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Chapter 1

Resumen en castellano

Dado un conjunto de datos, o una distribución, en un espacio de dimensión mayor a uno,

las proyecciones aleatorias consisten en proyectar los datos, o calcular la marginal de la

distribución, en un subespacio de menor dimensión que ha sido elegido de forma aleatoria.

En el caso en que el subespacio en el que proyectamos tenga dimensión uno, la llamamos

proyección aleatoria unidimensional.

En el libro Vempala [81] está escrito “Random projection is useful in many settings.

(...) A natural setting is when the input data is in high-dimensional space, and it is

possible to preserve essential properties for the data (for the particular problem at hand)

while reducing dimensionality.” Este libro contiene aplicaciones del Lema de Johnson y

Lindenstrauss, Johnson y Lindenstrauss [45]. Dicho lema asegura que las proyecciones

aleatorias aproximadamente preservan las distancias con un grado alto de probabilidad

si el subespacio en el que proyectamos ha sido elegido con la distribución uniforme. Este

resultado está extendido a la distribución gaussiana estándar en Frankl y Maehara [32].

Sin embargo, nuestro interés en las proyecciones aleatorias viene de otra propiedad

que éstas preservan: la distribución. En Cuesta-Albertos et al. [15] se demuestra que una

proyección aleatoria unidimensional basta para distinguir entre dos distribuciones siempre

1
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y cuando se encuentren en un espacio de Hilbert separable y que los momentos de una

de ellas satisfagan una condición determinada. Esto es, dadas dos distribuciones y una

marginal aleatoria unidimensional de éstas, tenemos que casi seguro las distribuciones son

diferentes/iguales si y sólo si las marginales son diferentes/iguales. Una extensión de este

resultado a espacios de Banach se encuentra en Cuevas y Fraiman [24].

Esta propiedad hace que las proyecciones aleatorias sean una herramienta importante

en la estad́ıstica multidimensional y funcional, ya que las proyecciones aleatorias nos per-

miten reducir la dimensión a uno, donde podemos aplicar técnicas unidimensionales, a la

vez que obtenemos una conclusión que es válida en el espacio de partida. Es decir, en vez

de aplicar una técnica determinada en un espacio de dimensión mayor que uno podemos

hacer una proyección y aplicar la técnica en dimensión uno y si se cumplen determinadas

condiciones de regularidad, Cuesta-Albertos et al. [15] nos permite inferir conclusiones

en el espacio de partida. Por lo tanto, esta herramienta nos da facilidad debido a que la

técnica en un espacio de dimensión mayor que uno es, en caso de que exista, más compli-

cada que su homóloga unidimensional.

Podŕıamos pensar que esta manera de actuar se basa en una idea algo radical: es sufi-

ciente con sólo una proyección aleatoria. Pero, por un lado, realmente esto no es algo tan

nuevo puesto que en el prólogo de Vempala [81], C. H. Papadimitriou escribe “This book

is about the radical idea that even a random projection is often useful.” De todas formas,

a lo largo de esta tesis se muestra como a veces, en la práctica, puede ser útil tomar más

de una proyección aleatoria. Por otro lado, hemos dicho que es suficiente con proyectar

en un espacio de dimensión uno y aplicar ah́ı las técnicas unidimensionales. Obviamente,

la sustitución de cada uno de los datos por un número real (los datos proyectados) es

un proceso que implica pérdida de información. Sin embargo, en Hand [39] podemos

leer “...simple methods typically yield performance almost as good as more sophisticated

methods to the extent that the difference in performance may be swamped by other sources
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of uncertainty...” El trabajo de Hand está relacionada con técnicas de clasificación, pero

esta idea podemos aplicarla también aqúı en el sentido de que la pérdida de información

que sufrimos no es tan relevante cuando se une a otros problemas que suelen aparecer en

los datos reales.

Merece la pena mencionar que Cuesta-Albertos et al. [15] ha creado cierto interés en

las proyecciones aleatorias a pesar de ser un art́ıculo relativamente reciente. Por ejemplo,

algunas aplicaciones estad́ısticas en las que ha sido utilizado son los siguientes:

• Análisis de la varianza de varias v́ıas para datos funcionales, Cuesta-Albertos y

Febrero-Bande [13].

• Identificación no paramétrica de la distribución de heterogeneidad en modelos econó-

micos, Fox y Gandhi [30].

• Tests no parametricos, Cuesta-Albertos et al. [11].

• Profundidad y estad́ıstica dual, Cuevas y Fraiman [24].

• Detección de valores at́ıpicos en datos funcionales, Febrero-Bande et al. [27].

• Estimación robusta y clasificación de datos funcionales, Cuevas et al. [23].

• Tests de bondad de ajuste, Cuesta-Albertos et al. [12, 16]. Además, el test propuesto

en Cuesta-Albertos et al. [16] se utiliza en Opazo et al. [68]. Por otro lado, en

Bugni et al. [10], los autores toman como referencia Cuesta-Albertos et al. [12] para

comparar el test de ajuste que proponen.

• Finalmente en Cuesta-Albertos et al. [14] se clasifican datos de sonoridad del habla

y para ello se utiliza un test de Kolmogorov-Smirnov para datos funcionales que está

desarrollado en Cuesta-Albertos et al. [15].

En esta tesis trabajamos con proyecciones aleatorias unidimensionales. Por lo tanto,

cuando hablemos en lo que sigue de proyecciones aleatorias estaremos refiriéndonos a
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proyecciones aleatorias unidimensionales, a no ser que digamos lo contrario.

En esta memoria presentamos dos nuevas aplicaciones de las proyecciones aleatorias.

La primera es una definición nueva de profundidad que, además, es una aproximación a la

conocida profundidad de Tukey, Tukey [80], y la segunda es un test de gaussianidad para

procesos estrictamente estacionarios. En lo que sigue vamos a describir estas dos aplica-

ciones y hacer un resumen, sin demostraciones, de los resultados que hemos obtenido en

esta tesis.

Profundidad de Tukey aleatoria.

Esta aplicación consiste en definir una profundidad multidimensional que es concep-

tualmente simple y fácil de calcular y que puede ser aplicada a datos funcionales propor-

cionando resultados comparables a los obtenidos con profundidades más complicadas.

El objetivo de las profundidades es ordenar un conjunto dado de forma que si un dato

se mueve hacia el centro de la nube de datos, su profundidad aumenta, y si el dato se

mueve hacia el exterior, su profundidad disminuye. Más general, dada una distribución

de probabilidad P definida en un espacio multidimensional (o incluso infinitodimensional)

X , una profundidad trata de ordenar los puntos de X desde el “centro (de P )” a la parte

“exterior (de P )”. Obviamente, este problema incluye conjuntos de datos si tenemos en

cuenta que P puede ser la distribución emṕırica asociada al conjunto de datos. Aśı que en

lo que sigue nos referiremos a la profundidad asociada a una distribución de probabilidad

P .

En el caso unidimensional es razonable ordenar los puntos de R utilizando el orden

inducido por la función

x → D1(x, P ) := min{P (−∞, x], P [x,∞)}. (1.1)
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De esta forma los puntos están ordenados siguiendo el orden decreciente de los valores

absolutos de la diferencia entre sus percentiles y 50, y el punto más profundo es la mediana

de P .

En el caso multidimensional no existe una forma tan evidente de ordenar los puntos.

Por ello, se han definido diferentes profundidades multidimensionales (véase, por ejemplo,

Liu et al. [53, 54]). Una de ellas, en la cual estamos particularmente interesados, es la

profundidad de Tukey (o del semiespacio), Tukey [80]. En Zuo y Serfling [83] se muestra

que esta profundidad se comporta muy bien en comparación con varios competidores. La

profundidad de Tukey de un punto x ∈ Rp con respecto a una probabilidad P , DT (x, P ),

es la probabilidad mı́nima que puede alcanzarse en los semiespacios cerrados que contienen

a x. De forma más precisa

DT (x, P ) = inf{D1(Πv(x), P ◦ Π−1
v ) : v ∈ Rp}, x ∈ Rp, (1.2)

donde Πv denota la proyección de Rp en el subespacio unidimensional generado por v y

P ◦ Π−1
v denota la marginal de P en ese subespacio. Se han propuesto otras definiciones

de profundidad basadas en la consideración de todas las posibles proyecciones unidimen-

sionales (véase, por ejemplo, Zuo [84]). Consideramos que lo que sigue se puede aplicar

a todas ellas pero hemos elegido la profundidad de Tukey para fijar ideas.

El mayor inconveniente de la profundidad de Tukey es que requiere mucho tiempo

de computación, debido a que necesita del cálculo de todas las profundidades unidimen-

sionales. Este tiempo computacional es más o menos razonable si p = 2, pero se vuelve

prohibitivo incluso para p = 8, véase Mosler y Hoberg [65, pág. 54]. Ha habido algunas

propuestas para reducirlo. Por ejemplo, en Zuo [85, pág. 2234] se sugiere tomar proyec-

ciones seleccionadas de forma aleatoria. Por otro lado, en Cuevas et al. [23] se define una

profundidad aleatoria consistente en, dado un punto x ∈ Rp, elegir un número finito de

vectores v1, ..., vk ∈ Rp de forma aleatoria y tomar como profundidad de x el promedio de

D1(Πvi
(x), P ◦Π−1

vi
), i = 1, ..., k. Nuestra idea se asemeja más a la sugerencia hecha en Zuo
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[85]: sustituimos el ı́nfimo en 1.2 por un mı́nimo sobre un número finito de proyecciones

aleatorias. De esta forma obtenemos una aproximación a la profundidad de Tukey que

llamamos profundidad de Tukey aleatoria. Definámosla formalmente.

Definition 1.0.1. Sean P y ν distribuciones de Borel en RP absolutamente continuas y

v1, ..., vk vectores aleatorios independientes e idénticamente distribuidos con distribución

ν. La profundidad de Tukey aleatoria de x ∈ Rp con respecto a P basada en k vectores

aleatorios elegidos con ν es

DT,k,ν(x, P ) := min{D1(Πvi
(x), P ◦ Π−1

vi
) : i = 1, ..., k}, x ∈ Rp.

En el Caṕıtulo 4 de esta tesis se estudian las propiedades de la profundidad de Tukey

aleatoria. Una propiedad importante es que puede ser extendida a espacios funcionales.

Por lo tanto, denotemos por X indistintamente a Rp o a un espacio de Hilbert separable

y por P la clase de distribuciones de Borel en X . A continuación se describen los cuatro

resultados más importantes de dicho caṕıtulo. En el primero se analiza si la profundidad

de Tukey aleatoria satisface la definición de profundidad estad́ıstica propuesta en Liu

[52] y formalizada en Zuo y Serfling [83]. En dichos articulos se habla de profundidades

multidimensionales, sin embargo nosotros escribimos aqui dicha definición en términos de

X . En esta definición, si X es un vector aleatorio, PX denota su distribución.

Definition 1.0.2. La función acotada y no negativa D(·, ·) : X × P −→ R es una

profundidad estad́ıstica si se satisfacen las siguientes propiedades:

1. D(x + b, PX+b) = D(x, PX), para cualquier vector aleatorio X con valores en X y

cualquier b ∈ X .

2. D(θ, P ) = supx∈X D(x, P ) para cualquier P ∈ P que tenga centro de simetŕıa en θ.

3. Para cualquier P ∈ P con punto más profundo θ y cualquier α ∈ [0, 1], D(x, P ) ≤

D(θ + α(x− θ), P ).

4. D(x, P ) → 0 cuando ‖x‖ → ∞, para cada P ∈ P .
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Con respecto al punto 1. de la Definición 1.0.2, es obvio que

DT,k,Aν(Ax, PAX) = DT,k,ν(x, PX),

pero no es dif́ıcil encontrar ejemplos tal que DT,k,ν(Ax, PAX) 6= DT,k,ν(x, PX), ver Nota

4.1.3.1. El punto 2. de la definición recoge la idea de que si una distribución tiene un

único centro de simetria (con respecto a alguna noción de simetria) la profundidad debe

alcanzar su máximo en este centro. Existen diferentes nociones de simetŕıa, como la

central, la angular y la del semiespacio. Como la simetŕıa central, implica la angular

que a su vez implica la del semiespacio, identificaremos el centro P con el centro de la

simetŕıa del semiespacio. Con respecto al punto 4., en la Sección 4.1.2 se presenta un

contraejemplo para el caso funcional.

Theorem 1.0.3. La profundidad de Tukey aleatoria es acotada, no-negativa y satisface

DT,k,ν(x + b, PX+b) = DT,k,ν(x, PX), para cualquier vector aleatorio X con valores en X

y cualquier b ∈ X , al igual que los puntos 2. y 3. de la Definición 1.0.2.

Además en el caso en que X sea Rp, si ‖x‖ → ∞ con x ∈ Rp, P ∈ P y k > 0, entonces

DT,k,ν(x, P ) converge a cero en probabilidad.

Nótese que la aleatoriedad sólo afecta al punto 4.. Esto sucede porque podŕıa ocurrir

que los k vectores estuviesen en el mismo hiperplano. En este caso el punto 4. no se

satisfaceŕıa para las sucesiones de puntos ortogonales al hiperplano, con norma tendiendo

al infinito, si DT,k,ν(0, P ) > 0.

En el siguiente resultado se demuestra que la versión muestral de la profundidad de

Tukey aleatoria converge a la correspondiente poblacional.

Theorem 1.0.4. Sean v1, ..., vk ∈ X , P ∈ P y {Pn} una sucesión de distribuciones

emṕıricas calculadas en una muestra aleatoria de P que es independiente de los vectores

v1, ..., vk.

Entonces, condicionalmente a v1, ..., vk, tenemos

sup
x∈Rp

|DT,k,ν(x, Pn)−DT,k,ν(x, P )| → 0, casi seguro [P].
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Es curioso que, a pesar del gran interés que hay en torno a las profundidades en

general, y a la profundidad de Tukey en particular, no tenemos conocimiento de muchos

resultados que prueben que una profundidad determina su distribución correspondiente.

De hecho, con respecto a la profundidad de Tukey sólo conocemos un resultado, Koshevoy

[47], donde se prueba que si P y Q son dos distribuciones en Rp teniendo ambas soporte

finito y sus profundidades de Tukey coinciden, entonces P = Q. Una demostración

alternativa del resultado de Koshevoy se puede ver en Hassairi y Regaieg [41]. En la última

sección del Caṕıtulo 4 se demuestra que la profundidad de Tukey aleatoria caracteriza las

distribuciones discretas. En este resultado Sp−1 representa la esfera unidad en Rp.

Theorem 1.0.5. Sean P y Q dos medidas de probabilidad tal que el soporte de P es a

lo sumo numerable. Sean v1, ..., vk ∈ Sp−1 vectores aleatorios idénticamente distribuidos

con distribución ν, absolutamente continua con respecto a la medida geométrica en Sp−1,

definida en el espacio probabiĺıstico (Ω, σ, κ). Sea

Ω0 := {ω ∈ Ω : DT,k,ν(x, P ) = DT,k,ν(x, Q), para todo x ∈ Rp}.

Entonces κ(Ω0) ∈ {0, 1}, y κ(Ω0) = 1 si y sólo si P = Q.

El Caṕıtulo 4 finaliza con una generalización del resultado principal en Koshevoy [47],

que se incluye a continuación.

Theorem 1.0.6. Sean P y Q dos medidas de probabilidad tal que P es discreta y para

cualquier x ∈ Rp, DT (x, P ) = DT (x, Q). Entonces P = Q.

Este resultado generaliza al de Koshevoy porque aqui se necesita que sólo una de las

dos probabilidades sea discreta (el soporte puede ser numerable) y en Koshevoy se nece-

sita que las dos probabilidades tengan soporte finito.

El Caṕıtulo 5 contiene algunas aplicaciones de la profundidad de Tukey aleatoria.

Comienza analizando el número de proyecciones aleatorias necesarias para que la profun-

didad de Tukey aleatoria sea una buena aproximación de la profundidad de Tukey. En
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principio este número depende del tipo de aplicación de la profundidad en la que estamos

interesados, aśı como de la dimensión del espacio subyacente y del tamaño muestral que es-

tamos utilizando. Sin embargo, las simulaciones llevadas a cabo en la Sección 5.1 sugieren

que un máximo de 250 proyecciones aleatorias son suficientes para satisfacer una amplia

gama de casos. Esta sección termina con una comparación entre el tiempo necesario para

calcular la profundidad de Tukey aleatoria y el requerido para la de Mahalanobis, que de

acuerdo con la Tabla 1 de Mosler y Hoberg [65] es una de las profundidades más rápidas

de calcular.

Con respecto a las aplicaciones, en la Sección 5.2 tenemos una aplicación de la pro-

fundidad de Tukey aleatoria multidimensional consistente en reproducir el estudio de

simulación realizado en Liu y Singh [57], donde los autores aplican medidas de profun-

didad para construir un test de las diferencias en homogeneidad entre distribuciones.

Nuestro objetivo principal con esta aplicaión es mostrar que la profundidad de Tukey

aleatoria proporciona resultados similares a los obtenidos en la práctica con la profundi-

dad de Tukey. Usamos el bootstrap para elegir el número de proyecciones necesarias para

calcular la profundidad de Tukey aleatoria.

Como hemos dicho antes, la profundidad de Tukey aleatoria puede ser extendida a

espacios funcionales, a pesar de que no satisface todas las propiedades en la definición de

profundidad estad́ıstica. En la Sección 5.3 presentamos una aplicación de la profundidad

de Tukey aleatoria en espacios funcionales que consiste en un problema bien conocido de

clasificación supervisada donde se clasifica un individuo como masculino o femenino según

su curva de crecimiento.

En esta sección comenzamos por comparar los resultados obtenidos con la profun-

didad de Tukey aleatoria con los que se obtienen con las profundidades propuestas en

López-Pintado y Romo [61]. Para ello, repetimos el estudio realizado en López-Pintado y

Romo [60] reemplazando la profundidad utilizada por estos autores por la profundidad de
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Tukey aleatoria. A continuación, analizamos las mejoras en clasificación que se obtienen

al aplicar los métodos propuestos en Cuevas et al. [23] y Li et al. [49]. Estos resultados se

comparan con métodos de clasificación basados en los k vecinos más próximos (k-NN) y

en núcleos. Finalmente, como los datos son sólo 31-dimensionales, comparamos también

con el método de “random forest”. Los resultados aparecen en las Tablas 5.8, 5.9 y 5.10.

En esta sección se utiliza la validación cruzada para elegir el número de proyecciones.

Test de gaussianidad para procesos estacionarios.

En una amplia gama de situaciones en Estad́ıstica, se trata con datos consistentes en

una serie temporal real, esto es, en una serie de observaciones reales X1, . . . , Xn que están

secuenciadas en el tiempo o espacio. Un modelo común es asumir que estas observaciones

son una realización de un proceso estacionario de segundo orden X := (Xt)t∈Z (véase, por

ejemplo, Hannan [40] y Gershenfeld [36]). Esto significa que la variable aleatoria Xt es,

para cualquier t ∈ Z, de cuadrado integrable y que la media y la matriz de covarianzas del

proceso son invariantes por cualquier translación en el tiempo. Es decir, para cualquier

t, s ∈ Z, E(Xt) no depende de t y E(XtXs) sólo depende de la distancia entre t y s.

Un marco todav́ıa más popular que el estacionario de segundo orden, es el caso gau-

ssiano, donde adicionalmente se asume que todas las distribuciones marginales finito-

dimensionales del proceso (Xt)t∈Z son gaussianas. En este caso, como la distribución

multidimensional gaussiana sólo depende de los momentos de orden uno y dos, el pro-

ceso también es estrictamente estacionario; lo que significa que todas las distribuciones

marginales de dimensión finita del proceso son invariantes en ley si se realiza una translación

en el tiempo:

(X1, · · · , Xn)
L
= (Xt+1, · · · , Xt+n), t ∈ Z, n ∈ N.

Para facilitar la lectura hablaremos de procesos estacionarios cuado nos refiramos a los
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estrictamente estacionarios.

La razón de que los procesos estacionarios gaussianos sean muy populares es que com-

parten muchas propiedades útiles que conciernen a sus estad́ısticos o predicción (véase, por

ejemplo, Azencott y Dacunha-Castelle [4] y Stein [77]). Por lo tanto, un tema importante

es la disponibilidad de procedimientos estad́ısticos que permitan evaluar la gaussianidad

del proceso en estudio. En las últimas tres décadas se han desarrollado muchos trabajos

para construir dichos prcedimientos. Por ejemplo, en Epps [26] encontramos un proce-

dimiento basado en el análisis de la función caracteristica emṕırica, en Lobato y Velasco

[58] otro basado en el test de asimetŕıa-curtosis, en Moulines y Choukri [66] uno basado

en ambos y en Subba y Gabr [78] otro basado en la función de densidad biespectral. Una

desventaja importante de estos procedimientos es que sólo evaluan si las marginales hasta

cierto orden del proceso son gausianas (¡por lo que conocemos sólo hasta orden uno!).

Obviamente, esto da lugar a tests al nivel adecuado para el problema, pero estos tests

tienen potencia nominal bajo algunas alternativas no gaussianas como los procesos estric-

tamente estacionarios no gaussianos que tienen marginales unidimensionales gaussianas;

e incluso con marginales unidimensionales no gausianas pero que la caracteŕıstica de la

variable que analiza el test toma el mismo valor que si la marginal fuese gaussiana.

En esta tesis se propone un procedimiento para evaluar si un proceso estrictamente

estacionario es gaussiano. Este procedimiento es consistente, rechazando todas las al-

ternativas estrictamente estacionarios que cumplan ciertas condiciones de regularidad.

El procedimiento es una combinación del método de las proyecciones aleatorias (véase

Cuesta-Albertos et al. [12] y Cuesta-Albertos et al. [15]) y los métodos clásicos, discuti-

dos antes, que permiten evaluar si la marginal unidimensional de un proceso estrictamente

estacionario es gaussiana.

En cuanto al método de las proyecciones aleatorias, seguimos la misma filosof́ıa que
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se propuso en Cuesta-Albertos et al. [15], donde, a grosso modo, se demuestra que (sólo)

una proyección aleatoria es suficiente para caracterizar una distribución de probabilidad.

Aqúı se utilizarán los resultados obtenidos en Cuesta-Albertos et al. [12], donde el prin-

cipal resultado de Cuesta-Albertos et al. [15] se generaliza para obtener tests de bondad

de ajuste para familias de distribuciones, particularmente para familias gaussianas.

Por lo tanto, dado un proceso estrictamente estacionario, (Xt)t∈Z, estamos interesados

en la construcción de un test para la hipótesis nula H0 : (Xt)t∈Z es gaussiano. Resulta

que H0 es válida si, y sólo si, (Xt)t≤0 es un vector gaussiano. Aśı que, utilizando el

método de las proyecciones aleatorias, Cuesta-Albertos et al. [12], esto es, a grandes ras-

gos, equivalente a realizar una proyección aleatoria (unidimensional) de (Xt)t≤0 y ver si

es gaussiana.

Para utilizar el procedimiento propuesto en Cuesta-Albertos et al. [12] necesitamos un

espacio de Hilbert apropiado (para una descripción ver la Sección 6.1). Sea < ·, · > su

producto escalar. Denotemos Yt :=< h, (Xj)j≤t >, donde h es un vector aleatorio en el

espacio elegido de norma uno (para la elección de h ver Caṕıtulo 6).

Los resultados de Cuesta-Albertos et al. [12] convierten el problema en el de comprobar

que la marginal unidimensional de (Yt)t∈Z es gaussiana, lo cual puede realizarse con los

tests clásicos. Para que podamos aplicar al proceso (Yt)t∈Z estos tests, necesitamos que

(Yt)t∈Z herede de (Xt)t∈Z las condiciones que el test requiera. Esta cuestión se analiza en

la siguiente proposición. Para ello denotemos γX(t) := E[(X0 −E[X0])(Yt −E[X0])], con

t ∈ Z, la autocovarianza de orden t y, denotando por µY |h la esperanza condicional de Y0

dado h, definimos γY |h(t) := E[(Y0 − µY |h)(Yt − µY |h)|h].

