 47]. Each thread executes writing transactions with 
probability p, or read-only transactions that search and read a given key with probability (1-p). 

Next sections detail these benchmarks. 

2.4.3.1. Red-black tree 

A red-black tree [12] is a data structure organized as a binary tree, in which each node has a 

‘colour’ attribute which can be either red or black. The tree is ‘self-balancing’, which means 
that after an insertion or deletion, an appropriate rotation can be required to ensure that the 

tree is balanced. The specific rules for the balancing operations, which depend on the relative 
colour of the different nodes, are out of the scope of this work, but can be found in [12]. The 

advantage of the balancing operations is that the worst-case execution time remains 

logarithmic, ( )( )NlogΟ with N being the cardinality of the tree. 

The required rotations imply that updating operations (insertions or deletions) can modify a 

significant number of nodes in the tree, as depicted in Figure 2-7. In the left case, the tree 
contains 12 nodes. The right figure shows the situation after the addition of a new node with 

index 20. The process is as follows. First, a search is performed from the root node 5 to the 
appropriate position, being the right child of node 18. Then, a series of rotations (the group of 

nodes 8-9-13 modify their relative location) and colour changes (nodes 8, 13, 15, 16 and 18 
change their colour) are applied to guarantee the balancing rules. Therefore, a single addition 

can modify more than half of the nodes in the shared structure due to the rebalancing tasks. 

The benchmark consists of multiple threads accessing concurrently the shared structure, which 

contains keys in the range [ ]k2...1 . Each access by a given thread will perform a search for a 

given random key with probability ( )p−1 , what is a read-only operation. With probability 

Figure 2-7: Left, Red-Black tree example. Right, status after the addition of node 20 
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2p , the access will add a given node, if it is not present, or with the same probability, 2p , 

the access will remove the given node if it is found, with the required balancing operations in 

both cases. Therefore, the number of threads and the parameters k and p will determine the 
size and congestion in the red-black tree benchmark. 

Each node of the red-black tree (including its two pointers) is declared as a transactional 

object. Each access by a given thread (search, addition or removal) is contained inside a single 
transaction. In the benchmark, all threads iterate accessing transactionally the red-black tree. 
After a sufficient warm-up period, the number of simulated cycles per transaction is measured, 

executed for a period long enough to converge to a fixed value, and averaged across nine 
simulation runs. Performance is reported as the inverse of this value. In most cases, our results 

are normalized against the single-processor, software-only performance (sw). 

2.4.3.2. Skip-list 

A skip-list [116] is a data structure which provides ( )( )NlogΟ  average access time and 

implements a simpler algorithm than a red-black tree, at the cost of a higher, linear, worst-

case access time. The data structure is organized as a hierarchy of parallel linked lists that 
connect increasingly sparse subsequences of the items. The lower level is an ordinary ordered 

linked list, and each higher layer acts as an "express lane" for the lists below. An example taken 
from [116] is presented in Figure 2-8. The top part shows a skip-list with 4 levels, and the 

required operations to search for a given node with key 17. The bottom part shows the 
required changes to add such node 17 to the skip list, involving a maximum of 4 pointers 

update. The allowed operations in the microbenchmark are the same as in the red-black tree. 
The methodology is the same as in that case, and the parameters k, p and the number of 

threads will determine again the congestion in the shared data structure. 

 
Figure 2-8: Skip-list example, taken from [116] 
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2.4.3.3. Hash table 

This benchmark comprises two hash-table data structures using direct chaining when multiple 
elements map to the same bucket of the table. Each table has a different size (using 1024 and 

512 in the evaluations), and each element (also identified with a key in the range [ ]k2...1 ) can 

be present in at much one of the lists. Each thread will iterate, performing one of three 

random operations on each transaction: 

- Search, with probability ( )p−1 : A given random key is searched. One of the tables is looked 

up first; if it is not found, the other one is looked up. The first table is randomly chosen. 

- Add/remove, with probability 2p : The given key is searched in both tables. If present, it is 

removed; otherwise, it is added in one of the tables chosen randomly. 

- Move, with probability 2p : The given key is searched in both tables. If it is found, it is 

removed from its location and added to the other table. 

This benchmark is an example of the composability problem that transactional memory solves. 

Without TM, even with correct implementations of hash-tables, one cannot program this code 
without modifying the internals of the hash-table. A lock-based version is prone to deadlock, if 

one bucket of each list needs to be locked by two different transactions in the opposite order, 
for example in two move operations that map into the same buckets. A lock-free version will 

probably allow for remote operations to observe intermediate states with an object present in 
both tables (in the case of move operations or multiple add/removes) or an object being 

moved not present in either table. 

This benchmark has been also developed as a contrast with the previous ones, to evaluate the 
effects of reader-locking congestion. In this benchmark, the data structures do not contain a 
single “point of entry”, as occurs with the previous benchmarks in the tree root or the first 

element of the list. This prevents any performance bottleneck associated with read-locking 
such element, as will be studied in the next section. Therefore, its performance and scalability 

will be much better than the previous benchmarks.  

2.4.4. Performance results 
This section presents the single-threaded evaluation first, to observe the raw effect of the 

elided sections on the code. The multithreaded case is evaluated in the following sections. All 
the evaluations have been performed in a simulated machine with 16 processors and the 

parameters specified in section 2.4.1. 

2.4.4.1. Single-thread performance 

The first test shows the performance improvement obtained in the single thread case, which 

reflects the sequential work removed by the HW-support. Table 2-2 shows these values for 
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different problem sizes (from 28 to 215 maximum elements) normalized to the software-only 

(sw) case. The benchmarks are run with read-only transactions ( %0=p ), and with %01=p . In 

this evaluation, the locks are present as discussed for the base STM, despite not being required 

for single-threaded execution. They are preserved to be able to compare the base speedup in 
this and further evaluations. 

Fraser’s performance improves the base sw system in a 20-60%, since there is no reader 
locking overhead. The lock elision (rw) provides a similar but slightly lower improvement, given 

that the writing field of the lock still has to be checked by readers and the associated memory 
overheads of the lock padding. The remaining two improvements provide higher benefits (up 

to 3.45× in the best case) by offloading the log management and conflict detection functions to 
the HTM. This improvement grows with the problem size (211, 215) in RB and Skip, since the 

transaction log size is also increased.  

2.4.4.2. Read-only transactions 

Figure 2-9 shows the performance obtained with read-only transactions and multiple threads 

in the RB, skip and hash benchmarks with key size 8=k  and 0=p . The data structure is pre-

initialized so it contains valid data for the read-only transactions. Plots are normalized to the 

performance of the single-threaded, base STM system (sw). Therefore, the performance of 
different models with 1 thread does not coincide; instead, they preserve the relative 

performance presented in Table 2-2.  

The left figures use a linear scale in the vertical performance axis, and the right figures use a 
logarithmic scale. Apparently, with the linear scale, the three workloads seem to show a 

superlinear speedup on most modes (fraser, rw, noread and nowrite), since the speedup 
exceeds the thread count. This effect is caused by the normalization to the single-threaded sw 

case: the individual speedup of each mode with respect to the single-threaded performance in 

the same mode, presented in Table 2-2, does not present superlinear speedup. 

A closer look at the logarithmic plots on the right shows that all these models show an 
approximately linear speedup: performance lines parallel to the reference linear speedup line. 

These linear speedups maintain the relative performance presented in Table 2-2 among the 
different modes. This is the expected performance for this benchmark, since all read-only 

transaction should proceed in parallel. However, the base STM (sw) suffers significant 

 RB p=0 RB p=10% Skip p = 0 Skip p = 10% Hash p = 0 Hash p = 10% 
Key k 8 11 15 8 11 15 8 11 15 8 11 15 8 11 8 11 
sw 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
rw 1.43 1.41 1.38 1.41 1.38 1.33 1.03 1.08 1.13 1.04 1.05 1.17 1.23 1.23 1.23 1.33 
fraser 1.70 1.69 1.65 2.19 1.23 1.22 1.14 1.23 1.25 1.15 1.18 1.26 1.38 1.39 1.03 1.49 
noread 2.50 2.78 2.92 2.22 2.27 2.35 1.93 2.24 2.37 1.94 2.12 2.58 1.71 1.71 1.52 1.75 
nowrite 2.84 3.20 3.36 1.92 2.53 2.68 2.29 2.67 2.84 2.83 3.16 3.45 1.88 1.87 1.68 2.00 

 Table 2-2: Single thread normalized performance (inverse of the transaction run time) 
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performance degradation in the RB and skip benchmarks as the number of threads increase. 
The degradation also occurs in the hash benchmark, but much more moderately. This makes 
that the performance improvements of the hybrid model over the base system increase with 

the thread count. For example, in RB (case a) with 15 threads, lock elision (rw), gains a factor 

Figure 2-9: RB, skip and hash speedup with read-only transactions, k = 8, in linear (left) and 

logarithmic (right) scales 
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of 2.72×, while noread (that saves the read set storage and validation) and nowrite (that saves 

any logging and commit steps) provide speedups of 4.77× and 5.49×.  

The poor scalability of the base STM system (sw) in the RB and skip benchmarks can be 
explained by profiling the sw and nowrite cases in Figure 2-10. The left plot dissects the cycles 

spent on the different execution phases of the STM. It shows how the commit phase of the sw 
design is almost removed in the nowrite approach since the validation and update steps are 

unnecessary. Also, this commit phase grows in sw with the number of threads due to the 
cycles spent manipulating the locks of the read-set objects. To verify this, the right plot studies 
the lock handling time. This time grows with the thread count due to the contention on the 

lock reader_count field, what occurs especially toward the root of the shared structure. In the 
case of nowrite, the lock action is reduced to a simple check that does not introduce coherence 

contention and remains constant with the thread count. 

 

2.4.4.3. Reader-writer transactions 

This section deals with the common case of concurrent read-only and writing transactions. 
Since both RB and skip have shown to perform similarly (as seen in Figure 2-9 and on 
simulation results not included here) the evaluation will be restricted to only one of them. 

Evaluations will use writing transactions with %01=p , and vary the size of the data structure 

to modify the contention between multiple threads. Each HW transaction is retried 3 times 

before it is reverted to the software mode. Figure 2-11 shows the performance obtained with 
the skip-list benchmark under low (left, 15=k  and %01=p ) and high (right, 8=k  and 

%01=p ) contention.  

Figure 2-10: Left: RB cycle dissection, p=0, k=8. Right: Cycles in lock accesses 
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With low contention (left) both Fraser’s OSTM and the hybrid models scale well. It seems that 

the hybrid versions’ performance slightly degrades with the number of threads, but that effect 
is minimal. The right plot shows the performance under high contention, with a slight super-

speedup observed with 4 threads in some cases. Such effect corresponds to the increased 
cache capacity when multiple processors are used. In this contended case the performance of 
all models suffers as the thread count increases, as expected. However, this performance 

penalty is much higher in the hybrid models than in fraser; in fact, the performance of the best 
hybrid model nowrite with 15 threads drops to almost resemble that of the fraser model. 

This degradation comes from two reasons. First, it is due to the higher proportion of slower 

SW transactions triggered by the increase of the rate of HW transactions aborted, as shown in 
Figure 2-12. Though the actual HW abort rate is not very high, LogTM makes processors wait 

on conflicts rather than abort, leading to a significant impact on the overall performance with 
a small rate of aborts. The second reason is the lack of fairness that will be studied in Chapter 

3. 

 
Figure 2-12: Transactions aborted in HW and SW modes. Skip list with k=8, p=10% 
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Figure 2-11: Skip-list performance under low (left) and high (right) contention, p = 10% 
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Finally, Figure 2-13 shows the performance in a contended case of the hash-table benchmark 

( 8=k , %25=p ). The base STM performs better than before, since there is no root-node 

reader congestion. The right plot shows that, as collisions are more infrequent in this data 

structure, the abort rate is much lower and hence, the scalability higher. The system basically 
preserves the relative speedups of the different execution modes presented in Table 2-2 for 

the different thread counts. 

 

2.4.4.4. Number of HW retries in HW transactions 

The analysis in section 2.4.4.3 retried each HW transaction for 3 times before reverting to the 

sw-only mode. To validate the suitability of this threshold, the contended tests presented in 
Figure 2-11 (on the right) have been repeated with different thresholds, only for the optimal 

nowrite mode, with up to 32 threads. The results are normalized to the case of not retrying the 
HW transactions, directly switching to the sw-only mode.  

 

As seen, the performance is generally improved when transactions are retried multiple times, 
up to a maximum of 33% in the case of 32 threads. However, the optimal value for the number 

Figure 2-14: Performance with different number of HW retries of aborted transactions 
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of retries is low (about 2) when the number of threads is low, from 4 to 8. This optimal 

threshold increases for higher thread counts, ranging from 5 to 10. A similar behavior can be 
observed in rw and noread. This suggests that a fixed re-execution policy is not ideal. When the 

number of threads is low, the conflicts will be lower, and a small number of transaction retries 
will suffice. However, when HW transactions abort due to some HW limitation (such as 

accessing the GC inside a transaction), or conflicts with a SW transaction, the conflict will likely 
occur again in the HW retry. Therefore, a threshold too large causes too many unnecessary 

retries in HW before switching to the safe and slow SW mode. As discussed earlier in the 
beginning of section 2.3, the Rock processor contains a cause field in a status register that 

informs about the reason of a transaction abort, so the runtime can decide if it should be 
restarted in HW or SW. Our design does not consider it for its loss of generality, but would 

clearly benefit from such information. 

2.5. Summary 
This Chapter has introduced a novel Hybrid Transactional Memory whose conflict detection 

mechanism is based on locks. The base STM provides fair access to the transactional resources 
thanks to the use of MCS fair reader/writer locks. The base lock structure is modified for HW 

and SW transactions to correctly interact with each other. All the changes to the system are 
performed in the STM library, so the programmer does not need to be aware of the hardware 
support, and single path of execution is required at compilation and execution time for both 

hardware and software transactions. 

Evaluations have been performed in a simulation tool, with different microbenchmarks that 
stress the system with varying parameters to control the congestion. The results show that 

hardware acceleration elides a significant part of the runtime, what gives a speedup of more 
than 3× in single-threaded tests. In multithreaded cases, the hardware support removes the 

reader-locking congestion and allows for nice scalability of the system, except for highly 
congested cases with a high number of transaction aborts. Such cases cause a large number of 

transactions in software mode, which are penalized when they encounter a conflict with 
hardware transactions. 

The next Chapter will focus on the problem of the different priorization policies for hardware 
or software transactions, proposing a low-cost mechanism, the Reservation Table, that 

restores fairness and increases performance.   
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The lack of fairness in a Transactional Memory system can lead to starvation pathologies. 
Specifically, writers can starve when updating a location if it is frequently accessed by readers, 

as discussed in [16]. Such case happens in the RB and skip benchmarks used previously: when a 
writer pretends to update a node which is close to the root, there are often multiple 

concurrent readers of the same node. However, in the original STM the use of fair reader-
writer locks provides fair access between different transactions, eventually allowing the writer 

to proceed. The use of fair reader-writer locks is a simple mechanism; while many other STMs 
make use of more complex contention managers, the obtained effect is the same. 

This section studies the effect of an unfair HTM applied to the HyTM model presented in 

Chapter 2. Specifically, it is detailed how the use of the HTM removes the initial fairness 
properties and allows for starvation scenarios, which can degenerate to deadlock in corner 
cases. This effect is similar to the starvation problem that was presented in Figure 1-9 for 

reader-writer locks. A new HW mechanism is proposed, named Directory Reservations, to 
overcome these problems. Evaluations show that such mechanism performs appropriately, 

providing more performance than other designs for HTM-only systems. 

3.1. Writer starvation in Hybrid TM 
The fairness between different transactions in the base STM is provided by the use of per-
object queue-based FIFO locks. These locks ensure that any transaction will eventually manage 
to access the object. Although the transaction could abort in the validation step after acquiring 

the lock and have to retry, no starvation is caused by the locking mechanism. 

However, on the HyTM system this fairness guaranty is lost when using LogTM as the base 
HTM (or, in general, any eager conflict detection HTM that stalls the requestor of conflicting 

addresses). The problem comes from the way that LogTM extends the coherence mechanism 
to provide atomicity, presented in section 1.4.11.4 and detailed with an example in Figure 3-1: 

Coherence requests (step 1, exclusive request from processor B) are forwarded to the 
transactional readers (step 2, processors A and C are sharers), which detect the conflict with 

R/W bits or a hashing mechanism. If a conflict is detected, a NACK (“Negative 
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Acknowledgement”) reply is sent to the coherence requestor, temporarily denying access to 

the line (step 3). This prevents the requestor from modifying any line that has been 
transactionally read or written. Similarly, it prevents any reader from accessing transactionally 

modified lines.  

 

This NACK’ing mechanism effectively constitutes a hardware-based lock on the lines read or 

modified during the transaction. It can be read-locking when a transaction reads a line, in 
which case several transactions can concurrently access the shared line since no NACK is sent 
to GETS (“GET Shared”) coherence requests. Alternatively, it constitutes a write-locking 

mechanism if the line has been modified by a transaction and is kept with exclusive coherence 
permissions, sending NACK replies to both GETS and GETX (“GET eXclusive”) coherence 

requests.  

This kind of multiple-reader, single-writer locking can lead to writer starvation on frequently 
read lines. The problem occurs if two or more processors are continuously running 

transactions that hold the same cache line in their read set, while a third processor is waiting 
to make a transactional write to that line. The putative writer will be continually NACK’ed 

while the readers continue executing transactions. A pathological example code is shown in 
Figure 3-2, where a is a shared variable initially set to 0, N is the thread count and th_id is a per-

thread id. When there are enough threads running this code, execution never ends due to 
writer starvation. Without special contention management, performed simulations show that 
even four threads are enough to block the Hybrid TM system, due to starvation of some writer 

transaction. A more realistic example could be a shared queue in which different consumers 
check a “type” field in the head object to decide whether removing it or not. 

 

Figure 3-1: Example of NACK messages in LogTM. Proc. B requests the memory location a, which 

has been read by processors A and C 
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Figure 3-2: Pathological example of transactional code that stalls due to writer starvation 

  1: while (a < 1000){ 
  2:    atomic{ 
  3:        if ((a %N)==th_id) a++; 
  4:    } 
  5:  } 
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Similar problems occur for example in the red-black tree microbenchmark. With 31 threads (in 

a machine with 32 processors), after starting a couple of thousand transactions, and 
depending on the program run, from 4 to 12 processors are stalled trying to modify some node 

which is frequently read because it is located close to the root. This starvation anomaly does 
not happen in the base STM. Next section introduces the idea of Directory Reservations, a 

novel, low cost HW mechanism that builds a “semi-fair” queue to prevent this starvation 
problems.  

3.2. Directory reservations 
The general idea of Directory Reservations is that NACK’ed processors will issue a request to 
the directory controller to reserve the line for them. This request is piggybacked in the 

coherence response, so it incurs in no additional traffic. This case is depicted in Figure 3-3, 
where the ACK message (step 4) contains a reservation bit set, so it is labelled RESERV in the 

figure. The figure also shows the new behaviour: Whenever any other processor (D in the 
Figure) issues a GETX or GETS request for the same line (step 5 in Figure 3-3), the directory 

controller determines if the current requestor is the one that reserved the line. Since it is a 
different requestor, it sends a NACK message (step 6) to D without any need to forward the 

request to the current sharers. Only requests from the processor that reserved the line 
(processor B in the example) will be forwarded to the corresponding owner or sharers. 
Eventually, in a general case, the blocking processors (A and C) will commit their transaction. 

When this happens, no new NACK will be issued to the coherence requestor, so C will receive 
the valid data with the valid permissions. 

 

To provide this behaviour, new hardware must be added to the directory controller. The 

directory is extended with a new R (`Reserved’) bit per line, and an attached Reservation Table 
(RT) to support the new functionality, as presented in Figure 3-4. A ‘Reserved’ bit R is added to 

each directory line, but the Reservation Table size is small, in the example containing only 3 
entries, since the number of concurrent reservations (which depend on the transactional 

conflicts) should be small. If the reservation requests exceed the capacity of the RT, the 
request is not attended until an entry is released. When a reservation request arrives, if there 

Figure 3-3: Message transfer with the Reservation Table mechanism 
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is an available entry in the RT, the R bit is set and the corresponding address and requestor 

fields are recorded in the RT. The rest of the fields of the RT will be explained later. Subsequent 
requests on the same line find the R bit set and check the requestor field in the RT to 

determine if they can proceed or not. The reservation is maintained until the requestor obtains 
the coherence permission on the block; the final ACK of such request triggers the RT entry 

deallocation and R bit clearance.  

