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Abstract—In 2012, Diem introduced a new figure of merit
for cryptographic sequences called expansion complexity. In
this paper, we slightly modify this notion to obtain the so-
called irreducible-expansion complexity which is more suitable
for certain applications. We analyze both, the classical and
the modified expansion complexity. Moreover, we also study
the expansion complexity of the explicit inversive congruential
generator.

Index Terms—pseudorandom sequence, expansion complexity,
inversive generator

I. INTRODUCTION

Sequences over finite fields which are generated by a short
linear recurrence relation are considered cryptographically
weak. This observation leads to the notion of linear com-
plexity profile of sequences, which is an infinite sequence of
nondecreasing integers such that the Nth term is the length of
a shortest linear recurrence relation which generates the first
N elements of the sequence. The linear complexity profile
is a measure for the unpredictability of a sequence and thus
its suitability in cryptography. A sequence with small Nth
linear complexity (for a sufficiently large N) is disastrous
for cryptographic applications. We recommend the interested
reader to consult the survey of Meidl and Winterhof [5] and
previous articles by Niederreiter [7] and Winterhof [8].

Xing and Lam [9] gave a general construction of infinite
sequences over finite fields with optimal linear complexity. The
construction is based on functional expansion into expansion
series. Diem [4] showed that this type of sequence can be
efficiently computed from a relatively short subsequence.
This observation leads to the expansion complexity. For the
connection between the linear and expansion complexity we
refer to the recent paper [6].

In this paper we study the properties of this figure of merit
for sequences over finite fields. In Section II we slightly
modify the notion of expansion complexity to obtain the
so-called i(rreducible)-expansion complexity which is more
suitable for certain applications. We analyze the properties
of both the classical and the modified expansion complexity.
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Then we study the expansion complexity of the explicit
inversive congruential generator in Section III. We prove that
this sequence has optimal expansion complexity and we give
a lower bound on the expansion complexity if the sequence is
randomly shifted. We finish the paper with a summary of the
results in Section IV.

II. EXPANSION SEQUENCES AND EXPANSION COMPLEXITY

For a sequence S = (s;)52, over the finite field F, of ¢
elements, we define the generating function G(z) of S by

G(z) = i st
i=0

viewed as a formal power series over F,.
A sequence S is called an expansion sequence if its gener-
ating function satisfies an algebraic equation

h(z,G(x)) =0 (1

for some nonzero h(z,y) € F,[z,y|. Clearly, the polynomials
h(z,y) € Fylz,y] satisfying (1) form an ideal in F,[z,y].
This ideal is called the defining ideal and it is a principal ideal
generated by an irreducible polynomial, see [4, Proposition 4].

An expansion sequence can be efficiently computed from a
relatively short subsequence via the generating polynomial of
its defining ideal [4, Section 5].

Proposition 1. Let S be an expansion sequence and let
h(zx,y) be the generating polynomial of its defining ideal.
The sequence S is uniquely determined by h(z,y) and its
initial sequence of length (degh)?. Moreover, h(z,y) can be
computed in polynomial time (in log q - deg h) from an initial
sequence of length (deg h)?.

Based on Proposition 1, Diem [4] defined the Nth expansion
complexity in the following way. For a positive integer N,
the Nth expansion complexity Exy = En(S) is Ey = 0 if
sp = ... = 8ny—1 = 0 and otherwise the least total degree of
a nonzero polynomial h(x,y) € F4[z,y] with

h(z,G(z)) =0 mod zV. ()

Note that En depends only on the first N terms of S.
However, small expansion complexity does not imply high
predictability in the sense of Proposition 1.

Example 1. Let S be a sequence over the finite field F;, (p > 3)
with initial segment S = 000001 ... and generating function
G(x) = z° mod z°. Then its 6th expansion complexity is
Es(S) = 2 realized by the polynomial h(z,y) = =z - .
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However, the first 4 elements do not determine the whole
initial segment with length 6.

In order to achieve the predictability of sequences in terms
of Proposition 1, one needs to require that the polynomial
h(z,y) satisfying (2) is irreducible. This observation leads to
the i(rreducible)-expansion complexity of a sequence. Accord-
ingly, for a positive integer IV, the Nth i-expansion complexity
EY =ENS)is Ey =0if s = ... = sy—1 = 0 and
otherwise the least total degree of an irreducible polynomial
Mz, y) € Fqlz,y] with (2).