Proposition 1.0.7. Sea (Xt)t∈Z un proceso ergódico y estrictamente estacionario tal

que E[|X0|] < ∞ y
∑∞

t=0 tζ |γX(t)| < ∞, con ζ ≥ 0. Entonces, condicionalmente a h,

el proceso (Yt)t∈Z es ergódico y estrictamente estacionario. Adicionalmente, E[|Y0||h] y
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t=0 tζ |γY |h(t)| son finitas.

En principio, la normalidad del proceso (Yt)t∈Z puede analizarse con cualquiera de los

test mencionados. Aqúı, para fijar ideas, hemos seleccionado los propuestos en Epps [26] y

en Lobato y Velasco [58]. El test de Epps analiza si la función caracteŕıstica de la marginal

unidimensional de un proceso estacionario coincide con la función caracteŕıstica de una

distribución gaussiana en un conjunto finito de puntos previamente fijados, λ1, ..., λN .

Sin embargo, en esta tesis los puntos empleados en el test de Epps también son elegi-

dos aleatoriamente, lo que proporciona la consistencia de todo el procedimiento. En el

siguiente teorema se muestra como aplicar el procedimiento de las proyecciones aleatorias

utilizando el test de Epps.

En este resultado denotamos por µ̂Y |h y γ̂Y |h a las versiones muestrales de µY |h y γY |h.

Además se utiliza una función Qn(·, ·, λ) cuya definición puede verse en Sección 3.3. Las

condiciones de regularidad impuestas al proceso (Yt)t∈Z aparecen en la Sección 6.1.5.

Theorem 1.0.8. Sea (Xt)t∈Z un proceso ergódico y estrictamente estacionario satisfa-

ciendo E[|X0|] < ∞ y
∑

t∈Z |t|ζ |γY(t)| < ∞ para algún ζ > 0. Tomemos λ con una

determinada distribución Pλ y h independiente de λ con una PH.

Adicionalmente asumamos que, condicionalmente a h, (Yt)t∈Z satisface ciertas condi-

ciones de regularidad. Sea Qn(·, ·, λ) una forma cuadratica definida a partir de la función

caracteŕıstica de (Yt)t∈Z, (µn, γn) el minimizador de la forma cuadática más cercano a

(µ̂Y |h, γ̂Y |h) y A := {(λ, h) : nQn(µn, γn, λ) →d una distribución no degenerada}.

Entonces, (Xt)t∈Z es gaussiano si, y solo si, (Pλ ⊗ PH)[A] > 0.

En el siguiente teorema se muestra como aplicar el procedimiento de las proyecciones

aleatorias utilizando el test de asimetŕıa-curtosis de Lobato y Velasco. Es importante

decir que hemos probado la consistencia del test bajo hipótesis diferentes que en Lobato

y Velasco [58], ver Sección 3.3.3. Para dicho teorema utilizamos el estad́ıstico

GY =
nµ̂2

3

6|F̂3|
+

n(µ̂4 − 3µ̂2
2)

2

24|F̂4|
,



14

con

F̂k = 2
τn∑
t=1

γ̂(t)(γ̂(t) + γ̂(τn + 1− t))k−1 + γ̂k,

donde τn < cnβ0 para β0 = 1− 2/α, c es una constante positiva y 2 < α < 4.

Theorem 1.0.9. Sea (Xt)t∈Z un proceso ergódico y estrictamente estacionario tal que

E[|X0|] < ∞ y
∑∞

t=0 |γX(t)| < ∞. Tenemos

1. Si (Xt)t∈Z es un proceso gaussiano, entonces GY −→d χ2
2.

2. Si (Xt − µX)t∈Z se puede escribir con la representación dada en Kavalieris [46]

y E[X4
0 ] < ∞, entonces, condicionalmente a h, GY diverge casi seguro a infinito

cuando µ3 6= 0 o µ4 6= 3µ2
2.

Finalmente quedan varios problemas prácticos que resolver. En primer lugar tenemos

que, de acuerdo con la teoŕıa, una única proyección es suficiente. Sin embargo, las razones

de pérdida de información (y, por tanto, de potencia) que apuntábamos anteriormente,

sugieren la conveniencia de tomar más de una dirección al azar.

En segundo lugar sucede que los tests de Epps y Lobato y Velasco tienen problemas

de potencia (ver Sección 6.3) que, en cierto sentido, van en direcciones opuestas. Final-

mente, sucede que la distribución utilizada para elegir h también afecta a la potencia del

test (ver Sección 6.2.2), de forma positiva o negativa, dependiendo de la alternativa a la

que nos enfrentemos. Una manera de buscar una solución neutral a estos dos últimos

problemas es utilizar una combinación de todos los procedimientos: se trataŕıa de elegir

varias proyecciones aleatorias (varias con cada tipo de distribución) y aplicar cada uno de

los dos tests a una mitad de las proyecciones.

Esta manera de actuar plantea el problema de cómo resumir toda la información

disponible en un único número. Para este objetivo se han propuesto varias metodoloǵıas

como son el uso de la desigualdad de Bonferroni, el bootstrap o el “False Discovery Rate”.

Nosotros hemos optado por esta última (ver Benjamini y Hochberg [5] y Benjamini y
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Yekutieli [6]) que es razonablemente sencilla; ya que, como es bien conocido, Bonferroni

es demasiado conservadora y el bootstrap es demasiado exigente desde un punto de vista

computacional, aparte de la dificultad teórica de decidir en un problema determinado si

el bootstrap es aplicable o no.

Los cálculos necesarios para esta tesis se ha realizado utilizando MatLab, con la ex-

cepción de los necesarios para el método “random forests” que se han llevado a cabo con

el software asociado a Witten y Frank [82] que se puede descargar de

http://www.cs.waikato.ac.nz/ml/weka. Los códigos desarrollados para MatLab se en-

cuentran en el Apéndice A.

Algunos resultados de esta tesis ya han sido publicados. En lo referente a las pro-

fundidades, las Secciones 4.1, 5.1 y 5.2 aparecen en Cuesta-Albertos y Nieto-Reyes [19],

donde se introduce la profundidad de Tukey aleatoria. La Sección 4.2 está publicada en

Cuesta-Albertos y Nieto-Reyes [20] y una idea de lo que hemos desarrollado en la Sección

5.3 aparece en Cuesta-Albertos y Nieto-Reyes [21]. Por último, en lo que concierne al

test de gaussianidad, en Cuesta-Albertos et al. [17] y Cuesta-Albertos et al. [18] pode-

mos encontrar los resultados del Caṕıtulo 6. Merece la pena decir que Cuesta-Albertos y

Nieto-Reyes [19] ha sido utilizado ya por otros autores, concretamente en Li et al. [49] y

en Shapira et al. [76].

Además, estos resultados han sido presentados en diferentes congresos, conferencias y

encuentros. En particular, los resultados relativos a las profundidades fueron presentados

en el XXX Congreso Nacional de Estad́ıstica e Investigación Operativa (SEIO) celebrado

en Valladolid (España), el IV Encuentro de Estad́ıstica Matemática BoSanTouVal cele-

brado en Castro Urdiales (España) y en el I Workshop Internacional de Estad́ıstica Fun-

cional y Operatorial (IWFOS) celebrado en Toulouse (Francia). Los resultados relativos al

test de gaussianidad han sido presentados en el V Encuentro de Estad́ıstica Matemática
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BoSanTouVal celebrado en Le Teich (Francia), en la I Reunión conjunta SMM-RSME

celebrado en Oaxaca (México), en el XVI Encuentro Europeo de Jóvenes Estad́ısticos

celebrado en Bucarest (Rumania) y en el XI Congreso Latinoamericano de Probabilidad

y Estad́ıstica Matemática (CLAPEM) celebrado en Naiguatá (Venezuela).



Chapter 2

Introduction

A random projection consists in projecting a given data set, or in computing the marginal

of a distribution, on a randomly chosen lower dimensional subspace. If the subspace onto

which we project has dimension one, we call it a one-dimensional random projection.

Random projections are well-known due to the Johnson and Lindenstrauss’ Lemma,

Johnson and Lindenstrauss [45], which states that random projections approximately pre-

serve pairwise distances with high probability when the subspace, on which we project, is

chosen following a uniform distribution. An extension for standard Gaussian distributions

can be found in Frankl and Maehara [32]. Many applications of this Lemma appear in

the book Vempala [81]. In this book we can read “Random projection is useful in many

settings. (...) A natural setting is when the input data is in high-dimensional space, and

it is possible to preserve essential properties for the data (for the particular problem at

hand) while reducing dimensionality.” In this book, the property of preserving distances

is used in many branches of Statistics.

However, our interest in random projections comes from another property they pre-

serve: the distribution. In Cuesta-Albertos et al. [15], it is proved that only a one-

dimensional randomly chosen projection is enough to distinguish between two distribu-

17
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tions that are in a separable Hilbert space if one of them satisfies a condition on their

moments. More precisely, given two distributions and a randomly chosen one-dimensional

marginal of them we have that almost surely, the two distributions are different/equal if

and only if the two marginals are different/equal. This result is extended to Banach spaces

in Cuevas and Fraiman [24].

This property makes random projections an important tool for multidimensional and

functional statistics, since in some problems they allow the dimension to be reduced to

one, where we can apply the one-dimensional techniques, while obtaining conclusions in

the larger space. Let us explain this in more detail: if we need to apply a particular

technique in a space with a dimension larger than one, we make a projection and apply

the technique in dimension one and if some regularity conditions are satisfied (Cuesta-

Albertos et al. [15]), conclusions can be drawn from the distribution in the larger space.

Therefore, this tool reduces the difficulty of the problem as the technique in a dimension

larger than one, should it exist, is usually more involved than its one-dimensional homo-

logue.

It may be thought that this way of proceeding is based in a rather radical idea: that

only one random projection is enough. On one hand, this is not so novel as stated in the

foreword of Vempala [81], written by C. H. Papadimitriou, “This book is about the radical

idea that even a random projection is often useful.” Obviously, substituting each of the

data by a real number (the projected data) is a process that implies a lack of information.

However, in the abstract of Hand [39] it is stated that “...simple methods typically yield

performance almost as good as more sophisticated methods to the extent that the differ-

ence in performance may be swamped by other sources of uncertainty...” Hand’s work is

related to classification techniques, but his thoughts apply also to the idea that the loss

of information we suffer is not relevant when considered a long side the other problems

that usually appear in real data.
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It is worth mentioning that Cuesta-Albertos et al. [15], despite of being recent, has

already triggered some interest in random projections and their applications to several

statistical problems. For instance, some problems in which it has been used are:

• Multiway ANOVA for functional data, Cuesta-Albertos and Febrero-Bande [13].

• Nonparametric identification of the distribution of heterogeneity in economic models,

Fox and Gandhi [30].

• Non-parametric tests for spherical and compositional data, Cuesta-Albertos et al.

[11].

• Depth measures and dual statistics, Cuevas and Fraiman [24].

• Outliers detection for functional data, Febrero-Bande et al. [27].

• Robust estimation and classification for functional data, Cuevas et al. [23].

• Goodness-of-fit tests, Cuesta-Albertos et al. [12, 16]. In addition, the test proposed

in Cuesta-Albertos et al. [16] is used in Opazo et al. [68]. Furthermore, in Bugni et

al. [10], the authors use Cuesta-Albertos et al. [12] as the reference to compare the

goodness-of-fit test they propose.

• Finally, in Cuesta-Albertos et al. [14], some speech sonority data are classified using

a Kolmogorov-Smirnov test for functional data proposed in Cuesta-Albertos et al.

[15].

Through this thesis we work with one-dimensional random projections, i.e., the given

data set will be in dimension one after being projected on the randomly chosen space.

Therefore, in what follows we understand one-dimensional random projections as random

projections unless otherwise stated.
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In this work, we present two applications of the random projections. The first one

is a new definition of depth that approximates the well-known Tukey depth, Tukey [80],

and the second is a test of Gaussianity for strictly stationary processes. Let us introduce

these two applications.

The random Tukey depth.

In recent times, depths have received some attention from statistical researchers (see,

as an example, the book Liu et al. [54]). Depths are intended to order a given set in

the following way: if a datum is moved toward the center of the data cloud, then its

depth increases, and if the datum is moved toward the outside, then its depth decreases.

More generally, given a probability distribution P defined in a multidimensional (or even

infinite-dimensional) space X , a depth tries to order the points in X from the “center (of

P )” to the “outer (of P )”. Obviously, this problem includes data sets if we consider P as

the empirical distribution associated to the data set at hand. Thus, in what follows, we

will always refer to the depth associated to a probability distribution P .

The first application we present here consists in defining a conceptually simple and

easy to compute multidimensional depth that can be applied to functional problems and

that provides results comparable to those obtained with more involved depths.

Note that in the one-dimensional case, it is reasonable to order the points using the

order induced by the function

x → D1(x, P ) := min{P (−∞, x], P [x,∞)}. (2.1)

Thus, the points are ordered following the decreasing order of the absolute values of the

difference between their percentiles and 50, and the deepest points are the medians of P .

In the multidimensional case does not exist a so clear function to order points. There-
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fore, several multidimensional depths have been proposed (see, for instance, Liu et al.

[53, 54]) but here we are mainly interested in the Tukey (or halfspace) depth (see Tukey

[80]). According to Zuo and Serfling [83], this depth behaves very well in comparison with

various competitors. If x ∈ Rp, then the Tukey depth of x with respect to P , DT (x, P ),

is the minimal probability which can be attained in the closed halfspaces containing x.

I.e., DT (x, P ) is the infimum of all possible one-dimensional depths of the one-dimensional

projections of x, where those depths are computed with respect to the corresponding (one-

dimensional) marginals of P . A more precise definition can be found in Section 3.1 of

Chapter 3. Some other depths based on the consideration of all possible one-dimensional

projections have been proposed (see, for instance, Zuo [84]). We consider that what

follows could be applied to all of them, but we have chosen the Tukey depth for the sake

of clarity.

The most significant drawback of the Tukey depth is the required computational time,

since, as previously stated, it involves the computation of all possible one-dimensional

depths. This time is more or less reasonable if p = 2, but it becomes prohibitive even for

p = 8, see Mosler and Hoberg [65, p. 54]. To reduce the time, in Zuo [85, p. 2234] it is

proposed that their values be approximated using randomly selected projections. Further-

more, in Cuevas et al. [23], a random depth is defined. There, given a point x ∈ Rp, the

authors propose to choose a finite number of vectors v1, ..., vk ∈ Rp at random and take as

depth of x the mean of the values D1(Πvi
(x), P ◦Π−1

vi
), i = 1, ..., k, where D1 was defined

in 2.1 and Πv denotes the projection of Rp on the one dimensional subspace generated

by v. Thus, P ◦ Π−1
v is the marginal of P on this subspace. Our approach is closer to

the suggestion in Zuo [85]: we simply replace the infimum in the definition of the Tukey

depth by a minimum over a finite number of randomly chosen projections, obtaining a

random approximation to the Tukey depth, which we call the random Tukey depth.

It is curious that, in spite of the great interest in depths in general and the Tukey
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depth in particular, we are not aware of many results proving that a depth determines its

corresponding distribution. In fact, with respect to the Tukey depth, we only know one

result, Koshevoy [47]. Here, it is proved that if P and Q are two distributions defined on

Rp, both of them with finite support, and their Tukey depths coincide, then P = Q. An

alternative proof to the Koshevoy result can be found in Hassairi and Regaieg [41]. We

generalize this result and prove that the Tukey depth characterizes discrete distributions.

We also prove it for the random Tukey depth.

Test of Gaussianity for stationary processes.

In many concrete situations the statistician observes a finite path X1, . . . , Xn of a real

temporal phenomena. A common modeling is to assume that the observation is a finite

path of a second order weakly stationary process X := (Xt)t∈Z (see, for example, Gershen-

feld [36]). This means that the random variable Xt is, for any t ∈ Z, square integrable and

that the mean and the covariance structure of the process is invariant by any translation

on the time index. That is, for any t, s ∈ Z, E(Xt) does not depend on t and E(XtXs)

only depends on the distance between t and s. A more popular frame is the Gaussian

case where the additional Gaussianity assumption on all finite marginal distributions of

the process (Xt)t∈Z is added. In this case, as the multidimensional Gaussian distribution

only depends on moments of order one and two, the process is also strongly stationary.

This means that the law of all finite dimensional marginal distributions is invariant if the

time is shifted:

(X1, · · · , Xn)
L
= (Xt+1, · · · , Xt+n), t ∈ Z, n ∈ N.

To facilitate the reading, from now on stationary means strictly stationary.

Gaussian stationary processes are very popular because they share a large number of

nice properties concerning their statistics or prediction (see, for example, Azencott and

Dacunha-Castelle [4] or Stein [77]). Hence, an important topic in the field of stationary
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process is the implementation of a statistical procedure that allows Gaussianity to be

assessed. In the last three decades, many studies have been developed to build such a

procedure. For example, Epps [26] proposes a test based on the analysis of the empir-

ical characteristic function. Lobato and Velasco [58] present another one based on the

skewness and kurtosis test (also called Jarque-Bera test). Moulines and Choukri [66] in-

troduce a test based on both, empirical characteristic function and skewness and kurtosis.

In Subba and Gabr [78] we can find another test based on the bispectral density function.

An important drawback of these tests is that they only consider a finite order marginal

of the process (as far as we know the order one marginal!). Obviously, this provides

tests at the right level for the intended problem; but these tests could be at the nominal

power against some non-Gaussian alternatives. For example, the case of a stationary non-

Gaussian process having one-dimensional Gaussian marginal or, even, with non-Gaussian

one-dimensional marginal but with the right value of the selected characteristic.

In this thesis, we propose a procedure to assess that a strictly stationary process is

Gaussian. Our test is consistent against every strictly stationary alternative satisfying

some regularity assumptions. The procedure is a combination of the random projection

method (see Cuesta-Albertos et al. [12] and Cuesta-Albertos et al. [15]) and classical

methods that allow to assess that the one-dimensional marginal of a stationary process is

Gaussian (see the previous discussion).

Regarding the random projection method, we follow the same methodology as the one

proposed in Cuesta-Albertos et al. [15]. In particular, we employ the results of Cuesta-

Albertos et al. [12] where the main result of Cuesta-Albertos et al. [15] is generalized to

obtain goodness-of-fit tests for families of distributions, and in particular for Gaussian

families.

Therefore, given a strictly stationary process, (Xt)t∈Z, we are interested in constructing
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a test for the null hypothesis H0 : (Xt)t∈Z is Gaussian. Note that H0 holds if, and only if,

(Xt)t≤0 is Gaussian. Thus, using the random projection method (Cuesta-Albertos et al.

[12]), this is, roughly speaking, equivalent to stating that a (one-dimensional) randomly

chosen projection of (Xt)t≤0 is Gaussian. This idea allows the problem to be translated

into another one consisting of checking when the one-dimensional marginal of a random

transformation of (Xt)t∈Z is Gaussian. This can be tested using a widely used procedure.

Here, we will employ the Epps and Lobato and Velasco skewness-kurtosis tests. We also

use a combination of them as a way to alleviate some problems that those tests present.

Furthermore, the Epps test checks whether the characteristic function of the one-

dimensional marginal of a strictly stationary process coincides with that of a Gaussian

distribution. This check is performed on a fixed finite set of points. As a consequence, it

cannot be consistent against every possible non-Gaussian alternative with non-Gaussian

marginal. However, in our work, the points employed in the Epps test will be also drawn

at random. This will provide consistency to the whole test. Regarding the Lobato and

Velasco skewness-kurtosis test we will prove the consistency of the test under different

hypotheses than those in Lobato and Velasco [58].

The structure of the thesis is as follows. In Chapter 3 we include some already well-

known definitions and results that will be used in later chapters. These are not original

and are included for the sake of completeness. In Chapter 4 we introduce the notion

of the random Tukey depth. Moreover, in Subsection 4.1.1 (Theorem 4.1.3) we show

that, with the exception of the invariance under non-singular linear transformations, this

approximation satisfies the definition of depth given in Zuo and Serfling [83] (but with

the convergence in the last property being in probability). Subsection 4.1.1 closes with

Theorem 4.1.5, which proves the consistency of the random Tukey depth. In Subsection

4.1.2 we extend the results of Subsection 4.1.1 to infinite-dimensional functional spaces.

The proofs of these results are included in Subsection 4.1.3.
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Section 4.2 is devoted to proving that the random Tukey and the Tukey depths char-

acterize discrete distributions. To be more precise, Theorem 4.2.6 states that if P is a

discrete distribution (with finite or denumerable support) defined on Rp and Q is a Borel

distribution on Rp such that the functions DT (·, P ) and DT (·, Q) coincide, then P = Q.

Thus, this result is slightly more general than Koshevoy’s theorem in the sense that it

only requires one distribution to be discrete and also includes denumerably supported

distributions. The result is proved, at first, for the random Tukey depth (Theorem 4.2.3)

and then, a simple extension allows the Tukey depth to be covered.

Chapter 5 contains some applications of the random Tukey depth. First of all, in Sec-

tion 5.1 we address the main difficulty of the random Tukey depth as an approximation

to the Tukey depth, which is to find the number of random projections required to obtain

a good approximation. This number could depend on the kind of application of the depth

in which we are interested as well as on the dimension of the underlying space and the size

of the sample we are using. However, the simulations carried out in Section 5.1 suggest

that a maximum of 250 randomly chosen projections are enough to satisfy a wide range

of cases. Section 5.1 ends with a comparison of the time needed to compute the random

Tukey depth and that required for the Mahalanobis depth. In Section 5.2 we deal with

an application of the multidimensional random Tukey depth. It consists in reproducing

the simulation study carried out in Liu and Singh [57], where the authors apply depth

measures to test differences in homogeneity among distributions. Our main objective is

to show that the random Tukey depth provides results which are similar to those obtained

in practice with the Tukey depth.

One of the main advantages of the random Tukey depth is that it can be extended

to infinite-dimensional functional spaces, despite the definition of depth not being fully

satisfied in this case (see Subsection 4.1.2). Thus, in Section 5.3, we apply the random
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Tukey depth to a well known supervised classification problem where we are required to

classify an individual as female or male, based on its growth curve. We do this using

the procedures proposed in López-Pintado and Romo [60] and compare the results of the

random Tukey depth with those of the depths used there. In addition, we compare our

results with another two classification methods based on curves (see Cuevas et al. [23] and

Li et al. [49]) and with classification methods based on the k-nearest neighbors (k-NN)

and kernels. Moreover, taking into account that, in fact, the data are only 31-dimensional,

we also compare it with the random forests method.

Chapter 6 outlines the Gaussianity test for stationary processes. In Section 6.1 we

introduce our procedure and analyze its asymptotic behavior. Section 6.2 contains some

details on the practical application of the method and Section 6.3 includes the results of

the simulations and the application to two real data sets. The thesis ends with a discus-

sion.

The computations carried out for this thesis were done using MatLab codes with the

exception of the ones for the random forests. The latter were done with a software asso-

ciated with Witten and Frank [82] that can be downloaded from

http://www.cs.waikato.ac.nz/ml/weka. The MatLab computational codes can be found

in Appendix A.

Some results of this thesis have already been published. Regarding depths, Sections

4.1, 5.1 and 5.2 appear in Cuesta-Albertos and Nieto-Reyes [19], where the random Tukey

depth is introduced. Section 4.2 is published in Cuesta-Albertos and Nieto-Reyes [20] and

an idea of what we have developed in Section 5.3 is announced in Cuesta-Albertos and

Nieto-Reyes [21]. Finally, regarding the test of Gaussianity, in Cuesta-Albertos et al. [17]

and Cuesta-Albertos et al. [18] we can find the results of Chapter 6. It is worth noting

that Cuesta-Albertos and Nieto-Reyes [19] has already been used in Li et al. [49] and
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Shapira et al. [76].