 

The use of a per-line reservation bit R implies a relative overhead, since all the memory in the 

system must be tagged. Two alternative implementations are discussed next. Firstly, not using 
any indication bit removes completely the memory overhead. However, this implies that any 

request to any memory location that arrives at the directory must be checked against the RT 
entries. Although the RT is small and the RT lookup could be probably overlapped with the 

directory access, this approach unnecessarily increases the energy consumption, and the RT 
access can become a bottleneck in the directory controller. An alternative implementation 
could be to use a single reservation bit per directory controller. Such bit would be set 

whenever there is any reservation active in that given memory controller. Only when the bit is 
set, all the requests are checked against the local RT entries. 

Next sections deal with different issues that arise when the RT hardware is used, including how 

to deal with different potential deadlock situations and how to provide fairness guarantees 
with this model. 

3.2.1. Issues with LogTM transactions 
Depending on the details of the HTM used, the Reservation Table mechanism has to be 
adapted to guarantee forward progress and prevent deadlock. This section covers the specific 

changes required to integrate this mechanism with the LogTM HTM model.  

First of all, the processors that are sharing a line and NACK’ing incoming requests (A and C in 

the example of Figure 3-3) need to invalidate their local copy of the line after commit. 
Otherwise, they might start a new transaction after commit that also reads the same line. To 

this end, we add a new requested flag to the L1 cache lines, which is set by a directory 
indication when the reserved block is requested (step 2 in Figure 3-3). When the transaction 

commits, all of the requested lines in the local cache are invalidated, or sent back to the 
directory if they have been modified. 

Figure 3-4: Reservation Table structure 
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Additionally, it has to be considered that the proposed model generates a dependency 

between the threads running in different processors. In the example presented in Figure 3-3, 
the forward progress of the thread in D depends on the progress of B, which eventually 

depends on A and C. The dependency occurs at different levels: D depends on B because of 
the reservation mechanism, while B depends on A and C because of the transactional conflict. 

In this case, a problem arises if the processors A or C incur a transactional conflict with a 
transaction running in D. Suppose for simplicity that such conflict occurs in line b, different 

from the one which is reserved, a.  This would cause a deadlock, e.g.: A waiting for D 
(transactional dependency), D waiting for B (reservation), and B waiting for A (transactional 

dependency). This case is depicted in Figure 3-5.  

 

The solution has to consider the detailed deadlock avoidance mechanism in LogTM, which was 
introduced in section 1.4.7.3: Each transaction has an associated unique timestamp, and 

transactions abort when a possible cycle is detected. To detect this case, each processor 
contains a possible_cycle flag which is set when the transaction sends a NACK to an older 

transaction (in terms of timestamp order) and cleared when the transaction aborts or 
commits. Transactions abort when they have the possible_cycle bit set and receive a NACK 

from an older processor. This solves the deadlock problem, without aborting all of the 
transactions in the cycle, and ensures that the oldest transaction never aborts. However, there 

can be “false positives”, in the sense that processors can abort in absence of any cycle in the 
system, but this rate is low.  

In the example presented in Figure 3-5 each processor has its own timestamp. The processor B 
does not necessarily have to be running a transaction, but a timestamp is assigned in any case, 

which refers to the cycle of the request if it is non-transactional. With the given configuration, 
B is the “youngest” processor, but since it does not send a NACK reply to anyone, it never sets 

its possible_cycle flag and never aborts. Instead, the NACK is sent from the RT. 

To brave deadlock in this case, we modify the RT structure to include an additional timestamp 
field (not depicted in Figure 3-4). When the reservation is set, it records the timestamp of the 

request, 12 in the example. Subsequent requests from different processors (such as the 

Figure 3-5: Message transfer with the Reservation Table mechanism 
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request from D in the case depicted in Figure 3-5) are NACK’ed only if their timestamp is higher 

(younger) than the recorded timestamp. This prevents a cyclic dependency and allows the 
transactional conflicts to be directly solved between the involved processors. In this example, 

the request from D conflicts with the transaction in C, so given their relative timestamps, C will 
have to abort its transaction and D will proceed. 

3.2.2. Reservation Table and fair queuing 
The reservation mechanism proposed in the previous sections enables any writer to proceed 
with its execution after the current sharers of the line commit their transactions. However, it 

does not implement any queue for the remaining readers or writers. Once the reservation is 
cancelled, the rest of the requests will race for the line. This can lead to undesired effects, such 

as lack of the initial fairness, reader starvation (if the implementation did not allow NACK’ed 
readers to reserve a blocked line, and transactional writers constantly modify it) or LIFO 

accesses (if NACK’ed retries apply an exponential backoff wait between consecutive coherence 
retries). This section shows how to implement a policy that ensures certain fairness, but 

without the requirements of a FIFO queue. 

This mechanism makes use of the optional read_cnt field (count of pending readers) and W 

(“write-requested”) and S (“served”) flags in the RT. Initially, these fields are all 0. The idea is 
to record the number of readers that request the line between a pair of writers. Once the 

reservation has been set, any GETS request for the same line will be NACK’ed as explained 
previously, and it will increase read_cnt. To prevent counting the same read request twice, 

every request message includes a nacked flag, which is set on every retry. Only requests with 
nacked = 0 increase the read_cnt in the RT. Whenever a new GETX request (not coming from 

the saved requestor) arrives, the W flag is set, and read_cnt is no longer incremented. 

Once the original reservation is served (what sets S = 1), any further GETX request is NACK’ed 

if there are pending readers. The directory controller will decrease read_cnt on every GETS 
request served. When read_cnt reaches 0 and the W bit is set, only a GETX request will success 

(and, in case of a new conflict, generate a new reservation). Meanwhile, exclusive requests are 
NACK’ed by the directory. The specific actions of the directory controller when it receives a 

request for a reserved block are specified in the diagram of Figure 3-6. This case covers the 
timestamp check discussed in the previous section, the queue formation (the bottom left area) 

and the queue shrinking (the bottom right area). Note that “serve request” typically means 
that the request is forwarded to the owner or sharers, what does not imply that it will be 

acknowledged. 
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This design does not implement a real queue, given that the directory is not aware of the 
identity of read and write requestors. Once the original reservation is served, only the amount 

of read requests before any write request will be preserved. If new readers try to access the 
line, nothing prevents them from doing so before the next writer succeeds. If a new writer 

comes and wins the request race, its request will be satisfied. However, this is enough to make 
sure that the proportion of sharers and writers in the queue is satisfied.  

3.2.3. Thread de-scheduling and migration 
If the reservation owner get de-scheduled there would be no request for the reserved line 
when the resource became free. This would block any other threads trying to access the line. 

This case does not generate a deadlock, but a temporal starvation in the same manner as de-
scheduling a thread which is waiting in a lock queue, as discussed in section 1.3.1.6.2. As 

described in that section, this problem has been covered in multiple works [128, 127, 67] with 
timestamp mechanisms that detect requestor evictions and remove them from the queue . 
Waiting threads periodically “publish evidence” that they are still iterating, in the form of an 

increase of their timestamp. If other thread finds a timestamp not increased in a long time, it 
can “jump ahead” the queue. 

The Reservation Table includes a clock field (req_clk in Figure 3-4) that records the clock of the 

last served request (green fields in the diagram of Figure 3-6). This field serves as the evidence 

Figure 3-6: Message transfer with the Reservation Table mechanism 
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of the active iteration. On every new GETX request received from the reservation holder, the 

counter req_clk is updated with the current clock. When a conflicting request is received (that 
should be NACK’ed by the directory), the counter is checked against the current clock. If the 

difference exceeds a threshold, a timeout is triggered and the reservation is removed to 
prevent starvation. Such threshold will be set to several times (2 or 3) the maximum delay 

between requests, including the exponential backoff if used, to consider the case in which 
network congestion delays a request. 

By contrast, after the request has been served, the req_clk field must be updated each time a 
reader is served. If no reader retries its original request in a long time, the reservation is also 

removed after the timeout to prevent starvation of waiting writers.  

This model also covers the case of a thread migration. Specifically, if the reservation owner 
thread migrates to a different processor, subsequent coherence requests will find the line 

reserved for the original processor. The problem is that the reservation mechanism records the 
physical processor id, not the logical thread number. With the timeout mechanism, the 

reservation will eventually expire and the new processor will access the line or reserve it again 
if required. This case is highly uncommon, but its support is required to ensure that the 

reservation mechanism does not introduce any deadlock possibility in the system. 

3.3. Evaluation 
In the multiple-reader, single writer problem, prioritizing readers over writers provides the 

highest throughput, as a single writer never stops multiple concurrent readers. Thus, any 
fairness mechanism will reduce throughput, as long as it does not introduce any of the 

discussed starvation problems. Similarly, the use of the Reservation Table can locally introduce 
more contention in the system as the reservation owner stops furthers threads that could 

proceed with their execution. On the other hand, starved threads do not contribute to the 
global throughput, so temporarily blocking other threads to guarantee writer progress might 
lead to higher throughput. Thus, the goal of the implementation would be to produce the 

lowest performance degradation while still ensuring starvation freedom. 

The proposed model has been implemented in GEMS, using a Reservation Table with 3 entries. 
The model implemented the necessary compatibility with the base LogTM protocol to prevent 

any possible deadlock. The optional semi-fair queuing and eviction detection mechanisms 
were also used. The obtained performance has been compared against the base hybrid nowrite 

model with no Reservation Table (labelled HyTM on the plots). The same benchmarks 
presented in section 2.4.3 have been used. Three versions of the RT mechanism with different 

reservation policies have been studied: 

• RT-always: The base mechanism, NACK’ed requests always make the reservation. 
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• RT-delayed: the NACK’ed request is retried several times before it makes the 

reservation. Specifically, a value of 100 was used in the experiments. 

• RT-oldest: the NACK’ed request only performs the reservation when the NACK’ers have 
higher (younger) HTM timestamps. This prevents a writer from stopping transactions 
that started before. 

The RT proposal was also compared with a different conflict resolution policy: the Hybrid 

model presented in [16] (labelled Abort policy in the following figures). Such mechanism 
targets the same problem, but considering dependencies between HTM transactions only. 

With this policy, write requests abort readers that have a higher (younger) timestamp, rather 
than waiting for them to commit. 

The performance results are normalized against the base HyTM model. The evaluation plots 
will show the execution time, divided among the different execution phases of the 

transactional memory runtime. 

3.3.1. Performance results 
Figure 3-7 presents the cycle dissection of the average transaction execution time of the RB-

tree benchmark with size 11=k  and %01=p . The execution time corresponding to HW 

transactions uses different tones of blue, while the time corresponding to SW ones (after the 

corresponding HW aborts) is coloured in shades of green. Aborted execution uses a striped 
pattern. The figure shows performance results running with 2 to 31 threads (simulating a 32 

processor machine in this last case).  
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This experiment provides a reasonable congestion level, which increases with the thread 

count. With a small thread count (2 to 4 threads), the system does not suffer from writer 
starvation, since collisions are uncommon. It can be observed that the RT mechanism does not 

penalize execution time, what should be obvious since it is hardly ever used. The contention 
increases with the thread count. The results with 15 and 31 threads in the base HyTM model 

show a higher amount of time wasted in SW and HW transaction aborts (dashed sections) and 
a significant amount of SW transaction time (greenish sections). The RT mechanisms stop such 

congestion halting new readers and the performance is significantly increased up to 30.8% 
with the best policy, which happens to be RT-oldest. There are no large differences between 

the three evaluated reservation policies. By contrast, the Abort Policy model is based on 
aborting running transactions, which increases the abort count and fastens the switch to the 
slower STM mode, more prone to aborts. The maximum performance increase obtained with 

this policy is only a 25.03% with respect to the base model. 

Figure 3-8 shows performance results for other two cases. The top case shows the execution 
time of the hash-table benchmark. Since this benchmark presents almost no congestion, the 

Reservation Table is almost never used, and even with 31 threads the performance of all 
models is similar. By contrast, Figure 3-8 b shows the execution time of the skip-list benchmark 

with %25=p . In this case, the congestion is much higher, what is reflected in a much larger 

number of HW aborts and switches to SW (green blocks) in the base HyTM model. With 15 

threads, any of the evaluated mechanisms provide a similar performance improvement. 
However, with 31 threads, the Abort policy provides a much lower performance, since it 

Figure 3-7: Normalized execution time of the RB benchmark, k=11, p=10% 
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increases the number of aborts, and therefore the switches to SW transactions. Both RT-

always and RT-oldest provide a similar performance, reducing the original execution time in 
more than a 60%, leading to a speedup larger than 2.5×. 

 
Figure 3-8: Normalized execution time of Hash and skip, k=11 

a) Hash-table tree benchmark, p=10% 

b) Skip-list benchmark, p=25% (same legend as case a) 
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3.4. Summary 
This Chapter has studied the unfairness problems that occur when different congestion 

management policies are employed for hardware and software transactions in a Hybrid 
Transactional Memory system. It has been shown how these problems generate temporary 

starvation, which penalizes performance and can degenerate to deadlock. 

The Reservation Table has been proposed as a low-cost mechanism that targets these 

unfairness problems in HyTM. Specifically, the table records some addresses which are 
“reserved” for the starved thread, and prevents accesses from different threads. The 

mechanism is designed to minimize the number of transactional aborts, what allows for a high 
performance since it reduces the amount of wasted work. Finally, it has been shown how the 

Reservation Table management could introduce deadlock if the deadlock detection 
mechanism of the HTM was not considered in the design, and a valid policy for the LogTM 

model has been proposed. 

The proposal has been modeled and evaluated with the same tools as the work in the previous 

Chapter. Evaluations show that the system does not harm performance when contention is 
low, and it increases performance when contention grows. The performance increase mainly 

comes from the lack of starved threads and a lower rate of aborted transactions that switch to 
software. Specifically, in highly congested workloads the system obtains speedups higher than 

2.5× from the base model, and higher than 2× when compared to other mechanism designed 
for HTM-only systems. 
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Previous sections have discussed the importance of locking mechanisms in parallel 
programming. Traditional parallel programs in shared-memory machines typically rely on locks 

to protect the access to shared data. Also, Chapter 2 has presented the benefits of lock-based 
software and hybrid transactional memory. As discussed in section 1.3, different 

implementations of the locking mechanism provide different runtime overheads, memory 
requirements, fairness guarantees and others. 

Being the locking mechanism so important in a parallel system, it is interesting to note that 

most commercial architectures simply rely on the shared memory coherence mechanism for 
software locks, without providing any specific hardware support. Multiple hardware 

mechanisms have been developed to aid locking. These mechanisms allow for a fast and low-
cost implementation of a locking mechanism, which in many cases allows the use of a fine-
grain synchronization: locking mechanisms in which very small pieces of data are protected by 

individual locks, relying on the low overhead of the locking implementation. However, these 
proposals are too specific or limited to be widely deployed and completely replace software 

locks. Section 4.1 will consider these previous proposals, and discuss why they have not been 
implemented in other than research systems. 

This Chapter will introduce a HW-supported locking mechanism called the Lock Control Unit 

(LCU). This mechanism, which slightly resembles the Reservation Table introduced in Chapter 
3, builds hardware queues for fast and efficient lock transfer between the different lock 

requestors, supporting reader/writer locking and thread suspension and migration without 
significant performance degradation. The mechanism will be detailed in section 4.2, and 
evaluated in section 4.3.  

4.1. HW mechanisms for locking acceleration 
Fine-grain synchronization has been supported in hardware with word-level tags (such as 

Full/Empty bits) in many research machines such as HEP [76], Tera [8], the J- and M-machines 
[32, 80], or the Alewife Machine [6]. These architectures associate a synchronization bit with 

each word, which acts as a lock. While these bits provide a simple architectural support for 
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synchronization, they incur a significant area overhead, and do not support reader-writer 

locking mechanisms. The changes that would be required to support RW-locking, such as a 
reader counter per memory word, would imply unaffordable area costs. 

QOLB [55] extends the performance of synchronization bits by building a hardware queue 

between requestors. QOLB allocates two cache lines for every locked address: the valid one, 
and a shadow line. One of the lines is used to maintain a pointer to the next node in the 

queue, if present, and the other one is used for the actual data and local spinning on the 
syncbit. When the unlock function is invoked, the pointer in the shadow line is used to notify 
the next processor in the queue, allowing for fast direct cache-to-cache transfer. As with 

previous designs, QOLB is designed to support mutual exclusion and does not support RW 
locks. The QOLB primitive has been implemented as part of the IEEE SCI standard for 

communication in shared-memory multiprocessors [58]. The implementation, which minimally 
differs from the original QOLB proposal as presented in [4], leverages the pointer-based 

coherence mechanism proposed for SCI. This paper acknowledges some problems of the 
implementation, such as the noticeable performance degradation when evicted threads 

receive a lock, and the issues that arise with process migration. As far as we know, the SCI 
standard has had a low industrial acceptance, and QOLB-compliant products have not been 

developed. 

The previous designs were not tied to a specific architecture. Both the System on a Chip Lock 

Cache [123], and the Lock Table [23], propose a centralized system to control the state of 
several locks in a bus-based parallel machine. Acquired locks are recorded by leveraging the 

bus-based coherence mechanism, so the scalability of these mechanisms is limited. Moreover, 
overflow and thread migration are difficult to handle. 

Different hardware mechanisms directly support locking on distributed systems. The Stanford 

Dash [91] leverages the directory sharing bits for this purpose. When a lock is released, the 
directory propagates the coherence update to a single lock requestor, preventing contention. 

After a while, all the remaining requestors receive the update, to prevent starvation if the 
original requestor does not acquire the lock. Other systems use remote atomic operations 
executed in the memory controller instead of the processor. This is the case of the fetch-and-θ 

instruction of the Memory Atomic Operations (MAO) in the MIPS-based SGI Origin [89] and 
Cray T3E [129]. These systems allow for remote updates in main memory, removing the 

problem of coherence lines bouncing on lock accesses. All remote updates take the same time, 
which is typically the memory access latency. While they do not support direct cache-to-cache 

transfer of locks, they do not use L1 memory at all. More elaborate proposals such as Active 
Memory Operations (AMO, [44]) or Processor-in-Memory architectures (PiM, [53]) do not 

further optimize the lock handling, but mainly focus on moving part of the operations to the 
memory side to reduce the performance penalty caused by the interconnection mechanism.  
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The Synchronization State Buffer (SSB, [159]) was proposed as a hardware structure to 

accelerate the fine-grain lock handling mechanisms in the Cyclops CMP system avoiding whole-
memory tagging. When a synchronization operation (such as lock acquire) is invoked on a 

given data memory address, the shared-L2 memory controller allocates an entry in the SSB to 
control the locking state of such address. Same as in MAOs or AMOs, all lock-related 

operations are remote (in this case, in the on-chip L2 controller). SSB supports fine-grain 
reader/writer locks. However, these locks are unfair and can starve writers. 

The lock box [154] adds support for fast lock transfer between different SMT threads in the 
same processor. The lock box is a shared CAM with one register per SMT thread. A valid entry 

indicates the address of the lock for which the corresponding SMT threads is waiting. Each 
time a thread releases a lock, it checks the shared lock box and directly notifies another SMT 

thread if the lock address is found, without accessing the L1D cache, minimizing the 
communication overheads. Additionally, this mechanism allows controlling the SMT 

priorization mechanism, so waiting threads receive less processor resources. While highly 
interesting, this mechanism works in a different level as the mechanism studied in this 

Chapter, with a much lower scalability, since it requires shared resources inside the same 
processor. 

Finally, multiple proposals focus on accelerating the critical section execution with different 
means. Speculative Lock Elision [118] removes unnecessary locking by executing the critical 

section speculatively, and reverts to taking the lock if a conflict is detected. This allows for 
some parallelism in the critical section, especially when coarse-grain or highly conservative 

locks are used. Related mechanisms are Speculative Synchronization [103] and TLR [119], 
which improve the mechanism with timestamps to guarantee forward progress. Speculation in 

critical sections is not part of the proposal presented in this Chapter, but it will be considered 
in section 5.3. Accelerated Critical Sections [147] moves the execution of the critical section to 

the fastest core in an asymmetric CMP. While somehow related, such approach is orthogonal 
to this work.  