Example 2. Let S be the sequence in Example 1. Then its
6th i-expansion complexity is E§(S) = 5 realized by the
polynomial h(z,y) =y — z°.

Clearly, for any sequence S we have
EN(S) < Enya(S)

and
En(S) < Ex(S) < max{l,N —1}. 3)

The second inequality immediately gives a bound on the
expansion complexity. In the following theorem we give a
stronger bound.

Theorem 1. For any sequence S, the expansion complexity
EnN(S) satisfies the following inequality:

<EN(§) + 1) <N @

Proof:

With an integer d, consider the set of monomials
M(d) = {z"y’|i +j < d}

of size #M(d) = (df). For each monomial in that set,
x'y? € M(d), we substitute y = G(z) and reduce it modulo
2™V to obtain a polynomial of degree at most N — 1. The set of
all polynomials of degree less than NV is a vector space over I,
of dimension /N. Each of the evaluations of the monomials in
M (d) gives a polynomial in that space and there are (df) of
these monomials, which means that they are linearly dependent
if there are more than N. Now we put d = En(S) — 1. If (4)
were not satisfied, then the argument just presented leads to a
contradiction. []

It follows from (4) that Ey(S) < v/2N. On the other hand,
for the i-expansion complexity, we have E%(S) > V2N for
almost all sequences, as will be shown in Theorem 2 below.

Let u, be the uniform probability measure on F, which
assigns the measure 1/¢ to each element of IF,. Let F2° be the
sequence space over F, and let p;° be the complete product
probability measure on F¢° induced by p,. We say that a
property of sequences S € Fg° holds ug°-almost everywhere
if’ it holds for a set of sequences S of pg°-measure 1. We
may view such a property as a typical property of a random
sequence over .

Theorem 2. We have
By (S)

lim inf =&

winf —7% 1 fg°-almost everywhere.

2

We remark, that Theorem 2 is the corrected form of [6,
Theorem 4].
Proof:
First we fix € with 0 < e < 1 and we put

by = |(1—£)V2N)

Then by > 1 for all sufficiently large V. For such N put

for N=1,2,....

Ay = {S € on : EJ*V(S) < bN}

Since E%(S) depends only on the first N terms of S, the
measure /1°(Ay) is given by

p(An) =g N - #{S €F)  Ex(S) <bn}. (9

An irreducible polynomial with degree d can define at most
d expansion sequences (see [4, p. 332]). Moreover, if two
irreducible polynomials are constant multiples of each other,
they define the same sequences.

Let a polynomial f(x,y) of degree d be called normalized if
in the coefficient vector (ag,ay,...,aq) of the homogeneous
part with degree d of f, i.e.,

d—1

apr® + a2ty + - + aqy?,

the first nonzero element is 1.

Let I5(d) be the number of normalized irreducible polyno-
mials (with two variables) in F [z, y] of total degree d. Then
by [2] (see equation (11) there) we have

bwzigww+0@wﬂ.
Thus

bn by
(SeFY Ex(S) <byt <> d L(d) <Y d-¢F)
d=1 d=1

bN+2)71

< bq™ (©)

Thus it follows from (5) and (6) that ;0°(Ay) < g~ N for
some positive § and for all sufficiently large N. Therefore
> -1 M (An) < oo. Then the Borel-Cantelli lemma (see
[1, Lemma 3.14]) shows that the set of all S € Fg® for which
S € Ay for infinitely many N has pg°-measure 0. In other
words, jg°-almost everywhere we have S € Ay for at most
finitely many N. It follows then from the definition of Ay
that 41°-almost everywhere we have

E5(S) > by > (1—e)V2N — 1

for all sufficiently large N. Therefore j.°-almost everywhere,

By applying this for e = 1/r with » = 1,2,... and noting

that the intersection of countably many sets of x;°-measure 1

has again p;°-measure 1, we obtain the result of the theorem.

|

We finish this section showing that, for sequences having
maximal expansion complexity, we have E}(S) = En(S).
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Theorem 3. If the sequence S has maximal expansion com-
plexity, i.e. if for d > 1, we have

En(S)=d whenever (d;—1> <N < (d;2>7

then
. / d
EN(S)=d" whenever

for d’ > 6.