Furthermore, these results have been presented in different congresses, conferences

and meetings. Particularly, the results concerning data depth have been presented at the

30th National Congress in Statistics and Operational Research (SEIO) held in Valladolid

(Spain), the 4th Meeting of Mathematical Statistics BoSanTouVal in Castro Urdiales

(Spain) and the 1st International Workshop on Functional and Operatorial Statistics

(IWFOS) in Toulouse (France). Regarding the results concerning the test of Gaussianity,

these have been presented at the 5th Meeting of Mathematical Statistics BoSanTouVal

held in Le Teich (France), the 1st joint Meeting SMM-RSME in Oaxaca (Mexico), the 16th

European Young Statisticians Meeting in Bucharest (Romania) and the XI Latin Amer-

ican Congress of Probability and Mathematical Statistics (CLAPEM) held in Naiguatá

(Venezuela).
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Chapter 3

Preliminary results

For the convenience of the reader, the aim of this chapter is to present some non-original

definitions and results, without proofs, that are relevant to the following chapter, in order

to make this thesis self-contained. This chapter is divided into four main parts. The

first one is devoted to depths; the second to the random projection method; the third to

Gaussianity tests for stationary processes; finally, we pay some attention to the problem

of multiple testing.

3.1 Definition of data depth

Here we state the definition of statistical depth. This definition consists of four key prop-

erties desirable for depths. They are affine invariance, maximality at center, monotonicity

relative to deepest point and vanishing at infinity. These properties were first proposed in

Liu [52]. There, the simplicial depth was defined and the properties were used to justify

it as a data depth. Subsequently these were adapted in Zuo and Serfling [83] as the key

properties required for any general depth function.

Concerning the notation, P denotes the class of distributions on the Borel sets of Rp

and PX the distribution of a general random vector X.

29



30

Definition 3.1.1. The bounded and nonnegative mapping D(·, ·) : Rp×P −→ R is called

a statistical depth function if it satisfies the following properties:

1. D(Ax + b, PAX+b) = D(x, PX) holds for any Rp-valued random vector X, any p× p

nonsingular matrix A and any b ∈ Rp.

2. D(θ, P ) = sup
x∈Rp D(x, P ) holds for any P ∈ P having a center of symmetry θ.

3. For any P ∈ P having deepest point θ, D(x, P ) ≤ D(θ + α(x − θ), P ) holds for

α ∈ [0, 1].

4. D(x, P ) → 0 as ‖x‖ → ∞, for each P ∈ P .

Let us state some depths that are used throughout the thesis. Given x ∈ Rp and

P ∈ P , let us define

1. The Tukey depth, which was proposed in Tukey [80], DT (x, P ):

Given v ∈ Rp, let Πv be the projection of Rp on the one dimensional subspace

generated by v and so P ◦Π−1
v the marginal of P on this subspace. Therefore, using

(2.1) we have that

DT (x, P ) = inf{D1(Πv(x), P ◦ Π−1
v ) : v ∈ Rp}, x ∈ Rp. (3.1)

2. The Mahalanobis depth, which was introduced in Mahalanobis [62], DM(x, P ):

If the mean, µ, and dispersion matrix, Σ, of P exist and Σ is not singular, we have

that

DM(x, P ) :=
1

1 + (x− µ)tΣ−1(x− µ)
. (3.2)

It is not our purpose to provide an in-depth explanation of the various well-known

definitions of multidimensional depths. For that, see Liu et al. [53] or Parelius [69].
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Figure 3.1 illustrates the behavior of the Tukey (left-hand side) and Mahalanobis

(right-hand side) depths. The plots represent the depths of a sample of size 200 drawn

with a 2-dimensional standard Gaussian distribution. The scale of colors goes from dark

red (high depth) to dark blue (low depth) through oranges, yellows and greens.
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Figure 3.1: Tukey depth (left-hand side) and Mahalanobis depth (right-hand side) of a sample

of size 200 drawn with a 2-dimensional standard Gaussian distribution.

Next, we state some definitions of depth in functional spaces we use throughout the

thesis. They were introduced in López-Pintado and Romo [61] and used in López-Pintado

and Romo [60]. Let X1(t), ..., Xn(t) be a set of real functions in L2[0, 1]. Let us state some

notation that is needed for the definition of these depths.

• The graph of a function X defined on [0, 1] is G(X) = {(t,X(t)) ∈ R2 : t ∈ [0, 1]}.

• The band determined by J curves, Xi1 , Xi2 , ..., XiJ , from the sample X1, ..., Xn is

V (Xi1 , Xi2 , ..., XiJ ) = {(t, Y ) ∈ [0, 1]× R : min
r=1,...,J

Xir(t) ≤ Y ≤ max
r=1,...,J

Xir(t)}.
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Then, the band depth, determined by J different curves, of a curve X ∈ L2[0, 1] is

DSJ(X) :=
J∑

j=2

 n

j

−1 ∑
1≤i1<...<ij≤n

I(G(X) ⊂ V (Xi1 , Xi2 , ..., Xij))}, J ≥ 2, (3.3)

where I(·) denotes the indicator function. The generalized band depth is

DGS(X) :=

 n

2

−1 ∑
1≤i1<i2≤n

λ({t ∈ [0, 1] : min
r=i1,i2

Xr(t) ≤ X(t) ≤ max
r=i1,i2

Xr(t)}), (3.4)

where λ is the Lebesgue measure on the interval [0, 1].

Thus, the band depth of X is the proportion of bands that contain X and the gener-

alized band depth is the proportion of time that X is inside the bands with size two.

It is worth noting that although there are many definitions of depth in multidimen-

sional spaces, this does not occur in the functional ones. However, some well-known

definitions of functional depth can be found in Fraiman and Muniz [31], Cuevas et al. [23]

and Cuevas and Fraiman [24].

3.2 The random projection method

This thesis is based on Corollary 3.2 and Theorem 4.1 in Cuesta-Albertos et al. [15] which

are stated bellow.

Corollary 3.2.1 (Cuesta-Albertos, Fraiman y Ransford (2007)). Let P,Q be Borel prob-

ability measures on Rd, where d ≥ 2. Assume that:

• the absolute moments mn :=
∫
||x||ndP (x) are finite and satisfy

∑
n≥1 m

−1/n
n = ∞;

• the set {v ∈ Rp : P ◦ Π−1
v = Q ◦ Π−1

v } is of positive Lebesgue measure in Rd.

Then P = Q.
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Theorem 3.2.2 (Cuesta-Albertos, Fraiman y Ransford (2007)). Let H be a separable

Hilbert space, and let µ be a non-degenerate Gaussian measure on H. Let P,Q be Borel

probability measures on H. Assume that:

• the absolute moments mn :=
∫
||x||ndP (x) are finite and satisfy

∑
n≥1 m

−1/n
n = ∞;

• the set {v ∈ H : P ◦ Π−1
v = Q ◦ Π−1

v } is of positive µ-measure.

Then P = Q.

In addition, in this thesis we use the following characterization of Gaussian distribu-

tions in Hilbert spaces which comes from Cuesta-Albertos et al. [12]. It is based on the

use of dissipative distributions which are defined next. However, let us introduce first

some notation.

H denotes a separable Hilbert space with the inner product 〈·, ·〉 and norm ‖·‖. {vn}∞n=1

denotes a generic orthonormal basis of H and Vn the n-dimensional subspace spanned by

{v1, . . . , vn}. For any subspace, V ⊂ H we write V ⊥ for its orthogonal complement. If D

is an H-valued random element, then DV denotes the projection of D on the subspace V

of H.

Definition 3.2.3. Let D be an H-valued random element defined on the probability space

(Ω, σ, IP ). We will say that its distribution is dissipative if there exists an orthonormal

basis (vn)∞n=1 of H, such that

1. IP
(
DV ⊥

n
= 0
)

= 0, for all n ≥ 2.

2. The conditional distribution of DVn given DV ⊥
n

is absolutely continuous with respect

to the n-dimensional Lebesgue measure.

Theorem 3.6 in Cuesta-Albertos et al. [12] states the following:

Theorem 3.2.4 (Cuesta-Albertos, del Barrio, Fraiman y Matrán (2007)). Let η be a

dissipative distribution on H. If X is an H-valued random element and

η({h ∈ H : the distribution of 〈X,h〉 is Gaussian}) > 0,
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then X is Gaussian.

The importance of this result lies in the fact that if η is dissipative then the following

0− 1 law holds

η({h ∈ H : the distribution of 〈X,h〉 is Gaussian}) ∈ {0, 1}.

Moreover, X is not Gaussian if, and only if,

η({h ∈ H : the distribution of 〈X,h〉 is Gaussian}) = 0.

In other words, if we are interested in whether the distribution of X is Gaussian, then

the only thing we have to do is to select at random a point h ∈ H using a dissipative

distribution and check if the real-valued random variable 〈X,h〉 is Gaussian. We will

obtain the right answer with probability one.

3.3 Classical tests of Gaussianity for stationary processes

In this section, we present some tests for checking whether a stationary random process

(Yt)t∈Z, is Gaussian.

3.3.1 Notations and basic definitions

If Y is a random variable, we denote by ΦY its characteristic function; Φµ,γ denotes the

characteristic function of the Gaussian distribution with mean µ ∈ R and variance γ > 0.

Y and (Yt)t∈Z denote indistinctly a process. Given a stationary process Y, let us

denote, if they exist, µY := E[Y0] the mean and µY,k := E[(Y0 − µY )k], with k ∈ N, the

centered moment of order k. Further, let γY (t) := E[(Y0 − µY )(Yt − µY )], with t ∈ Z, be

the autocovariance of order t.

Let Y1, Y2, ..., Yn, n ∈ N be a sample of equally spaced observations of the random

process Y. Let µ̂Y := n−1
∑n

i=1 Yi be its sample mean, µ̂Y,k := n−1
∑n

i=1(Yi − µ̂Y )k, for
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k ∈ N, its sample centered moment of order k and

γ̂Y (t) := n−1

n−|t|∑
i=1

(Yi − µ̂Y )(Yi+|t| − µ̂Y ),

for |t| ≤ n − 1, the sample autocovariance of order t. When it is clear to which process

they are referring we suppress the subindex Y. Note that then we write µY,k as µk. For

the sake of simplicity, let us denote γY := γY (0) and analogously γ̂Y := γ̂Y (0).

Finally, by i.i.d.r.vs. we mean independent and identically distributed random vari-

ables. Throughout this thesis, all the processes are assumed to be integrable and all the

random elements are defined on the same, rich enough, probability space (Ω, σ, IP ).

3.3.2 The Epps test

The test discussed in this section is a particular case of the one studied in Section 3 of

Epps [26]. We begin with some notations and definitions. Given N > 1, let us define

ΛN := {λ := (λ1, . . . , λN)T ∈ R+
N : λi 6= λj for all i 6= j, i, j = 1, ...N},

where T denotes transposition.

Let Y1, Y2, ..., Yn, n ∈ N, be a sample of equally spaced observations of the random

process Y. Let λ ∈ ΛN and let ĝn(λ) be the 2N -dimensional column vector composed by

the real and complex parts of the empirical characteristic function computed at λ. That

is

ĝn(λ) :=
1

n

n∑
i=1

(cos(λ1Yi), sin(λ1Yi), . . . , cos(λNYi), sin(λNYi))
T .

We often suppress the subindex n in ĝn(λ) to simplify the notation. Further, for ν ∈ R

real and ρ > 0, let

gν,ρ(λ) := (Re(Φν,ρ(λ1)), Im(Φν,ρ(λ1)), . . . , Re(Φν,ρ(λN)), Im(Φν,ρ(λN)))T ,
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be the 2N -dimensional vector composed by the real and complex parts of Φν,ρ computed

at λ.

We denote by fY(0, (µY , γY ), λ) the spectral density matrix (see, for example, Ander-

son [3]) of the process:

(g(Yt, λ))t∈Z := ((cos(λ1Yt), sin(λ1Yt), . . . , cos(λNYt), sin(λNYt)))
T
t∈Z

at frequency 0. Note that if we assume that (Yt)t∈Z is a Gaussian stationary process with∑
t∈Z

|t|ζ |γY(t)| < ∞, for some ζ > 0, (3.5)

then the existence of fY(0, (µY , γY ), λ) is one of the conclusions of Lemma 2.1 in Epps [26].

For the construction of the test statistic, we will use the following estimator of

fY(0, (µY , γY ), λ):

f̂(0, λ) = (2πn)−1

 n∑
t=1

Ĝ(Yt,0, λ) + 2

bn2/5c∑
i=1

(1− i/bn2/5c)
n−i∑
t=1

Ĝ(Yt,i, λ)

 , (3.6)

where Ĝ(Yt,i, λ) = (g(Yt, λ) − ĝ(λ))(g(Yt+i, λ) − ĝ(λ))T and b·c denotes the integer part.

The estimator (3.6) was used in Epps [26], but with 2/5 replaced by a general constant

in the interval (0, 1/2). Notice also that this estimator is a particular case of the one pro-

posed in Gaposhkin [33]. In Epps [26] it is proved that if (Yt)t∈Z is Gaussian, stationary

and satisfies (3.5), then f̂(0, λ) converges almost surely to fY(0, (µY , γY ), λ).

Let G+
n (λ) be the generalized inverse of 2πf̂(0, λ) and let Qn(ν, ρ, λ) be the quadratic

form

Qn(ν, ρ, λ) := (ĝ(λ)− gν,ρ(λ))T G+
n (λ) (ĝ(λ)− gν,ρ(λ)) . (3.7)

Let Θ be an open bounded subset of R×R+ and let λ ∈ ΛN . We state two assumptions.

H1. The set Θ0(λ) := {(ν, ρ) ∈ Θ : Φν,ρ(λi) = ΦµY ,γY
(λi), i = 1, ..., N} is nowhere dense

in Θ.
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H2. For each (ν, ρ) ∈ Θ0(λ) we have, fY(0, (ν, ρ), λ) = fY(0, (µY , γY ), λ) and

∂Φx,y(λi)

∂(x, y)

∣∣∣∣
(x,y)=(ν,ρ)

=
∂Φx,y(λi)

∂(x, y)

∣∣∣∣
(x,y)=(µY ,γY )

, i = 1, ..., N.

Theorem 3.3.1 below describes the Gaussianity test proposed in Epps [26].

Theorem 3.3.1 (Epps (1987)). Let (Yt)t∈Z be a stationary Gaussian process satisfying

(3.5). Let Θ be an open and bounded subset of R × R+ and λ ∈ ΛN such that H1. and

H2. hold. Further, let (µn, γn) be the minimizer on Θ nearest to (µ̂Y , γ̂Y ) of the map

(ν, ρ) → Qn(ν, ρ, λ).

Assume further that fY(0, (µY , γY ), λ) is positive definite. Then, for each fixed λ ∈ ΛN ,

nQn(µn, γn, λ) converges in distribution to χ2
2N−2.

Remark 3.3.1.1. Obviously a test based on Theorem 3.3.1 may not be consistent. First,

the test might not detect some alternatives with Gaussian one-dimensional marginal.

Second, it only focuses on the values of the characteristic function at some points, so that,

the test might even fail against alternatives with non-Gaussian one-dimensional marginal

but that satisfy that the characteristic functions of the one-dimensional marginal coincides

with that of the corresponding Gaussian at the selected points.

3.3.3 Lobato and Velasco test

The test to assess the normality of time series that we discuss in this Subsection was intro-

duced in Lobato and Velasco [58]. It uses the skewness-kurtosis test statistic, also called

Jarque-Bera test (see Bowman and Shenton [8] and Jarque and Bera [44]), but improves

previous tests of this kind because the statistic is studentized by standard error estimators.

Given a process Y, let us denote F̃k := 2
∑n−1

t=1 γ̂Y (t)(γ̂Y (t) + γ̂Y (n− t))k−1 + γ̂k
Y . This

is an estimator of Fk :=
∑∞

t=−∞ γY (t)k. The test proposed in Lobato and Velasco [58]

handles the statistic:

G̃Y =
nµ̂2

Y,3

6F̃3

+
n(µ̂Y,4 − 3µ̂2

Y,2)
2

24F̃4

.
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Theorem 3.3.2 (Lobato and Velasco (2004)). Let (Yt)t∈Z be an ergodic stationary process.

• If (Yt)t∈Z is Gaussian and satisfies
∑∞

t=0 |γY(t)| < ∞, then G̃Y −→ χ2
2 in distribu-

tion.

• If (Yt)t∈Z satisfies

– E[Y 16
t ] < ∞,

–
∑∞

t1=∞ · · ·
∑∞

tq−1=∞ |kq(t1, ..., tq−1)| < ∞, for q=2,...,16, where kq(t1, ..., tq−1)

denotes the qth-order cumulant of Y1, Y1+t1 , ..., Y1+tq−1 ,

–
∑∞

t=1[E|(E(Y0 − µ)k|F−t) − µk|2]1/2 < ∞, for k = 3, 4, where F−t denotes the

σ-field generated by Yj, j ≤ −t, and

– E[(Y0−µ)k−µk]
2 +2

∑∞
t1=∞ E([(Y0−µ)k−µk][(Yt−µ)k−µk]) > 0, for k = 3, 4,

then the statistic G̃Y diverges to infinity whenever µY,3 6= 0 or µY,4 6= 3µ2
Y,2.

In Section 6.1, we will prove this theorem under lighter assumptions on the alternative.

We will need the following recent result taken from Kavalieris [46]. This is an improvement

of the well-known result in An et al. [2].

Theorem 3.3.3 (Kavalieris (2008)). Let (Yt)t∈Z be a stationary process with the repre-

sentation

Yt =
∞∑
i=1

k(i)εt−i,
∞∑
i=1

|k(i)| < ∞,
∞∑
i=1

ik(i) < ∞, E[εn] = 0,where (εt) are i.i.d.r.vs. (3.8)

Assume that E[|εn|α] < ∞ for some 2 < α < 4. If τn < cnβ for 0 < β < 1 and c > 0, then

max
0≤t≤τn

|γ̂(t)− γ(t)| = o(n2/α−1) almost surely.

3.4 Multiple testing

In Section 6.2, we will propose applying several tests on the same sample to assess the

Gaussianity of a process. Thus, we obtain several p-values p1, . . . , pk, where k is the num-

ber of tests used and we need to employ a procedure to summarize them.
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The most popular way to handle several p-values is to use the Bonferroni correction.

However, it is very well-known that this procedure is too conservative. Several alternatives

have been proposed in the literature in order to alleviate this problem including the

bootstrap which is too computationally intensive and it is not easy to decide when it

works or not in a given problem. Here, we will employ the false discovery rate (FDR).

The FDR is the expected proportion of wrongly rejected hypotheses along the k tests.

Taking into account that all the hypotheses we will make in Section 6.2 are equivalent,

the FDR coincides with the level of the procedure.

The FDR was introduced in Benjamini and Hochberg [5] for independent tests. Here,

we employ the improvement proposed in Benjamini and Yekutieli [6] that does not require

dependence assumptions among the tests. This procedure, when applied to our case, works

as follows:

Theorem 3.4.1 (Benjamini and Yekutieli (2001)). Let us assume that we apply k statis-

tical tests to check the same null hypothesis and that the ordered p-values that we obtain

are p(1), ..., p(k), where p(1) ≤ . . . ≤ p(k).

Let α ∈ (0, 1). The FDR of the test which rejects if the set{
i : p(i) ≤

iα

k
∑k

j=1 j−1

}
is not empty is, at most, α.

Therefore, according to the previous theorem, if we denote

p0 := k
k∑

j=1

j−1 min
i=1,...,k

p(i)/i

we can reject at any level α ≥ p0 and then, we can take p0 as the resulting p-value of the

procedure.



40



Chapter 4

The random Tukey depth

In this chapter we apply random projections to compute depths. The computation of the

Tukey depth, also called the halfspace depth, is highly demanding, even in low dimensional

spaces, because it requires all possible one-dimensional projections to be considered. In

this chapter a random depth which approximates the Tukey depth is proposed. It only

takes into account a finite number of one-dimensional projections which are chosen at

random. Thus, this random Tukey depth requires a reasonable computational time even

in high dimensional spaces. Moreover, it is easily extended to cover the functional frame-

work. In addition, it is shown that almost surely if the random Tukey depths of two

probabilities, P and Q, coincide and one of those distributions is discrete, then P = Q.

The same is proved if the Tukey depths coincide, thus extending previously known results.

The first section introduces the notion of the random Tukey depth and establishes its

properties: Section 4.1.1 is dedicated to the finite-dimensional case while Section 4.1.2

outlines the infinite-dimensional case. The detailed proofs of the results from both sec-

tions appear in Section 4.1.3. In Section 4.2 we show the characterization of discrete

distributions by using the Tukey or the random Tukey depth.

41



42

4.1 Definition and main properties

In this section, we define the random Tukey depth and demonstrate that, with the excep-

tion of the invariance under non-singular linear transformations, it satisfies the definition

of statistical depth given in Zuo and Serfling [83] and show its consistency, analyzing the

possibility of extending it to cover infinite dimensional spaces.

4.1.1 Finite dimensional spaces

In this subsection, P denotes the class of probability distributions on the Borel sets of Rp

and PX the distribution of a general random vector X. In addition, the symbols ‖ · ‖ and

〈·, ·〉 respectively denote the usual norm and scalar product in Rp. Now, let us formally

define the random Tukey depth.

Definition 4.1.1. Let P ∈ P. Let ν ∈ P absolutely continuous, and let v1, ..., vk be

independent and identically distributed random vectors with distribution ν. The random

Tukey depth of x ∈ Rp with respect to P based on k random vectors chosen with ν is

DT,k,ν(x, P ) = min{D1(Πvi
(x), P ◦ Π−1

vi
) : i = 1, ..., k}, x ∈ Rp.

In order to simplify the notation we will delete the subscript ν in the notation and

simply write DT,k.

Obviously, DT,k(x, P ) is a random variable. It may seem somewhat paradoxical to

take a random quantity to measure the depth of a point, which is inherently non-random.

We have taken this approach for two reasons. Firstly, according to Corollary 3.2.1, if

we have two different distributions and we randomly choose a marginal of them, those

marginals are almost surely different. Thus, according to this result, one randomly chosen

projection is enough to distinguish between two p-dimensional distributions. Since the

depths determine one-dimensional distributions, a depth computed on just one random
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projection allows us to distinguish between two distributions. Secondly, if the support of

ν is Rp, and, for every k, {v1, ..., vk} ⊂ {v1, ..., vk+1}, then

DT,k(x, P ) ≥ DT,k+1(x, P ) → DT (x, P ), a.s. (4.1)

Therefore, if we choose k large enough, the effect of the randomness in DT,k will be neg-

ligible. Of course, it is of interest to find how large k must be; values of k that are too

large would render this definition useless. We analyze this point in Section 5.1.
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Figure 4.1: Random Tukey depth computed with k = 5 (left-hand side) and k = 20 (right-hand

side) vectors, taken with a uniform distribution on the sphere, of a sample of size 200 drawn

with a 2-dimensional standard Gaussian distribution.

Figure 4.1 illustrates the behavior of the random Tukey depth computed with k = 5

(left-hand side) and k = 20 (right-hand side) vectors, where ν is equal to the uniform

distribution on the sphere. The plots represent the depths of a sample of size 200 drawn

with a 2-dimensional standard Gaussian distribution. The scale of colors goes from dark

red (high depth) to dark blue (low depth) through oranges, yellows and greens. Note that

the sample to which we compute the random Tukey depth in these plots is the same as
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the one used in Figure 3.1 of Chapter 3. The comparison of the plots in Figure 4.1 and

the left-hand side plot in Figure 3.1 confirms the scarce differences between the random

and non-random depths. In addition, at least in this case there is no point in taking

k = 20 instead of k = 5 when computing the random depth, which suggests that a quite

low value for k will render the randomness negligible.