The main characteristics of multiple locking mechanisms are presented in Table 4-1. The SW 
mechanisms on top of the table have been already introduced in section 1.3. The meaning of 

some of the columns of the Table is presented next. Local spin refers to implementations that 
wait for the lock iterating on a per-thread private location or structure; it is typical in queue-

based locks and has the benefit of not sending remote messages while spinning. Queue 
eviction detection refers to the capability of detecting evicted threads in the queue before 

they receive the lock, so they can be removed to prevent temporal starvation. Scalability refers 
to the system behavior as the number of requestors or processors increase. Single-line locks 

present coherent contention and scale poorly, while queue-based approaches remove this 
problem and scale very well. Regarding hardware proposals, they can be limited to a single-bus 

or single-chip, what can restrict their scalability for larger systems. Some proposals can fail if 
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the number of threads exceeds the number of processors, or if one thread migrates. This 

happens typically because locks are assigned to hardware cores instead of software threads. 
Memory/area overhead refers to the memory required for the lock, or to the area cost in 

hardware implementations. Queue-based locks require O(n) memory locations per lock for n 
concurrent requestors. Some hardware proposals can have high area requirements (for 

example, tagging the whole memory) or just require the addition of limited structures per core 
or processor. The number messages for lock transfer represents the minimum number of 

messages in the critical path of the lock transfer operation. Only lock transfer has been 
considered, not lock acquisition, which occurs when the lock is free. This number will limit the 

base transfer latency of the system. It can depend on the specific coherence protocol, but in 
general, hardware proposals outperform software-only locks. Finally, requiring changes to the 

L1 design such as adding new bits or coherence states is undesirable, since it implies modifying 
a highly optimized structure, and possibly, the coherence protocol. The Lock Control Unit, as 
will be presented in the next section, satisfies all these desirable requirements. 

 

4.2. The Lock Control Unit mechanism 
This section introduces the Lock Control Unit hardware and analyzes its behavior. It is a 

distributed mechanism that handles reader-writer locking fast and efficiently. The system 
relies on two new architectural blocks: The Lock Control Unit (LCU) for exploiting locality and 

fast transfer time (which gives name to the whole mechanism), and the Lock Reservation Table 
(LRT) to manage lock queues. Each processor or core implements a LCU, which is responsible 

for receiving the thread's requests and building the queues. The LCU is a table whose entries 
are dynamically allocated for the requested locks. The LRT is responsible for the allocation and 

control of new lock queues. LCUs and LRTs communicate to each other with specific messages 
for requests, transfers and releases of reader-writer locks, while threads only query the local 

LCU. To minimize transfer time, lock transfers are direct from one LCU to the next.  

In our system, locks are dynamically assigned to memory addresses on request. While the lock 

transfer occurs from one physical LCU to another, locks are associated with virtual threads by 
using a thread identifier. This allows the system to support thread suspension and migration 

Table 4-1: Comparative of SW and HW locking mechanisms 
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Queue 
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Trylock 
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Lock Table [23] NO NO NO YES bus-based OK OK low 2 NO
Tagged memory [6, 8, 32, 76, 80] NO NO NO YES good OK OK Memory tags 6 YES
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with graceful performance degradation. The LCU also implements a mechanism to remove 

uncontended LCU entries to decrease its occupation, what reduces the probability of entry 
exhaustion. Even so, the unavoidable case of resource overflow is handled: The LRT is backed 

to main memory, while the LCU contains specific entries to guarantee forward progress. 

This Chapter is organized as follows. Section 4.2.1 details the different hardware units that 
have been just sketched. Section 4.2.2 provides a general overview of the system behavior. 

Section 4.2.3 will cover the detailed implementation with the required mechanisms to prevent 
deadlock, support different locking pathologies and others. 

4.2.1. Hardware components 
The architecture of the system is presented in Figure 4-1. It has been conceived for distributed 
shared-memory systems with multiple cores and multiple chips; this text will indistinctly refer 

to “cores” or “processors”. Each core incorporates a Lock Control Unit (LCU) for implementing 
distributed lock queues. There is one Lock Reservation Table (LRT) per memory controller. 
Alternative organizations can be considered, as long as each lock is associated with a single LRT 

depending on its physical address. For example, in a single-chip system with shared static L2 
banks, each LRT might be associated with a L2 bank, as occurs in SSB [159]. Finally, there is an 

optional Free Lock Table (FLT) per core, which is used to obtain biasing in the locking 
mechanism. Next sections will detail the elements recorded in each entry of these tables. 

 

4.2.1.1. The Lock Control Unit 

The LCU is composed of a table whose entries record the locking state of a given memory 
address and its associated logic. The composition of each entry is shown in Figure 4-2. The LCU 

is addressed with the tuple {Addr; threadid}, so multiple logical threads on the same core can 
issue requests for the same lock. LCU entries are dynamically allocated on request, and persist 

until the lock has been released or the lock is taken without further requestors. The locks can 
be requested in read or write mode, according to the flag R/W. The Head flag indicates if the 

LCU is the first one in the lock queue, and the transfer count TC indicates the number of times 
that the Head flag has been transferred from one LCU to another.  The function of this counter 

Figure 4-1: Lock Control Unit architecture 
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will be further detailed in section 4.2.2.3. The Next field is used to build a queue of requestors, 

containing some details of the next requestor in the queue. Overall, with 64-bit addresses and 
16-bit LCU identifiers, each LCU entry requires 157 bits, or less than 20 bytes of added storage. 

 

Valid states for LCU entries are presented in Table 4-2. ISSUED implies that the local LCU has 
sent a request for a lock in the corresponding address. WAIT means that the LCU has become 

part of the lock wait queue, and will eventually receive the lock. When the lock is received in 
the LCU, the state is moved to RCV, and when the local thread actually acquires the lock, it is 

moved to ACQ. A released lock can be in state REL or RD_REL (read-released) before the entry 
is removed; these two cases will be covered later in section 4.2.2.4. The state REM is optional; 

it depends on the number and type of virtual channels used in the interconnection network. Its 
behavior and requirements are detailed in section 4.2.3.2. 

 

The LCU will differentiate contended and uncontended locks. The former are locks required by 
multiple threads that concurrently try to acquire them, and the latter are locks taken by a 

single thread without further requestors. Contended locks use the Next field to build the queue 
of requestors, as depicted before. Uncontended entries do not have any other requestor, and 

hence do not use this field. When an uncontended lock is taken (in state ACQ), there is no 
need to maintain the LCU entry allocated: The required information is saved in the LRT as 
explained in the next section, and there is no queue to maintain. Therefore, in order to reduce 

the resource usage, uncontended taken locks are removed to minimize LCU occupation. 
Hence, LCU entries have a double function. First, they are used as queue nodes for contended 

locks. Second, they serve as the interface that is polled by the processor to interact with the 
locking mechanism, slightly similar to how Miss Status Holding Registers [83] provide an 

interface between the L1 cache and processor, and the rest of the memory hierarchy.  

Table 4-2: Possible states of a LCU entry 

Status Meaning
ISSUED Request issued

WAIT Request enqueued

RCV Lock received; not acquired yet

ACQ Lock acquired

REL Lock released

RD_REL Read-lock released, Head=false

REM Removed; RETRY forward pending

Figure 4-2: Contents of each LCU entry 

thid LCUid R/W

LCU Entry

Addr thid TCStateR/W Head

32       log2(n)      1   

bits:        32        1          1            3          8

Next
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4.2.1.2. The Lock Reservation Table 

The Lock Reservation Table (LRT) tracks the state of each hardware lock in the system. Since it 
will be typically associated with a memory controller, each LRT has control over the locks 
whose address belongs to the given memory controller. Each LRT contains multiple entries, 

one for each lock, as depicted in Figure 4-3. 

 

Each lock is identified in the LRT by its physical address. The LRT entry contains two pointers, 

for the head and the tail of the lock queue. Each pointer, Headid and Tailid, identifies the lock 
owner by its thread identifier thid and the LCU from which it requested the lock, LCUid. 
Additionally, it records their corresponding R/W mode flag and transfer counter TC. This 

counter is used to prevent race conditions, and will be detailed in section 4.2.2.3. Finally, the 
LRT contains a set of fields to support a so-called overflow mode, including a reservation 

mechanism. This lock granting mode and the function of the corresponding fields are detailed 
in section 4.2.2.2.2. Overall, with 64-bit addresses and 16-bit LCU identifiers, each LRT entry 

requires 258 bits, or about 32 bytes of added storage. 

4.2.1.3. The Free Lock Table 

The Free Lock Table (FLT) is an optional component that is used to provide biasing capabilities 

to the locking mechanism. An entry of this table is depicted in Figure 4-4. 

 

When a thread releases a lock which is likely to be benefited from biasing, it can be added to 
the local FLT, instead of sending the release message to the LRT. In this case, the lock’s 

address, R/W mode and the owner’s threadid are recorded in the FLT. Further requests for the 
same lock can find it available in the local FLT, without the requirement for a remote request 

to the corresponding LRT. The flags Prediction and Updating will be detailed in section 4.2.2.5. 

Figure 4-4: Contents of each FLT entry 

FLT Entry

Addr R/W Prediction Updatingthid

bits:     log2(n)    1              1                     1  

Figure 4-3: Contents of each LRT entry. The Tailid field’s composition is equal to Headid 

LRT Entry

Addr Headid Tailid Overflow

Reader_cnt R-thid R-LCUid

bits:        32       log2(n)       1       8                    32               32         log2(n)

thid LCUid R/W TC
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4.2.2. General overview 
This section will show the general behavior of the Lock Control Unit mechanism. It introduces 
the programmer interface, the different locking modes, lock acquisition, transfer and release 
operations, and the FLT behavior.  

4.2.2.1. Programming interface 

The processor communicates with the local LCU by means of two new ISA primitives: Acquire 

and Release. Threads issue lock requests to their local LCU, offloading the tasks of requesting 
the lock grant, forming a queue of waiting threads and transferring the lock to the next 
requestor. 

Acquire and Release instructions behave in the following way: 

• Acquire (acq): If the LCU entry for the given address is not present, a new entry is 
allocated and a request message is sent to the corresponding LRT. If the LCU entry is 

present with a valid State (RCV for write requests, or RCV or RD_REL for read 
requests, as explained later), the lock is acquired, returning TRUE. Otherwise, no 

action takes place. 

• Release (rel): releases the lock, transferring it to the next requestor in the queue, or 
releasing it sending a message to the LRT. 

The Acquire and Release synchronization primitives use three arguments:  

• The (virtual) address to lock. The LCU makes use of the TLB to provide virtual-to-
physical mapping. This implies that all the remaining operations work on physical 
addresses, and special care must be taken in case of memory page migrations. 

• A process-wide thread identifier. This value can be provided by the user or the 

hardware. For example, the Alpha architecture contains a register with the current 
thread identifier, and the convention in the Sparc architecture says that the global 
register %g7 should contain a pointer to the current thread structure in main memory. 

• The read or write mode, R/W. Alternatively, different ISA instructions might be used 

for read-locking and write-locking, in which this parameter would not be required. 

Figure 4-5 shows the simplest implementation of the lock, trylock (based on a fixed number of 

retries) and unlock functions, with the trylock based on a fixed number of retries. Alternative 
implementations can consider the use of timeouts in trylocks, or periodically yielding the 

processor to prevent owner starvation, as presented in [67]. 
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It is interesting that the proposed design considers nonblocking acquire and release 

instructions, returning immediately its result of success/failure. That is why the thread must 
iterate on the call to acq until success. A blocking mechanism could be considered, delaying 

the commit of the acq and rel instructions until they succeed. This poses two issues. First, the 
lock acquisition time can be extremely long. A memory request, for example, is satisfied in a 
variable amount of time, but longer events such as a page miss generate an exception to 

handle the page migration. Therefore, load/store instructions commit when the operation 
completes, or raise an exception if required. By contrast, if a lock is taken, the amount of time 

required for the acquisition to complete depends on the progress of the lock owner, without 
any possible exception to accelerate or process the acquisition. The second issue is that this 

operation couples the lock request and the lock acquisition phases, and can make the design of 
the LCU more complex if the request instruction is squashed in the pipeline, for example, due 

to a branch missprediction.  

Some alternative configurations to the base design can be considered. First, a prefetch 
mechanism can be used to better tolerate the latency between the LRT and the LCU: Similar to 
the QOLB instruction in [77], an additional Enqueue (enq) instruction can be used to add a 

processor to a queue in advance of the acquisition moment. Secondly, different instructions 
could be used for the read or write modes of acquiring the lock. This increases the number of 

ISA instructions to 4, what is clearly affordable, and removes the number of parameters to 
two, similar to many common arithmetic instructions.  

4.2.2.2. Two locking modes 

The LRT responds to LCU lock requests by assigning a lock to the requested memory address 
and granting the lock to the requestor. The LRT supports two different modes of granting a 

lock. The queue-based mode depicted before is the common case. Alternatively, an overflow 
mode can be used to prevent starvation when there are no LCU entries available. 

 

 

Figure 4-5: Functions for lock acquisition and release 

  1: void LCU_lock(addr, th_id, read){ 
  2:    while(!acq(addr, th_id, read)) {;} 
  3: } 
  4:  
  5: bool LCU_trylock(addr, th_id, read, retries){ 
  6:    for (int i=0; i<retries; i++) 
  7:       if(acq(addr, th_id, read)) return true; 
  8:    return false; 
  9: } 
10: 
11: void LCU_unlock(addr, th_id, read){ 
12:     while(!rel(addr, th_id, read)) {;} 
13: } 



100 · Chapter 4: HW acceleration of locking mechanisms 

4.2.2.2.1. Queue-based locking 

Queue-based locking is the ordinary lock granting mechanism. The LRT records the identity of 

the first requestor in the Headid field, starting with a transfer counter TC value of 0. Any 
subsequent request is recorded as the queue Tailid, and forwarded to the previous queue tail. 

A queue of requestors is built, where each queue node is a different LCU entry, chained with 
their Next pointers.  

4.2.2.2.2. Overflowed locking 

Alternatively, locks can be granted in an overflow mode, used to prevent starvation problems 

when no LCU entries are available in the requestor. In such mode, multiple readers can receive 
a lock grant without being added to the lock queue. In this case, the LCUs receive the lock 

grant but are not aware of the rest of requestors. Therefore, LCU entries receiving overflowed 
lock grants consider the lock to be uncontended, and remove the entry when the thread 
acquires the lock.  

This mode is used for read requests only. In the case of write requests, a request that cannot 

be enqueued will use the reservation mechanism that will be explained in 4.2.3.7. With that 
mechanism, similar to the reservation mechanism in the Reservation Table from section 3.2, 

the requestor will eventually become the only requestor in the system and the lock will be 
granted in the ordinary, uncontended mode. 

4.2.2.3. Write-lock acquisition, transfer and release 

This section introduces the basic mechanism used to request, grant, acquire and release locks. 
The whole process is started with a thread requesting a lock acquire on a given virtual memory 

address v_a. The LCU resolves the physical address a corresponding to v_a, allocates an ISSUED 
entry for the lock and sends a lock REQUEST message to the corresponding LRT. This 

correspondence depends on the physical address a. Since the primitives are nonblocking, the 
processor must iterate until eventually acquiring the lock, as presented in Figure 4-5. 

Subsequent iterative requests from the local processor to the LCU that find the line in ISSUED 
state will do nothing and return a FALSE result. There are three possible cases, depending on 
the locking status of a. 

a) The address a is not locked, so the LRT does not contain an entry for address a. The LRT 

allocates a new entry, recording the requestor's data in both Headid and Tailid pointers and 
returns a GRANT message with a Head flag set. This is depicted in Figure 4-6. When this 

message is received, the LCU switches the entry state to RCV and sets its Head flag. On the next 
iterative acq the lock will be taken and the acq instruction will return TRUE allowing the thread 

to proceed with the execution. The lock is now uncontended, as discussed in section 4.2.1.1, so 
the LCU entry is automatically removed once the lock is acquired. The LRT still records the 

locking data for new locking requests, not being aware of the release of the LCU entry. 
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b) The address a is locked in uncontended mode. The LRT forwards the lock request, including 
the values in the Headid tuple, to the owner LCU. With such information, the owner LCU re-
allocates the evicted entry in state ACQ (acquired), records the requestor information in the 

Next tuple and sends a WAIT message to the requestor. The process is depicted in Figure 4-7, 
with the numbers indicating the order of events. Grayed fields represent those being updated, 

apart from the obvious entry re-allocation in the owner’s LCU. Irrelevant fields are omitted for 
simplicity. 

 

c) The address is locked in contended mode with an associated queue. This case is similar to b), 
except that the existent tail LCU does not need to re-allocate the LCU entry. 

At the end, the requestor acquires the lock if it is uncontended, or gets enqueued if it is 
already acquired. It can be observed that the FLT (or the previous LCU) grants the lock to the 

requesting LCU entry, while it is the local thread which acquires the lock with a new call to acq. 
Temporarily, the lock can be granted without being actually taken by any thread, this is, no 

thread can access the critical section or data protected by this lock. This is especially important 
for trylocks and corner cases of thread eviction, and it will be discussed in section 4.2.3.5. 

Lock release is triggered by the owner thread invoking the rel instruction. Its behavior depends 
on the existence of requestors. If the lock is uncontended, the corresponding LCU entry will 

not be allocated when calling rel. However, invoking the rel implies that the lock has been 
previously acquired and it can be re-allocated; otherwise, the program would be incorrectly 

synchronized. To this end, the LCU re-allocates the entry with the parameters from the rel 

Figure 4-7: Enqueue when the taken lock is uncontended. LCU0 is the current owner 
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Figure 4-6: Lock acquisition when the lock is free 
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instruction and sends a RELEASE message to the LRT. The LRT receives the lock release, 

removes its entry and sends an acknowledgement message back, allowing the LCU to remove 
its entry. The corner case of not having any free entry to re-allocate in the LCU is covered in 

section 4.2.3.6. 

By contrast, if there is a queue, the lock is transferred to the Next requestor. An example is 
depicted in Figure 4-8. The receiver switches to RCV and notifies the reception to the LRT (step 

2) in order to maintain the Headid field valid. Finally, the LRT records the new owner and sends 
an acknowledgement message to the previous owner, allowing it to deallocate the entry.  

 

The notification message is sent by the lock receiver for two reasons: First, it takes the remote 

message off the critical path, minimizing the transfer time. Second, it delays the deallocation 
of the LCU entry of the releaser until the LRT sends an acknowledgement back. Again, this 

ensures that the head in the LRT always points to a valid LCU entry, as it is updated when the 
lock has been already received. This is required to support thread migration, and will be 
discussed in section 4.2.3.5.  

The transfer counter TC is used to prevent ordering problems when multiple notification 

messages race. Suppose three lock requestors t1-t3 in the queue, with the lock being 
transferred twice very quickly, from t1 to t2 and from t2 to t3, as depicted in Figure 4-9. The 

notification messages (labeled 1 and 2 in the Figure) are sent in the same order as the transfer, 
but they might arrive in the opposite order to the LRT (labels 3 and 4). Without an index of the 

number of transfers, there would be two alternatives, both of them undesired: 

• Update the Headid field with each notification message received. 

• Send an acknowledge message from the LRT to both the lock sender and the lock 
receiver (ACK to the LCU2 in response to the transfer from t1 to t2), and prevent any 

lock transfer 

Figure 4-8: Lock transfer 
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In the first case, a racy example like the one in Figure 4-9 would lead to an inconsistent Headid 
value, pointing to a LCU entry that has been already deallocated. In the second case, the long 

latency of the remote notification to the LRT will impose a lower bound in the minimum time 
between consecutive lock transfers, what eventually limits the performance. Instead, the idea 

of the Transfer Counter TC is to use a count of the number of lock transfers, what allows the 
LRT to detect out-of-order messages. The LRT will acknowledge all transfer notifications to the 

lock releaser (with an ACK message), but only the messages with a transfer counter value 
higher than the TC in the Headid field will update this Head pointer, leading to a consistent final 

value.  

Finally, the LCU mechanism relies on RETRY messages being sent when other data races are 

detected. This occurs in other more infrequent cases. For example, consider a lock taken in 
uncontended mode. A release might be invoked in the local processor at the same time that a 

remote enqueue request is being forwarded from the LRT. In such case, the LRT receives the 
RELEASE message, but detects that the releaser is not the only node in the queue (the new 

requestor has been already recorded as the queue tail, before forwarding the enqueue 
message). In this case, the LRT replies with a RETRY to this RELEASE request. However, in such 

case the release will not be retried: When the LCU (in state REL, after being re-allocated for the 
release operation) receives the forwarded enqueue request, it will directly forward the lock 

grant to the requestor. If there was no re-allocation for the lock release, the LCU would 
erroneously consider that the lock is taken in uncontended mode, and enqueue the requestor. 