Proof:

Let d > 6 and assume that (d;I) + 2 < N. We will show
that if a polynomial h(x,y) satisfies the congruence (2) with
total degree equal to d = En(S), then it must be irreducible.
We proceed proving the result by assuming the opposite, that
is h(z,y) = h1(z,y)h2(x,y) and dy = deg hy(x,y) and dy =
deg ho(x,y) positive. Then h(x,y) satisfies (2) if and only if
for nonnegative integers N1, Ny with N = N; + Ns,
hi(z,G(z)) =0 mod 2™, hy(z,G(z)) =0 mod 2.

Without loss of generality, we may suppose that N7 and No
are positive integers. We also suppose that En, (S) = d; and
En,(S) = da. Applying Theorem 1, we obtain

<d1+d2+1) <N 4Ny < (dl +2> " <d2+2).
2 2 2
This implies by simple manipulation that
(di —1)(dp — 1) < 2.
If the last inequality holds, then either dy = 1, or dy = 1 by

the assumption dy +dy = d > 6. If d; = 1, then N; < 2 and,
applying again Theorem 1, implies

dy + 2 dy + 2
—2<N.

(57) -2em< (%))

d+1 d+1
<N 2

() =v< ()2

a contradiction. We proceed similarly in the case do =1. H

i.e.

Remark 4. For a sequence S over F,, we have En(S) = O(1)
if and only if S is a g-automatic sequence, i.e., S can be
generated by a finite automaton over an alphabet of size gq.
First of all, since there are only finitely many polynomials
over IF [z, y] of a fixed total degree, it follows from Ex(S) =
O(1) that there exists a nonzero polynomial h(z,y) € Fylx, y]
for which (2) holds for infinitely many N. This implies that
h(z,G(x)) =0, and so the generating function G(x) of S is
an algebraic function over IF,. Then [3, Théoreme 1] shows
that S is a g-automatic sequence. Conversely, if S is a ¢-
automatic sequence, then by the same criterion G(x) is an
algebraic function over F,, and so En(S) = O(1). The same
remark applies to the i-expansion complexity.

3

ITI. EXPANSION COMPLEXITY OF THE EXPLICIT
INVERSIVE CONGRUENTIAL GENERATOR

The explicit inversive congruential generator is defined in
a prime field IF, (p > 3) by

sp=nP"2modp forn=0,1.... @)

Clearly, this is a purely periodic sequence with least period
length p. We show that its expansion complexity is maximal
in terms of Theorem 1.

Theorem 5. The explicit inversive generator S = (sy)
defined in (7) has maximal expansion complexity for all
N =2,....,p—1, i.e. we have

En(S) =d whenever (d;— 1) <N < (d—;Z). (8)

By (3) and Theorem 3, this result gives a lower bound for
E%(S) for N < p —1 which is in line with the asymptotic
regime in Theorem 2.

Proof:

By Theorem 1, we have En(S) < dif N is in the range (8).
Thus it suffices to prove the lower bound En(S) > d
for such N. As the Nth expansion complexity En(S) is a
nondecreasing function of N, it is enough to prove the result
for integers N having the form N = (d‘gl) with some positive
integer d.

We remark that the derivative G'(z) of the generating
function G(z) of S satisfies

0 !
&'(a) = (Zn) -y
n=0 0<n<oco
pin+1

1 -
= —a’,‘p 1

1—2z

1
1—ap

Now we prove the theorem by induction on d. For d = 2
(N = 3) the assertion follows from straightforward compu-
tation. Next, we prove the theorem by contradiction. Assume
that there is a d > 2 that does not satisfy the assertion. Let d be
the smallest such integer. Then Ex_4(S) = ... = Enx(S) =
d—1 with N = (*11).

By recursion, we construct nonzero polynomials f;(x,y) €
Fylz,y] (i=0,1...,d— 1) of total degree d — 1 such that

fi(z,G(x)) = 0 mod 2V ~* (10)

(©))

and

fi(z,y) does not contain the terms %1%y, 0 < ¢ < i.
(11
By assumption En(S) = d — 1, thus there is a nonzero
polynomial f(z,y) € F,[z,y] of total degree d — 1 such that

f(z,G(z)) = 0 mod zV. (12)

Put fo(z,y) = f(z,y). Now suppose that f;(x,y) has been
constructed for some 0 < 7 < d — 2. To construct the
polynomial f;11(z,y), we take the derivative of (10) with
respect to x:

o
ox

Ofi
Oy

(z,G(z)) + == (z,G(2))G (z) = 0 mod V71, (13)
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by (9), we obtain