Next, we show that, for every k, DT,k a.s. satisfies the last three properties of the

definition of statistical depth, Definition 3.1.1. In Zuo and Serfling [83], it is shown that

the Tukey depth satisfies this definition. Concerning the maximality at center (point 2.

in Definition 3.1.1), note that various notions of symmetry are possible, among them,

central, angular and halfspace symmetry. As central symmetry implies angular, which

implies halfspace, we will identify the center with the point of halfspace symmetry. For

the sake of completeness, we include this definition next.

Definition 4.1.2. θ is the center of halfspace symmetry of a distribution P if P [H] ≥ 1/2

for every closed halfspace H containing θ.

Theorem 4.1.3. The random Tukey depth is a bounded and non-negative mapping which

satisfies DT,k(x + b, PX+b) = DT,k(x, PX), for any Rp-valued random vector X and any

b ∈ Rp, as well as items 2. and 3. in Definition 3.1.1.

Moreover, let P ∈ P and k > 0. If ‖x‖ → ∞ with x ∈ Rp, then DT,k(x, P ) converges

to zero in probability.

Remark 4.1.3.1. It is obvious that DT,k,Aν(Ax, PAX) = DT,k,ν(x, PX) for any Rp-valued

random vector X and any p × p nonsingular matrix A, but it is not difficult to find

examples, like Example 4.1.4, such that DT,k,ν(Ax, PAX) 6= DT,k,ν(x, PX). However, in

the particular case that A is a uniform scaling matrix, i.e., a constant times the identity

matrix, we do have DT,k,ν(Ax, PAX) = DT,k,ν(x, PX).

Example 4.1.4. We have generated a sample of size three using a 2-dimensional standard
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Gaussian distribution and obtained

x1 = (−0.0956,−1.3362), x2 = (−0.8323, 0.7143) and x3 = (0.2944, 1.6236).

In order to obtain a 2× 2 nonsingular matrix A, we have generated a sample of size two

using a 2-dimensional standard Gaussian distribution and obtained

A =

 −0.1867 −0.5883

0.7258 2.1832

 ,

which, obviously, is not singular. Taking k = 1 and ν being the uniform distribution in

the sphere, we generate the vector in which to project obtaining v1 = (0.9985, 0.0555).

Note that this setting is not particularly restrictive and the depth of x1 and x2 change

when computing them before and after multiplying by A.

Remark 4.1.4.1. In Theorem 4.1.3, the randomness only affects item 4. The problem is

that it would be possible for all the k vectors to be included in the same hyperplane. In

this case, it is obvious that item 4 could not be satisfied. For instance, if DT,k(0, P ) > 0,

any sequence of points (xn)n∈N orthogonal to this hyperplane such that ‖xn‖ → ∞ does

not fulfill it.

Another desirable property for depths is that its sample version converges to the popu-

lation counterpart. More generally, it would be convenient if almost surely, supx |D(x, Pn)−

D(x, P )| → 0 where Pn denotes the empirical distribution (i.e. if x1, ..., xn is a random

sample, P n[A] = #(A ∩ {x1, ..., xn})/n). This property is satisfied by the Tukey depth

(see Zuo and Serfling [83]) and Theorem 4.1.5 shows that the random Tukey depth also

has this property.

Theorem 4.1.5. Let ν ∈ P and v1, ..., vk be independent and identically distributed ran-

dom vectors with distribution ν. Let P ∈ P and let {Pn} be a sequence of empirical

distributions computed on a random sample taken from P which is independent of the

vectors v1, ..., vk.
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Then, conditionally on v1, ..., vk, we have

sup
x∈Rp

|DT,k(x, Pn)−DT,k(x, P )| → 0, almost surely [P].

Remark 4.1.5.1. In Theorem 4.1.5, the almost sure convergence is with respect to the

empirical samples taken from P. The random vectors employed in the computation of the

depths are chosen independently of these samples. In fact, this result holds for every fixed

vector in Rp, whether randomly chosen with the distribution ν or not, the only condition

being that the vector is independent of the random sample taken from P .

4.1.2 Infinite dimensional spaces

An interesting possibility of the random Tukey depth is that it can be straightforwardly

extended to functional spaces. The only requirement of the main result in Cuesta-Albertos

et al. [15] is that the sample space has to be a separable Hilbert space. In fact, in Cuevas

and Fraiman [24] there is a generalization of this result to Banach spaces and so it is

possible to extend the results on the random Tukey depth to even more general spaces.

However, for this section, we focus on a separable Hilbert space. To fix ideas, we will

handle the space, H, of square-integrable functions in a given interval which, after re-

scaling, we can assume to be [0, 1]. Thus, H = L2[0, 1] and given f, g ∈ H we have

〈f, g〉 =
∫ 1

0
f(t)g(t)dt and ‖f‖ = 〈f, f〉1/2.

Definition 3.1.1 can be extended to functional spaces. However, we have that the

random Tukey depth is not a statistical depth in the functional case. The proofs for

the invariance under translation and items 2. and 3. in Definition 3.1.1 (with obvious

modifications such as replacing matrices with linear operators) are the same as in Theorem

4.1.3. However, the following example shows that item 4. fails in this case even for

statistical convergences.

Example 4.1.6. Let {δn}n∈N ⊂ R+ with limn δn = 0, where R+ denotes the real positive

numbers. Let xn ∈ H such that xn(t) = 1/δn if t ∈ [0, δn) and be zero otherwise.
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Obviously, ‖xn‖ = (
∫ δn

0
δ−2
n dt)1/2 = δ

−1/2
n and then, limn ‖xn‖ = ∞. Let us take ν to

be equal to the distribution of the standard Brownian motion and let P = ν. Obviously

Theorem 4.1 in Cuesta-Albertos et al. [15] works with this distribution. If X is a random

element with distribution ν, then 〈xn, X〉 converges to zero in probability because

E|〈xn, X〉| = E

∣∣∣∣∫ δn

0

X(t)δ−1
n dt

∣∣∣∣
≤

∫ δn

0

E|X(t)|δ−1
n dt =

∫ δn

0

(2t/π)1/2δ−1
n dt ≤ (2δn/π)1/2,

where the last equality holds because the distribution of X(t) is N(0, t). Thus, if v1, ..., vk ∈

H are randomly chosen with distribution ν, we have

lim
n

D1(< vi, xn >,P ◦ Π−1
vi

) = D1(0, P ◦ Π−1
vi

) = max
x

D1(x, P ◦ Π−1
vi

) = 2−1,

because P ◦ Π−1
vi

is a centered Gaussian distribution. Therefore, limn DT,k(xn, P ) = 1/2

while lim ‖xn‖ = ∞.

Thus, in this setting, the following results hold. Their proofs appear in Subsection

4.1.3.

Theorem 4.1.7. The random Tukey depth is a bounded and non-negative mapping which

satisfies DT,k,ν(x + b, PX+b) = DT,k,ν(x, PX), for any X, b ∈ H, as well as items 2. and

3. in Definition 3.1.1.

Theorem 4.1.8. Let v1, ..., vk ∈ H. Let P be a probability distribution on H, and let

{Pn} be a sequence of empirical distributions computed on a random sample taken from

P which is independent of the vectors v1, ..., vk.

Then, conditionally on v1, ..., vk, we have

sup
x∈Rp

|DT,k(x, Pn)−DT,k(x, P )| → 0, almost surely [P].

4.1.3 Proofs of Subsections 4.1.1 and 4.1.2

The proofs are identical for finite or infinite dimensional spaces (except, of course, the

proof of item 4. in Theorem 4.1.3, which only works for the finite dimensional case).
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Then, in this subsection the symbol X refers indistinctly to Rp or H and P denotes

the class of distributions on the Borel sets of X . Given a set B ⊂ X , Bo and Bc are

respectively its topological interior and complement. If x, v ∈ X and P ∈ P , we denote

Hx,v := {y : 〈y − x, v〉 = 0} and

SP
x,v :=

 {y : 〈y − x, v〉 ≥ 0} if P{y : 〈y − x, v〉 ≥ 0} ≤ P{y : 〈y − x, v〉 ≤ 0}

{y : 〈y − x, v〉 ≤ 0} otherwise
. (4.2)

The reason for using this notation is that it provides a geometrical view of the random

Tukey depth which is useful for the proofs. To simplify, if there is no risk of confusion, the

super-index P is omitted. With this notation, we have that D1(Πv(x), P ◦Π−1
v ) = P (Sx,v).

Proof of Theorems 4.1.3 and 4.1.7.

Clearly, the random Tukey depth is nonnegative and bounded because it is a minimum

of probabilities.

To verify the remaining properties, let P ∈ P , ν be an absolutely continuous distribu-

tion on X , k > 0 and v1, ..., vk be independent and identically distributed random vectors

with distribution ν. Note that all the random Tukey depths used in this proof will be

computed using this set of vectors.

1. Invariance under translation. This is straightforward due to the linearity of the pro-

jections.

2. Maximality at center. First, remember that if a distribution P is halfspace symmetric

about θ then P [H] ≥ 1/2 for every closed halfspace H containing θ. Assume that θ ∈ X

is the center of P , and that there exists x ∈ X satisfying

DT,k(x, P ) > DT,k(θ, P ). (4.3)

By definition of the random Tukey depth, there exists v ∈ {v1, . . . , vk} such that

DT,k(θ, P ) = D1(Πv(θ), P ◦ Π−1
v ) = P (Sθ,v) ≥ 1/2,
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where the inequality is due to the halfspace symmetry as Sθ,v is a halfspace with θ in its

boundary. Thus, from (4.3) and that P (Sx,v) ≥ DT,k(x, P ), since this depth is computed

using v1, ..., vk, we get

P (Sx,v) > 1/2. (4.4)

We have three possibilities for the sets Sx,v and Sθ,v : if x ∈ Sθ,v, then Sx,v ⊆ Sθ,v and

if x /∈ Sθ,v, then Sθ,v ⊂ Sx,v or Sθ,v ⊂ Sc
x,v. Note that there is not other possibility when

x ∈ Sθ,v because of (4.2).

A Sx,v ⊆ Sθ,v. Then DT,k(x, P ) ≤ P (Sx,v) ≤ P (Sθ,v) = DT,k(θ, P ) which contradicts

(4.3).

B Sθ,v ⊂ Sx,v. From here and P (Sθ,v) ≥ 1/2, we obtain that P (Sc
x,v ∪ Hx,v) ≤ 1/2.

Then, this and (4.4) implies min(P (Sc
x,v ∪ Hx,v), P (Sx,v)) = P (Sc

x,v ∪ Hx,v), which

contradicts the definition of Sx,v, (4.2).

C Sθ,v ⊂ Sc
x,v. Thus, P (Sc

x,v) ≥ 1/2. Therefore, by (4.4) 1 = P (Sx,v) + P (Sc
x,v) > 1.

3. Monotonicity relative to deepest point. Let us assume that P has a deepest point θ

and there exist x ∈ X and α ∈ [0, 1] with

DT,k(x, P ) > DT,k(θ + α(x− θ), P ). (4.5)

Obviously, cases α = 0 and α = 1 are not possible. Then, α ∈ (0, 1). Since θ is the

deepest point, we have

DT,k(θ, P ) ≥ DT,k(y, P ), for all y ∈ X . (4.6)

Let v ∈ {v1, ..., vk} such that DT,k(θ + α(x − θ), P ) = P (Sθ+α(x−θ),v). As P (Sθ,v) ≥

DT,k(θ, P ), from (4.5) and (4.6) it is inferred that

P (Sθ,v) > P (Sθ+α(x−θ),v). (4.7)

Since α ∈ (0, 1), we have that θ +α(x− θ) belongs to the open segment joining the points

x and θ. Thus, reasoning similarly to the final part of the proof of Statement 2, we have

one of the following three possibilities:
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A x, θ ∈ Hθ+α(x−θ),v; which is impossible because this contradicts (4.7).

B θ ∈ So
θ+α(x−θ),v and x ∈ Sc

θ+α(x−θ),v. Here, we also have a contradiction with (4.7)

because θ ∈ So
θ+α(x−θ),v implies Sθ,v ⊂ Sθ+α(x−θ),v.

C x ∈ So
θ+α(x−θ),v and θ ∈ Sc

θ+α(x−θ),v. Similarly to (B), x ∈ So
θ+α(x−θ),v implies Sx,v ⊂

Sθ+α(x−θ),v. Thus,

DT,k(θ + α(x− θ), P ) = P (Sθ+α(x−θ),v) ≥ P (Sx,v) ≥ DT,k(x, P ),

which contradicts (4.5).

4. Vanishing at infinity (only for Theorem 4.1.3). We prove this property for the case in

which ν is not a probability, but the Lebesgue measure. The proof for probabilities follows

the same steps until statement (4.10) below. From this point on, only some additional

technicalities are required.

Let ε > 0 such that ε < 1/2. Since limH→∞ P{y ∈ Rp : ‖y‖ ≤ H} = 1, there exists

Hε > 0 such that P{y ∈ Rp : ‖y‖ ≤ Hε} > 1− ε. Furthermore, if v ∈ Rp then

Π−1
v [−Hε‖v‖, Hε‖v‖] ⊃ {y ∈ Rp : ‖y‖ ≤ Hε}.

Thus, P ◦ Π−1
v [−Hε‖v‖, Hε‖v‖] > 1− ε, for all v ∈ Rp. In consequence,

sup
(
D1(−Hε‖v‖, P ◦ Π−1

v ), D1(Hε‖v‖, P ◦ Π−1
v )
)

< ε, for all v ∈ Rp. (4.8)

Let M > 0 and let x ∈ Rp with ‖x‖ ≥ M . Thus

νk
{
(v1, ..., vk) ∈ (Rp)k : DT,k(x, P ) < ε

}
≥ νk

{
(v1, ..., vk) ∈ (Rp)k : DT,1(x, P ) < ε

}
= ν {v ∈ Rp : DT,1(x, P ) < ε} , (4.9)

where we assume that DT,1 is computed using v1.

If v ∈ Rp satisfies that |〈x, v〉| ≥ Hε‖v‖, then by (4.8), we get:

D1(Πv(x), P ◦ Π−1
v )) < ε and so {v ∈ Rp : |〈x, v〉| ≥ Hε‖v‖} ⊆ {v ∈ Rp : DT,1(x, P ) < ε} .
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Therefore, from (4.9),

νk
{
(v1, ..., vk) ∈ (Rp)k : DT,k(x, P ) < ε

}
≥ ν {v ∈ Rp : |〈x, v〉| ≥ Hε‖v‖}

≥ ν

{
v ∈ Rp :

| < x, v > |
‖x‖‖v‖

≥ Hε

M

}
(4.10)

= ν

{
v ∈ Rp :

| < e1, v > |
‖v‖

≥ Hε

M

}
,

where (4.10) comes from ‖x‖ ≥ M as it implies {v ∈ Rp : |〈x, v〉|M ≥ Hε‖v‖‖x‖} ⊆

{v ∈ Rp : |〈x, v〉|‖x‖ ≥ Hε‖v‖‖x‖} . In the last equality, e1 denotes the first element in

a fixed orthonormal base of Rd and the equality holds because ν is rotationally invariant.

Therefore, from this chain, we have

inf
x:‖x‖≥M

νk
{
(v1, ..., vk) ∈ (Rp)k : DT,k(x, P ) < ε

}
≥ ν

{
v ∈ Rp :

| < e1, v > |
‖v‖

≥ Hε

M

}
,

and the proof ends because, trivially,

lim
M→∞

ν

{
v ∈ Rp :

| < e1, v > |
‖v‖

≥ Hε

M

}
= 1.

Proof of Theorems 4.1.5 and 4.1.8.

Let k > 0 and v1, ..., vk ∈ X , which remain fixed during the proof. Let P be a probability

distribution on X , let x1, ..., xn ∈ X be a random sample taken from P and let Pn be the

associated empirical distribution. Let v ∈ {v1, ..., vk}. It is obvious that Πv(x1), ..., Πv(xn)

is a random sample taken from the distribution P ◦Π−1
v and that the empirical distribution

associated to those projections coincides with Pn◦Π−1
v . Moreover, P ◦Π−1

v is a distribution

on the real line and, then, the Glivenko-Cantelli theorem gives:

sup
y∈R

sup
(∣∣Pn ◦ Π−1

v (−∞, y]− P ◦ Π−1
v (−∞, y]

∣∣ , ∣∣Pn ◦ Π−1
v [y,∞)− P ◦ Π−1

v [y,∞)
∣∣)→ 0, a.s.

From here, we obtain

sup
y∈R

(
|D1(y, Pn ◦ Π−1

v )−D1(y, P ◦ Π−1
v )|

)
→ 0, a.s. (4.11)
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Therefore,

sup
x∈X

|DT,k(x, Pn)−DT,k(x, P )|

= sup
x∈X

| min
i=1,...,k

D1(Πvi
(x), Pn ◦ Π−1

vi
)− min

i=1,...,k
DT,k(Πvi

(x), P ◦ Π−1
vi

)|

≤ sup
x∈X ,i=1,...k

|D1(Πvi
(x), Pn ◦ Π−1

vi
)−D1(Πvi

(x), P ◦ Π−1
vi

)|

= sup
y∈R,i=1,...k

|D1(y, Pn ◦ Π−1
vi

)−D1(y, P ◦ Π−1
vi

)|,

which converges a.s. to zero because of (4.11).

4.2 Characterization of discrete distributions

In this section, we show that the Tukey depth (random or not) determines its correspond-

ing distribution under the appropriate hypotheses.

Here, we are in Rp and additionally to the notation we introduced in Section 4.1.3, we

employ the following: the unit sphere in Rp is denoted by Sp−1, σp−1 is the geometrical

measure on Sp−1 and, of course, 〈·, ·〉 is the usual scalar product in Rp. If x ∈ Rp, v ∈ Sp−1

and P is a Borel probability distribution on Rp, let

AP
x := {v ∈ Sp−1 : P (Hx,v) > P (x)}

cP
x,v :=

 1 if P{y ∈ Rp : 〈y − x, v〉 ≥ 0} ≤ P{y ∈ Rp : 〈y − x, v〉 ≤ 0}

−1 otherwise

Note that using cP
x,v we can rewrite SP

x,v as {y ∈ Rp : cP
x,v〈y − x, v〉 ≥ 0}. As we did in

previous section, to simplify, if there is no risk of confusion, the super-index P will be

omitted. Remember that with this notation, we have D1(Πv(x), P ◦ Π−1
v ) = P (Sx,v).

Given V ⊂ Sp−1 and x ∈ Rp, let us define DV (x, P ) := infv∈V D1(Πv(x), P ◦ Π−1
v ).

Thus, if P is a discrete distribution and Z is its support, we have that

DV (x, P ) := inf
v∈V

min

 ∑
z∈Z:Πv(z)≤Πv(x)

P (z),
∑

z∈Z:Πv(z)≥Πv(x)

P (z)

 . (4.12)
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In the case that V contains a single element v, we will write Dv(x, P ). Notice that, if V

is a set composed of k independent and identically distributed randomly chosen vectors

using the distribution ν, then DV (x, P ) = DT,k,ν(x, P ). In addition, the Tukey depth of a

point x with respect to P coincides with DSp−1(x, P ).

Two auxiliary results follow. They require no assumption on P .

Proposition 4.2.1. If P is a Borel distribution on Rp and x ∈ Rp, then σp−1(A
P
x ) = 0.

Proof.

If p = 1, the result is trivial because Hx,v = {x} for every v ∈ Sp−1. Thus, let us assume

that p > 1 and, also, that, on the contrary, σp−1(Ax) > 0. Thus, there exists α > 0 such

that if we denote

A∗
x := {v ∈ Sp−1 : P (Hx,v) > P (x) + α},

then σp−1 (A∗
x) > 0. Every sequence {vn} ⊂ A∗

x contains at least a couple of elements

vi1 , vi2 such that P (Hx,vi1
∩Hx,vi2

) > P (x) because, if not, we would have

P (∪nHx,vn) = P (x) + P (∪n(Hx,vn − {x})) = P (x) +
∑

n

P (Hx,vn − {x}) = ∞.

From here, the proof is ready if p = 2 because we can choose a sequence in A∗
x such that

all their components are pairwise linearly independent and, then Hx,vi1
∩Hx,vi2

= {x}.

Thus, let us assume that p > 2. Let us fix a hyperplane H ⊂ Rp such that 0 ∈ H. Let

ΠH be the projection map from Rp on H and SH be the unit sphere in H. Given h ∈ SH ,

let A∗
x,h = {v ∈ A∗

x : ΠH(v) = λh, for some λ ∈ R+}. By Fubini’s theorem we have that

0 < σp−1(A
∗
x) =

∫
SH

σ1(A
∗
x,h)σp−2(dh).

Therefore, we have that σp−2{h ∈ SH : σ1(A
∗
x,h) > 0} > 0, and, there exists H∗ ⊂

SH with σp−2(H
∗) > 0 such that for every h ∈ H∗ there exists a sequence {vh

n}n∈N ⊂

A∗
x,h composed of pairwise linearly independent vectors. Since A∗

x,h ⊂ A∗
x, each of those

sequences contains a pair of vectors vh
n1

and vh
n2

such that

P
(
Hx,vh

n1
∩Hx,vh

n2

)
> P (x).
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Thus, there exists β > 0 such that if we denote

Hβ :=
{

h ∈ H∗ : P
(
Hx,vh

n1
∩Hx,vh

n2

)
> P (x) + β

}
,

then, σp−2

(
Hβ
)

> 0.

Now, repeating the same reasoning as above, we have that for every sequence of

{hk}k∈N ⊂ Hβ there exists, at least, a couple h, h∗ such that

P
[(

Hx,vh
n1
∩Hx,vh

n2

)
∩
(
Hx,vh∗

n1
∩Hx,vh∗

n2

)]
> P (x).

Moreover, by the construction of the sequences, it turns out that the dimension of

Hx,vh
n1
∩Hx,vh

n2
is p−2 and if we choose h and h∗ linearly independent, then the dimension

of
(
Hx,vh

n1
∩Hx,vh

n2

)
∩
(
Hx,vh∗

n1
∩Hx,vh∗

n2

)
is p− 3. Thus the problem is solved if p = 3.

If p > 3, we have only to apply the previous reasoning to Hβ and the problem will be

solved if p = 4. If not, we will obtain a new set, whose dimension is a unit less. Thus,

since the dimension is finite, we only need to repeat the process a finite number of times

to get a contradiction.

Lemma 4.2.2. Let x ∈ Rp and {xn} ⊂ Rp a sequence such that xn 6= x for all n ∈ N and

limn xn = x. Then, if V ⊂ Ac
x, we have

lim inf
n

DV (xn, P ) ≥ DV (x, P )− P (x). (4.13)

Proof.

Let {un} ⊂ V be such that limn(Dun(xn, P ) − DV (xn, P )) = 0. By the definition of Ac
x

we have that

P (Hx,un) = P (x), for all n ∈ N. (4.14)

To obtain the result, it is sufficient to show that every subsequence {xnk
} contains a

further subsequence which satisfies (4.13). To do this, let {xnk
} be a subsequence of {xn}.

Let z, z′ ∈ Rp, z 6= z′ and u ∈ Sp−1. It is impossible that Sz,u ∩ Sz′,u = Hz,u by the

definition of those sets, (4.2), because this equality implies P (So
z,u) = P (So

z′,u) and then



55

by (4.2) we have Sz,u = Sz′,u and not Sz,u ∩ Sz′,u = Hz,u. Thus we get that Sz,u ⊂ Sz′,u;

Sz′,u ( Sz,u or Sz,u ∩ Sz′,u = ∅. Therefore the subsequence {xnk
} contains a subsequence

{xn∗k
} which satisfies one of the following statements

A Sx,un∗
k
⊆ Sxn∗

k
,un∗

k
, for every k ∈ N.

B Sxn∗
k
,un∗

k
⊂ Sx,un∗

k
, for every k ∈ N.

C Sxn∗
k
,un∗

k
∩ Sx,un∗

k
= ∅, for every k ∈ N.