This example shows why a LCU re-allocation is required for lock releases in the case of 
uncontended locks, in which the LCU entry has been removed. 

4.2.2.4. Reader locking 

Read-locking employs the same queuing mechanism, with multiple consecutive LCUs allowed 
to concurrently hold the lock in read mode. This mode makes a distinction between a lock 

“grant”, which is the permission to acquire the lock, and the “Head” token, which identifies 
the single head of the queue. Receiving a GRANT message implies receiving the lock grant, 

while the Head token is received if the corresponding field of the GRANT message is set. While 
a single node is the queue head, multiple readers can receive a lock grant. When a waiting 

Figure 4-9: Possible data race in the notification mechanism 
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reader LCU entry receives a lock grant, it switches its state to RCV and forwards a GRANT 

message to any subsequent reader in the queue. Similarly, when a read REQUEST is forwarded 
to the tail, a GRANT reply is sent if the tail has the lock taken in read mode. For write-locking, 

by contrast, the Head flag and the lock grant are equivalent. 

In this shared mode, all the readers should be allowed to release the lock in any order. To 
prevent breaking the queue or granting the lock to a waiting writer when there are active 

readers, we employ the following mechanism, which relies on the Head flag. 

When the first node in the queue releases the read-lock, the Head token is transferred to the 

next node and the LRT is notified, as presented before in Figure 4-8. By contrast, when an 
intermediate node releases its read-lock, it switches to the special state RD_REL (“read-

released”) without sending any message, waiting for the Head token. This prevents an entry 
deallocation that would break the queue. The entry is finally released when the LCU receives 

the Head token, which is bypassed to the next node with the corresponding notification 
messages to the LRT. Therefore, only Head transfers have to notify the LRT. 

An example with 4 concurrent readers and a waiting writer is presented in Figure 4-10. Only 
the first node in the queue contains the Head flag set. Thread t2 at LCU2 has released the lock, 

but being an intermediate node, the node is preserved in state RD_REL. When the Head token 
is finally received in the LCU2, the LRT is notified and the Head token is directly transferred to 

the next requestor, t3. When t3 finally releases the Head, it transfers the lock to t4, which 
acquires it in write mode. 

 

While a node is in state RD_REL, the local thread can re-acquire the lock in read mode. 

Although this breaks the original FIFO order (and, therefore, its implementation might be 
optional), it does not generate starvation: the advance of the Head token along the queue of 

readers ensures that, eventually, any enqueued writer receives the lock. This behavior 
prevents contention on a single memory location (note that the notification to the LRT is out of 

the critical path) or complex management found on software locks [82, 107]. 

Figure 4-10: Example of concurrent read locking 
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4.2.2.5. The Free Lock Table 

As discussed in section 1.3.1.6.1, it is common to find locks that are taken by a single 
processor. Biasing mechanisms are designed to accelerate this case, providing a fastpath 
without atomics for the common owner, and penalizing other threads with an unbias 

operation prior to acquiring the lock. 

From an architectural point of view, a form of biasing naturally occurs when a thread acquires 
the same software lock consecutively. Effectively, if no other thread requests the lock, the lock 

words will remain cached in the processors L1, preventing subsequent cold misses and 
accelerating execution. Threads running in other processors will require coherence forwarding 

through the directory controller, what increases their latency. For similarity, this can be 
considered an implicit biasing. Implicit biasing is inherent to software locks, provided by 

caching of the corresponding memory locations, and it can be also provided by hardware 
mechanisms that rely on the coherence protocol. 

In this work, the proposed mechanism relies on sending each released lock back to the LRT. 
This implies that subsequent accesses from the same thread/processor will require a remote 

access to the same LRT. This can make the LRT mechanism actually slower than simple 
software-only locks. To prevent such performance loss, the Free Lock Table (FLT) is an optional 

mechanism that saves those locks that are likely to be re-acquired in a near future. 

The table is made up with a set of entries as presented in Figure 4-4. Each entry contains the 

identification of the free lock (an address a, the threadid and the R/W mode) and two flags used 
to prevent races, as explained below. When the local thread releases a lock at address a 

without pending requestors, it can allocate a FLT entry instead of sending the release message 
to the LRT. Subsequent lock accesses to a check the local FLT, find the lock free and directly 

allocate a LCU entry in state RCV without any remote request. 

When a lock a is moved to the FLTi, the LRT still considers that a is locked at LCUi and will 
forward any request for a to the LCUi. Therefore, after receiving remote requests the LCU must 

check its FLT, and if the lock is found, it will be directly transferred to the requestor. 

It is not always safe to allocate a FLT entry when a lock is released. If the lock owner migrates, 

the LCU must not allocate the lock in the FLT of the new processor. If that happened, the LRT 
would still record the lock as taken in the initial processor, forwarding new requests to the 

wrong processor and leading to a possible deadlock. To prevent this, a simple strategy can be 
used. When the LRT grants a lock, if there is an available entry in the FLT, it is allocated with 

the Prediction flag set to 0. This prediction entry is removed when any remote enqueue 
request arrives, as in this case the lock is clearly not private to a single thread. At release time, 

only if the prediction entry remains valid the lock is moved to the FLT. In this case, moving the 
lock to the FLT actually consists of setting the Prediction flag and removing the lock from the 

LRT. 
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The LRT assigns locks to threads, recording their access mode (R/W) and the threadid. These 

fields are recorded in the FLT. If a lock is re-acquired from the FLT, but one of these 
parameters is changed (different read/write mode, or a different thread in the same core), the 

FLT must notify the LRT before granting the lock. This makes use of the UPGRADE and 
UPGR_ACK messages shown in Table 4-3. The Updating flag indicates that the FLT has sent an 

UPGRADE message to the LRT, and is still waiting to receive the corresponding answer. 

Saving locks in the FLT is only beneficial when their addresses are commonly accessed by a 
single thread. To determine such case, three options are proposed: 

• Letting the programmer or the user enable or disable the FLT for all locks. 

• Using ISA hints introduced by the programmer or compiler to determine which locks 
should be biased. 

• Using prediction hardware, such as a two-bit saturating counter, along with the 
Prediction flag of the FLT. 

These three options, however, have not been studied in detail, what is left for future work.  

4.2.3. Detailed overview 
The previous section 4.2.2 has introduced informal general view of the locking mechanism, 

without formally explaining the correctness of the mechanism or considering corner cases. This 
section will detail each of the components of the system and explain the support for corner 

execution cases, such as lack of resources or logical thread migration from one processor to 
another. Finally, sections 4.2.3.9 to 4.2.3.11 will introduce two optional mechanisms to 

improve the performance in different cases (read-only pathological locking and a hierarchical 
implementation) and a mechanism to support the case of virtual page migrating to disk. These 

three ideas, however, have not been implemented and are not thoroughly tested; they are left 
for future work. 

4.2.3.1. Design invariants 

A formal proof of the correctness of our mechanism is out of the scope of this document, since 
it would imply a detailed study of the specific implemented model. However, it is interesting to 

state some invariants which are always obeyed by each different lock in the proposed system: 

1. At any point in time, there is at most a single LCU entry (queue node) with the Head 

flag set. 

2. A node is considered to be “added to the queue” once it can be reached from the Head 
node, using the Nextid pointers. 
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3. Once a node is added to the queue, it never leaves it, until eventually receiving the 

Head token and transferring it. 

4. The queue contains a variable amount of readers and writers in any order. 

5. A single writer (the Head) or multiple readers hold the lock grant in the corresponding 

read mode at a given time. The Head always has the grant. If multiple enqueued 
readers have the lock grant, they are always consecutive, starting from the Head. 

6. No readers hold the lock grant in overflow mode if the queue contains any writer. 

7. No writer holds the lock grant if there is any reader in overflow mode. 

8. A software thread can acquire the lock only when its local LCU entry holds the lock 
grant in the corresponding mode, represented by the appropriate state field. 

4.2.3.2. LRT detailed overview 

The Lock Reservation Table handles the locks in the system. The basic mechanism has been 
depicted in sections 4.2.1.2 and 4.2.2.3. This section will detail the enqueueing mechanism, 

with the races that might occur and how they are handled in a manner that minimizes the 
communication with the LRT. The mechanisms that handle overflow will be detailed in sections 

4.2.3.7 and 4.2.3.8.  

The LRT entries hold pointers for the Head and Tail of the queues. Requests for inexistent locks 
are handled by allocating a new entry and granting the lock. Subsequent requests for existent 
locks are enqueued by substituting the current Tailid field with the requestor’s information, 

and forwarding the request to the previous tail, in order to build the pointer chain. 

The LRT detects and solves races by means of RETRY messages. Section 4.2.2.3 discussed the 
case of an enqueue request that overlaps an uncontended lock release. The enqueueing 

operation described in the previous paragraph is also prone to errors if the lock is owned in 
uncontended mode and the LCU entry has been deallocated. Consider the example depicted in 

Figure 4-11 a), which omits most fields for simplicity. The LCU0 has acquired a lock in 
uncontended mode, and deallocated the corresponding entry. The numbers indicate the order 

in the sequence of actions. The messages have been coloured for simplicity, with messages 
that regard to a given LCU using the same colour as the LCU. LCU1 and LCU2 request the same 

lock (steps 1 and 3), and the LRT subsequently records them as the Tailid (in request order, 
steps 2 and 4). Each of these requests is forwarded to the previously recorded tail. Note that 
the request from the LCU2 is served before the forwarded REQUEST message from LCU1 arrives 

at the LCU0. 

However, if LCU0 does not have any available ordinary entry to allocate the queue head, it will 
have to reply with a RETRY message, as depicted in Figure 4-11 b). This message is sent to the 
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LRT, instead of the previous requestor. When this RETRY is received (step 6), the LRT 

overwrites the Tailid field with the sender’s id, which becomes the queue tail again. The RETRY 
message is forwarded to the next requestor in the queue, LCU1 (step 7), which is known 

because it was included in the RETRY message from step 6. The LRT notifies LCU1 the last 
Transfer Count value that was wrongly added to the queue, and the LCU nodes are responsible 

to forward the RETRY message until the node with this TC, LCU2 in the example. 

 

Note that, according to invariant 2, LCU1 and LCU2 are never considered part of the queue 
(despite LCU2 might be in state WAIT). Then, there is no requirement for them to receive the 

lock grant and the Head token, as required by invariant 3. 

A more complex case might occur if the forwarded REQUEST from LCU2 (step 4) was delayed in 
the network, arriving at the LCU1 later than the RETRY reply forwarded from LCU0 (step 7). This 

might happen if the communication from the LRT to the LCU is unordered, or if the RETRY and 
REQUEST messages are sent on different virtual channels, ordered or not. In any case, the LCU1 
receives a RETRY message that should cause an entry deallocation. However, this RETRY 

message has to be forwarded to the next waiting node in the queue (until the Transfer Count 
reaches 2), but this node is not yet enqueued and its identity is not known. If the entry in LCU1 

were deallocated, the reception of the REQUEST message would make the LCU logic believe 
that the entry is taken in uncontended mode, and it would be incorrectly reallocated. To cope 

with this situation, the special LCU state “removed” (REM in Table 4-2) is used. This state 
means that the entry has to be deallocated, but a forwarding of a RETRY message to the next 

Figure 4-11: Races in the enqueue process 

a) Request messages 

b) RETRY replies.  
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node is still pending. Once this request arrives and the message is sent, the LCU entry is 

deallocated. The implementation used in the simulations in section 4.3 used different virtual 
channels for replies and forwarded requests, so it implemented this special state, which is also 

considered in the state machine in Figure 4-13.  

The presented mechanism might be simplified if the LRT required an acknowledgement of the 
enqueue operation from the requesting LCU, before attempting a consecutive enqueue on the 

same lock. However, the main idea in our design was to minimize the amount of LRT accesses 
in the critical path. The presented case that has to deallocate nodes in state WAIT is highly 
infrequent, and prevents such notification. 

4.2.3.3. LCU state machine 

The Lock Control Unit contains the necessary logic to control the state of each handled lock. 

The possible states for each entry have been presented in Table 4-2. However, many of these 
states are transient. Transient states are temporarily used to move from one persistent state 
to another, for example, when a pair of send/reply messages is required. They are required to 

prevent possible races between the messages sent to or from the LRT or other LCUs, but they 
do not help to understand the basic mechanism. Similarly, cache coherency mechanisms 

typically use the 5 MOESI states [149] or a subset of them, but actual implementations 
typically require more than 15 or 20 states including transient ones.  

In order to understand the behavior of the system, Figure 4-12 shows a simplified state 

machine of the LCU, ignoring transient states. Local requests (Acq and Rel) are bolded. When a 
new request is issued, the entry will acquire (ACQ) the lock if it is free, or queue in state WAIT 

if it is taken. Taken locks can be directly released to state Free when the owner is the queue 
head, or to the special state RD_REL when read locks in the middle of the queue are released, 

as discussed in section 4.2.2.4. From this state, they can be either re-acquired, or released, 
depending on the requests from the local thread and the Head token transfer. All of these 
states are permanent: the LCU entry can remain in them for an unlimited amount of time. 

Their change only responds to program advance, such as a different thread granting a just-
released lock, or the local thread releasing it. 
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By contrast, Figure 4-13 shows the complete state diagram of the LCU. White states are those 

in Figure 4-12, while transient states are shaded. These states are only used to move from one 
state to another, and the transition from one of them to another state typically depends on 

the reception of a reply from a remote entity. Operations that do not modify the state (such as 
an Acq issued on an entry in state WAIT) are not shown.  

 

Different improvements or optional elements have been highlighted with different colours. 
The green transitions are valid if the Free Lock table is in use, allowing for direct 

acquisition/release of the lock from/to the FLT. The orange-shaded state REM is used to solve 
the race condition discussed in section 4.2.3.2. The timeout mechanism that will be described 

in section 4.2.3.5 adds the transitions in red to prevent starvation. Finally, the ‘released’ state 
REL is required despite it unconditionally moves to ‘Free’: It prevents removing the queue head 

node before the LRT Headid pointer has been updated, as discussed in section 4.2.2.3. 

4.2.3.4. Communication primitives 

The system makes use of the messages presented in Table 4-3. The table also includes if the 

message is sent between LCU’s, from one LCU to the LRT or from the LRT to one LCU. 
Communication between different LRT banks is not needed, since each lock is controlled by a 

Figure 4-12: Simplified state machine of the LCU entries 
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single LRT. The upgrade primitives are optional, used for FLT-LRT communication, as discussed 

in section 4.2.1.3. 

 

4.2.3.5. Thread suspension and migration 

Thread eviction is an issue in two cases:  

i) An enqueued requestor thread is suspended or migrates, so it stops iterating on its 
local LCU entry (the same happens when a trylock expires). Suspension can delay the 

lock acquisition, reducing performance. By contrast, a trylock expiration or requestor 
thread migration can cause a deadlock, since the LCU entry is never updated. 

ii) A lock owner migrates and the release happens in a remote LCU. If there are enqueued 

requestors, these never receive the lock grant, leading to a possible deadlock. 

Next paragraphs discuss how the model supports both cases preventing the presented 

problems. It is achieved by triggering a timestamp to detect evicted threads, and by forwarding 
requests from migrated threads to the original queue node, which has not been updated on 

migration or suspension events. 

In the first case, once received the lock grant, the LCU sets a timer that triggers a release if the 
lock is not taken within a threshold: this prevents starvation if the local thread is suspended 

before acquiring the lock, or prevents deadlock if a trylock expires or the lock requestor 
migrates. If a migration occurs while spinning, execution in the remote node will resume in the 
same while or for loop, as presented in Figure 4-5. The thread will issue a new enq request in 

the new processor, becoming the tail of the same lock queue. Then, there could be multiple 
entries with the same threadid along the lock queue. As only one will actually acquire the lock, 

the others will simply pass it through after the threshold without causing any issues. Figure 
4-14 presents an example where thread t2 has migrated, while waiting, from processor P2 

(LCU2) to P9. When the lock grant reaches the LCU2, the timeout expires (step 3) and the lock is 
passed to the next requestor, t3. 

Table 4-3: Communication primitives 

Acronym Meaning
REQUEST Lock request

WAIT Wait for grant, request is enqueued

GRANT Grants the lock and/or the Head token

NOTIFY Notifies the transfer of the Head to the LRT

RELEASE Releases the lock to the LRT

ACK Acknowledges the release or transfer of the lock

RETRY Retry last operation; race detected or lack of resources

UPGRADE Upgrades the saved status in the LRT (with FLT)

UPGR_ACK Acknowledges an upgrade request (with FLT)

LCU-LCU LCU-LRT LRT-LCU
X X

X X

X

X X

X

X

X

X

X

X
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The second case (lock owner migration) is detected when a lock is released from a LCU which 
differs with the one recorded at the Headid field of the LRT. Since the remote LCU contains no 

allocated entry, the RELEASE message will be sent to the LRT as if it was an uncontended entry. 
The LRT will detect the migration by the difference between the sender and the Headid field. In 

the case of a lock in write mode, if a queue exists, it will forward the RELEASE message to the 
original queue head node. This node will send the lock to the next requestor in the queue. This 

is the reason to maintain always a valid queue head pointer, as described in section 4.2.2.3.  

If the lock is in read mode in this second case, the migrated thread that releases the lock might 

not be the queue head. In such case, the message is forwarded through the queue until it 
reaches the proper LCU. Once the appropriate LCU is found, it acknowledges the remote 

requestor and behaves as if a local Release had been invoked. If no LCU is found, then the lock 
was taken in overflow mode, and it is forwarded to the LRT. This implies that overflowed locks 

must always cross the queue when they are released. While this entails a significant cost, it is 
not very important for a twofold reason: Overflowed locking should be an uncommon case,  

and the traversal of the queue is out of the critical path of the thread execution, which can 
proceed ahead. 

This mechanism also allows the case of a thread releasing a lock acquired by a different thread 
by just borrowing its thread id. 

4.2.3.6. Types of LCU entries and forward progress 

The LCU entries are the interface with the locking mechanism. The thread uses them for the 
local spin in both lock acquisitions and releases. Therefore, if all entries are in use, the local 

thread cannot issue any more lock requests and has to wait for the release of one of them. 
This section presents the deadlock problems that could be originated by a lack of available LCU 

entries, and the mechanism used to prevent them. Specifically, a new type of “nonblocking” 
LCU entries is proposed, which can always acquire free locks in uncontended mode. The next 

section will deal with the mechanisms used to guarantee that a lock is eventually found free. 

Figure 4-14: Example of migration. Thread t2 migrates from processor 2 to 9 while waiting 

LC
U

0 Th_id Stat. Next

t0 ACQ t1@P1,W

Addr Headid Tailid

a t0@P0,W t2@P9,WLR
T 0

LC
U

1 Th_id Stat. Next

t1 WAIT t2@P2,W LC
U

2 Th_id Stat. Next

t2 WAIT t3@P3,W

LC
U

3 Th_id Stat. Next

t3 WAIT t2@P9,W

LC
U

9 Th_id Stat. Next

t2 WAIT ----

1

2

GRANT

GRANT GRANT
4

Timeout!

GRANT
5

3



4.2  The Lock Control Unit mechanism · 113 

The forward progress condition of the LCU entries is blocking, as defined in section 1.4.8.1. 

While the call from the thread (acq or rel) is nonblocking and commits instantaneously (with 
success or not), the allocated entry remains for an undetermined amount of time, until its 

request is served. Such time depends on the progress of the remaining threads, for example, 
the lock owner for an enqueued LCU entry in state WAIT. This makes the mechanism, as a 

whole, blocking, and introduces deadlock: although there is no dependency between the 
different threads in the system, the lack of available LCU entries can halt a thread.  

The paradigmatic example of such deadlock would be a system with N LCU entries per core, 
with a thread requiring the concurrent acquisition of N+1 locks. If each of the first N locks is 

also requested by a different thread, the N LCU entries will be occupied with the N queue head 
nodes. This prevents the last lock request due to lack of empty entries, halting the local thread 

and, through the lock dependencies, all of the remaining threads. While the deallocation of 
uncontended entries presented in section 4.2.1.1 reduces the average usage of LCU entries, it 

cannot prevent a deadlock case as the one described. 