(1-2) (‘ZJ; (z,G(x)) + ?; (z,G(I))G/(x)) _
(1- x)%(sa G(x)) + %(m, G(z)) = 0 mod 2V "1,
Put
i) = (1= ) 2L (0,1) + 5L 0.) € By ol

Observe, that g;(x,y) and f;(x,y) have the same total degree.
Indeed, if the total degree of g;(z,y) were strictly less than
the total degree of f;(z,y), then we get a polynomial of total
degree at most d — 2 satisfying (10) (with 7 replaced by i+ 1),
hence En_;—1(S) < d — 2, a contradiction. Moreover, the
monomials of degree d— 1 that appear in g;(x,y) must involve
x and appear in f;(z,y). If fi(z,y) = cgi(z,y) for some
nonzero c¢ € [, then

o' f;
00" Ji
Dy (377 y)

filz,y)=¢ mod 1 —z for all £ > 0.

In particular, (1 — z) divides f;(x,y), so taking f;(z,y)/(1—
x), we get a polynomial with total degree d—2 satisfying (10),
thus En_;(S) < d — 2, a contradiction.

So, there must exist a nonzero linear combination f;11(z,y)
of fi(z,y) and g;(x,y) satisfying (10) (with ¢ replaced by
i+1) and (11). If the total degree of f;1(x,y) were less than
or equal to d — 2, then En_;_1(S) < d — 2, a contradiction.

Finally, observe that if we construct g4—1(x,y) as above,
then it does not contain the terms z¢~1=¢y¢, £ =0,...d — 2,
by construction, and also that it does not contain the term
y?~1. Thus, the total degree of g4_1(x,y) is at most d — 2.
Moreover, it follows from (10) for ¢ = d — 1, by the same
argument as above, that

ga-1(z,G(x)) = 0 mod 2,

thus En_q(S) < d — 2, a contradiction. [ |

As a corollary, we obtain, for many different shifts of
the explicit inversive generator, a good lower bound on the
expansion complexity.

Corollary 2. For any d > 0 and all values of 1 < m < p
but for (d — 1)? - (‘21) choices, the shifted explicit inversive
generator §' = (Spm) satisfies,

+2

9 P

d+1 d
En(S)=d if < ; ) §N<min{<
Proof:
We fix the value N = (d*;) and take again the set of
monomials
M(d—1)={2"y|i+j<d—1}.

Then we define the polynomial G (x, m) = S2P—J (i+m)P~ 2z’
in the variables m and x. For each monomial in M (d), we can
substitute y = G(z,m) and reduce it modulo =% to obtain a
polynomial of degree at most N — 1 in the variable x. The set

of all polynomials of degree in the variable x less than N is a
vector space over the field of rational functions in the variable
m of dimension N. Each of the evaluations of the monomials
gives a polynomial in that space, which can be seen as a vector
of length N.

All of the vectors can be written as rows of a matrix and
En(S") = d if and only if the determinant of this matrix is
different from 0. Multiply all the elements of this matrix by
T2} (m+1i)** and reduce them using that (m+i)? = (m+
1), so the result is a matrix whose entries are polynomials in the
variable m and of degree less than (d — 1)2. The determinant
is a polynomial of degree at most (d—1)2-#M (d— 1), which
is not the zero polynomial because the determinant is different
from zero for m = 0. The number of roots of the determinant
is at most (d —1)? - #M (d — 1), and this remark finishes the
proof. [ ]

IV. CONCLUSIONS

In this paper, we have studied the expansion complexity
and a slight modification of this measure called i-expansion
complexity. For the expansion complexity, we have found an
upper bound which answers positively to a conjecture posed
by Mérai, Niederreiter, and Winterhof [6].

Regarding the i-expansion complexity, Theorem 2 shows
that its behavior is different and it is expected that the i-
expansion is a stronger measure than the expansion complex-
ity. However, if the expansion complexity of the sequence is
maximal, then by Theorem 3, the i-expansion complexity is
essentially equal to the expansion complexity.

For the explicit inversive generator, we have shown that
the expansion complexity and the i-expansion complexity are
maximal. Even if the sequence is shifted randomly, it is
expected that the expansion complexity is quite large.
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