If (A) is satisfied, then Sxn∗
k
,un∗

k
= Sx,un∗

k
∪(Sc

x,un∗
k

∩Sxn∗
k
,un∗

k
). The fact that limk xn∗k

= x

implies that limk P
(
Sc

x,un∗
k

∩ Sxn∗
k
,un∗

k

)
= 0. Thus,

lim inf
k

Dun∗
k
(xn∗k

, P ) = lim inf
k

Dun∗
k
(x, P ).

From this, the definition of {un}, and the definition of depth we deduce that

lim inf
k

DV (xnk∗ , P ) ≥ DV (x, P ) ≥ DV (x, P )− P (x).

In the case that (B) holds, we proceed similarly as in (A) since we have So
x,un∗

k

=

Sxn∗
k
,un∗

k
∪ (So

x,un∗
k

∩ Sc
xn∗

k
,un∗

k

) and limk P
(
So

x,un∗
k

∩ Sc
xn∗

k
,un∗

k

)
= 0. Then, this together with

the definition of {un} implies

lim inf
k

DV (xn∗k
, P ) = lim inf

k

(
Dun∗

k
(x, P )− P (Hx,un∗

k
)
)

= lim inf
k

Dun∗
k
(x, P )− P (x) ≥ DV (x, P )− P (x),

where the second equality is due to (4.14) and the inequality to the definition of depth.

If the subsequence verifies (C) we have that Sc
x,un∗

k

= Sxn∗
k
,un∗

k
∪ (Sc

x,un∗
k

∩ Sc
xn∗

k
,un∗

k

) and

limk P
(
Sc

x,un∗
k

∩ Sc
xn∗

k
,un∗

k

)
= 0, and then

lim inf
k

DV (xn∗k
, P ) = lim inf

k
Dun∗

k
(xn∗k

, P ) = lim inf
k

P (Sc
x,un∗

k

)

≥ lim inf
k

(
P (Sx,un∗

k
)− P (Hx,un∗

k
)
)
≥ DV (x, P )− P (x),

where the first inequality is due to the definition of Sx,un∗
k
, while the second one comes

from the definition of depth and (4.14).
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Now, we are in a position to prove the characterization result for random depths. Note

that when V is finite, Theorem 4.2.3 provides a characterization of the random Tukey

depth.

Theorem 4.2.3. Let P and Q be two probability measures. Assume that the support of

P is at most denumerable. Let V be a set at most denumerable of identically distributed

random vectors v : Ω → Sp−1 with distribution ν, absolutely continuous with respect to

σp−1, defined on the probability space (Ω, σ, κ). Let

Ω0 := {ω ∈ Ω : DV (ω)(x, P ) = DV (ω)(x, Q), for every x ∈ Rp}.

Then κ(Ω0) ∈ {0, 1}, and κ(Ω0) = 1 if and only if P = Q.

Proof.

Obviously, if P = Q, then Ω0 = Ω. Thus, the result will be proved if we show that

κ(Ω0) > 0 implies that P = Q. Therefore, let us assume that κ(Ω0) > 0.

Let Z be the support of P . To prove the theorem, it is enough to check that P (z) =

Q(z) for every z ∈ Z. The proof will be based on the following lemma.

Lemma 4.2.4. Let us assume the hypothesis of Theorem 4.2.3 and that Z is the support

of P. Let z ∈ Z. Let us define ΩP
z = {ω ∈ Ω : V (ω) ∩ AP

z = ∅} and similarly for Q. If

Ω0 ∩ ΩP
z ∩ ΩQ

z 6= ∅, then

P (z) ≤ Q(z).

By Lemma 4.2.4, if we take z ∈ Z, since ν is absolutely continuous with respect to σp−1

and V is at most denumerable, from Proposition 4.2.1, we have that κ(ΩP
z ) = κ(ΩQ

z ) = 1.

Thus, Ω0 ∩ ΩP
z ∩ ΩQ

z 6= ∅, and, from Lemma 4.2.4, we obtain P (z) ≤ Q(z), which

implies P = Q because if there were a z ∈ Z such that the inequality were strict, we

would have the contradiction

1 =
∑
z∈Z

P (z) <
∑
z∈Z

Q(z) ≤ 1.
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Note that the independence assumption in Definition 4.1.1 is not required in Theorem

4.2.3. We are not aware of any result generalizing this characterization to the continuous

case although we conjecture that it should remain valid.

Proof of the Lemma 4.2.4.

Let z ∈ Z and ω ∈ Ω. Let {vn(ω)} ⊆ V (ω) be such that

lim
n

Dvn(ω)(z, P ) = DV (ω)(z, P ). (4.15)

In what follows the symbol ω will be omitted in the notation.

As Sp−1 is a compact set and V ⊂ Sp−1, there exists a subsequence {vnk
} of {vn},

vz ∈ Sp−1 and c ∈ {−1, 1} such that limn vnk
= vz and that cP

z,vnk
= c, for every k ∈ N.

Without loss of generality, we can identify {vnk
} with {vn} and so write

lim
n

vn = vz and cP
z,vn

= c for all n ∈ N. (4.16)

Let {zn} ⊂ (SP
z,vz

)o such that limn zn = z. As zn /∈ Hz,vz , it happens that SP
zn,vz

⊂ SP
z,vz

,

for every n ∈ N and so, that P (SP
zn,vz

) ≤ P (SP
z,vz

)− P (Hz,vz), for all n ∈ N. Then,

lim sup
n

Dvz(zn, P ) ≤ Dvz(z, P )− P (Hz,vz). (4.17)

Denoting S := {y ∈ Rp : c〈y−z, vz〉 ≥ 0} and taking into account that P (S) ≥ P (SP
z,vz

)

and (4.15), we get

Dvz(z, P )−DV (z, P ) ≤ lim
n

(P (S)− P (SP
z,vn

)) (4.18)

= lim
n

(
P (So ∩ (SP

z,vn
)c) + P (Hz,vz ∩ (SP

z,vn
)c)− P (SP

z,vn
∩ Sc)

)
.

Let us see what happens with these three summands. Regarding the first one, due to

(4.16) we have

lim
n

P (SP
z,vn

∩ Sc) = lim
n

P ({y ∈ Rp: c〈y − z, vn〉 ≥ 0, c〈y − z, vz〉 < 0})

= P ({y ∈ Rp : 0 > c〈y − z, vz〉 ≥ 0}) = 0

and proceeding analogously with the first one, it is shown that limn P (So ∩ (SP
z,vn

)c) = 0.

Finally, focusing on the second one, as z /∈ (SP
z,vn

)c, we have that P ((SP
z,vn

)c ∩ Hz,vz) ≤
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P (Hz,vz)− P (z). From here and (4.18),

Dvz(z, P )− P (Hz,vz) ≤ DV (z, P )− P (z). (4.19)

As vz is in the closure of V, because of the definition of depth (4.12), we have

DV (zn, P ) ≤ Dvz(zn, P ). This, (1) and (2) imply that

lim sup
n

DV (zn, P ) ≤ DV (z, P )− P (z). (4.20)

Remember that V = V (ω) is a random set and that (4.20) holds for every ω ∈ Ω.

Now let us take ω ∈ Ω0 ∩ ΩP
z ∩ ΩQ

z . Thus by Lemma 4.2.2, it happens that

lim
n

DV (zn, P ) = DV (z, P )− P (z) (4.21)

and that

lim inf
n

DV (zn, Q) ≥ DV (z, Q)−Q(z). (4.22)

By the definition of Ω0, DV (zn, P ) = DV (zn, Q) for all n ∈ N and DV (z, P ) =

DV (z, Q). From here, (4.21) and (4.22), we obtain that P (z) ≤ Q(z).

We end the chapter with a result which generalizes the main result in Koshevoy [47].

Its proof follows closely the one given for Theorem 4.2.3 after the following technical

lemma.

Lemma 4.2.5. Let P be a probability distribution and let x ∈ Rp. If V ⊆ (AP
x )c is a

dense set in Sp−1, then

DV (x, P ) = DSp−1(x, P ).

Proof.

Let v0 ∈ Ax. By definition of Ax, we have that P (Hx,v0) > P (x). Let w1, ..., wp−1 ∈ Rp

such that v0, w1, ..., wp−1 is an orthogonal basis. Since

Hx,v0 = {y ∈ Hx,v0 : cx,v0〈y − x, w1〉 ≥ 0} ∪ {y ∈ Hx,v0 : cx,v0〈y − x, w1〉 ≤ 0},
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we have that

P{y ∈ Hx,v0 : cx,v0〈y − x, w1〉 ≥ 0} > P (x)

or, else,

P{y ∈ Hx,v0 : cx,v0〈y − x, w1〉 ≤ 0} > P (x).

Without loss of generality, we can assume that the second inequality holds. Repeating

the same reasoning for wi, i = 2, ..., p− 1, we can also assume that

P
[
∩p−1

i=1 {y ∈ Hx,v0 : cx,v0〈y − x, wi〉 ≤ 0} − {x}
]

> 0. (4.23)

Furthermore, the set W− := {v ∈ Rp : 〈v, wi〉 < 0, i = 1, ..., p − 1} is open in Rp.

Since V is a dense set and v0 belongs to the topological boundary of W−, there exists

{vn} ⊂ W− which converges to v0. This sequence satisfies that

DSp−1(x, P ) ≤ lim inf
n

Dvn(x, P ) ≤ lim inf
n

P ({y ∈ Rp : cx,v0〈y − x, vn〉 ≥ 0})(4.24)

≤ P
[
Sx,v0 −

(
∩p−1

i=1 {y ∈ Hx,v0 : cx,v0〈y − x, wi〉 ≤ 0} − {x}
)]

(4.25)

< P (Sx,v0) = Dv0(x, P ), (4.26)

where the first inequality is due to vn ∈ Sp−1 for all n, the second one to (4.2) and the last

one due to vn ∈ (Ax)
c for all n ∈ N but v0 ∈ Ax. The strict inequality is due to (4.23).

The result follows on from (4.24) because it is equal to the disjoint union of Ax

and (Ax)
c, that is, DSp−1(x, P ) = DAx∪(Ax)c(x, P ). Therefore, using (4.24), we have

DSp−1(x, P ) = D(Ax)c(x, P ) and as V ⊆ (Ax)
c is dense in Sp−1, we obtain DSp−1(x, P ) =

DV (x, P ).

Theorem 4.2.6. Let P and Q be two probability measures such that P is discrete and

that for any x ∈ Rp, DSp−1(x, P ) = DSp−1(x, Q). Then P = Q.

Proof.

Let z ∈ Z, with Z being the support of P . From Proposition 4.2.1, it is obvious that

VP,Q := (AP
z )c∩ (AQ

z )c is a dense subset of Sp−1, which satisfies Lemma 4.2.5 for P and Q.
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Moreover, we can consider that the set VP,Q is composed of a family of (non identically

distributed) random vectors with constant values equal to each element in this set. Let

us denote by (Ω, σ, κ) the probability space in which those random vectors are defined.

Obviously, κ{ω ∈ Ω : VP,Q(ω) ∩ AP
z = ∅} = κ{ω ∈ Ω : VP,Q(ω) ∩ AQ

z = ∅} = 1,

and, from this point on, we can repeat the proof of Theorem 4.2.3 to obtain the result

since, in the proof of Theorem 4.2.3, we only required the hypothesis of the set V to

be denumerable and of identically distributed random vectors in order to guarantee that

κ(ΩP
z ) = κ(ΩQ

z ) = 1.



Chapter 5

Applications of the random Tukey

depth

As stated before, it seems rather strange to employ a random quantity to measure some-

thing not random. The only way to decide whether this is reasonable or not is to look at

the results in practice. For this, we have selected some applications of depths which are

proposed in the literature. We have replaced in those applications the depth used by the

random Tukey depth and have compared the results. For more applications of depths,

see for example Li and Liu [50], Liu [51] and Liu and Singh [55, 56]. Before starting with

this program, we need to know how many projections should be taken in the computation

of the random Tukey depth. For this, we have carried out some simulations indicating

how many projections should be considered, depending on the kind of problem, sample

size and dimension of the sample space, among others. As a conclusion of this chapter,

it should be noted that this depth, based on a very low number of projections, obtains

results very similar to those obtained with other depths.

Section 5.1 is dedicated to the study of the number of vectors required in the random

Tukey depth, while the remaining two Sections compare the random Tukey depth with

other depths through simulations; Section 5.2 analyzes the multidimensional case and

61
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Section 5.3 the functional one.

5.1 How many random projections?

Obviously, Theorem 4.1 in Cuesta-Albertos et al. [15] also holds if ν is a probability dis-

tribution absolutely continuous with respect to the surface measure on the unit sphere

in Rp. In this section, we fix ν as the uniform distribution on the unit sphere to analyze

the question of the selection of k. Our proposal is to make this selection according to the

problem we have at hand; for instance with bootstrap (as in Section 5.2) or with cross-

validation (as in Section 5.3). However, it is good to first have an idea about the range

in which to look for this value. The obvious way to do this is to make some comparisons

between DT and DT,k for several dimensions, sample sizes and distributions; however,

the long computational times required to obtain DT make those comparisons impractical.

Rather than performing these comparisons, we have chosen situations in which the depth

of the points are clearly defined and can easily be computed with a different depth.

Let P be a probability distribution such that there exist µ ∈ Rp and Σ ∈ Rp×p positive

definite and the density function of P can be written as fP (x) = h[g(Σ−1/2(x − µ))],

where h : R+ → R is a decreasing function and g : R → R+ is a convex function

satisfying g(x) = g(|x|). Note that this definition includes the elliptical distributions

(where g(x) = x′x) as well as those distributions with an independent double exponen-

tial (where g(x) =
∑p

i=1 |xi|) or Cauchy marginals (where g(x) =
∏p

i=1(1 + x2
i )). As

this kind of distributions are halfspace symmetric, by item 2. in Definition 3.1.1, µ is

the deepest point. Moreover, it seems reasonable to consider x to be deeper than y if

g[Σ−1/2(x− µ)] ≥ g[Σ−1/2(y − µ)]. Thus, in this situation, every depth of a given point x

should be a monotone function of a decreasing function of g(Σ−1/2(x− µ)). In particular,

in the case of elliptical distributions, every depth should be a monotone function of the

Mahalanobis depth (see (3.2) for the definition). As DM(x, P ) = 1/(1 + g(Σ−1/2(x− µ)))
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when P is elliptical, let us define DM∗(x, P ) := 1/(1 + g(Σ−1/2(x − µ))) for the kind of

distributions we have here. Therefore, we can have an idea about the right k in DT,k

as follows: if P is of the kind we have here defined, DT (·, P ) should be a monotone

function of DM∗(·, P ). Thus, from (4.1), the larger the k, the larger the resemblance

between DT,k(·, P ) and a monotone function of DM∗(·, P ). However, there should exist

a value k0 from which this resemblance starts to stabilize, and, then, there is no point

in taking a k > k0. The analysis of these k0 will give us the information we are looking for.

Given that depths only attempt to rank points according to their closeness to the center

of P , it is logical to measure the resemblance between DT,k(·, P ) and DM∗(·, P ) looking

only at the ranks of the points. This is equivalent to using the Spearman correlation

coefficient, ρ. Then, the resemblance that we handle here is

rk,P := ρ (DT,k(X, P ), DM∗(X, P )) , (5.1)

where X is a random variable with distribution P . As stated, if P is a distribution of the

kind we have defined here, then the function k → rk,P is strictly increasing and we try to

identify the point k0 from which the increments become negligible. However, in practice,

we will not have a distribution P , but a random sample x1, ..., xn taken from P . This leads

us to replace P in (5.1) by the empirical distribution P n. To illustrate the behavior of

the function k → rk,Pn , we have represented it for different distributions, sample sizes and

dimensions in Figure 5.1. In this figure, the first column corresponds to centered Gaussian

distributions having covariance matrices with ones on the diagonal and 0.9 in all positions

off-diagonal. The remaining columns in Figure 5.1 represent, from left to right, standard

Gaussian distributions, distributions with independent double exponential marginals and

distributions with independent Cauchy marginals.

Dimensions and sample sizes vary in rows. We consider, from top to bottom, sample

sizes n = 25, 100 for R2, n = 50, 100 for R8 and n = 100, 500 for R50. The case n = 100

(second, fourth and fifth rows) can be used to see how the dimension affects the function
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Figure 5.1: Representation of the function k → rk,Pn defined in (5.1) for several dimensions,

sample sizes and distributions. The underlying models are described in the text.
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for a fixed sample size. The last row is different. In this row we take advantage of the

fact that we know the exact covariance matrix of the theoretical distribution. Thus, in

row number seven DM∗(·, P ) is computed with the exact value of Σ. In this case, we have

taken n = 500 in R50.

A final comment is related to the computation of the location center and the disper-

sion matrix (except in the last row) of P n, to be used in DM∗ . These parameters should

depend on the distribution which generated the sample. Hence, the covariance matrix

is an appropriate parameter in the Gaussian and double exponential case. However, it

is not adequate for the Cauchy distribution, where we have identified Σ with the robust

covariance matrix proposed in Maronna et al. [63, p. 206]. Furthermore, we have replaced

µ by the sample mean in the Gaussian case and by the coordinate-wise median in the

exponential and Cauchy settings.

In the graphs, k varies in set {1, ..., 25} in the first and second rows, in {1, ..., 100}

in the third, fourth and fifth rows, and in {1, ..., 500} in the last two rows. Moreover,

there are no obvious differences between using the theoretical covariance matrices or their

estimation nor between using the case of independent marginals or dependent ones. We

have verified more cases (not shown here) with similar results, for which we have analyzed

some intermediate dimensions, other sample sizes, and dispersion matrices with 0.5 in all

off-diagonal elements for the Gaussian, exponential and Cauchy distributions.

It seems that the graphs stabilize for k ≤ 10 if p = 2, k ≤ 60 if p = 8 and k ≤ 250 if

p = 50. These values are suitable for computations and, of course, are well below those

normally used to compute the Tukey depth.

Since P n does not follow the model exactly, the function rk,Pn is not necessarily in-

creasing and in fact it may sometimes, after an initial increase, start to decrease. We
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believe that this occurs because, although DT (x, Pn) is not exactly an increasing function

of DM∗(x, Pn), there exists a increasing function, δ, such that DT (·, Pn) and δ[DM∗(·, Pn)]

are very similar. Furthermore, as k increases, DT,k(x, Pn) approaches DT (x, Pn). Thus,

while DT,k(x, Pn) is not too close to DT (x, Pn), increments in k mean more similarity

between DT,k(x, Pn) and DM(x, Pn). However, from a certain point on, getting closer to

DT (x, Pn) implies moving away from DM(x, Pn).

5.1.1 Computational time

We end this section by paying some attention to the computational time required to com-

pute the random Tukey depth. As a comparison, we have selected the time necessary to

compute the Mahalanobis depth, which is one of the quickest depths according to Table

1 in Mosler and Hoberg [65]. In Table 5.1 we present the mean time required, from 200

simulations, to compute the random Tukey and Mahalanobis depths for all points in a

sample with the shown sizes and dimensions. The samples were drawn using a standard

normal distribution and the numbers of random directions used correspond with the upper

bounds obtained in the previous part of this section. Therefore, in this case DM∗ = DM .

To make a reliable comparison between the computational times, we need to compare

the time required to compute the random Tukey depth of a sample to the time required

to compute the Mahalanobis depth of the same sample. However, we must keep in mind

that the first depth to be computed may have an advantage as the RAM memory may

be cleaner than when the second depth is computed. In order to avoid this, we have

computed the random Tukey depth first 100 times and the Mahalanobis depth first 100

times. The computations have been carried out on a Xserve G5 PowerPC G5 Dual 2.3

GHz computer with 2Gb of RAM memory.

It can be observed that the time required to compute the random Tukey depth is
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Random Sample
Dimension Random Tukey Mahalanobis

vectors size

p = 2 k = 10 n = 25 4.349 · 10−4 .0014

n = 100 6.322 · 10−4 .0024

p = 8 k = 60 n = 50 .0047 .0017

n = 100 .0105 .0028

p = 50 k = 250 n = 100 .1153 .0047

n = 500 .5596 .0158

Table 5.1: Time, in seconds, to compute the random Tukey and the Mahalanobis depths of all

points in a sample

acceptable in every case. Moreover, it is better than that required to compute the Ma-

halanobis depth for low dimensions like p = 2, of the same order of magnitude for p = 8

and worse for dimensions around 50.

5.2 Multidimensional random Tukey depth. Testing homogene-

ity

Our goal in this section is to show how the random Tukey depth, with values for k of

the order suggested by Figure 5.1, provides results which are similar to those obtained

in practice with the Tukey depth. To this end, we are going to reproduce the simula-

tion study carried out in Liu and Singh [57], where the authors apply depth measures

to test differences in homogeneity between two 2-dimensional distributions. Since the

Tukey depth is computable when the dimension is two, this is a good framework for the

comparison.

Let us begin with a brief description of the procedure proposed in Liu and Singh [57]

to test differences in homogeneity by using depth measures. Additional details can be
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found in Liu and Singh [57].
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Figure 5.2: Random Tukey depth using five random projections (left-hand side) and Tukey depth

(right-hand side) of two samples of size 100 drawn with 2-dimensional Gaussian distribution with

a different scale.

Assume that we have two random samples {X1, ..., Xn1} and {Y1, ..., Yn2} taken from

the centered distributions P and Q, respectively. Let us assume that those distributions

coincide except for a scale factor, i.e., we assume that there exists r > 0 such that

the random variables {rX1, ..., rXn1} and {Y1, ..., Yn2} are identically distributed. The

problem consists in testing, at level α, the hypotheses:

H0 : r = 1 (both scales are the same)

Ha : r > 1 (Q has a larger scale).

Under the alternative, the observations in the second sample should appear in the outside

part of the joint sample {X1, ..., Xn1 , Y1, ..., Yn2}, and, consequently, should have lower

depths than the points in the first sample. We can see this in each plot of Figure 5.2

where two samples are represented, the first one in circles and the second one in triangles.

In the left-hand side plot, the colors are chosen using the random Tukey depth with five

random projections and in the right-hand side with the Tukey depth. As before, dark red
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means high depth and dark blue low depth. Both samples have size 100 and were drawn

using a 2-dimensional standard Gaussian distribution and multiplying the second sample

by two. The colors of each of the elements depend on their depth in the joint sample. We

have taken in Figure 5.2 only five vectors to compute the random Tukey depth due to we

will see later that a low number is enough to test homogeneity.

Therefore, it is possible to test H0 against Ha by computing the depths of the points

{Y1, ..., Yn2} in the joint sample, replacing them by their ranks and rejecting H0 if those

ranks are small. The Wilcoxon rank-sum test can be used to test when the ranks of the

points {Y1, ..., Yn2} are small. In Liu and Singh [57] several possibilities are proposed to

break the ties. We have tried all of them, with no relevant differences. Thus, we have

chosen random tie-breaking as the only method to be presented here.

To select the number of random projections, we have come up with the following

bootstrap-based process. According to the graphs in Figure 5.1, the number of required

directions should be less than 10, since we are in dimension two. Just to be on the

safe side, we begin by selecting 25 vectors at random, v1, ..., v25. Our aim is to choose a

subset v1, ..., vk, with k ≤ 25. For that, let us denote by Z a sample formed by joining the

samples that we have. That is, Z := {X1, ..., Xn1 , Y1, ..., Yn2}. To choose k we have applied

the test 100 times to two bootstrap samples taken from Z where the second bootstrap

sample is modified so that it satisfies the alternative hypothesis for some r in the grid

R := {1.1, 1.2, 1.3, 1.5, 1.7, 2, 2.5, 3, 4, 5, 7, 10, 20, 30, 40, ...}. The process is as follows:

1. Draw two bootstrap samples, I and J , from Z, respectively with sizes n1 and n2.

2. Center I and J in median, separately.

3. Initialize k = 1 and i = 1.

4. Multiply the vectors in J by the i-th element in R.

5. Compute the random Tukey depth of the points in I ∪ J using the vectors v1, ..., vk.
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6. If H0 is rejected at level α, then keep a record of k and finish.