The solution presented in this section involves dividing the LCU entries into two different 
groups. One of them will be blocking, as described above. The other group of entries will be 

nonblocking: These nonblocking entries can be used ordinarily, except that they are not 
allowed to be enqueued (waiting for the lock or as the queue head). A flag in the request 
message notifies that requests come from one of these nonblocking entries. If such request 

had to be enqueued, a RETRY message is sent instead, and the LCU entry is released. The 
requestor thread will have to retry over and over in a loop as presented in the code in Figure 

4-5. The lock will eventually become free, and it will be acquired in uncontended mode with 
the corresponding entry deallocated. The mechanism used to guarantee that the lock 

eventually becomes free is discussed in next section. These nonblocking entries are always 
deallocated in a finite number of steps, after a RETRY message or an uncontended acquisition, 

so their forward-progress condition is wait-free. Observe that this does not imply that the lock 
is granted in a finite number of steps, but that the operation finishes (successfully or not) in a 

finite number of steps, and the entry is deallocated. 

A system with these two types of entries can guarantee forward progress. Blocking entries can 

be used for waiting on a queue and enqueueing other requests, while wait-free entries are 
used to acquire locks with iterative requests when no more ordinary entries are available. 

While these two classes of entries are enough to guarantee forward progress, to prevent 
dependencies between different LCUs without available entries, the mechanism will consider 

three types of LCU entries with different behavior: 

• Ordinary entries: Blocking entries as considered above; they can contain lock entries in 
any state, and they are allowed to be part of a queue. 
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• Local-request entries: Nonblocking entries reserved for requests from the local core. 

These entries are not allowed to be part of a queue. 

• Remote-request entries: Nonblocking entries reserved to serve requests that come 
from a different core. These can be a request for a lock that has been saved in the FLT 
or a forwarded RELEASE after a migration of the owner thread, as presented in section 

4.2.3.5. As with local-request entries, these entries are not allowed to be part of a 
queue.  

A system with, at least, one local-request and one remote-request entries never gets blocked 

due to lack of resources. Requests from the local thread should find an available ordinary LCU 
entry most of the times. If all of the entries are in use, a local-request entry, which cannot be 

enqueued, will eventually complete its operation and get released in a finite amount of time. 
The same applies to remote-request entries that receive forwarded RELEASE requests from 
remote LCUs. The mechanisms used with wait-free entries rely on remotely retrying iteratively 

from the requesting LCU, instead of waiting on a queue. They are described in section 4.2.3.7, 
along with the necessary “reservation” mechanisms to ensure that they never block.  

4.2.3.7. Management of LCU overflow 

The previous section has introduced the idea of nonblocking LCU entries to guarantee the 
acquisition of free locks. However, when the requested lock is not free, there are still two 

different cases that might suffer the problem of lack of free LCU entries: 

1. A lock requestor does not have an ordinary LCU entry available to queue on the lock. 

2. The lock owner is uncontended (it does not keep an allocated LCU entry for the lock) 
and it does not have an ordinary LCU entry available to enqueue remote requests. 

This section deals with the mechanisms employed to prevent starvation in both cases. When 
the requestor has no ordinary LCU entries, it will make requests with nonblocking ones. When 

it is the lock owner who contains no ordinary entries, it responds with a RETRY message. The 
mechanism varies in each case and depends on the read or write mode of the request, but in 

both cases the LRT reserves the lock for writers (similar to the Reservation Table in section 3.2) 
or grants read locks in overflow mode to prevent starvation. The explanation will start with the 

first case, not having any available ordinary LCU entry. 

If there are no ordinary LCU entries, a requestor must use a local-request entry to issue the 

request, as discussed in the previous section. If the lock is free, it can be granted from the LRT, 
either in read or write mode. Since the lock will be uncontended, the entry will be released 

after acquisition, so the operation does not require queuing. If the lock is taken, the behavior 
will depend on the type of the request.  
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Write requests from local-request entries cannot be enqueued nor can be granted until the 

lock becomes free, so a RETRY message is sent back from the LRT, forcing a release of the 
local-request entry. The requestor will iterate in the request code as depicted in Figure 4-5, 

allocating a new local-request entry, until the lock is eventually released and it is granted in 
uncontended mode. However, different requests from other processors might go ahead and 

add themselves into the existent queue. This behavior might starve the writer with no ordinary 
entries. To prevent it, a reservation mechanism is employed: When the LRT sends this RETRY 

message, it records the identity of the requestor (thid and LCUid) in the corresponding 
reservation fields, R-thid and R-LCUid, depicted in Figure 4-3. When these fields are set, the 

reservation mode is active and no request from a different requestor is served; a RETRY 
message is sent instead. This guarantees that, eventually, the lock will be released, and 

acquired by the reservation owner. A timestamping mechanism is also employed, to prevent 
deadlock in the reservation owner stops retrying, due to the requestor being deallocated or 
the expiration of a trylock. This is similar to the req_clk in Figure 3-4 of the Reservation Table, 

but it has been omitted in Figure 4-3 for simplicity.  

Read requests from local-request entries cannot be enqueued if the lock is taken, but they can 
receive a grant in overflow mode if the lock is taken in read mode. If there are already 

overflowed readers (Reader_cnt > 0) and no writer reservation, the LRT responds to read 
requests from local-request entries by granting the lock and increasing the current count. If 

there are no overflowed readers yet, the LRT might need to verify if all of the queue nodes are 
readers, to obey invariant 6: note that it only records the read/write mode of the head and tail 

nodes. To perform this check, the acquisition message is forwarded to the queue tail, which 
will typically respond to the LRT with a RETRY since the request cannot be enqueued. This 
reply contains a flag indicating if the tail has received the lock grant in read mode; in this case, 

the overflow mode is activated (setting Reader_cnt = 1) and the lock is granted in overflow. 
Overflowed readers consider their own locks as being uncontended. When they release their 

lock, the overflow state is detected by the LRT because they are not the queue head, and 
because they do not follow the proper TC index. 

Note that overflowed read requests can starve if there are frequent write requests accessing 

the lock. In such case, it will be unlikely to find the tail of the queue with the lock grant in read 
mode. The performed simulations have not found this case, since locks being accessed in 

read/write mode are easily found in read mode without writers in the queue. However, strictly 
speaking starvation might happen, and it might be necessary for read requests to use the 
reservation fields, R-thid and R-LCUid. 

Similar mechanisms apply in the second case, when an uncontended lock owner does not have 

available entries to allocate a queue head node for remote requests. In such case, a RETRY 
message is sent, as presented in section 4.2.3.2. If the lock is in write mode, it will be 
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eventually released and remote requests will be served by the LRT. If it is a read lock, other 

requests can be served in overflow mode. 

4.2.3.8. LRT overflow 

Given that LRT entries are used to enqueue new requestors to existent queues, their data can 

never be cleared until lock release. The approach taken in this work is to use the main memory 
as a backup for LRT overflow. 

Each LRT controller is assigned a preallocated hash-table in main memory for overflowed lines. 

When a request for a new entry arrives at a full LRT, a victim entry is selected and sent to the 
overflow table. The simulated system uses a pseudo-LRU mechanism for this victim selection. 

The LRT contains an overflow flag indicating if there are overflowed entries in main memory, a 
counter for these entries and a pointer to the overflow table in main memory. When a request 

is received with overflow = true, the LRT logic must check the memory table if the address is 
not found in the LRT. A Bloom filter can be used to prevent unnecessary accesses. When an 
overflowed entry is accessed again, it will be brought back from memory to the LRT, with the 

corresponding replacement, if required. When all overflowed entries are brought back, the 
overflow flag is cleared. Software exceptions are used in the unlikely event of having to resize 

the hash table. 

Similar offloading mechanisms have been proposed for other hardware structures [23, 159]. 
The simulations performed showed that a 16-way associative LRT with 512 entries did not 

suffer from significant overflow problems even without a Bloom filter, and hash table resizing 
was never required. 

4.2.3.9. Read-only locking 

Section 1.3.1.6.3 introduced a pathology of read/write locking mechanisms which consists of 
accessing a given lock in read mode only. This pathology is present in some of the used 

workloads, for example, the RB-tree or the Skip-list.  

This section will introduce an optional mechanism to improve the case of reader/writer locks 

with frequent accesses in read mode only. The base mechanism presented in previous sections 
would require each requestor to add itself to the queue, wait for the lock grant, access the lock 

and then release it, with the same mechanism when the lock is accessed again. While the 
Read_Released (RD_REL) state allows for faster subsequent accesses if the Head token has not 

been received yet, it only improves the performance in a few cases. Effectively, the Head node 
will be always released, and it will deallocate any subsequent nodes of the queue in state 

RD_REL, forcing all these requestors to wait for the enqueue process on subsequent accesses. 

The idea presented here is to use a special “read-only” mode that never deallocates the LCU 
entries for the shared lock. In this mode, the Head token is not granted to any LCU controller: 
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Instead, the LRT entry will keep this token, behaving as the queue head, and pointing (via 

Headid) to the next element in the queue. Therefore, any lock release will move its LCU entry to 
RD_REL and will be able to reacquire the lock in read mode without any remote request. This 

requires at least an additional field in the LRT, not presented in Figure 4-3, but depicted in the 
example case of Figure 4-15. Observe that, in this example, the first LCU node in the queue, 

LCU0, is in state RD_REL, but it does not release its entry or sends any message because it does 
not hold the Head token, as if it was an intermediate node. 

 

This mechanism introduces two sources of complexity into the mechanism. Firstly, it violates 
invariant 3 from section 4.2.3.1, since LCU entries in this mode never receive the Head token. 

This restriction implies that the entry is never deallocated, and though it can be reacquired in 
read mode, it becomes impossible to acquire the lock in write mode. This case might be 

circumveyed by simply adding a new “WRITE-MODE” request message from the LCU to the 
LRT, sent by potential writers to the LRT if they find their LCU entry in state RD_REL. Upon 

receiving such message, the LRT would release the Head token (if present), what would allow 
the write requestors to eventually deallocate their entry and add themselves to the queue. 

The second problem is related with resource utilization. Since this mode permanently allocates 
LCU entries for a given lock, it has to be clear that the lock is frequently accessed. The problem 

is twofold. On the one hand, it must be determined which locks should be moved to the “read-
only” mode. A simple implementation might include a counter in the LRT, increased with every 

read request and cleared with write requests. Additionally, a timer might detect long periods 
without read requests and clear the counter. When the counter exceeds a given threshold, the 

read-only mode is activated. The transition from the ordinary to the read-only mode might be 
implemented by granting the read lock in overflow mode until the queue disappears, and then 

start building a new queue without the Head token passing. On the other hand, once the 
queue has been build, the LRT is not aware of the lock utilization, so it does not know whether 

the allocation of resources is still interesting. Solutions to this case might include periodic 
checks (with new messages) or explicit deallocation messages from the LCUs when they have 
lack of resources and unused entries in RD_REL. 

Figure 4-15: Example of read-only locking 
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With this special read-only mode, the proposal can be optimized for all sorts of access 

patterns. The FLT would optimize the case of a single lock requestor. The read-only mode 
would benefit the case of multiple requestors, all of them in read mode. For multiple 

requestors in write mode or mixed modes, the direct transfer using the queue pointers intends 
to minimize the wasted time in the lock transfer from one thread to another. However, the 

read-only mode has not been implemented in the simulation tool, what is left for future work. 

4.2.3.10. Hierarchical Locking 

The proposed LCU mechanism builds a queue with a FIFO policy, according to the arrival order 

of the requests at the LRT. However, as discussed in section 1.3.1.5, a system with different 
latencies can highly benefit from a hierarchical implementation. This is the case of multi-CMP 

systems, where intra-chip latencies are small, while inter-chip latencies can be an order of 
magnitude higher or more. 

The current proposal is appropriate to hierarchical implementations, with some changes on 
the base design. An example implementation is sketched next, loosely inspired on the software 

hierarchical lock in [97]. Consider the simplified layout presented in Figure 4-16, with 6 chips 
containing 12 processing cores each. The LRT0 should be allocated in the corresponding 

memory controller, possibly within chip 0 if the memory controllers are implemented inside 
the chip. All the elements in the Figure refer to the same lock, with the address fields and 

other fields omitted for simplicity. Only chip 1 is detailed, but the others would have a similar 
implementation. The global queue will be divided into multiple local queues or “splices”. Each 

chip contains a Global Enqueue Unit (GEU), with several entries to handle the lock transfer 
within its chip: Local Headid (LH) and Local Tailid (LT) pointers for its local queue splice and 

reception of local transfer notifications, functions previously handled by the corresponding 
LRT. Besides, the GEUs entries form a global queue, using the Global-Next (GN) pointer in each 

field. Nodes of the local queues are LCU entries that identify a thread/core pair, while nodes in 
the global queue are GEU entries that identify a given chip, or, in general, cluster. 

The GEU handles the requests from the local cores, allocating new entries for global queues on 
demand. The GEUs in different clusters forward their requests to the LRT, building a global 

queue, coloured in red in the Figure. All the requests from a core to the local GEU build a single 
local queue, depicted in blue in the Figure. The transfer from one local requestor to another is 

direct, with the corresponding notification to the local GEU instead of the global LRT. However, 
local LCU entries can be marked as a “splice end” by the GEU on allocation, what has been 

represented in Figure 4-16 with the letter S in one of the internal cores of Chip 1. When one of 
these local tail entries releases the lock, it is transferred to the GEU, including the pointer to 

the next local queue node. In this moment, the GEU transfers the lock to the next node (chip) 
in the queue, recording the indicated pointer as the local head (LH). Additionally, the GEU re-

allocates itself in the end of the global queue to receive the lock for the remaining requests. If 
there is no such Global-Next node, the lock is transferred to the (just recorded) LH node.  
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A design issue would be then when to assign splice-end marks to local nodes. A simple policy 

could be the following: Once the lock grant is received in the GEU, the next local enqueue 
request for this lock is marked as “splice end”. This mechanism allows for enqueuing local 

requests in the same splice until the lock is received, and permits the construction of the next 
splice after it. This next splice will be appended to the global queue once the lock is released to 

the next global node, by sending the corresponding REQUEST message from the GEU to the 
global LRT. Observe that, with this policy, the situation presented in Figure 4-16 would be 
impossible: the splice-end mark should not have been assigned since the GEU has not yet 

become the global queue head, and thus not received the lock grant, unless the transfer 
notification from GEU1 to LRT0 is on-flight. 

The ideas presented in this section are mere sketches of a possible implementation. The low-

level details, such as overflow issues in the GEU have not been addressed, and the mechanism 
has not been implemented in the simulation tool detailed in section 4.3. However, they are 

presented here to show that a hierarchical implementation is feasible with the appropriate 
design changes. 

4.2.3.11. Paging, virtualization and process faulting issues 

This section will introduce the problems that can arise from sending virtual pages to disk, using 
multiple virtual machines or the execution in presence of process failures. The argument of 

this section is that, while not detailed, OS-supported mechanisms can handle those cases 
safely, without leaving used LCU/LRT entries behind or mixing different locks. Such support is 

crucial to make this model feasible as the acceleration mechanism of a real system. 

Figure 4-16: Sketch of a hierarchical implementation  
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The proposed system makes use of physical addresses, translated via the local TLB. This 

imposes a challenge when the operating system needs to de-map a virtual page from the 
memory map and send it to the disk. The management of the acquired locks and associated 

queues in this situation must consider the possible physical address change once the page is 
remapped from the disk. Similar issues arise when other virtualization mechanisms are used in 

a machine, such as the use of one hypervisor to support multiple virtual machines. Other 
possible conflicting task might be the resource deallocation performed by the operating 

system once an application crashes. How does the OS know which LCU entries to deallocate 
when there are multiple applications using the LCU mechanism? 

The general idea to cover these cases is that a careful mechanism can deallocate all LCU 
entries safely, preserving the locking status of the memory addresses and without incurring in 

incorrect behavior. The key observation is that lock queues can be removed without 
correctness issues, since subsequent request will allocate new LCU entries and enqueue again. 

By contrast, “acquired” nodes being part of a queue can be shifted to uncontended mode (in 
the case of writers or a single reader) or overflowed mode (in the case of multiple readers). 

Both cases remove the LCU entries and possibly require some notifications to the LRT. 
Therefore, all of the locking status (owner thread, number of readers) can be safely recorded 

in the LRT using an appropriate mechanism.  

A detailed disquisition follows now, depending on the state of the specific LCU entry to be 

removed. It will first consider transient or waiting states, and then go into those that actually 
hold the lock grant: 

• Entries in state WAIT or ISSUED can be safely released, as long as the possible on-flight 

messages are considered. This can involve adding a wait threshold time after the 
deallocation process starts and the TLBs are flushed, to guarantee that no on-flight 

GRANT message will be received in LCUs in these states.  

• For the same reason, entries in REM can be directly removed since their only mission is 

to deallocate other entries in WAIT after a data race. 

• Released entries (REL) will be removed when the corresponding ACK message is 

received. Such operation is nonblocking, so this message is received in a fixed amount 
of time. Similarly, locks found in a FLT can be moved to a LCU entry in state REL, and 

the corresponding message be sent. 

• RD_REL entries can be safely released, since they do not have the lock taken. Their 
only reason to exist is to preserve the queue, but it is being deallocated. 

• ACQ entries can be released with the appropriate mechanism. If the LCU entry is the 
queue head, the deallocation implies that the owner will shift to uncontended mode 
and send a deallocation message through the queue. If the entry is an intermediate 
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node of the queue, it must be a reader. In such case, the entry can be released, with a 

notification message to the LRT that increases the current reader_cnt field. 

• Finally, RCV entries have received the lock grant, but have not yet taken it. These 
entries can be safely released, as if the eviction timeout had expired, following the 
corresponding action. This moves the entry to REL, and eventually receives an ACK, or 

to RD_REL, where they can be safely released. 

As observed, it is possible to remove all LCU and FLT entries without incurring in incorrect 
behavior, leaving all the necessary information in the LRT. In order to support a paging out 

operation, the LRT should be able to record the virtual address of an entry when its memory 
page is deallocated, and use some mechanism to identify the owner, such as recording the 

Address Space Identifier (ASI) of each entry. During a page deallocation process, the OS or the 
LRT removes all the associated LCU entries and saves the recorded information using the ASI 

and the virtual address of the lock. When the page is brought back from the disk, the OS 
process should determine if the corresponding LRTs contain any lock associated to that page, 

and restore the (possibly new) physical address. It is left open how to implement the 
mechanism to deallocate LCU entries. The simplest mechanism would be to deallocate all LCU 
entries in the system on paging operations, using some broadcast signal. However, this would 

be highly inefficient since it breaks any other existent queue, and might have to temporarily 
halt other lock transfer processes to obey with the required timeouts. Another alternative 

would be for the LRT to step on all of the concerned locks, and send deallocation messages 
that traverse their queues. Alternatively, the different LCUs can receive the TLB invalidations 

and start the deallocation process by themselves. 

The most intuitive issue with paging consists of bringing a page P1 from disk with a saved lock 
on virtual address va1, which maps into the same physical address pa1 as a lock va2 on a 

previously moved-to-disk page P2. However, the deallocation process discussed in the previous 
paragraph would have removed all LCU entries referencing P2, and the TLB entries should have 
been cleared in the paging-out process. Therefore, no LCU can accidentally access the lock in 

va1 when pretending to access va2. Any subsequent access to va2 would trap and re-allocate 
the evicted page in a new physical location. 

Using multiple virtual machines that concurrently access the physical LCUs is not a problem. 

The virtualized system will eventually resolve all virtual addresses to physical ones, possibly 
using a two-level TLB or a tagged TLB with virtualization support. Therefore, the same 

mechanisms used to prevent problems with memory paging should protect different virtual 
machines from accessing each other’s locks. The concurrent use of the same threadid value by 

threads on different virtual machines should neither become a problem, since the different 
virtual machines would never access a lock with the same physical address. Finally, there 
should be no conflicts with guest operating systems trying to clean-out LCU entries, since the 

hypervisor is the only one who actually moves pages to/from disk. 
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Finally, similar issues arise when a process faults and terminates prematurely. In this case, the 

operating system should make sure that the cleaning process does not leave any used LCU or 
LRT entry behind. In general, the same process that deallocates the assigned memory should 

clean the allocated LRT and LCU entries. 

All the mechanisms in this section have been sketched without a detailed implementation. 
Besides, they have not been implemented in the simulation infrastructure of section 4.3. These 

mechanisms are highly dependent on the actual system implementation, rely heavily on 
operating system support, and their detailed study clearly exceeds the scope of this work. 
However, it is important to argue that such support mechanisms can be built, without 

conditioning the proposed common-case behavior of the system. Otherwise, the proposed 
model would not be applicable to real-world systems. The fail to support OS operations such 

as thread migration, thread eviction or paging-out virtual memory is a common flaw of other 
hardware-accelerated synchronization systems [23, 55, 123, 159], that restrict their 

applicability on real commercial products. 

4.3. Evaluation 
The LCU proposal has been implemented in GEMS [101], as detailed in other evaluations in 

sections 2.4 and 3.3. In order to guarantee the goodness of the proposal, several conservative 
decisions and worst-case scenarios were considered. The modeled system was a multi-chip 

with 32 single core chips which represents an adverse scenario for reader-writer locks since 
large inter-chip latencies negatively affect performance, as highlighted in [34]. The processor 

issues up to 4 instructions/cycle thanks to the network multiplier presented in section 2.4.1. 
The caches use a MESI coherence protocol with 64KB L1 and 1MB L2 private caches. The 

interconnection model was GEMS's hierarchical switch topology (as presented in [101]) with 6 
cycles/hop, leading to a base latency of 48 cycles to communicate any pair of nodes. The 

DRAM access latency was 80 cycles, leading to a base latency of 176 cycles for a L2 miss. This is 
a conservative value since larger RAM latency would translate to higher performance gains.  

Each LCU contained 8 ordinary entries, plus 1 local-request and 1 remote-request entries to 
guarantee forward progress, as discussed in section 4.2.3.6. These values lead to a memory 

overhead of approximately 200 bytes/LCU, with the entry sizes depicted in Figure 4-2, plus the 
associated control logic. The LCU has an access latency of 3 cycles, with a blocking behavior: 

Once a LCU access is issued, the processor halts until it receives the answer from the LCU. Note 
that this latency becomes up to 12 times slower than the ordinary L1D hit time, considering 

that the processor can make up to 4 L1D accesses/cycle if they all hit.  

The FLT, when present, contained 128 entries. There is no elaborate prediction mechanism; 
instead, the simple strategy presented in section 4.2.2.5 with the Prediction flag is employed. 
By default, all locks are considered private, unless a forwarded request for them is received, 

what clears this Prediction flag. This can cause many false positives, but is employed as a 
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simple mechanism to test the capabilities of the FLT as a “proof of concept”. As argued in 

section 4.2.2.5, elaborate prediction mechanisms can be developed, what is left for future 
work. 

The model implemented one LRT module per memory controller, with 512 entries, 16-way 

associative, and an access latency of 6 cycles. This number of entries leads to a memory 
requirement of less than 16KB per LRT. The overflow to main memory is modeled with the 

same memory delay, 80 cycles, but it is hardly ever used, since 512 entries serve most of the 
application’s requirements. 

The evaluations focused on multi-chip models. Of course, a single-chip CMP would also benefit 
from the LCU hardware thanks to the reduction in the lock transfer time and the reduced 

memory usage. However, such architecture seems to be a clear candidate for a hierarchical 
implementation, as sketched in section 4.2.3.10. A complete hierarchical implementation, and 

the comparison with a naïve LCU implementation, is specifically left as part of the future work 
of this thesis. 

The system under study has been evaluated with a lock transfer microbenchmark, the STM 
benchmarks presented in section 2.4.3 and some applications from the Parsec [13] and Splash-

2 [157] benchmark suites. However, section 4.3.1 will start with a discussion about the 
reduction in the number of messages required to transfer the lock. The following sections 

present the details and results of each benchmark. 

4.3.1. Number of messages in the critical path of lock transfer 
This section will discuss the number of communication messages (coherence or explicit locking 

primitives) required to acquire a lock. This number can be typically referred to two different 
cases: when the lock is free and it is first acquired, or when it is taken by a different thread and 

a lock transfer occurs. This section will focus in the second case, the lock transfer. The number 
of messages to transfer a lock is crucial, since it will determine the transfer latency of the lock. 

This value has been already presented in Table 4-1, considering a typical MESI write-back, 
write-invalidate protocol for software locks. 

Software locks rely on the coherence mechanism to propagate updated memory values to 
requesting processors. The transfer of software locks typically involves two coherence 

operations: A memory write from the releaser (which implies a coherence invalidation of the 
receiver's cache, who is waiting for this update) and a subsequent read/write from the 

receiver, depending on the lock being queue-based or contended. Each of these coherence 
operations will require three messages on a typical MESI write-invalidate directory 

implementation. The update implies a forwarded invalidation: GETX request to the directory 
controller, INV forwarded to the line sharers (typically, those waiting to acquire the lock), and 

ACK messages from the sharers to the writer. The subsequent read will also require a 
forwarding operation that implies three messages: GETS request from the prospective owner 
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to the directory controller (GETX for contended locks), Fwd_GETS to the exclusive cache that 

just updated the line, and DATA transfer from the releaser to the owner. Specific protocols 
(such as Niagara's write-through, no-allocate on stores protocol [81]) can reduce this number 

to 4 messages.  

Contended software locks such as TAS or TATAS rely on all the processors modifying the same 
memory location. While the number of messages required has been discussed above, the 

contention generates cache bouncing and poor performance. Queue-based software locks 
such as [82, 95, 106, 107] assign a queue node in shared memory to each requestor thread. 
Releasing a lock implies notifying the next thread, by modifying its queue node where it spins. 

The latency is determined again by the same number of messages discussed before, with no 
contention issues. 

Hardware supported mechanisms can reduce the amount of messages in the critical path. 

Systems based on remote operations for synchronization ([89, 123, 129, 159]) only require two 
operations: release and acquire, or transfer and read. Each operation involves two messages, 

but since these operations can overlap in the best case, Table 4-1 considered a minimum of 2 
messages in the critical path. Systems with direct cache-to-cache transfer, such as QOLB [55] 

or the direct coherence mechanism in Stanford's FLASH [86], reduce this number to 1 message. 
The evaluated system, with the LRT notification out of the critical path, also requires a single 
message. 

4.3.2. Lock transfer time 
A benchmark similar to the one presented in [67] and [77] was employed to evaluate the lock 

transfer time of the LCU. Multiple threads were set to iteratively access the same critical 
section, protected by a single lock. The CS is short, corresponding to a few arithmetic 
operations, so the lock handling time dominates the operation. The number of cycles required 

to run 50.000 iterations of the CS was measured, including the lock transfer time. Multiple 
runs were averaged, and the result was divided by the number of CS accessed to calculate the 

time per CS in cycles.  

The LCU proposal is compared with different software and hardware lock implementations. 
Software locks include TAS and TATAS locks, the base MCS queue-based lock [106] and MRSW 

[107] which is the reader-writer version of MCS. The proposed model is also compared with 
the Synchronization State Buffer [159] hardware (SSB). The SSB accelerates the lock handling, 

but does not build a queue of requestors to reduce lock transfer time, and does not provide 
any fairness guarantees. When possible, different rates of readers and writers accessing the CS 
were considered, with multiple readers being able to access the CS in parallel. 

Figure 4-17 presents the results of the LCU system compared with the SSB model. The number 

of threads varies from 4 to 32, without the possibility of further increasing this value as SSB 
requires a static assignment of threads to cores. Dashed lines indicate the results of the SSB 
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model, and lines with different colour represent a different proportion of readers and writers 

as indicated in the legend. In the mutual exclusion case (100% write locks) our model 
outperforms SSB on average in 30.6%. This is due to the large latencies involved in the remote 

SSB bank communication. 

 

The inter-processor latencies are assumed to be very small in the SSB original single-chip 
model, but in the modeled multi-chip system the direct lock transfer makes a significant 

improvement over SSB. Increasing contention does not affect the lock transfer time in either 
case, as the performance line remains flat with the thread count. When reader-writer locks are 

considered, the average critical section access time decreases in both models, as multiple 
readers access concurrently. In the SSB model, we observe that the performance increases 

with the thread count. This is a side effect of not providing fairness in SSB: when the lock is in 
read mode, readers are allowed to take the lock, independently of the number of pending 
writers. Therefore, the number of successful read accesses increases, at the cost of starving 

writers.  

Figure 4-18 shows the comparison between software locks and the LCU model. Lines with 
different colours represent different proportions of readers and writers (LCU, MRSW), and 

write-only implementations (TAS, TATAS, MCS) are presented in black.  

Figure 4-17: CS execution time including lock transfers. SSB vs LCU 
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The LCU model behaves smoothly with more threads than processors, due to the integrated 

starvation detection mechanism presented in section 4.2.3.5. Contended locks (TAS and 
TATAS) suffer from strong congestion as the number of threads increases. They can behave 

correctly in the case of having more threads than physical processors; however, in such case 
the contention is already so high that the lines are out of the limits of the figure. Queue-based 

locks provide a constant performance up to 32 threads but after that, the described starvation 
problem dramatically increases the lock transfer time. Compared with MCS write-locks, the 

LCU outperforms the software proposals in more than 2×. This is because, even with the 
software queue, the coherence operations involved in the lock transfer require a remote 

coherence invalidation, followed by a subsequent request. The reader-writer queue, MRSW, 
even in the 100% writers case provides worse performance than the write-only MCS, due to 
the increased number of required operations. Moreover, as the readers rate increases, the 

average time per operation increases too. This is due to coherence congestion in the reader 
counter contained in the lock, which has to be modified atomically twice per reader 

(incremented and decremented). Due to this effect, the LCU obtains an average speedup of 
9.14× for the case of 75% of the requests in read mode (LCU 25% in the legend). Queue-based 

locks with timeouts [67] have not been evaluated in the Figure. While they behave nicely when 
more threads than processors are present, their base latency is higher than MCS and 

reader/writer variants are not known. 

Next sections will study how these gains in lock transfer latency translate into whole-program 
performance. The lock handling typically constitutes a relatively small fraction of the overall 
application execution time. Therefore, the performance increase will be restricted to those 

Figure 4-18: CS execution time including lock transfers. LRT vs software locks 
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synchronization overheads. However, we will show how scenarios with fine-grain locking or 

reader-writer synchronization observe significant performance gains. 

4.3.3. Fine-grain locking: STM benchmarks 
The STM system presented in section 2.2 makes an intensive use of fine-grain reader-writer 

locks. It has been ported to use the LCU mechanism in order to study the performance 
improvement.  This section compares the performance of the base system (labeled as sw-only) 

against the same model using LCU RW-locks (labeled LCU), with or without the FLT hardware. 
As a reference, the performance of Fraser’s non-blocking OSTM introduced in section 1.4.12.3 

(labeled Fraser) is also presented. Fraser’s OSTM does not require read-locking of the read set 
during the commit phase. Due to the use of invisible readers, this system fails in the 

privatization problem, and therefore its performance cannot be directly compared with the 
other systems based on RW-locks that solve such a problem. Therefore, it is not presented as 

an ‘optimal implementation’ reference, but an example of a different system that does not 
provide the same correctness guarantees. The three benchmarks introduced in section 2.4.3 

were used. 

The plot in Figure 4-19 studies the scalability of the system. It shows the transaction execution 

time in the RB-tree benchmark for the different models. The RB-tree has 28 maximum nodes 
and 75% read-only transactions, and the number of threads varies. The single-thread case 

implements the complete runtime, including lock acquisitions and data validation. With a 
single thread, the LCU increases the performance of the base sw-only system in a 10.8%. The 

use of the FLT is beneficial, as it prevents remote accesses when the only thread in the system 
repeatedly accesses the same location, leading to a speedup of 30.3%. Fraser's nonblocking 

model outperforms the lock-based one, as its commit phase is much shorter, given the lack of 

Figure 4-19: Transaction cycle dissection of the RB benchmark with 28 max. nodes 
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reader locking. 

As the number of threads increases, the base sw-only model gets worse, due to the increase of 

the commit phase in which locks are acquired. The shared structure presents reader 
congestion in the root, which affects the overall performance. The LCU model scales almost 

linearly, maintaining a similar execution time per transaction. The FLT, by contrast, becomes 
useless with multiple cases, imposing an overhead in some others. Effectively, this benchmark 

is completely random, and the FLT only introduces overhead in the execution, leading to 
possibly unnecessary request indirections. Interestingly, for high thread counts, the LCU 
performance is similar to that of the nonblocking Fraser's system due to the effect of 

transaction aborts. 

Figure 4-20 shows the performance of the previous models with larger problems (215 or 219 
maximum number of nodes in the shared structure) considering the three benchmarks and 16 

threads. The arrows indicate the speedup obtained from the base sw-only model by using the 
LCU. The RB benchmark maintains a similar pattern to the one observed in Figure 4-19 . Due to 

the reader congestion removal, the overall application speedup of the LCU model is 2.97× and 
2.41× for sizes 215 and 219 respectively. The skip-list presents the same problem of congestion 

in the root node, with speedups of 2.37× and 1.53× with the LCU model for the different sizes. 
The hash-table does not have a single point-of-entry with reader-locking congestion, and its 
transactions are much shorter. Still there is a 42% speedup thanks to the LCU use. 

 

Regarding the remaining columns, it is clear that the FLT negatively affects performance in 
these benchmarks. The penalty that could be hardly distinguished in Figure 4-19 is clear now 

with a larger problem size. Recall that, with the lack of a prediction mechanism, all locks are 
considered ‘private’ by default, while in fact they are all completely shared. The incorrect 

Figure 4-20: Transaction execution time, 16 threads and 75% of read-only transactions 
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saving of locks in the FLT causes additional request indirections and interconnection traffic, 

what leads to reduced performance. Additionally, it increases the usage of LRT entries, what 
can lead to overflow problems. This makes clear the need for such a prediction mechanism, or 

at least, the capability to disable the FLT. Finally, it is observed that the lack of reader-locking 
in Fraser’s OSTM, especially in long transactions. This result is consistent, since larger 

workloads require a much higher rate of read accesses, which are prevented by Fraser’s 
model. 

4.3.4. Traditional parallel benchmarks 
This section evaluates the performance of the LCU with some traditional lock-based programs: 
The fluid simulation program Fluidanimate from the Parsec benchmark [13] which does an 

interactive animation; the Cholesky matrix factorization kernel from Splash-2 [157] and the 
Radiosity ray-tracing application, also from Splash-2. These applications are selected for two 

reasons: they are lock intensive and present different behavior with respect to the locking 
pattern. Several runs of each application with 32 (Fluidanimate) or 16 (Cholesky, Radiosity) 

threads were run and averaged with each of these four systems: the original Posix mutexes in 
the modeled Solaris system, the LCU with or without the FLT and the SSB. Figure 4-21 shows 

the execution time of the parallel sections of these applications with different locking 
mechanisms. The plot shows the resulting values, including the estimated error for a 95% 
confidence interval, normalized to the Posix result. Note that these plots show the overall 

application execution time, not only the lock-related code. 

 

Fluidanimate divides the fluid to be simulated into “cells”, protecting individual cells with 

locks. The application performance is limited by the parallelization overhead [13], what 
prevents finer locking. However, the LCU presents a much lower overhead, what allows for 

such finer locking. While the original application uses a lock per each modeled cell, the LCU 
version protects each individual value being updated within a cell with a dynamic lock. This 
comparison is fair, since a lower overhead is a key contribution of the LCU model; comparing 

Figure 4-21: Application execution time  
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the same code without exploiting the fine-grain capabilities of the LCU would underutilize its 

capabilities. With these concerns, Fluidanimate achieves a speedup of 7.7% over the base 
model when the LCU is used. The direct lock transfer also allows the LCU to improve over the 

SSB performance, which only has a speedup of 6.5% from the base version. By contrast, the 
inclusion of the FLT highly penalizes performance, since all locks in this application are highly 

shared. Particularly, the version with the FLT performs a 4.9% worse than the base, software-
only version. 

Radiosity, by contrast, shows the opposite pattern. Most lock accesses in the application are to 
the per-thread private task queues. Only when a thread finishes his work, it accesses remote 

queues to steal work to be done, in a form of load balancing. In this case the LCU without the 
FLT provides a worse performance than the base model. This expected behavior comes from 

the absence of FLT that makes all LCU lock accesses to be remote, while the original software 
version can keep the frequently accessed lock line in the L1 cache. The SSB model suffers from 

the same problem. By contrast, the FLT regains the implicit privatization lost with the 
hardware mechanism, and improves the base model in an average 0.88%. 

Finally, Cholesky is a matrix application which does not seem to be almost affected by the lock 

model, as all the results are within the estimated error range of the base software model. 
Notwithstanding, it can be observed that the introduction of the LCU does not harm 
performance, despite the conservative values used for the LCU simulation, as described at the 

beginning of section 4.3. 

The geometric mean shows that the LCU model can provide an average speedup of 2.1% in 
these applications that do not make an intensive use of fine-grain locking, despite the bad 

result in Radiosity. The introduction of the FLT penalizes the average case; however, using the 
FLT only in those applications with lock locality (Radiosity) leads to an average speedup of 

2.9%. 

4.4. Summary 
This Chapter has proposed the Lock Control Unit (LCU), a distributed hardware mechanism 

that implements efficient and flexible fair reader/writer locks. The mechanism builds a 
hardware queue to implement direct core-to-core transfers without additional management 

messages in the critical path, what minimizes the lock transfer time. LCU entries are 
dynamically allocated for requested locks and deallocated for uncontended locks, what allows 

for a low resource usage. Different mechanisms are designed to efficiently support requestor 
aborts, thread suspension and migration, paging to disk, virtualization, and resource overflow, 

what makes this proposal viable in general-purpose systems. Additionally, optional 
mechanisms have been proposed to support lock pathologies, such as single-thread locking, 
read-only locking or hierarchical accesses to the lock. 



4.4  Summary · 131 

The Lock Control Unit has been implemented in a full-system simulator and evaluated with 

different workloads. Lock transfer microbenchmarks show that our proposal improves the 
transfer latency in more than a 30% from previous hardware models, and in more than 2× 

from the best software implementation. This transfer time behaves smoothly when the 
number of threads exceeds the available execution units. The base lock-based STM presented 

in Chapter 2 is used as a fine-grain locking benchmark, with performance improvements of 
almost 3× when using mid-size data structures and 16 threads. Finally, ordinary lock-based 

applications are evaluated, with an average performance improvement of a 2.9% and 
maximum improvement of 7.7% thanks to the fine-grain locking capabilities and low overhead 

of the mechanism. 
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Previous Chapters have focused on programmability issues of parallel systems. This Chapter 
will consider how to exploit a checkpoint-based processor microarchitecture, such as the Kilo-

Instruction Processor introduced in section 1.5.3, in a parallel system. Specifically, the 
contribution of this Chapter is twofold. First, it is explored how the checkpoint-based 

architecture can be leveraged to support Hardware Transactional Memory and a Sequential 
Consistency model, both with a native speculation capability that increases the performance. 

Second, it is studied how this architecture can support locking mechanisms thanks to silent 
store eviction, and specifically it is discussed how to integrate the Lock Control Unit hardware 

presented in Chapter 4. 

5.1. Atomic sections and processor checkpointing 
The performance capabilities of multiprocessors based on processors with large-scale 

instruction windows has been studied in [49]. Using the SPLASH-2 benchmarks, it was 
observed that an instruction window of 1024 entries could increase the performance of a 

parallel application in a factor of 1.13× to 2.04×, from a base system with 64 entries. However, 
that work did not take into account the internal architecture of the processor, using an upsized 

model of the base OOO architecture instead.  

Given the multi-checkpoint mechanisms in the Kilo-Instruction Processors presented in section 
1.5.3.1, this section will focus on how they naturally support a transactional behavior. 
Specifically, a direct implementation causes the group of instructions between two 

checkpoints to appear to the rest of the system as a single memory transaction. In particular, 
memory updates (the store instructions) associated with a checkpoint are managed as a single 

group. They are globally and atomically validated when the corresponding checkpoint 
commits. None of them can be made globally visible due to possible misspredictions before 

the checkpoint commits, and all of them are required to be validated when the commit occurs. 
Similarly, when coherence invalidations are received, the addresses are checked against the 

local Load/Store Queue (LSQ) as discussed in section 1.5.3.4. The addresses that are detected 
as a conflict force a checkpoint rollback, equivalent to a transaction abort. Therefore, a simple 
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implementation can provide isolation between the groups of instructions in different 

checkpoints. 