Else: if k = 25, then go back to point (4) with k = 1 and i = i + 1.

Else: go back to point (5) with k = k + 1.

With respect to the centering in median of the bootstrap samples (item 2.), it should

be noted that when there is at most one observation with the same value as the median,

the procedure we have presented above remains valid. However, let us assume that the

sample J contains several values (let us say h > 1) which coincide with its median, mJ .

After centering, those values go to zero, and they are not modified when multiplying by

a value r. Thus, since those values remain in the inner part of the joint sample, the null

hypothesis is never rejected in the bootstrap world. In order to avoid this undesirable

behavior, we have defined

Jl := sup{z ∈ J : z < mJ} and Ju := inf{z ∈ J : z > mJ},

and replaced those repeated values which coincide with the median by a random sample

with size h taken with the uniform distribution in the interval ((Jl +mJ)/2, (Ju +mJ)/2).

Then, we have centered the modified sample of J using the median computed in this

modified sample which contains no repeated data.

At the end of the bootstrap step, we have 100 values of k, where each corresponds to

the number of vectors used the first time the homogeneity hypothesis was rejected in the

bootstrap world. Equivalently, every k = 1, ..., 25 has associated the number of times,

nk ≥ 0, in which the null hypothesis was rejected using the vectors in the set {v1, ..., vk}.

Since we have made 100 bootstrap replications, it is obvious that n1 + .... + n25 = 100.

The precise k to be used in the real-world test should be chosen based on the infor-

mation provided by the probability distribution which gives mass nk/100 to the point

k = 1, 2, . . . , 25. We have considered four possibilities: the mean, the median, the 80%

percentile and even the maximum of this distribution. We have repeated the procedure
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5,000 times using the four posibilities.

In Table 5.2 we show the rates of rejections when we carry out the test at the sig-

nificance level α = .05. The distributions used in the simulations are the 2-dimensional

standard Gaussian, and the double exponential and Cauchy with independent marginals.

We have considered the values r = 1, 1.2, 2, and n1 = n2 = n with n ∈ {20, 30, 100}, and

have made 5,000 simulations for each combination of distribution, sample size and r.

Sample size n = 20 n = 30 n = 100

Scale factor r = 1 r = 1.2 r = 2 r = 1 r = 1.2 r = 2 r = 1 r = 1.2 r = 2

mean .053 .119 .541 .053 .157 .714 .054 .270 .991

Cauchy medi .053 .121 .525 .054 .153 .699 .053 .261 .986

perc .054 .120 .540 .053 .159 .716 .053 .279 .993

max .053 .122 .540 .054 .155 .715 .053 .279 .991

mean .047 .208 .937 .048 .294 .993 .049 .656 1

Gaussian medi .050 .200 .928 .048 .279 .989 .048 .636 1

perc .048 .212 .938 .046 .297 .995 .048 .687 1

max .047 .214 .940 .049 .303 .995 .044 .702 1

mean .053 .170 .827 .048 .207 .948 .049 .457 1

D. Exp. medi .053 .164 .813 .050 .201 .936 .048 .444 1

perc .051 .170 .828 .050 .216 .950 .048 .476 1

max .046 .164 .824 .052 .214 .951 .048 .487 1

Table 5.2: Rates of rejections in 5,000 simulations using the random Tukey depth for the consid-

ered methods to choose k, distributions, sample sizes and values of r. The dimension is p = 2.

The significance level is .05.

From the table, it can be observed that the rejection rates depend on the distribution

and, of course, on the value of r we have each time and not so much on the method used

to select the number of random projections. Despite the low differences, the worst rates



72

were obtained with the median and the next worst with the mean. The rates obtained

were very close when employing the 80% percentile and the maximum.

The number of projections used varies with the method employed to select them, the

distribution and the sample size. In particular, they decrease with the sample size. This

can be observed in Table 5.3, where the medians of the number of vectors used in each

case are displayed.

Sample size n = 20 n = 30 n = 100

Scale factor r = 1 r = 1.2 r = 2 r = 1 r = 1.2 r = 2 r = 1 r = 1.2 r = 2

mean 5 5 5 4 4 4 3 3 3

Cauchy med 3 3 3 2 2 2 2 2 2

perc 8 8 8 6 6 6 3 3 3

max 24 24 24 23 23 24 18 18 18

mean 5 5 5 4 4 4 3 3 3

Gaussian medi 3 2 2 2 2 2 2 2 2

perc 6 6 7 5 5 5 3 3 3

max 24 24 24 23 23 23 17 17 18

mean 5 5 5 4 4 4 3 3 2

D. Exp. medi 2 2 2 2 2 2 2 2 2

perc 7 7 7 5 5 5 3 3 3

max 24 24 24 23 23 23 18 18 18

Table 5.3: Medians of the number of employed random vectors in each of the cases of Table 5.2.

The small differences in the rejection rates of Table 5.2 suggest that the precise value

of k is not significant in terms of application. The small values of k obtained for all the

procedures (except the maximum) reinforce the impression provided by Figure 5.1 that

values for k well below 10 are enough for dimension p = 2.
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In order to compare with the Tukey depth, Table 5.4 contains the rejections obtained

with the 80% percentile and, between parenthesis, the rejection rates when the random

Tukey depth is replaced by the Tukey depth computed using 1,000 directions uniformly

scattered on the upper halfspace.

Sample size n = 20 n = 30 n = 100

Scale factor r = 1 r = 1.2 r = 2 r = 1 r = 1.2 r = 2 r = 1 r = 1.2 r = 2

Cauchy .054 .120 .540 .053 .159 .716 .053 .279 .993

(.055) (.125) (.539) (.049) (.146) (.704) (.049) (.291) (.991)

Gaussian .048 .212 .938 .046 .297 .995 .048 .687 1

(.049) (.216) (.940) (.052) (.292) (.995) (.049) (.699) (1)

D. Exp. .051 .170 .828 .050 .216 .950 .048 .476 1

(.057) (.174) (.824) (.050) (.223) (.943) (.048) (.495) (1)

Table 5.4: Rates of rejections in 5,000 simulations using the random Tukey depth (between

parentheses, the rate with DT ) for the considered distributions, sample sizes and values of r.

The dimension is p = 2. The significance level is .05.

In Liu and Singh [57], previous ideas are also applied to verify the homogeneity among

K samples, K > 2. Let {X1,1, ..., X1,n1}, ..., {XK,1, ..., XK,nK
} be random samples ob-

tained, respectively, from the distributions P1, ..., PK and let us assume that there exists

r1, ..., rK−1 > 0 such that the random vectors

{r1X1,1, ..., r1X1,n1}, ..., {rK−1XK−1,1, ..., rK−1XK−1,nK−1
} and {XK,1, ..., XK,nK

}

are identically distributed. We are interested in testing the following hypotheses:

H0 : ri = 1, i = 1, ..., K − 1 (all scales are the same)

Ha : there exists ri 6= 1 (scales are different).
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For this, we center each sample separately, join all the observations in a single sample,

compute the depths of all the points with respect to the empirical distribution of the

single sample and transform those depths into ranks. Note that under the alternative, we

should expect that some of the samples have higher ranks in mean than the rest. Then,

we can apply the Kruskal-Wallis test (see Hettmansperger [43]) to verify whether there is

a lack of homogeneity among the samples.

We have carried out a simulation study applying this procedure in the 2-dimensional

case using the Tukey depth and the random Tukey depth with Gaussian distributions,

K = 3 and sample sizes n1 = n2 = n3 = n, where n ∈ {20, 30}. We have carried out 5,000

replications in each case at the significance level α = .05. The selection of k to compute

the random Tukey depth is made analogously to the previous case, excepting that in the

bootstrap procedure we take now three bootstrap samples and, after centering, multiply

just one of them by the values of r in the grid.

Sample size

n = 20 n = 30
Covariance matrix

mean medi perc max mean medi perc max

r1 = r2 = 1 .040 .044 .040 .041 .043 .044 .041 .043

r1 = r2 = 1.2 .119 .114 .116 .119 .177 .170 .179 .177

r1 = 2, r2 = 1.2 .845 .815 .845 .849 .964 .954 .970 .974

r1 = r2 = 2 .930 .914 .938 .939 .994 .990 .997 .996

Table 5.5: Rates of rejections for 3 samples in 5,000 simulations, using the random Tukey

depth, for the considered methods to choose k, distributions, sample sizes and values of r. The

dimension is p = 2. The significance level is .05.

At the end of the bootstrap step, we have tried the same four procedures to select k as

in the previous case, also obtaining here similar rejection rates for the four cases. These
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rejection rates are displayed in Table 5.5.

In order to compare the random Tukey depth with the Tukey depth, in Table 5.6 we

present the rejection rates obtained when the precise value of k is selected with the 80%

percentile procedure and, in brackets, the corresponding value of the Tukey depth. Note

that the rejection rates using DT of Table 5.6 have been taken directly from Liu and Singh

[57].

Sample size
Covariance matrix

n = 20 n = 30

r1 = r2 = 1 .04 (.04) .04 (.04)

r1 = r2 = 1.2 .12 (.13) .18 (.18)

r1 = 2, r2 = 1.2 .85 (.85) .97 (.98)

r1 = r2 = 2 .94 (.94) 1 (.99)

Table 5.6: Rates of rejections in 5,000 simulations using DT,k (between parentheses the rate

with DT ) to test the homogeneity in three samples of Gaussian distributions with independent,

identically distributed marginals and the exposed values of r. The dimension is p = 2. The

significance level is .05.

In addition, we have computed the medians of the selected numbers of vectors used

in each of the four procedures for each of the covariances and sample sizes. These are

displayed in Table 5.7.

The results of both studies in this subsection are quite encouraging because there are

no important differences between the rejection rates with the two depths despite the com-

paratively low number of directions used to compute the random Tukey depth.
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Sample size

n = 20 n = 30
Covariance matrix

mean medi perc max mean medi perc max

r1 = r2 = 1 4 2 5 23 4 2 4 22

r1 = r2 = 1.2 4 2 5 23 4 2 4 22

r1 = 2, r2 = 1.2 4 2 5 23 3 2 4 22

r1 = r2 = 2 4 2 5 23 3 2 4 22

Table 5.7: Medians of the number of employed random vectors in each of the cases of Table 5.5.

5.3 Functional random Tukey depth. Functional classification

In this section, we deal with an application of the functional random Tukey depth. Here,

we will select the number of random directions to employ using cross-validation.

In this setting, we have an additional problem. In the finite dimensional case, it seems

reasonable to choose the random directions using the uniform distribution on the sphere

because of its invariance properties. Regrettably, in infinite dimensional spaces, there is

no distribution with such good properties, making the selection of the random directions

more arduous. One interesting possibility is to choose the distribution depending on the

problem. This way a problem-specific procedure would be designed to select a distribution

with some optimality properties. In the subsection which follows, some predictions of the

results that could be obtained with a complete development of the theory are proposed,

since the work required to do that exceeds the limits of this thesis. Here, we have taken

first ν to be equal to the distribution of the standard Brownian motion. Then, we have

tried some modifications of this distribution, which have improved the behavior of the

procedure. Moreover, since those modifications are, in fact, parameter-dependent, we

have chosen the values of the parameters with cross-validation. Some related results on

the selection of referential measures in functional spaces appear in Ferraty and Vieu [28].
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5.3.1 Application to classification

Here we study a real example. Our aim is to compare the random Tukey depth with

some other functional depths in a practical situation. The situation we have chosen is a

supervised classification problem which was carried out in López-Pintado and Romo [60].

In this paper, the authors analyze a data set consisting of the growth curves of a sample

of 39 boys and 54 girls, the aim being to classify them, by sex, using just this information.
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Figure 5.3: Growth curves of 54 girls (left-hand side) and 39 boys (right-hand side) measured

31 times each between 1 and 18 years of age.

Heights were measured in centimeters 31 times in the period from one to eighteen

years. In the period from one to two years, the measures were taken each three months,

in the period from three to seven years one time a year and, finally, in the period from

eight to eighteen years two times a year. The data are in the file growth.zip, downloaded

from ftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/Matlab. In this web-page can also

be found some notes that make use of the data. Those notes were designed to accompany

the books by Ramsay and Silverman [72, 73]. In addition, these data are used in the

recent book by Ramsay et al. [74]. We represent the data in Figure 5.3.
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We are mainly interested in comparing the random Tukey depth in the functional

setting with other functional depths. Thus, in the first part we will follow as closely as

possible the steps in López-Pintado and Romo [60], except that we will replace the depth

that those authors employ with the random Tukey depth.

After this, we have compared our results with those obtained with two other proce-

dures not based on depths. The k nearest neighbors, k-NN, (see, for instance, Biau et al.

[7]) and a kernel procedure (see Abraham et al. [1] and Ferraty and Vieu [29]). The idea

for the kernel procedure is to consider a new random variable Z ∈ {0, 1} which contains

the group to which the observation belongs. Thus, if x0 is the observed curve, it is pos-

sible to apply a kernel method to estimate the conditional probability P[Z = i/X = x0]

for i = 0, 1 and, then, classify the observation in the group in which this probability is

highest. We have employed two kernels: the first kernel tried is K(u) = 1[0,1](u) and the

second is the quadratic one, K(u) = (1− u2)1[0,1](u).

Furthermore, since we only have 31 observations for each individual, we can also con-

sider the data as multidimensional ones and so, it is of some interest to make a comparison

with a multidimensional classification procedure. To this end, we have used the random

forests procedure. This is a procedure which is a combination of tree predictors in which

each tree is determined by the values of a random vector which has the same distribution

for all the trees in the forest (see Breiman [9] for more details).

It is well known that when handling this kind of data, it is useful to consider not only

the growth curve but also accelerations of height (see, for instance, Ramsay and Silverman

[72]). However, we only consider here the growth curves, as did López-Pintado and Romo

[60], because our main interest is to compare our results with those obtained by them.

Through the following, we first summarize the classification procedures using depths
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that we will use; secondly, we see how to choose the distribution and number of vectors

when working with the random Tukey depth; then we see how to handle the problem

in practice when reproducing López-Pintado and Romo [60]; and finally we compare the

results obtained with the random Tukey depth with the other classification procedures.

Classification procedures using depths

Thus, let us assume that we have two samples X1, ..., Xn and Y1, ...., Ym in a separable

Hilbert space, H selected from two populations and that we are interested in classifying

another curve Z ∈ H in one of those groups using a depth D to be chosen later. Three

classification methods are proposed in López-Pintado and Romo [60]. They are

1. Distance to the trimmed mean (Mα,β)

For this method, we first compute the depths of the points in the sample X1, ..., Xn

with respect to their empirical distribution and choose α ∈ [0, 1). Then, the α-

trimmed mean of this sample, µα(X), is the mean of the n× (1−α) deepest points.

Given β ∈ [0, 1), compute similarly µβ(Y ), the β-trimmed mean of the sample

Y1, ...., Ym.

Now, we classify Z in the first group if

‖Z − µα(X)‖ < ‖Z − µβ(Y )‖.

Otherwise, we classify Z in the second group.

2. Weighted average distance (AM)

In some sense, in method M, each group is represented by its trimmed mean. Here,

we compute the distance between Z and the group as a weighted mean of the dis-

tances between Z and the members of the group where the weights are the depths

of the points.

Thus, we classify the function Z in the first group if∑n
i=1 ‖Z −Xi‖DX(Xi)∑n

i=1 DX(Xi)
<

∑m
j=1 ‖Z − Yj‖DY (Yj)∑m

j=1 DY (Yj)
, (5.2)
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where the subscripts in DX and DY mean that the depths are computed with respect

to the empirical distribution associated to the corresponding sample.

3. Trimmed weighted average distance (TAM)

In the AM method, the result of the classification could be affected by the number

of elements in each sample if n 6= m. The solution for this consists in taking a third

value l ≤ min(n,m) and replacing (5.2) by∑l
i=1 ‖Z −X(i)‖DX(X(i))∑l

i=1 DX(X(i))
<

∑l
i=1 ‖Z − Y(i)‖DY (Y(i))∑l

i=1 DY (Y(i))
,

where X(1) is the deepest point in the X-sample, X(2) is the second deepest point

in the X-sample, ... and similarly for the Y -sample. When handling this procedure,

l = min(n,m) in López-Pintado and Romo [60] is applied.

We have also included two additional procedures not considered in López-Pintado and

Romo [60]. The first one was proposed in Ghosh and Chaudhuri [37] and first used in the

functional case in Cuevas et al. [23].

4. Maximum Depth (MD)

It consists, simply, of adding the observation Z to the two training samples, com-

puting its depth in each of the two new samples and classifying Z in the group in

which its depth is greater.

The MD procedure performs well only if the two populations differ in location and the

prior probabilities are equal, as previously recognized by Ghosh and Chaudhuri [37]. In

order to alleviate this problem, the following procedure is proposed in Li et al. [49].

5. DD-plot ratio (DD)

Let us denote X̂ := {X1, ..., Xn, Z} and Ŷ := {Y1, ..., Yn, Z}. We first compute the

r which minimizes
n∑

i=1

I{DŶ (Xi)>rDX̂(Xi)} +
m∑

i=1

I{DŶ (Yi)<rDX̂(Yi)}

and classify the function Z in the first group if DŶ (Z) < rDX̂(Z).



81

We thank R. Liu for the suggestion of using DX̂ instead of DX which, in practice,

gives a smaller classifying error.

Distribution and number of vectors for the random Tukey depth

Regarding the selection of the distribution ν used to select the directions to project, we

have tried several procedures. The first is to choose ν as the distribution of the standard

Brownian motion. The remaining possibilities are intended to take advantage of the

differences which appear among the training samples. To do this, we first compute the

functions containing the point-wise medians of the trajectories in both training samples.

That is, for every t ∈ [1, 18] we compute

mX(t) := median{X1(t), ..., Xn(t)}, and mY (t) := median{Y1(t), ..., Ym(t)}.

Now, we take for ν the distribution of the solution of the following stochastic differential

equation

Sa,c(0) = c and dSa,c(t) = |mX(t)−mY (t)|adB(t),

where B is a standard Brownian motion. Here, we choose a ∈ {0, 1}. In the first case,

the difference between the functions mX and mY has no influence on ν. The constant c

specifies the initial value for the solution. We have tried the values c = 0, 1, 5. The reason

for introducing c is that the Brownian motion always starts at 0 and is continuous, thus

erasing the differences in the early states of the process. Particularly, the distribution of

S0,0 is the standard Brownian motion.

Given a, c, to simulate the random trajectories and bearing in mind the times in which

the heights were measured, we have taken ti ∈ [1, 18], i = 1, ..., 31 such that

• ti = 3/4 + i/4 for i = 1, ..., 5,

• ti = i− 3 for i = 6, ..., 10,

• ti = 2.5 + i/2 for i = 11, ..., 31.
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Then we have defined

Sa,c(t1) = c

Sa,c(ti) = Sa,c(ti−1) + |mX(ti)−mY (ti)|aZi, i = 2, ..., 31,

where Zi, i = 2, ..., 31, are independent random variables with distribution N(0, ti−ti−1) .

Concerning k, the simulations in Section 5.1 suggest that high values for k are not

required. The following results have been obtained by selecting k ∈ {1, ..., 100}. Although

the length of the interval might be considered too low, we have repeated the process re-

placing 100 by 1,000 and the results obtained have been similar.

The right values of k, a and c have been obtained by leave-one-out cross validation.

The problem in practice

In this section, we compare our depth with those proposed in López-Pintado and Romo

[60]. To do this, we have repeated the study made there with three differences:

1. Most importantly, we have replaced the functional depths handled there with the

random Tukey depth.

2. In López-Pintado and Romo [60], the authors consider the curves as elements in

L1[0, 1], which is not possible here, because we need a separable Hilbert space. We

take H = L2[0, 1].

3. In López-Pintado and Romo [60], the authors smoothed the original data using a

spline basis. We have skipped this step because it is not necessary for our method.

Regarding item 2., remember that the heights were measured 31 times in the interval

[1, 18]. Therefore, first, we need to modify the time in order to transform this interval to
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[0, 1] and, then, we can employ properties of the Rieman integral to make the approxima-

tion

< X, sa,c > =

∫ 1

0

X (17u + 1) sa,c(17u + 1)du ≈
31∑
i=1

X(ti)sa,c(ti)∆i,

where sa,c is drawn with distribution Sa,c and ∆i denotes the length of the interval asso-

ciated to the point ti. Concerning those intervals, if i = 2, . . . , 30, then the observation

X(ti) works for the interval ((ti + ti−1)/2, (ti+1 + ti)/2). Taking into account that, in the

last part, the measurements were taken every half a year, we can assume that X(t31) is

valid for the period (17.5, 18.5). Finally, it seems safest to assume that the X(t1) is not

good to represent previous heights. Then, if we define t0 = 1 and t32 = 18.5 we take

∆i = (ti+1 − ti−1)/35, i = 1, ..., 31.

In López-Pintado and Romo [60], the authors consider three possibilities to split the

sample into training and validation sets. For the sake of brevity, we split the sample using

only leave-one-out cross-validation.

Let us briefly explain how the whole process works. Note that we have a sample of

size 93. Therefore, we have repeated 100 times the following: for each observation in

the sample, we consider the training sample composed of the remaining 92 observations.

Then, we have generated at random 100 vectors with each of the distributions of the ran-

dom variables Sa,c for a = 0, 1 and c = 0, 1, 5, which gives 6 different samples of random

directions with size 100 each.

Firstly, we have focused our attention on the S0,0 distribution. Here we only have to

select the value of k. As stated previously, this value is chosen by leave-one-out cross-

validation applied to the remaining sample with 92 observations. From now on, this

procedure is called S0,0.

Moreover, we have applied the procedure, allowing variations in a and c. Here, we

have chosen, also using leave-one-out cross-validation, the best combination of k, a and c.
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From now on, this procedure is denoted by Sa,c. Note that in this case, it may occur that

the chosen a and c satisfy a = c = 0.

The results of the comparison appear in Table 5.8, which include the obtained failure

rates using the methods proposed in López-Pintado and Romo [60], Mα,β, AM and TAM,

when applied to the random Tukey depth and to their depths. We have chosen α = β = 0.2

as done in López-Pintado and Romo [60]. The depths handled in López-Pintado and Romo

[60] are the band depth determined by three different curves (DS3), (3.3), by four different

curves (DS4), (3.3), and the generalized band depth (DGS), (3.4). Their error rates are

contained in the last three columns of Table 5.8 and have been taken from Tables 1-3

in López-Pintado and Romo [60]. The previous two columns of Table 5.8 concern the

random Tukey depth. The first includes the failure rates when using the procedure S0,0

and the second one when using Sa,c. In this last case, a varies in {0, 1} and c in {0, 1, 5}.

Classification Random Tukey Depths proposed in [60]

method S0,0 Sa,c DS3 DS4 DGS

Mα,β .1858 .1825 .1828 .1828 .1613

AM .1403 .1368 .2473 .2473 .1935

TAM .1542 .1430 .2436 .2436 .1690

Table 5.8: Rates of mistakes when classifying the growth curves by sex for the shown methods

and depths.

According to Table 5.8, for the AM and TAM methods, the random Tukey depth pro-

vides better results than the depths used in López-Pintado and Romo [60] when we take

the standard Brownian motion and even better when parameters a, c in Sa,c are chosen

with cross-validation. The medians of the number of random vectors used have been 1

for each of the three methods with S0,0. In the case of Sa,c, the median of the number

of random vectors has been 2 for the Mα,β method and 1 for any of the other two methods.
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The conclusion is that the AM method works better than Mα,β, and TAM. It is worth

pointing out that TAM is worse than AM because AM uses some information that TAM

does not.

One possibility which we have not pursued is to modify α and β in Mα,β. The reason

for this is that, in this section, we are mostly interested in comparing our depth with

those proposed in López-Pintado and Romo [60].