These groups of operations belonging to the same architectural checkpoint will be defined as 
implicit transactions. They are called transactions because they preserve the key aspects of 

atomicity and isolation present in transactional memory, but they are said to be atomic 
because they are automatically and transparently delimited by the hardware. Every instruction 

belongs to some implicit transaction, without the needing to know that the system provides 
such transactional behavior. Therefore, both the programming model and the instruction set 
are unaffected, and legacy single or multithreaded binaries can be directly executed. It should 

be made clear that this idea of implicit transactions differs from the concept of transaction 
defined previously for TM systems, where transactions are programming constructs. In this 

case, the implicit transaction is a micro-architectural concept that is not visible to the 
programmer. The term checkpoint and the term implicit transaction (or just transaction) will 

be used interchangeably henceforth, now that the close relationship between a checkpoint 
and an implicit transaction has been established. Further discussion on implementation issues 

can be found later on section 5.1.1. Section 5.1.2 discusses the performance aspects of the 
implicit transaction length. 

The potential of implicit transactions is multiple. First, a multiprocessor based on checkpointed 
processors with implicit transactions can naturally support a bounded HTM mechanism. Such 

mechanisms have been already considered in previous sections, including the construction of a 
Hybrid TM system based on a bounded HTM. Second, implicit transactions can be used to 

simplify the consistency model and provide Sequential Consistency, allowing higher degrees of 
speculation since a large instruction window is handled speculatively. Finally, implicit 

transactions can be naturally used as a speculation mechanism on critical sections and past 
barriers. 

5.1.1. Implementation details of implicit transactions 
This section will discuss implementation details of a mechanism based on implicit transactions. 
An example of the operation is presented in Figure 5-1. The instruction flow of four processors 

P1 to P4 is presented, including the different checkpoints that are taken during execution. In-
flight instructions are shaded, while committed ones are black. Some processors have 

checkpoints with all the corresponding instructions committed, but the checkpoint itself 
cannot commit because it is not the oldest checkpoint in the processor (Chk13, Chk22). The 

oldest checkpoint in P3, however, is finished and can commit. The corresponding invalidation 
coherence messages (or memory updates) are sent to other processors, which detect a conflict 

with the read values in their LSQ and rollback their checkpoints. In the example of Figure 5-1, 
P2 would abort checkpoints Chk23 and Chk24, while P4 would abort checkpoints Chk42, Chk43 and 

Chk44.  
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It still remains the issue of how to validate the checkpoint results and detect the conflicts. A 
small bus-based system might simply broadcast the memory updates on the bus when the 

implicit transaction commits. This should occur with all the memory lines which are not in an 
exclusive state in the cache (M or E in the MOESI protocol). The update should be performed in 

a single step; this is, without releasing the control of the bus to prevent remote updates that 
might conflict with the committing transaction. This updates the main memory and the remote 

caches, which use a snooping mechanism to detect the conflicts. The update mechanism is 
similar to the transactional proposal in TCC [59]; however, in that case all of the code is 
composed of transactions of a certain size, given by the programmer or the compiler. The 

advantage in the implicit transactional system is that it is not required to support a certain size 
of transactions, and when an implicit transaction exceeds the local resources, it can be simply 

aborted and retried with a smaller size. Alternative designs [19] propose the use of 
compression in the broadcast phase to accelerate the notification and reduce the bus usage. In 

this simple system, each transaction can be linearized in any moment during the atomic bus 
broadcast process. 

A distributed system with a directory should make use of specific coherence invalidations, or 

another mechanism that guarantees the atomicity of the commit process and prevents races 

Figure 5-1: Execution flow example with 4 processors 
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between concurrent committing transactions. Multiple proposals can be considered, similar to 

those used in HTM systems. In any case, two possible designs can be considered at first: 

a) Each store committed during the checkpoint execution makes an access to the local 
cache to determine if it contains the block with an appropriate exclusive state. 

b) Once a checkpoint is ready to commit, all of the required coherence requests and 
invalidations are sent. When all of the required invalidations are received, the 

checkpoint is flushed and the LSQ content are sent to the local cache. 

The first approach searches for the highest performance by sending the coherence requests 
and invalidations as early as possible. However, it can increase the rate of unnecessary aborts 

if the running checkpoint has to abort. The second case only sends update messages when a 
transaction is about to commit, so it should give the lowest rate of false negatives. 

In any of these cases, a mechanism to guarantee the atomicity of the checkpoint validation is 
required. Multiple approaches can be considered, based on previous works that implement 

HTM mechanisms. Some alternatives can be: 

a) Use a per-directory controller, per processor update mark, so when an implicit 
transaction is about to commit, it requests the permission to send updates to all of the 

required directory controllers. The specific directory controllers depend on the 
memory locations modified during the checkpoint. A similar approach is proposed in 
[20] to scale the lazy-update TCC model to a directory-based implementation. 

b) Send ordinary coherence requests to the directory, which forwards them to the 

current owners. Such approach might need of NACK replies and transaction aborts as 
in [110] to prevent deadlock issues in the commit phase. 

Any of these two alternatives requires the use of a timestamping mechanism to solve 
deadlocks, either centralized (for example, using a timestamp ‘vendor’ hardware unit that 

assigns consecutive numbers to each requestor) or distributed (for example, using the 
processor local clock and proc_id to build a unique clock value, as in [110]). In general, 

considering that the implicit transaction length will be shorter than the average explicit 
transaction length, the commits will occur more often, and the second referred mechanisms 

would be preferred to minimize the overhead. Even more, in order to minimize the restrictions 
of the algorithm, a lazy timestamp request would be preferred (to prevent acquiring a 

timestamp if the implicit transaction does not require it), and a ‘range of valid timestamp 
values’ could be considered depending on the received updates, instead of a fixed per-

transaction timestamp. 
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5.1.2. Implicit transaction length and performance 
Single-processor checkpoint-based architectures use the checkpoints to simplify the 
implementation in case of misspredictions, exceptions or interrupts. In these infrequent cases, 
the processor status is reverted to that of the saved checkpoint. Therefore, checkpoints are a 

safety mechanism that allows for correct execution. If there were no misspredictions, 
exceptions or interrupts, the checkpoint mechanism might become almost unnecessary: the 

rollback operations would not be required except for a few corner cases, such a memory 
disambiguation issues in the load/store queue. In general, since these cases are uncommon, 

long checkpoints are preferred to allow for a larger number of in-flight instructions. 

However, a parallel architecture introduces concerns about the coherence mechanism. 
Coherence changes (updates, invalidations) received in a processor must be checked against 

its local load/store queue to prevent conflicts, as discussed earlier in section 5.1. Conflicting 
coherence updates would abort the whole checkpoint and the subsequent ones. Therefore, 
the longer an implicit transaction, the higher the amount of useful work wasted due to the 

rollback. 

The plots in Figure 5-2 estimate the proportion of rollbacks in different Splash-2 benchmarks, 
depending on the number of processors and a fixed checkpoint size expressed in dynamic 

instruction. The applications were run on Simics, and on each group of instructions executed 
by each processor, it was measured how many remote implicit transactions would have to 

rollback due to a coherence conflict. Although transaction retries were not taken into account, 
this provides a good estimation of the rate of transactions that would abort due to coherence 

concerns. As expected, in general the proportion of aborts grows with the number of 
processors and the length of the transaction. However, with reasonable checkpoint lengths 
(128 to 512 dynamic instructions, as used in other works on checkpoint-based architectures) 

the rate of expected aborts is low. Checkpoints with 256 instructions do not exceed a 1% of 
estimated transaction aborts with any processor count in Barnes, Cholesky or Radiosity, and it 

is well below the 10% (observe the logarithmic vertical axis) in FFT, Ocean and Radix. 
Therefore, it is reasonable to consider that the effect of coherence invalidations does not 

invalidate a checkpoint-based implementation. 
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Of course, when an implicit transaction is invalidated, all the subsequent ones are invalidated 

too, as occurred in the example from Figure 5-1 with checkpoints Chk24, Chk43 and Chk44. 
Therefore, it might be considered that, the larger the instruction window size, the higher the 

penalty caused by a coherence invalidation. While this is initially true, the invalidated implicit 
transactions have already issued part of their corresponding memory requests. This means 
that the invalidated code has effectively performed a prefetch of most of the upcoming 

memory requests, what accelerates the subsequent reexecution, similar to a runahead 
mechanism [112].  

Figure 5-2: Estimation of the proportion of rollbacks in SPLASH 
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As a conclusion, the checkpointing mechanism should consider the coherence invalidations for 

its policy of taking new checkpoints. A variable checkpoint size might be implemented, 
depending on all the conditioning factors: 

• The rate of coherence conflicts that cause an abort, increasing the checkpoint length if 
the rate is low (program sections with low amount of access to shared data) or 

decreasing if it is high. 

• Long-latency misses, as in the original single-processor approach. 

• Other factors, such as exceptions or overflow in the processor resources. 

5.2. Sequential consistency with implicit transactions 
A basic implementation of Sequential Consistency requires a processor to delay each memory 
access until the previous one is completed, what is simple but clearly leads to a low 

performance. However, there are proposals that preserve the SC model without compromising 
performance much. Specifically, the most related to this work are: 

• SC++ [52] makes use of hardware speculation for both load and store operations, and 
preserves SC by rolling back when a consistency violation is found. In this way, the 

system can rely on reordering and overlapping memory operations with a 
performance similar to that achieved with the RC model. 

• TCC [59] solves the problem of the consistency by proposing a parallel model based on 

software delimited transactions, with a sequential ordering between them. Therefore, 
this model, which takes a software approach to the consistency problem, requires a 
new programming model to be used. 

The implicit transactions idea, based on the previously described behavior, provides SC 

support in a natural manner: instead of assuring that single memory operations from a 
processor to be globally performed in order, it requires full transactions to be in order. 

Fortunately, requiring an order for transactions inside a single processor is straightforward, 
because the checkpointing mechanism always commits the oldest transaction first. 

Sequential consistency requires that the result of any execution be the same as if the memory 
accesses executed by each processor were kept in order and with the accesses among 

different processors (arbitrarily) interleaved. In other words, there can be different global 
orders with different interleaving of memory operations from the different processors, but 

each such interleaving must maintain all the individual program orderings. Figure 5-3 gives an 
example of a sequentially consistent global ordering of memory operations from two different 

processors, labeled [A1, A2, A3] for processor A, and [B1, B2, B3] for processor B. The third 
column shows a global order that respects the program orders from processors A and B.  



142 · Chapter 5: Implicit transactional memory 

 

Note that, for this global order to exist, it is required that each processor observes the same 

individual order on the memory updates of the remote processors, in the shared locations that 
are accessed by both processors. Specifically, the problem presented in Figure 1-1 in page 7 

only fails when the processor P2 observes the memory updates from P1 in the wrong order. 
This might occur, for example, due to data races in the interconnection hierarchy, and the 

resulting system would not support a Sequential Consistent memory model. 

In the proposed system with implicit transactions, memory accesses from each processor are 
grouped into implicit transactions by taking checkpoints. It is simple to extend the definition of 

sequential consistency to such transactions, and require only transactions from each processor 
to be in order. The resulting global order will be an arbitrarily interleaved succession of 
transactions that will also meet the basic definition of SC since it corresponds with one of the 

possible sequentially consistent global orderings. Figure 5-4 presents an example where the 
instructions are grouped into transactions, labeled [TR_A1, TR_A2] for processor A, and 

[TR_B1, TR_B2] for processor B. The third column shows that respecting the program order for 
those transactions, will also respect program order for memory operations. 

 
Figure 5-4: Sequentially consistent reordering of checkpoints from 2 processors 
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Figure 5-3: Sequentially consistent reordering of memory operations from 2 processors 
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Specifically, considering the problem in Figure 1-1 again, when using implicit transactions it 

would be impossible to obtain the unexpected result of A = 0. The two memory updates from 
processor P1 will likely reside in the same implicit transaction. In such case, processor P2 will 

receive both updates atomically, with the mechanisms discussed before. In the unlikely event 
of the two stores being on different checkpoints, the global serialization of different 

checkpoints in the system prevents any unordered notification to P2. 

Furthermore, the multi-checkpointed model with implicit transactions allows an important 
improvement that avoids the latency that a simple SC implementation imposes: it allows the 
execution of memory operations out-of-order. This does not compromise the correctness of 

the SC model because: 

1. The reordering and overlapping of memory operations is allowed only within a single 
implicit transaction. 

2. All the memory operations are executed speculatively and, while the loads bring data 
into the local cache, the global performing of stores is delayed until the transaction can 

commit without modifying any cache line. 

3. During a transaction, all the speculative loads that match the address of a previous 
pending store receive the correct value thanks to the usual store forwarding mechanism. 

4. The snooping of memory updates from the coherence system ensures that the values 
speculatively loaded remain valid unless an address match is found, what would produce 

a rollback of the transaction. 

5. Finally, the memory updates from the transaction are atomically broadcast only when 
the transaction commits, making the pending stores globally performed at this moment. 

In this manner, the global result of a transaction is the same, independently of the order of 
execution of its instructions, making the system behave as in Figure 5-4. Therefore, in the 

figure an acceptable order for instructions in transaction “TR_A1”, for example, could be “A2, 
A3 and A1”, instead of the order shown: “A1, A2 and A3”. 

5.3. Lock speculation with implicit transactions  
Previous sections have discussed the correctness and performance aspects of an Implicit 

Transactions implementation. This section will deal with locking issues. A processor with 
implicit transactions can of course run traditional lock-based code with accesses to critical 
sections, preserving the required correct mutual exclusion. However, this section will discuss 

how the implicit transactional mechanism can be used to speculate on the access to critical 
sections, as in Speculative Lock Elision [118]. Two different mechanisms will be discussed: 

Speculation with centralized software locks based on a Silent Store removal mechanism, and 
speculation with the hardware queue-based implementation of the LCU introduced in Chapter 
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4. This section will focus on simple critical sections with a single lock access, not on fine-grain 

locking mechanisms that can require multiple concurrent lock acquisitions. 

5.3.1. Dependencies through locks and critical section speculation 
Figure 5-5 shows different possible checkpointing schemes when a critical section is executed. 

Suppose the lock is initially free. In a) the processor takes a checkpoint in the middle of the 
critical section. The commit of the transaction T1 makes the lock acquisition visible to the rest 

of the processors, what forces remote processors to abort if their speculative execution path 
had already acquired the same lock. When the processor validates T2, the critical section gets 

unlocked and remote processors can access it. 

 

The same invalidation happens even if no checkpoint is taken inside the critical section, as 

depicted in the case b). In this case, the lock variable is also written, since the lock is acquired 
and released. Thus, the validation of a transaction that has entirely executed a critical section 
will cause any other processor that is speculatively executing it to rollback, which means that 

only a single valid processor stays inside a critical section. This case should be the most 
frequent one, due to the short nature of critical sections. Case c) shows an optimized situation 

in which a checkpoint is taken right before the lock acquisition and the next one is taken right 
after the lock release. This case minimizes the possible sources of conflict, since the 

transaction will likely abort only if a conflict in the CS is detected, which does not depend on 
other external accesses. However, it has been shown how the lock variables themselves 

constitute a form of dependency between different threads accessing a critical section 
protected by the same lock. 

Critical sections admit correct parallel execution in many cases. Rajwar and Goodman [118] 
discuss some examples, presented in Figure 5-6. In case a), the lock is used to protect a shared 

Figure 5-5: Different checkpointing schemes with critical sections 
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error variable which is hardly ever updated. Multiple threads might access the critical section 

in most of the cases, except for the infrequent case of two of them having to update the error 
variable. In case b) two threads use a lock to protect a hash table access. However, their 

accesses will only conflict in the unlikely case of X = Y and the key not being present in the 
table. Section 4.3.4 has presented another example in the benchmark Fluidanimate. Coarse-

grain locks are used to protect the cell structures; however, all updates are performed on a 
per-field basis, what would allow for concurrent updates to different fields if the lock 

granularity was finer. 

 

However, different threads that might execute a critical section in parallel still suffer a 

dependency through the lock data, as discussed before. Other works handle this problem 
explicitly. Speculative Lock Elision (SLE [118]) detects the lock acquisition and skips it, starting 

speculative execution. Speculative Synchronization [103] acquires the lock if it is free, and 
starts speculation otherwise. In both cases, a conflict detection mechanism is used to provide 

transactional behavior in the speculation mechanism. Next sections will deal on how to 
leverage the transactional behavior of the implicit transactions to support speculative 

execution of parallel sections. 

5.3.2. Critical section speculation with software locks 
When parallel execution is possible within a critical section, the lock variables are the only 

interaction between different processors accessing the CS. Let’s consider for simplicity a TAS or 
TATAS lock and the frequent case of the whole critical section being enclosed within a single 

implicit transaction (cases b and c in Figure 5-5), what is feasible since a CS tends to be as small 
as possible. The key idea here is that the store executed to release the lock writes a value in a 
memory position (in the lock header) that already contained that value before the lock 

acquisition, with the logical meaning of “free lock”. This operation constitutes a temporally 
silent store [93]. Silent stores [92] are those store operations that write a value which was 

already present in the memory location, typically a 0. Temporally silent stores are pairs of 

Figure 5-6: Examples of critical sections that often admit parallel execution, from [118] 

Thread 1 
 
  1: LOCK(hash_tbl.lock); 
  2: var = hash_tbl.lookup(X); 
  3: if (!var) 
  4:     hash_tbl.add(X); 
  5: UNLOCK(hash_tbl.lock); 
 
Thread 2 
 
  1: LOCK(hash_tbl.lock); 
  2: var = hash_tbl.lookup(Y); 
  3: if (!var) 
  4:     hash_tbl.add(Y); 
  5: UNLOCK(hash_tbl.lock); 
 
  b) 
 
 

  1: LOCK(locks->error_lock); 
  2: if (local_error > multi->err_multi)   
  3:        multi->err_multi = local_error; 
  4: UNLOCK(locks->error_lock); 
 

a)  
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stores that write a value and then revert it to the original one. This is exactly what happens 

with the lock acquisition and release pair. 

Therefore, the idea to allow for critical section speculation will require the detection and 
removal of these temporally silent stores within a single implicit transaction. The 

implementation can rely on the memory disambiguation mechanisms, already required in the 
load/store queue. It will be composed of two basic mechanisms: A store merging mechanism 

and a silent store removal technique. 

Store merging consists of squashing multiple stores to the same address in the load/store 

queue, to reduce the number of committed updates. Such technique is common; for example, 
it was already present in the Alpha 21164 [39]. The store buffer merging mechanism in such 

architecture could handle 1 store merging per cycle, enough for the small write buffer of 6 
entries used. The Alpha 21164 needs to ensure that between these two stores there is no load 

to the same address. In the implicit transactions model, the store merging can run before 
commit, what prevents worries about these race conditions since all loads in the transaction 

are supposed to be executed. However, such a design would be unfeasible if it had to consider 
all the possible merges in a large write buffer like the one required for a kilo-instruction 

architecture. 

The proposed design will try to detect the specific addresses that are likely to be part of a lock 

structure, by noticing that lock acquisition is always performed with an otherwise infrequent 
atomic instruction. Therefore, the idea will be to record the memory locations successfully 

modified by atomic instructions during each implicit transaction. A new small buffer 
(containing 1 or 2 entries, for example) will be used for this operation, named Atomically 

Updated Address Register (AUAR). At commit time, the store merging mechanism is applied 
only for those addresses in the AUAR. Additionally, if the LSQ is divided into multiple sections 

according to the different checkpoints [115], only one of these sections has to be checked, 
making the operation completely feasible. This merge will likely leave a single store for the 

lock, which is the last one from the release operation. After the store merging, the remaining 
store constitutes a silent store, since the lock was initially free at the beginning of the 
checkpoint.  

Conventional silent store removal proposals [92] require a new load prior to the commit of 

each store to determine if the store is silent. Such technique increases the pressure on the L1D 
cache, especially in the case of the burst commit of a checkpointed architecture, making the 

idea undesirable. However, a simple idea is to reuse the AUAR buffer and only determine if the 
contained addresses are silent by accessing the local cache. Alternatively, the LSQ itself could 

be queried for previous loads to the same address in the same checkpoint, preventing any 
access to the L1D cache. In any case, the detected silent store would be removed from the 

LSQ, what allows for the desired behavior of allowing parallel execution of critical sections 
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which have no real interaction. Finally, notice that the nature of the mechanism prevents any 

possible ABA problems that would lead to undetected isolation violations.  

Two concerns will be discussed next. First, how to ensure that both the lock acquisition and 
release occur within the same transaction. Second, how to handle other lock implementations, 

different from centralized locks accessed with atomic instructions and contention. 

As discussed in section 5.3.1, the small size of critical sections makes highly probable that a 

checkpoint will not be taken inside it. However, the desired case would be the one in Figure 
5-6 c), in which the implicit transaction exactly encloses the critical section. The AUAR can be 

leveraged for this task too. When an atomic update is successfully performed, a new 
checkpoint is taken and the address is recorded in the AUAR. When the same address is 

modified again (lock release) another checkpoint is taken, what leads to the desired minimum 
checkpoint length. This mechanism relies in the fact that accesses to the lock inside the critical 

section are uncommon. 

Regarding different lock implementations, it is interesting to note that the proposed 

implementation might also work with almost any software lock. Consider for example a simple 
queue-based MCS lock as presented in section 1.3.1.1. In this case, enqueued processors do 

not acquire the lock with an atomic operation; instead, the previous owner in the queue sets 
an entry in their queue node, indicating the lock transfer. While this imposes a problem, this 

case only occurs if the lock is initially taken, what prevents the speculation in the CS by itself. 
By contrast, if the lock is free, the processor uses an atomic operation to enqueue its own 

qnode as the head and tail of the queue. Since this operation is speculative, no other processor 
will enqueue before the checkpoint commit, so the release of the lock will also have to update 

the same memory location, what will be used for the temporally silent store elimination 
mechanism. 

5.3.3. Critical section speculation with the LCU model 
The Lock Control Unit proposed in Chapter 4 accelerates the locking mechanism in a parallel 
system. This section deals with the issues that a LCU-based implementation can impose to 

speculative execution in critical sections. The problems discussed in this section will be only 
focused on the speculation capabilities, since the LCU implementation might work seamlessly 

with a checkpointed processor without requiring any speculation. 

5.3.3.1. Implicit transactions and ordinary LCU access 

This section will discuss the interface between the checkpointed processor and the LCU 

mechanism. The required mechanisms for speculative LCU accesses will be presented and 
discussed in later sections. 
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All of the actions executed by a processor based on implicit transactions are speculative until 

commit. In the case of a software lock acquisition, the write to the lock word is effectively 
performed at commit time, not when it is recorded in the write buffer. By contrast, the 

acquisition of locks with the LCU cannot be delayed until the checkpoint commits, since it 
requires a remote request to the LRT, and it returns a reply status: lock taken or not. Dividing 

such operation in two steps (“acquire lock” and “check if it is taken”) would not be either 
possible, since the result of the “check” depends on the “acquire” operation being already 

globally performed.  

Therefore, the implementation will require performing LCU acquisition operations in a non-

speculative manner. These operations should be recorded and in case of a checkpoint rollback, 
undone: Locks taken during an implicit transaction must be released if the transaction aborts. 

By contrast, release operations must be delayed until the implicit transaction commits, since 
the release operation cannot be undone: re-acquiring the lock is different to never having 

released it. This behavior is analogous to the compensation actions for software locks in a HTM 
system discussed in [155]. 

The interface with the LCU will then require of a small buffer, to record the acquire and release 

requests issued to the LCU. This structure, which will be called LCU buffer, is analogous to the 
LSQ that records the loads and stores executed during the transaction. At commit time, the 
buffer is accessed and the releases are sent to the LCU. Similarly, on a transaction abort, the 

buffer is accessed and the acquisitions are undone, by issuing releases to the LCU. The LCU 
buffer must also allow for merging of operations: two entries for a lock which is released and 

re-acquired in the same implicit transaction, given the atomicity property, nullify each other. 
Even more, if this did not happen, it would be impossible to re-acquire the lock before the 

delayed release occurs. This implies that the LCU buffer must be implemented as a CAM, what 
is not a problem given its small requirements (LCU accesses will be much more reduced than 

memory stores), and the fact that merge operations only occur within a single implicit 
transaction (the LCU buffer will be divided into multiple stages). However, the merge 

operation must be considered carefully, since it violates the FIFO order in the lock access, and 
an excess of lock merging can starve other requestors. An alternative idea is to take a new 

checkpoint when a release occurs, effectively releasing the lock. Finally, it should be noted that 
the release operation also returns a value (it can fail if no LCU entries are temporarily 

available). However, since this case should be very infrequent (definitely, much less frequent 
than finding a lock being taken) it is safe to speculate on a positive result, and add some logic 
which iterates until success otherwise. 

5.3.3.2. Speculation support in the LCU 

There are two important differences between the speculative CS execution with software locks 

presented in section 5.3.2 and the LCU implementation. First, speculation with software locks 
relies on the fact that a processor can check if the lock is free. Additionally, the isolation 
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mechanism guarantees that any remote acquisition of the lock aborts the speculative 

execution, since is detected with the coherence updates. By contrast, the presented LCU 
mechanism does not allow the access to a lock except for the acquisition primitive, with the 

corresponding enqueueing mechanism. The second problem, which is slightly related, is that 
the status checks performed in the software locks are completely invisible to other processors 

(they are simple loads). The same occurs with the speculative lock acquisition which remains 
private in the processor LSQ until commit. By contrast, the acquisition of a LCU lock requires of 

an enqueue mechanism controlled by the LRT, what makes the lock to appear as taken from 
the point of view of another processor, preventing its speculation in the critical section. 

These differences suggest that speculation is a priori not possible with the current LCU design. 
This section will sketch a modification to the base LCU mechanism to allow for such speculative 

behavior, and discuss some implementation issues. A detailed implementation is not provided, 
so many of the concerns are not discussed, and left for future work. 

The base design of the LCU considers two possible lock acquisition modes: Read/Write (R/W), 

or shared/exclusive. In both modes the lock is taken, preventing any other acquisition, except 
for shared reads. The CS speculation mechanism requires that multiple threads can access a 

write lock concurrently in speculative mode, and any of them is notified if the lock is actually 
taken in non-speculative mode. Speculative accesses in read mode are unnecessary: if the 
speculative thread is not going to modify any data in the CS, the read mode itself does the 

work, without requiring speculative accesses. To support the desired write speculation, a third 
Speculative (S) mode will be introduced. Speculative lock requests are sent from the LCUs to 

the LRT, and they are granted only if no other non-speculative request exists in the queue. 
Speculative requests build a queue as usual. Multiple speculative requests can acquire a lock 

concurrently, similarly to read requests. When a lock only has speculative requests, it is 
recorded with a special speculative mode in the LRT. This case is depicted in Figure 5-7, in 

which the threads running in processors 0 to 2 have accessed a lock in speculative mode. 

 
Figure 5-7: Example of speculative access to a lock 
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When an ordinary request (i.e. write request) is received in the LRT for a lock in speculative 

mode, the LRT performs two actions. First, it records the requestor as the queue tail as usual, 
forwarding the request message to the previous tail node in order to enqueue the requestor. 

Additionally, the LRT sends a RETRY message to the queue head, using the Headid pointer 
which is always valid. This RETRY message received on a speculative entry forces a release of 

the entry, with the corresponding send of the Head token through the queue in further RETRY 
messages. Eventually, all the speculative entries are released and the new writer receives the 

Head token, becoming the lock owner. Figure 5-8 shows how this is handled, from the example 
presented before. The speculative queue deallocation messages are coloured in blue, while 

the forwarded request message is green. Updated fields are shaded in blue or green, and 
deallocated entries are marked with state “---”. The forward of the RETRY messages does not 

need to notify the LRT; they are handled similarly to the abort case presented in section 
4.2.3.2. By contrast, the reception of the lock in the last non-speculative node, LCU9 in the 
Figure, must send a NOTIFY message to the LRT (not depicted). 

 

If the non-speculative lock requestor had already taken the lock in speculative mode, it will 
have to remove the queue first, including its own speculative entry. As discussed in section 

4.2.3.9 for the proposed read-only locking mechanism, a new type of message should be sent 
from the requesting LCU to the LRT, which starts the deallocation of the speculative queue. 
Once the speculative LCU entry is deallocated, a new ordinary entry can be allocated. 

As discussed in section 4.2.3.9 for the read-only mechanism, the speculation mode should be 

used carefully, since it can reserve LCU resources for a long time. Additional mechanisms to 
‘clean’ the speculative LCU or LRT resources might be devised. 

5.3.3.3. Implicit transactions and speculative LCU access 

A processor can decide whether to speculate on a lock or not, probably using hints in the lock 
instruction, provided by the programmer or the compiler. Speculation is valid if a lock is 

accessed in speculative mode only within a single implicit transaction, this is, the access to the 
critical section does not span through multiple transactions. The simplest idea would be to 

Figure 5-8: Deallocation of speculative entries in the lock queue  
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take a new checkpoint when a lock is acquired in speculative mode, to maximize the 

probability of the CS fitting in a single transaction. To validate that the speculative lock is 
released in the same transaction, the LCU buffer must track the speculative accesses within a 

transaction and check that each acquire operation contains the corresponding release. 
Otherwise, the transaction is not allowed to commit, it has to abort and switch to a non-

speculative LCU mode. Alternatively, the processor might acquire the unreleased locks in non-
speculative mode at commit time, with the mechanism discussed in the previous section. 

The use of the LCU in speculative mode requires communication in the other way, from the 
LCU to the processor. If a speculative lock is invalidated due to a non-speculative request, as 

presented in Figure 5-8, the LCU sends the invalidated address to the processor. If a lock has 
been speculatively taken on such address in one of the on-flight implicit transactions, the 

transaction is determined to be invalid, and it aborts. Note the similarity between this 
mechanism and the LSQ, which detects conflicts with coherence invalidations received in the 

local cache. By contrast, ordinary non-speculative LCU accesses do not need to be checked, 
since they never receive external invalidations: A remote processor cannot acquire a taken 

lock until it is locally released. 

5.3.3.4. Speculative LCU accesses and HyTM 

If a proper speculative mode in the LCU is implemented, the HyTM system introduced in 

Chapter 2 might use the accelerated LCU locks. Software transactions would use the ordinary 
locking mechanism in the LCU, in the corresponding read or write mode. Hardware 

transactions only require locks to detect conflicts with software transactions. Therefore, they 
might use the speculative mode for all their accesses. This speculative mode does not generate 

a conflict when different hardware transactions access the same block in read or write mode; 
instead, the conflict is detected by the isolation mechanism in the proper memory locations 

that conflict. 

There are plenty of issues that arise when such design is considered. First, the speculative 

mode does not allow for concurrent hardware and software transactions accessing the same 
block in read mode. Instead, the software transactions would abort the hardware ones when 

requesting the lock. Additionally, the LCU buffer in the processor microarchitecture, discussed 
in section 5.3.3.1, must contain enough entries for all of the explicit transactional accesses. 

Overflow in the LCU buffer or the LCU entries would be a limit for hardware transactions, 
similar to overflow in write buffers in many other bounded HTM models. All of these concerns 

make this idea an open topic for research. 

5.4. Speculation beyond flags and barriers 
Speculative Synchronization (SS, [103]) studies the possibility of speculative execution past flag 

and barriers. A checkpoint-based architecture can detect a barrier and execute past it, until the 
processor resources are full. The study by Martínez and Torrellas [103] determines that 
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speculative execution past barriers can lead to more than a 10% of overall speedup depending 

on the application, due to the execution time that threads spend conservatively waiting in 
barriers. 

The proposed LCU design can be adapted to speculate after barriers, in a similar fashion as SS. 

In such case, there is also a need to detect the barrier code and take a new checkpoint just 
prior to it. Speculative execution starts after the barrier. However, contrarily to the case of 

locks, the processor cannot naturally speculate after a barrier. In the case of a lock, it is initially 
free and the processor can speculatively acquire it. In the case of a barrier, execution proceeds 
after all of the remaining threads have reached the barrier and set the corresponding flag. 

Therefore, in the case of barrier speculation it is required that the processor detects the 
barrier and starts a speculative mode after it. 

Barrier detection can be implemented in two different ways. First, the mechanism proposed in 

[103] can be implemented, what requires a new primitive to notify the processor about the 
barrier, and add specific changes in the code. Alternatively, the processor might implement a 

“barrier detection unit” that automatically detects the barrier and starts speculative execution.  

The detection unit can be based on the fact that, after the doorway section of the barrier, the 

processor spins until a flag of the barrier is set (as discussed in [71]). Such iteration consists of 
a loop in which a single variable is read and tested until it is externally modified, without any 

store in the loop. The barrier detection unit can determine that the location read in the loop is 
the flag of a barrier, and speculate on it having a different value that allows the processor to 

proceed with the execution. As in [103], that location has to be monitorized and, when it is 
updated with the proper value, the speculative state is committed. 

5.5. Summary 
This Chapter has introduced the idea of Implicit Transactions as a model of interconnecting 
checkpoint-based processors. Data validation is performed at the checkpoint level, while other 

checkpoints continue their speculative execution in the processor, allowing for high degrees of 
ILP and providing a Sequential Consistent memory model. Simple evaluations with Splash 

benchmarks have shown that this block validation does not introduce a significant 
performance penalty, in terms of unnecessary aborted work due to collisions generated by the 

coarse-grain transaction size. The proposed model can be also used as a bounded HTM if the 
necessary interface is provided, to support the HyTM system presented in Chapter 2 

Additionally, different aspects of the relationship of this checkpoint-based model with reader-
writer locks have been discussed. First, a simple mechanism for software-lock speculation has 

been proposed. This mechanism is based on temporally silent store detection and removal, 
and relies on the simplified architecture of Kilo-Instruction Processors, specifically a 

hierarchical LSQ. Second, it has been discussed the interface between the processor and the 
Lock Control Unit presented in Chapter 4. Specifically, it has been shown how the processor 
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requires a LCU buffer that records the locking operations of each checkpoint, and how lock 

releases must be delayed to the commit step, but lock acquisitions must be performed eagerly 
(before the checkpoint commit) with the corresponding compensation action in case of 

rollback. Finally, it has been shown how the LCU system, as presented in Chapter 4, does not 
allow for speculative lock accesses, and a modified speculative acquisition mode has been 

sketched. This speculative mode would allow for speculative access to critical sections, 
enabling the use of the LCU in the HyTM system introduced in Chapter 2. 
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The current evolution in computer architecture has increased the importance of parallel 
systems due to constraints in the design complexity of single processors. This makes the 

mainstream programming task more complex, due to the necessity of parallel programming 
methods. These methods increase both the complexity of programming and the overhead of 

the required synchronization and runtime mechanisms. Both aspects impose different limits 
on the achievable execution speed. 

This dissertation has proposed several hardware mechanisms to accelerate the execution of 

parallel programs, with the main focus on the problems of reader-writer synchronization 
mechanisms.  

The result of this thesis is a set of solutions to accelerate the execution of parallel programs 
with reader-writer synchronization, from the classical coarse-grain or fine-grain lock-based 

programs, to the new paradigms of Transactional Memory that simplify the programming 
model. Additionally, considering the memory wall and other microarchitectural aspects that 

limit the ILP in a parallel system, it has been proposed a checkpointed architecture for 
multiprocessors that maintains a simple consistency model while allowing for high levels of 

speculation. 

6.1. Contributions 
This thesis has proposed mechanisms for accelerating Transactional Memory, reader-writer 

locking and building parallel systems based on Kilo-instruction Processors. The main 
contributions of this thesis are as follows: 

1. A Hybrid Transactional Memory system based on reader-writer locking with a generic 

bounded HTM as the acceleration substrate. The hybrid system allows for slow and 
safe execution when no HTM substrate is present or, if present, when the HTM 
resources are exceeded. However, in the general case of short transactions, most 

transactions can run with the accelerated mechanism, what omits most steps of the 
software runtime and leads to significant speedups. The main advantages of the 
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proposed mechanism is that it is highly portable, working in systems with or without 

HTM support, and that dynamically detects the transactional status of the ongoing 
transactions. 

2. A fairness mechanism for Hybrid Transactional Memory systems. It has been studied 

how the lack of fairness mechanisms can lead to starvation in the case of reader and 
writing transactions that collision on a memory location. This problem can be 

specifically caused by different contention management policies in Hardware or 
Software transactions in a Hybrid TM system. A new hardware low-cost mechanism, 
named the “Reservation Table” has been designed to provide fair access to the 

memory locations to both software and hardware transactions. The deadlock 
avoidance mechanism of the specific LogTM HTM has been considered, and the design 

has been consequently adapted to prevent deadlock due to dependencies at different 
levels. The Reservation Table mechanism minimizes the number of aborts in Hardware 

mode, what reduces the number of slower software transactions. Overall, the use of 
the Reservation Table has shown speedups up to 2.5× in simulations of highly 

congested models that suffered from the starvation problem. 

3. A hardware mechanism for fair fine-grain reader-writer locking. Previous reader/writer 
locking approaches, both software and hardware, are studied to be too costly, have a 
significant memory or area overhead, or are too inflexible by requiring a limited 

number of threads tied to the physical processors. A new low-cost distributed 
mechanism named the Lock Control Unit has been presented. By dynamically 

allocating each lock and associating it to both the requestor logical thread and physical 
processor, the system achieves low overhead and high flexibility. The system is 

designed to support fast lock transfers, removing unnecessary operations from the 
critical path. Additionally, the corner cases of thread eviction and migration and the 

overflow of resources are handled with minimum impact in the final performance. The 
system is evaluated with microbenchmarks, traditional parallel applications and a 

reader/writer STM which requires fine-grain locking, and it is shown to overcome all 
the previous software and hardware proposals. 

4. An interconnection proposal for checkpointed-based architectures that provides the 
simplest Sequential Consistency model, while allowing for large degrees of speculation 

on the processor which reduces overheads. The system, based on so-called implicit 
transactions allows for the validation of blocks of operations. This reduces the 

coherence and consistency overheads, while maintaining a large instruction window 
that allows for high levels of speculation to reduce the performance penalty of a slow 

main memory. Additionally, the relationship between this checkpoint-based model 
and reader/writer locks has been studied, considering both software locks and the LCU 

model, and studying both ordinary and speculative accesses. 
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6.2. Future work 
The different techniques presented in this work can be further enhanced or extended. The 

lock-based Hybrid Transactional Memory system introduced in Chapter 2 has been evaluated 
by simulation. It is yet pending to observe the behavior with real HTM hardware and 

determine the effect of the starvation issues studied in Chapter 3 in real implementations. An 
evaluation of a HyTM model with real hardware was performed [35] by the Scalable 

Synchronization at Sun Labs with a prototype of the Rock processor [22]. Unfortunately, such 
processor, which was going to be the first commercial product with HTM support, has been 
said to be cancelled. Therefore, the evaluation of the HyTM work presented in these sections 

will have to wait for other HTM products reaching the market.  

The Lock Control Unit mechanism proposed for hardware acceleration of reader/writer locks 
has opened many lines of research. Many issues have been already sketched along the 

Chapter: Elaborate predictors for the Free Lock Table; Hierarchical implementations in a multi-
CMP environment, and its comparison with a simple plain implementation; mechanisms to 

optimize certain pathologies of the locking mechanism, such as read-only locking; or detailed 
implementations of the interface between the processor microarchitecture and the LCU 

hardware. All these lines appear as promising work for future implementations and 
evaluations. 

The idea of implicit transactions to simplify the consistency model presented in Chapter 5 was 
initially proposed in the ICPS '05 paper listed in the next section. An implementation based on 

the Bulk model was presented and evaluated in [19] in ISCA’07. Again, the Rock processor from 
Sun was going to be the first commercial implementation with a checkpoint-based large 

instruction window to tolerate large memory latencies and provide high single-threaded 
performance. The ideas presented in Chapter 5 about speculative locking with the LCU 

hardware are an interesting line of work, especially regarding HyTM implementations. 

6.3. Publications 
During the training period to achieve the PhD degree, the author of this thesis has been 

interested in a couple of parallel computing research topics: architectural support to 
accelerate parallel code execution and interconnection networks. The present thesis 

document is only devoted to the first research interest. Nevertheless, in addition to the work 
on reader-writer synchronization mechanisms, Hybrid Transactional Memory and Kilo-

instruction Processors, on which this thesis is based, other papers have been published. The 
following is a comprehensive list of the publications obtained during this period, including 

works on topological aspects of interconnection networks. 



160 · Chapter 6: Conclusions 

6.3.1. HyTM, kilo-instruction architectures and reader/writer 
synchronization 

1. Enrique Vallejo, Marco Galluzzi, Adrián Cristal, Fernando Vallejo, Ramón Beivide, Per 
Stenström, Jim E. Smith and Mateo Valero. Implementing Kilo-Instruction 

Multiprocessors. In ICPS '05. International Conference on Pervasive Services, 2005, 
325-336. 
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2005. 
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