Comparison with other classification procedures

In this section, we compare the DD method using the random Tukey depth with other

non depth-based procedures. However, since, as far as we know, this is the first time that

this method has been applied in the functional setting, we also provide the results from

applying the MD method.

We combine these with the two methods we have presented to select the random di-

rections: S0,0 and Sa,c, where the values of a and c are chosen by cross-validation. The

results appear in Table 5.8 and for MD and DD in Table 5.9. The median of the number

of employed random directions is 20 for the MD method and 25 for the DD method when

combined with S0,0. It is 6 for the MD method and 25 for the DD method when combined

with Sa,c.

Classification method S0,0 Sa,c

MD .1317 .1141

DD .1194 .0945

Table 5.9: Rates of mistakes when classifying the growth curves by sex for the shown methods

and the random Tukey depth.
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As expected, the DD method outperforms the MD, but the improvement is not dra-

matic. This fact suggests the interesting question, not pursued here, of when the differ-

ences in the curves are due only to a translation. Figure 5.4 suggests that the answer

could be affirmative. This figure contains the curves of both sexes, girls in red and boys

in blue, after centering each of the groups by its coordinate-wise median.
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Figure 5.4: Growth curves of 54 girls (red) centered by its coordinate-wise median and of 39

boys (blue) also centered by its coordinate-wise median.

The next step is to classify the same data using the random forests, the k-NN and

the kernel methods. Regarding the random forests, we have employed it with 100 trees.

Concerning the k-NN method, we have used three possibilities for selecting the number of

nearest neighbors. The first two have consisted in fixing k = 1 and 3, respectively. In the

third, we have chosen k between 1, 3, ..., 91 with leave-one-out cross-validation. The value

chosen in the last possibility was always 3. This explains that the rates of failures were

the same in the second and third case (see Table 5.10). Finally, we have applied a kernel

method with the indicator of the interval [0, 1] and the quadratic kernel. The selection of

the window was accomplished as follows: given the training sample X1, ..., X92, we have
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considered the values

hm = min{‖Xi −Xj‖, i 6= j, i, j = 1, ..., 92},

hM = max{‖Xi −Xj‖, i, j = 1, ..., 92}.

We have chosen the window applying leave-one-out cross-validation to the grid of values

hm + i(hM − hm)/50, i = 0, 1, ..., 50.

k-NN Kernel
Random Forests

1-NN 3-NN cross-val. Indicator Quadratic

.0968 .0753 .0323 .0323 .0645 .0430

Table 5.10: Rates of mistakes when classifying the growth curves by sex using cross validation

for the shown methods.

The rates of mistakes appear in Table 5.10. Note that the rate of mistakes of both

random Tukey procedures are well above those obtained with the k-NN and the kernel

method, but they are similar to that obtained with random forests. However, the im-

provement which appears between the first and the second column in Table 5.9 makes us

relatively optimistic about the results which could be obtained if an optimal procedure

to select the distribution ν were applied.
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Chapter 6

Test of Gaussianity for stationary

processes

In this chapter, we address the statistical problem of testing whether a stationary process

is Gaussian. The observation consists in a sample of a path of the process. Using the

random projection technique introduced and studied in Cuesta-Albertos et al. [12] in the

frame of goodness of fit test for functional data, we develop some statistical tests. The

main idea is to test the Gaussianity of the marginal distribution of some random linear

combinations of the process. This leads to consistent decision rules which analyze the

whole distribution of the process and not only its marginal distribution at a fixed order

as other proposed procedures do. Some numerical simulations show the pertinence of our

approach.

The first section introduces the procedure proposed. It has several subsections, de-

voted to explaining the procedure and its application with the Epps and the Lobato and

Velasco tests. Section 6.2 explains how to handle the test in practice. Finally, in Sec-

tion 6.3 we study some simulations, where the alternatives include both processes with

Gaussian and non-Gaussian one-dimensional marginal. This section ends with a short

comment on the effect of increasing the number of projections.

89
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The notation and definitions used here were stated in Chapter 3.

6.1 The procedure

In this section we present a universal test to verify whether the distribution of a stationary

process is Gaussian. Thus, given X := (Xt)t∈Z, a stationary process of real-valued random

variables we are interested in constructing a test for the null hypothesis

H0 : X is Gaussian

against the alternative

Ha : X is not Gaussian.

Note that H0 holds if, and only if (X1, . . . , Xt)
T is a Gaussian vector, for all t ∈ N. As

X is stationary, this is equivalent to the distribution of (Xt)t≤0 is Gaussian. In addition,

it is the same as the Gaussianity of the process X(t) := (Xj)j≤t, for any t ∈ Z. To check

whether X(t) is Gaussian, we only need to

• include X(t) in an appropriate Hilbert space,

• select a vector h using a dissipative distribution (see Definition 3.2.3),

• compute the scalar product 〈X(t),h〉,

• check if 〈X(t),h〉 is Gaussian,

since, according to Theorem 3.2.4, almost surely, X(t) is Gaussian if, and only if, 〈X(t),h〉

is Gaussian.

6.1.1 The Hilbert space

Concerning the Hilbert space in which the process is included, let us consider the space

of sequences

l2 =

{
(xn)n∈N :

∑
n∈N

x2
nan < ∞

}
,
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with a0 := 1 and an = n−2, n ≥ 1, endowed with the scalar product

〈x,y〉 =
∑
n∈N

xnynan, where x = (xn)n∈N,y = (yn)n∈N. (6.1)

If X is a stationary process and the variance of Xt is finite, then E[
∑

n∈N X2
t−nan] < ∞

and, in consequence
∑

n∈N X2
t−nan is almost surely finite. Thus, almost surely, X(t) ∈ l2.

Furthermore, obviously the Gaussianity in this space is equivalent to the (usual sense)

Gaussianity of X(t).

6.1.2 The distribution

Now, we need a dissipative distribution on l2. We will use the so-called Dirichlet distribu-

tion (see Pitman [70]) and build it using the so-called stick-breaking method. That is, let

α1, α2 > 0. Then, we choose (βn)n∈N independent and identically distributed with beta

distribution of parameters α1 and α2. Further, we consider the probability distribution

which selects a random point in l2 according to the following iterative procedure:

• l0 = β0 ∈ [0, 1].

• Given n ≥ 1, ln ∈ [0, 1−
∑n−1

i=0 li] equal to βn(1−
∑n−1

i=0 li).

Let us define Hn = (ln/an)1/2 for n ∈ N and take H = (Hn)n∈N. It can easily be

checked that the distribution of H is dissipative (see Definition 3.2.3). Moreover, H ∈ l2

almost surely because, as shown in Proposition 6.1.1, ‖H‖ = 1, almost surely.

Proposition 6.1.1. Let H = (Hn)n≥0 be a stochastic process constructed as described

above. Let α := α1/(α1 + α2) be the mean of the beta distribution of parameters α1 and

α2. Then, we have that

1. E[ln] = α(1− α)n, for every n ∈ N∗.

2. ‖H‖ = 1, almost surely.
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Proof.

Obviously 1. holds for n = 0. Thus, let us assume that 1. is satisfied for n ∈ N and let us

show that it also holds for n + 1. By the construction of (ln)n∈N, we have that if βn+1 is a

random variable with beta distribution of parameters α1 and α2 independent of (li)i∈[0,n],

then

E[ln+1] = E[βn+1]

(
1−

n∑
i=0

E[li]

)
= α

(
1−

n∑
i=0

α(1− α)i

)
= α(1− α)n+1,

where the last equality comes from the application of the formula giving the sum of n

numbers in a geometric progression.

Concerning 2., by using the scalar product given in (6.1), we have that

‖H‖ =
∞∑
i=0

H2
i ai =

∞∑
i=0

li ≤ 1, (6.2)

because, by the construction of (ln)n∈N,
∑n

i=0 li ≤ 1, for every n ∈ N. However, applying

1., we have that

E [‖H‖] =
∞∑
i=0

α(1− α)i = 1.

So that, by (6.2) we obtain 2.

6.1.3 The projection and its properties

Now, let h = (hi)i∈N be a fixed realization of the random element H, drawn independently

from the process X. Let us consider the process Y = (Yt)t∈Z given by the projections of

(X(t))t∈Z on the one-dimensional subspace generated by h, i.e.

Yt =
∞∑
i=0

hiXt−iai, t ∈ Z. (6.3)

As will be seen in Proposition 6.1.3, the properties of the process X are inherited by the

process Y. Moreover, according to Theorem 3.2.4, the Gaussianity of X can be assessed

simply by verifying the one-dimensional marginal distributions of Y. This can be done for

instance with the Epps or Lobato and Velasco tests presented in Section 3.3 whenever Y
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satisfies the appropriate assumptions. Subsections 6.1.5 and 6.1.6 are devoted to this task.

We begin by proving Lemma 6.1.2 which is necessary for Proposition 6.1.3. Remember

that γX(t) denotes the autocovariance of order t and that for simplicity we write γX instead

of γX(0).

Lemma 6.1.2. Let X be an ergodic and stationary process such that
∑∞

t=0 |γX(t)| < ∞.

If we select H as described above, then,

1.
∑∞

i=0 Hiai < ∞ almost surely.

2. Almost surely, the random variable L :=
∑∞

i,j=0 HiHjaiaj|X−i − µX ||Xt−j − µX | is

conditionally integrable given H.

Proof.

1. This is straightforward since the Cauchy-Schwartz inequality gives that

∞∑
i=0

Hiai ≤

(
∞∑
i=0

li

)1/2(
1 +

∞∑
i=1

1/i2

)1/2

=

(
1 +

∞∑
i=1

1/i2

)1/2

< ∞, almost surely,

where the last equality comes from Proposition 6.1.1.

To prove 2., let h = (h0, h1, . . .) be a fixed realization of H. We have that

E[L|h] =
∞∑

i,j=0

hihjaiajE[|X−i − µX ||Xt−j − µX |]

≤
∞∑

i,j=0

hihjaiaj(E[(X−i − µX)2])1/2(E[(Xt−j − µX)2])1/2 =

(
∞∑
i

hiai

)2

γX ,

where we have used Hölder inequality. Thus, L is conditionally integrable thanks to 1.

and that γX ≤
∑∞

t=0 |γX(t)| < ∞.

In the sequel, γY |h(t) denotes the conditional autocovariance of order t of Y given h.

That is, denoting by µY |h, the conditional expectation of Y0 given h,

γY |h(t) := E[(Y0 − µY |h)(Yt − µY |h)|h].
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Proposition 6.1.3. Let (Xt)t∈Z be an ergodic and stationary process such that
∑∞

t=0 tζ |γX(t)| <

∞, with ζ ≥ 0. Then, conditionally on h, the process (Yt)t∈Z defined in (6.3) is ergodic

and stationary. In addition, E[|Y0||h] and
∑∞

t=0 tζ |γY |h(t)| are finite.

Proof.

Since (Xt)t∈Z is a stationary ergodic process, conditionally on h, (Yt)t∈Z is also a stationary

ergodic process (see Doob [25, p. 458]).

Using the definition of the process Y, we have

E[|Y0||h] ≤ E

[
∞∑
i=0

hiai|X−i|

∣∣∣∣∣h
]

= E[|X0|]
∞∑
i=0

hiai < ∞, a.s.

because of 1. in Lemma 6.1.2.

By 2. in Lemma 6.1.2, we have that

γY |h(t) = E[
∞∑

i,j=0

hihjaiaj(X−i − µX)(Xt−j − µX)]

exists. Thus, using the dominated convergence theorem, we obtain that

γY |h(t) =
∞∑

i,j=0

hihjaiajγX(t− j + i)

and
∞∑

t=0

tζ |γY |h(t)| ≤
∞∑

i,j=0

hihjaiaj

∞∑
t=0

tζ |γX(t− j + i)|.

Obviously,
∑∞

i,j=0 hihjaiaj

∑∞
t=0 tζ |γX(t− j + i)| =: T1 + T2 + T3, where

• T1 =
∑∞

j=0 hjaj

∑∞
i=j hiai

∑∞
t=0 tζ |γX(t− j + i)|,

• T2 =
∑∞

j=0 hjaj

∑j−1
i=0 hiai

∑∞
t=2j+1 tζ |γX(t− j + i)|,

• T3 =
∑∞

j=0 hjaj

∑j−1
i=0 hiai

∑2j
t=0 tζ |γX(t− j + i)|.

If i ≥ j, as t ∈ N and ζ ≥ 0, we have tζ ≤ (t− j + i)ζ . Thus,

T1 ≤
∞∑

j=0

hjaj

∞∑
i=j

hiai

∞∑
t=0

(t− j + i)ζ |γX(t− j + i)| ≤
∞∑

j=0

hjaj

∞∑
i=j

hiai

∞∑
t=0

tζ |γX(t)|,
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because t− j + i ≥ t. Then, due to
∑∞

t=0 tζ |γX(t)| < ∞ and 1. in Lemma 6.1.2 we obtain

T1 < ∞.

Concerning T2, as j > i and t− j + i > 0, we can apply the cζ−inequality (see Loève

[59] p.157) to t = (t − j + i) + (j − i) to obtain that there exists cζ > 0 such that

tζ ≤ cζ(t− j + i)ζ + cζ(j − i)ζ ≤ 2cζ(t− j + i)ζ . Thus,

T2 ≤ 2cζ

∞∑
j=0

hjaj

j−1∑
i=0

hiai

∞∑
t=2j+1

(t−j+i)ζ |γX(t−j+i)| ≤ 2cζ

∞∑
j=0

hjaj

j−1∑
i=0

hiai

∞∑
t=0

tζ |γX(t)|.

Then, using the same tricks as for T1 we obtain that T2 < ∞.

For T3, the fact that
∑∞

t=0 tζ |γX(t)| < ∞, implies that there exists an R > 0 such that

|γX(t)| ≤ R for all t ∈ Z. Therefore,

T3 ≤ R

(
∞∑
i=0

hiai

)
∞∑

j=0

hjaj(2j)
ζ(2j + 1) =: R

(
∞∑
i=0

hiai

)
T ∗

3 .

By 1. in Lemma 6.1.2, to show that T3 < ∞, we only need to prove that T ∗
3 < ∞.

Furthermore, applying the Jensen inequality and 1. in Proposition 6.1.1, we have that

E[T ∗
3 ] ≤

∞∑
j=0

a
1/2
j (2j)ζ(2j + 1)α1/2(1− α)j/2. (6.4)

This series is convergent (α ∈ (0, 1)). Hence, T ∗
3 is finite almost surely and the proof

ends.

6.1.4 Characterization of one-dimensional Gaussian distributions

The result we prove here will be used later in the section. Let us start by stating the

definition of analytic characteristic function which has been taken from Laha and Rohatgi

[48].

Definition 6.1.4. A characteristic function Φ is said to be analytic if there exist

• a complex valued function, φ, of the complex variable z which is holomorphic in a

circle {z : |z| < ρ}, where ρ > 0,
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• a positive real number δ such that Φ(t) = φ(t), for |t| < δ.

That is, an analytic characteristic function is a characteristic function which coincides

with a holomorphic function in some neighborhood of zero.

Some properties of analytic characteristic functions may be found in Laha and Rohatgi

[48]. In particular, it is proved therein that the characteristic function of a Gaussian distri-

bution is analytic (this is a well-known fact). Some other well-known distributions having

analytic characteristic function are the binomial, Poisson and gamma distributions but

not the Cauchy one.

The following result will be useful to assess that our goodness of fit test will work with

all non-Gaussian alternatives.

Proposition 6.1.5. Let P be a Borel probability measure defined on R. Assume that P

is absolutely continuous with respect to the Lebesgue measure. Let Y be a random variable

having an analytic characteristic function ΦY .

Then, Y is Gaussian if, and only if,

∃m ∈ R, ∃s ∈ R+ such that P ({y ∈ R : ΦY (y) = Φm,s(y)}) > 0. (6.5)

Proof.

The necessary part is obvious. Let us prove the sufficiency. As Y satisfies (6.5), and P

is absolutely continuous, we have that the set R := {y ∈ R : ΦY (y) = Φm,s(y)} is infinite

and not denumerable. Thus, it contains at least one accumulation point.

Furthermore, the function y → ΦY (y) − Φm,s(y) is analytic, and it vanishes on R.

Therefore, this function has a non-isolated zero but the only analytical function with at

least one non-isolated zero is the null function (see for example Rudin [75]) which proves

the result.

Proposition 6.1.5 may be seen as a spectral counterpart of Theorem 3.2.4.
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6.1.5 Conditions for applying the Epps test

In this subsection, we analyze the theoretical behavior of the random projection procedure

when using the Epps test. That is, we analyze the behavior of Epps test when applied to

the randomly projected process (see Theorem 6.1.9). Moreover, in a corollary (Corollary

6.1.10) we will show that if the values in λ are drawn randomly, then the Epps test is

consistent against many more alternatives.

Let us first state Lemma 6.1.6 that gives the consistency for the estimator of the

spectral density function at zero, defined in (3.6). Let us denote by klmno(q, r, q + r; λ)

the fourth-order cumulant of Z0,l, Zq,m, Zr,n, and Zq+r,o, where, for instance, Zq,m is the

m-th component of the vector g(Yq, λ)− gµY ,γY
(λ) (see Subsection 3.3.2).

Lemma 6.1.6. Let λ ∈ ΛN . If Y is a stationary process such that

sup
−∞<q<∞

∞∑
r=−∞

|klmno(q, r, q + r; λ)| < ∞, for each l,m, n, o ∈ {1, ..., N}, (6.6)

then, f̂(0, λ) → fY(0, (µY , γY ), λ) almost surely.

Proof.

This is straightforward from the proof of Lemma 2.2 in Epps [26] but substituting by

(6.6) the use of (3.5) and the Gebelein inequality (Gebelein [35]) for Gaussian processes.

The Gebelein inequality states that the autocovariance of a multidimensional process is

smaller than or equal to the product of variances of the marginals.

Lemma 3.1 in Epps [26] proves that if Y is a stationary Gaussian process that sat-

isfies (3.5), then (6.6) holds. In Mielniczuk [64], the Gebelein inequality is extended to

two-dimensional vectorial processes with diagonal densities. Thus, any stationary process

that satisfies (3.5) and whose two-dimensional marginal has diagonal density, also satisfies

(6.6).
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Let Θ be an open and bounded subset of R× R+. In Epps [26], it is proved that H1

and H2 (see Subsection 3.3.2) are satisfied if λi is equal to a rational number times λ1,

i = 2, ..., N. Now, thanks to Lemma 6.1.7 below, we have that λ can be taken at random

and still fulfill H1 and H2.

Lemma 6.1.7. Assume that λ = (λ1, . . . , λN)T ∈ ΛN (N > 1) is drawn randomly with

distribution Pλ having the following properties. First, Pλ is such that λ1 and λ2 are

independent and identically distributed and have a density. Further, for N > 2, λi is a

rational number times λ1. Then, H1 and H2 are fulfilled almost surely.

Proof.

Proceeding as in Epps [26] we have that

Θ0(λ) ⊆ {(ν, γY ) : νλ1 = µY λ1 + 2πk and νλ2 = µY λ2 + 2πk∗, with k, k∗ ∈ Z}.

Now, in order to get that the cardinal of Θ0(λ) is larger than one, we need λ2 to be equal

to a rational number times λ1. However, this happens with probability zero and so, with

probability one Θ0(λ) ⊆ {(µY , γY )}. Thus, H1 and H2 follow directly.

Note that in case N > 1, Lemma 6.1.7 remains valid if we draw independently at

random λi, i = 3, ..., N. In addition, thanks to this lemma, we have the following corollary

of Theorem 3.3.1.

Corollary 6.1.8. Let (Yt)t∈Z be a stationary Gaussian process which satisfies (3.5) and

λ be as in Lemma 6.1.7. Let (µn, γn) be the minimizer on Θ of the map

(ν, ρ) → Qn(ν, ρ, λ)

nearest to (µ̂, γ̂). If we assume that fY(0, (µY , γY ), λ) is positive definite, then nQn(µn, γn, λ)

converges in distribution to χ2
2N−2.

In the next theorem, the function Qn also depends on the random h. However, for the

sake of simplicity, we have not expressed this dependence in the notation.
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Theorem 6.1.9. Let X be an ergodic stationary process satisfying (3.5). Draw respec-

tively λ as in Lemma 6.1.7 and h independently of λ using PH (as described in Section

6.1.2).

Assume that, conditionally on h, Y defined in (6.3) satisfies (6.6), that the character-

istic function of its one-dimensional marginal is analytic and that fY|h(0, (µY |h, γY |h), λ)

exists and is positive definite for almost every h. Let Qn(·, ·, λ) be the quadratic form

defined in (3.7) applied to Y and (µn, γn) its minimizer on Θ nearest to (µ̂Y |h, γ̂Y |h). Let

further A := {(λ, h) : nQn(µn, γn, λ) →d a non-degenerated distribution}.

Then, X is Gaussian if, and only if, (Pλ ⊗ PH)[A] > 0.

Proof.

The necessary part is obvious, because if X is Gaussian, then Y also is Gaussian and

Proposition 6.1.3 implies that Y satisfies the assumptions of Corollary 6.1.8.

Let us prove the sufficient part. As (Pλ ⊗ PH)[A] > 0 we have that there exist h and λ

with λ1 6= 0 and λ2 6= 0 such that nQn(µn, γn, λ) converges in law to a non-degenerated

distribution. Therefore,

Qn(µn, γn, λ) →c.p. 0. (6.7)

In addition, we may assume without loss of generality that

ΦY0(λ1) 6= 0 and ΦY0(λ2) 6= 0,

because, as ΦY0 is an analytic characteristic function, it has only isolated zeros.

By Lemma 6.1.6, f̂(0, λ) converges to fY|h(0, (µY |h, γY |h), λ). Thus, limn G+
n is positive

definite because it is the inverse of 2πfY|h(0, (µY |h, γY |h), λ). This, together with (6.7),

and (3.7) gives that

ĝ(λ)− gµn,γn(λ) →c.p. 0. (6.8)

Since X is an ergodic stationary process, by Doob [25, p. 458] we have that (g(Yt, λ))t∈Z

is also an ergodic stationary process. Thus, as E| cos(λiY0)| < ∞ and E| sin(λiY0)| < ∞
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for all i = 1, ..., N, we have by Theorem 2 in Hannan [40, Chap. IV] that

ĝ(λ) →c.p. E[g(Y0, λ)].

From this and (6.8), we can conclude that Φµn,γn(λi) converges in probability to ΦY0(λi)

(i = 1, ..., N).

Let us see how this implies that the sequence {(µn, γn)}n∈N converges. We have that

lim
n→∞

|Φµn,γn(λ1)| = lim
n→∞

e−λ2

1γn/2 = |ΦY0(λ1)|, in probability,

and, since λ1 6= 0 and ΦY0(λ1) 6= 0, this implies that there exists s ∈ R such that

s = limn→∞ γn in probability. Note that there exists θ ∈ [0, 2π) such that

ΦY0(λ1) = |ΦY0(λ1)| exp(iθ).

As λ1 6= 0, if we take m := θ/λ1, then, we have that ΦY0(λ1) = Φm,s(λ1).

Analogously, we have that |ΦY0(λ2)| = limn→∞ e−λ2

2γn/2, in probability, and as s =

limn→∞ γn we obtain

|ΦY0(λ2)| = e−λ2

2s/2. (6.9)

Denoting r = λ2/λ1, we obtain that

ΦY0(λ2)

|ΦY0(λ2)|
= lim

n
eirλ1µn =

(
ΦY0(λ1)

|ΦY0(λ1)|

)r

= eirλ1m.

Together with (6.9), this gives ΦY0(λ2) = Φm,s(λ2).

As λ2 was drawn independently from λ1 with a distribution absolutely continuous with

respect to the Lebesgue measure and as ΦY0 is analytic, by Proposition 6.1.5 we get that

Y0 is Gaussian. Then, by Theorem 3.2.4, we obtain that the process X is Gaussian.

Remark 6.1.9.1. It is only necessary to assume that X is ergodic to prove the inverse

part in Theorem 6.1.9 since every stationary Gaussian process which satisfies (3.5) is

ergodic (see, Doob [25, p. 494] and Grenander [38, p. 44]).



101

Applying the arguments of Theorem 6.1.9 directly to the process X, we obtain the

following corollary. This provides a modification of the Epps test with better consistency

properties.

Corollary 6.1.10. Let X be an ergodic stationary process. Assume that the characteristic

function of its one-dimensional marginal is analytic. Assume further that (3.5) holds. Let

us take λ as in Lemma 6.1.7, Qn(·, ·, λ) as in (3.7), let (µn, γn) be its minimizer on Θ

nearest to (µ̂X , γ̂X) and

B := {λ : nQn(µn, γn, λ) →d a non-degenerated distribution}.

If we assume that fX(0, (µX , γX), λ) exists and is positive definite, then, X is Gaussian

if, and only if, Pλ(B) > 0.

The remark below can obviously be deduced from Theorems 3.3.1 and 6.1.9. This re-

mark allows a test to be performed based on the asymptotic distribution of nQn(µn, γn, λ).

Remark 6.1.10.1. Theorem 6.1.9 and Corollary 6.1.10 remain valid if we change in the

definition of sets A and B “non-degenerated distribution” for “chi-squared distribution

with 2(N − 1) degrees of freedom”.

In addition, we have the following corollary.

Corollary 6.1.11. Under the assumptions of Theorem 6.1.9, (Pλ ⊗ PH)[A] ∈ {0, 1} and

X is Gaussian if, and only if, (Pλ ⊗ PH)[A] = 1.

Analogously, under the assumptions of Corollary 6.1.10, Pλ(B) ∈ {0, 1} and X is

Gaussian if, and only if, Pλ(B) = 1.

6.1.6 Conditions to apply Lobato and Velasco test

In this subsection, we show that a slight modification of the statistic G̃Y satisfies Theorem

3.3.2 under different assumptions from the ones used in Lobato and Velasco [58].
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The test statistic is

GY =
nµ̂2

3

6|F̂3|
+

n(µ̂4 − 3µ̂2
2)

2

24|F̂4|
with

F̂k = 2
τn∑
t=1

γ̂(t)(γ̂(t) + γ̂(τn + 1− t))k−1 + γ̂k,

where, according to Theorem 3.3.3, we take τn < cnβ0 for β0 = 1 − 2/α, c > 0 and

2 < α < 4. Thus, the differences between GY and G̃Y are the absolute values in the

denominator and the number of terms involved in the estimator of Fk.

Theorem 6.1.12. Let (Xt)t∈Z be an ergodic and stationary process such that
∑∞

t=0 |γX(t)| <

∞. We have that

1. If (Xt)t∈Z is a Gaussian process, then GY −→d χ2
2.

2. If (Xt − µX)t∈Z can be written as (3.8) and E[X4
0 ] < ∞, then, conditionally on h,

GY diverges almost surely to infinity whenever µ3 6= 0 or µ4 6= 3µ2
2.

Proof.

Using Proposition 6.1.3 for ζ = 0 we get that (Yt)t∈Z is an ergodic and stationary process

with
∑∞

t=0 |γY (t)| < ∞.

If (Xt)t∈Z is Gaussian, the process (Yt)t∈Z is also Gaussian. Thus, the assumptions of

the first part of Theorem 3.3.2 hold for the process (Yt)t∈Z and so G̃Y −→d χ2
2. Now, as

Y is Gaussian, by Gasser [34, p. 568], we have that Fk > 0 for k = 3, 4. Repeating the

proof of Lemma 1 in Lobato and Velasco [58], we have that limn→∞ F̂k = Fk. Therefore,

we may conclude that limn→∞ GY = limn→∞ G̃Y , which shows 1.

Let us now prove statement 2. First, let us show that E[|Y |k|h] < ∞, almost surely,

for k = 1, ..., 4. By Hölder inequality, we have that |Y0| ≤ (
∑∞

i=0 ai)
1/2(
∑∞

i=0 h2
i aiX

2
−i)

1/2

and, as by Proposition 6.1.1
∑∞

i=0 h2
i ai = 1, almost surely, we can apply Jensen inequality.

We obtain that

Y 4
0 ≤

(
∞∑
i=0

ai

)2( ∞∑
i=0

h2
i aiX

4
−i

)
, almost surely.
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Thus, E[|Y0|k|h] < ∞, almost surely, for k = 1, ..., 4. By Doob [25, p. 458], we have

that
(
Y k

t

)
t∈Z is stationary and ergodic, for all k = 1, ..., 4. Therefore, Theorem 2 in Hannan

[40, Chap. IV] implies that

lim
n→∞

µ̂k = µk, for almost every h and k = 2, 3, 4. (6.10)

Further, let us prove that limn→∞ |F̂k| < ∞ for almost every h and k = 3, 4. We have

F̂k = γ̂k
Y + 2

τn∑
t=1

k−1∑
j=0

 k − 1

j

 γ̂Y (t)k−j γ̂Y (τn + 1− t)j.

Taking into account that |ak−jbj| ≤ |a|k + |b|k, with k, j ∈ N such that j < k, we have

|F̂k| ≤ |γ̂Y |k + 2k

τn∑
t=1

(|γ̂Y (t)|k + |γ̂Y (τn + 1− t)|k),

and then we obtain |F̂k| ≤ 2k+1(
∑τn

t=0 |γ̂Y (t)|)k. Let us prove now that

lim
n→∞

τn∑
t=0

|γ̂Y (t)| < ∞.

To prove this, we must start by proving that limn→∞
∑τn

t=0 |γ̂X(t)| < ∞. Note that as

E[X4
0 ] < ∞, using (3.8) we also have

∞ > E[(X0 − µX)4] =
∞∑

j1,...,j4=1

4∏
r=1

k(jr)E

[
4∏

r=1

εn−jr

]

= E[ε4
1]

∞∑
j=1

k(j)4 + E[ε2
1]

2

∞∑
i,j=1,i6=j

k(i)2k(j)2,

because (εn) are i.i.d.r.vs. with E[ε1] = 0. This implies E[ε4
1] < ∞. Further, using Theorem

3.3.3 we obtain that∣∣∣∣∣
τn∑
t=0

(|γ̂X(t)| − |γX(t)|)

∣∣∣∣∣ ≤ (τn + 1)o
(
n2/α−1

)
= o(1).

Thus, limn→∞
∑τn

t=0 |γ̂X(t)| < ∞. Then, by proceeding similarly as in the proof of

Proposition 6.1.3, we get limn→∞
∑τn

t=0 |γ̂Y (t)| < ∞ and so, limn→∞ |F̂k| < ∞ for k = 3, 4.

Using (6.10), it can be concluded that 2. holds.
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Finally, applying Theorem 6.1.12 directly to the process X, we obtain the following

corollary.

Corollary 6.1.13. Let (Xt)t∈Z be an ergodic and stationary process such that
∑∞

t=0 |γX(t)| <

∞. We have that

1. If (Xt)t∈Z is a Gaussian process, then GX −→d χ2
2.

2. If (Xt − µX)t∈Z can be written as (3.8) and E[X4
0 ] < ∞, then GX diverges almost

surely to infinity whenever µX,3 6= 0 or µX,4 6= 3µ2
X,2.

6.2 The tests in practice

In this section, we discuss the practical implementation of our procedure. We start by

making some remarks on the Epps test.

6.2.1 Remark on the Epps test

Although Theorem 3.3.1 works for any λ ∈ ΛN , with N > 1, that satisfies H1 and H2,

in Epps [26] it is stated that:

• When either N is large or the spacing between the λj is small, relative to the scale

of the data, the matrix 2πf̂(0, λ) often appears computationally singular.

• Also, values of λj which are large, relative to the scale of the data, makes difficult to

find a minimum of Qn(·, ·, λ) with much precision.

Epps suggests taking

λj = ξj/
√

γ̂, with ξj > 0, j = 1, ..., N. (6.11)

Recall that γ̂ denotes the sample variance of the process. He proved that Theorem 3.3.1

works taking such λ. In the simulations of Epps, and also in those of Lobato and Velasco

[58], N = 2 and (ξ1, ξ2) = (1, 2).
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However, we need to draw λ randomly in order to have a consistent test (Theorem

6.1.9). Thus, we take N = 2, ξ1 distributed as the absolute value of a standard normal

distribution and ξ2 distributed as the absolute value of a normal distribution with mean

zero and variance 4. With this selection, although seldom, we have found that f̂(0, λ)

might be singular. This is the main reason for choosing G+
n (λ) as the generalized inverse

of 2πf̂(0, λ).

Another important practical issue is the procedure used to find the minimizer nearest

to (µ̂, γ̂) of the map (ν, ρ) → Qn(ν, ρ, λ). In the simulations of Epps [26] and Lobato and

Velasco [58], they use the simplex method developed in Nelder and Mead [67]. We did the

same. The code of this method can be found in Press et al. [71] under the name amoeba.

6.2.2 The random projection procedure to test Gaussianity

The theoretical development of Section 6.1 was carried out assuming that the observed

sample is infinite. However, in practice, only a finite number of measurements X0, . . . , Xn

are available. Thus, only a finite number of components of h are computed. This last

difficulty is handled by fixing a small δ > 0 (equal to 10−15 in the simulations that we

present in Section 6.3) and by taking h = (h0, . . . , hm)T with

m− 1 = min{min
{
t : ‖(h0, . . . , ht)

T‖ ≥ 1− δ
}

, n− 1},

where h0, . . . , hm−1 are drawn by the stick-breaking procedure described in Section 6.1.

Further, hm is fixed such that ‖h‖ = 1. Concerning the projected process, several possi-

bilities are available, but here we use

Yt =

min(m,t)∑
i=0

hiXt−iai, t = 0, . . . , n.

Let us now make a short comment on the choice of the parameters α1, α2 > 0 of the

beta distribution used to generate h. Here, we have to deal with the following situation: If

m is large, then the random variables Yt are linear combinations of many random variables
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from the first sample and then, because of the Central Limit Theorem, the distribution of

the random variables Yt will become close to a normal law. This will cause some loss of

power when the marginal of X is not Gaussian. Thus, in order to detect a non-Gaussian

marginal, it is wise to select α1 and α2 in such a way that m is small or even 0 or 1. This

goal is achieved if we take α2 = 1 and α1 � 1. Our selection in Section 6.3 is α1 = 100.

However, in this case the samples Y0, . . . , Yn and X0, . . . , Xn are quite similar. Thus, the

test will not be good at detecting non-Gaussian alternatives with Gaussian marginal. In

order to overcome this problem, we should take h in such a way that the projections mix

several variables from the initial sample. To achieve this goal we need to take α2 > α1

but with α2 being not too big to avoid the effect of the Central Limit Theorem. In this

case, a selection like α1 = 2 and α2 = 7 seems appropriate. Therefore, it seems that in a

practical situation, we should decide which alternative is more plausible and then, select

the appropriate parameters. However, there is another possibility: select two projections

(one with each pair of parameters) and apply Theorem 3.4.1 to mix the p-values. This is

our proposal.

Finally, we need a Gaussianity test for the one dimensional marginal of (Y0, . . . , Yn).

We have seen two such tests (which have some advantages and disadvantages discussed

in Section 6.3) and we can also mix them. Bearing all these requirements in mind, we

propose the following procedure:

1. Draw h(1) with the β(100, 1) distribution and apply the Epps test to the projections

to obtain the p-value p(1).

2. Draw h(2) (independently of h(1)) with the β(100, 1) distribution and apply the

Lobato and Velasco test to the projections to obtain the p-value p(2).

3. Draw h(3) (independently of h(1) and h(2)) with the β(2, 7) distribution and apply

the Epps test to the projections to obtain the p-value p(3).

4. Draw h(4) (independently of h(1), h(2) and h(3)) with the β(2, 7) distribution and
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apply the Lobato and Velasco test to the projections to obtain the p-value p(4).

5. Combine the p-values p(1), . . . , p(4) using the procedure described in Section 5.4 to

decide the Gaussianity hypothesis at the level α. Thus, ordering these four p-values

such that p(1) ≤ ... ≤ p(4) we obtain that the p-value of the random projection test

is equal to (25/3) ·mini=1,...,4 p(i)/i.

6.3 Simulations

In this section, we study the behavior of the proposed procedure in different situations.

We have used the same distributions as in Lobato and Velasco [58], in order to perform

comparisons. Further, we will study a situation where the process has Gaussian marginal

but is not Gaussian (see Section 6.3.1). In addition, in Subsection 6.3.3 we apply the

random projection test to real data.

The authors of Lobato and Velasco [58] study the case of an AR(1) process depending

on a parameter q defined by

Xt = qXt−1 + εt, (6.12)

where q ∈ {−.9,−.5, 0, .5, .6, .7, .8, .9}, t ∈ Z and εt are i.i.d. random variables with

distribution Dε which may be any of the following ones:

• standard normal (N(0,1)),

• standard log-normal (log N),

• Student t with 10 degrees of freedom, (t10),

• chi-squared with 1 (χ2
1) and 10 degrees of freedom (χ2

10),

• uniform on [0, 1] (U(0, 1)),

• beta with parameters (2, 1) (β(2, 1)).
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To simulate the process, we generate a large number of independent realizations εt, t =

1, . . . ,M with distribution Dε and we take

• X1 = ε1

• Xt = qXt−1 + εt, t = 2, ...,M.
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Figure 6.1: From top to bottom. AR(1) processes with Dε = N(0, 1) and q = 0, Dε = β(2, 1)

and q = 0, Dε = N(0, 1) and q = .9, and Dε = β(2, 1) and q = .9,.

It is obvious that if q 6= 0, this process is not stationary. For instance, Var[Xt] =

Var[ε1](1−q2t)/(1−q2) which is not constant and, obviously, the differences increase with

|q|. In order to alleviate this problem, we discarded a certain number, past, of observa-

tions. We have taken past to be equal to 1000 and n = M − past equal to 100, 500, 1000,
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which are the sample sizes handled in Lobato and Velasco [58]. For some examples of

these processes, see Figure 6.1.

We have performed 5000 simulations in each situation. In every run, we have com-

puted the p-values using the asymptotic distributions. This may have caused the rejection

rates under the null hypothesis to move somewhat far from the nominal level (mostly for

the lowest sample size n = 100) and to decrease under some alternatives with the sample

size (mostly for high values of |q|).

There are some differences between our rates and those published in Lobato and Ve-

lasco [58]. We think that these could be due to the fact that the past taken in Lobato

and Velasco [58] is not large enough. For example, in the case n = 100, q = .7 and

Dε being β(2, 1) we obtain a rejection rate of .2214 when using the Epps test while in

Lobato and Velasco [58] they obtain one of .080, which is noticeably worse. As explained

before, our simulations were made with past= 1000, but from Table 6.1 we see that .080

is a reasonable rejection rate for past = 0 and that the rejection rates increase with past,

approaching the value we have obtained.

past 0 1 2 10

rejections .0750 .1378 .1998 .2210

Table 6.1: Rejection rates along 5,000 simulations for different past, with the Epps test, n = 100,

Dε a β(2, 1) and q = .7.

We have observed the same problem with the Lobato and Velasco test, except that

with this other test, our rejection rates are lower than those reported in Lobato and Ve-

lasco [58]. We think that those differences are also due to the same problem.

Furthermore, another difference to highlight between what we do here and Lobato and
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Figure 6.2: Rejection rates under the null hypothesis for an AR(1) process with q = 0 (upside

graph), q = .5 (middle graph) and q = −.9 (downside graph), using the Lobato and Velasco test

for different values of c and sample sizes.
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Velasco [58] is that in Subsection 6.1.6, a sum until τn is involved in the estimation of Fk

while in Lobato and Velasco [58] the sum goes until n − 1, where n is the sample size.

Here, we have to take τn < cnβ0 , where β0 = 1 − 2/α with 2 < α < 4 and c > 0. Thus,

β0 may be as close as desired to .5 and so, we have decided to fix its value at β0 = .5 for

the simulations. In order to select the right value of c, we have made a small analysis to

see how sensitive the method is to this parameter. We run the Lobato and Velasco test

under the null hypothesis for all values of q and c = 1, 2, . . . , cn, where cn = b
√

nc and

n = 100, 500, 1000. Therefore, c100 = 10, c500 = 22 and c1000 = 31. The results suggest

that the value of c has little influence on the rejection rates and so, we choose c = 1. The

results for the cases q = 0, q = .5 and q = −.9 appear in Figure 6.2. It is worth pointing

out that the situation for q = −.9 is slightly different than for all the other values of q, as

with q = −.9 the rejection rates look more or less constant up to a point in which those

rates strongly decrease.

Tables 6.2, 6.3 and 6.4 contain the rejection rates for several procedures when applied

at the level .05. Next, we mention the procedures we have selected and make some

comments on the results of our simulations.

1. Epps test, E-test. We take (ξ1, ξ2) = (1, 2) in (6.11).

It seems that this test behaves poorly when Dε is t10. Moreover, broadly speaking,

its power decreases for the considered alternative distributions when |q| increases,

having low powers when |q| = .9. Note also that under the null hypothesis (except

the case q = 0 with n = 1000), the rejection rates are above the level of the test and

that they increase with |q|.

The power decreases when the sample size increases in the cases in which |q| = .9 and

the alternative is t10, χ2
10, U(0, 1) or β(2, 1) (and even with q = .8 when Dε = t10).

2. Lobato and Velasco test, G-test. The rejection rates displayed have been sim-

ulated using the statistic GX . However, they are similar to those obtained using
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G̃X .

The G-test has very low powers when |q| is large, sometimes even lower than those of

the E-test. In addition it suffers from a lack of power when Dε is U(0, 1) or β(2, 1).

The rejections under the null hypothesis are above the level of the test only in 4

cases out of 24. In contrast with the E-test, here the rejection rates under the null

hypothesis decrease when q increases.

3. Combined Epps and Lobato and Velasco test, GE-test. In previous para-

graphs we have commented some problems of the E and G tests which go, let us

say, in opposite directions. In order to solve these problems we combine both tests,

using the multiple testing procedure presented in Section 5.4.

As stated in Subsection 6.2.1, the GE-test has been obtained by drawing indepen-

dently ξ1 with the absolute value of a standard normal distribution and ξ2 with the

absolute value of a normal distribution with mean zero and standard deviation 2. It

is worth noting that the rejection rates we have obtained have been slightly larger

than in the case we take (ξ1, ξ2) = (1, 2).

We can observe from Tables 6.2, 6.3 and 6.4 that this combination gives rejection

rates between those of the E and G-tests although closest to the highest one, and,

sometimes, even above. This is because, as previously stated, the rejection rates of

E are slightly larger here than when (ξ1, ξ2) = (1, 2).

4. Random projection test, RP-test. We apply this test following the guidelines

provided in Subsection 6.2.2.

When q is negative and we are under the alternative, we always get the highest

rejection rates with the RP-test. The most striking behavior of this test occurs for

q = .9 and Dε = χ2
10 and β(2, 1), where the RP-test obtains rejection rates larger

than 0.8 while the second more successful test remains below 0.25. For the remaining

values, the rejection rates using the RP-test are between the rates obtained with

the E, G and GE tests but closer to the highest than to the lowest.
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q Test N(0,1) log N t10 χ2
1 χ2

10 U(0, 1) β(2, 1)

E .1264 .0508 .1104 .0656 .1124 .1390 .1354

-.9 G .0292 .1414 .0310 .0840 .0332 .0290 .0266

GE .0942 .1422 .0908 .1072 .0920 .1020 .1010

RP .1380 .8070 .1742 .7576 .3076 .2620 .3902

E .0724 .6780 .0556 .8514 .2058 .5408 .4914

-.5 G .0504 .9986 .1692 .9986 .4602 .0102 .1696

GE .0774 .9976 .1582 .9972 .4552 .4454 .4154

RP .0752 .9998 .1980 1 .5824 .6404 .7460

E .0632 .9616 .0830 .9964 .5372 .9918 .9704

0 G .0458 1 .2820 1 .7898 .5404 .7520

GE .0732 1 .2402 1 .8074 .8596 .8706

RP .0772 1 .2288 1 .7640 .8496 .9054

E .0682 .8594 .0608 .9582 .2610 .5618 .5562

.5 G .0384 .9990 .1696 .9982 .4118 .0010 .1102

GE .0642 .9990 .1444 .9988 .4700 .4680 .4882

RP .0750 .9908 .1132 .9880 .5226 .3256 .7500

E .0710 .6118 .0582 .8106 .2006 .3462 .3650

.6 G .0358 .9884 .1162 .9772 .2858 .0012 .0592

GE .0640 .9882 .1144 .9832 .3218 .2800 .3086

RP .0802 .9536 .1030 .9262 .5164 .2580 .7744

E .0838 .3250 .0626 .4640 .1492 .2032 .2214

.7 G .0260 .9076 .0814 .8196 .1610 .0036 .0334

GE .0714 .9042 .0866 .8448 .1998 .1634 .1802

RP .0784 .8022 .0926 .7010 .5754 .2902 .8060

E .1034 .1552 .0810 .2004 .1324 .1620 .1596

.8 G .0206 .6146 .0466 .4406 .0708 .0046 .0166

GE .0726 .6118 .0796 .4488 .1122 .1154 .1136

RP .0896 .4928 .0932 .3264 .6766 .3950 .8782

E .1752 .1264 .1618 .1368 .1612 .1870 .1680

.9 G .0106 .1558 .0094 .0714 .0150 .0054 .0086

GE .1074 .1844 .0968 .1190 .0980 .1182 .1072

RP .1168 .1982 .1174 .1338 .8702 .6788 .9662

Table 6.2: Rejection rates at level .05 of a process defined by (6.12). Sample size n = 100.
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q Test N(0,1) log N t10 χ2
1 χ2

10 U(0, 1) β(2, 1)

E .0744 .3720 .0584 .2162 .0712 .0918 .0850

-.9 G .0708 .8838 .0840 .6202 .1142 .0462 .0754

GE .0780 .8604 .0924 .5400 .1116 .0866 .0952

RP .0810 .9990 .2260 .9928 .6924 .4630 .6918

E .0594 1 .1334 1 .7730 .9924 .9922

-.5 G .0472 1 .4580 1 .9960 .9656 .9976

GE .0476 1 .3784 1 .9912 .9514 .9914

RP .0490 1 .5090 1 .9998 .9946 1

E .0566 1 .3292 1 .9982 1 1

0 G .0480 1 .7428 1 1 1 1

GE .0510 1 .6756 1 1 1 1

RP .0554 1 .6188 1 1 1 1

E .0654 1 .1476 1 .8808 .9918 .9960

.5 G .0454 1 .4340 1 .9972 .9704 .9988

GE .0516 1 .3816 1 .9924 .9504 .9962

RP .0618 1 .2656 1 .9610 .7440 .9634

E .0566 .9998 .1026 1 .7084 .8286 .9090

.6 G .0470 1 .3336 1 .9582 .4678 .8858

GE .0570 1 .2692 1 .9388 .6944 .8870

RP .0610 1 .1794 1 .8604 .4730 .9006

E .0708 .9996 .0786 1 .4704 .4042 .5810

.7 G .0474 1 .1970 1 .7592 .0644 .4040

GE .0598 1 .1670 1 .7332 .3640 .5768

RP .0702 1 .1282 1 .6986 .2616 .8786

E .0776 .9780 .0710 .9638 .2500 .1948 .2564

.8 G .0744 .9998 .0976 .9980 .3908 .1524 .2628

GE .0702 .9998 .1102 .9978 .3972 .1848 .2960

RP .0710 .9986 .0910 .9908 .6834 .2484 .9208

E .1156 .5708 .0944 .4674 .1526 .1430 .1560

.9 G .0232 .8356 .0370 .5404 .0764 .0138 .0336

GE .0802 .8708 .0838 .6378 .1490 .1092 .1390

RP .0860 .7996 .0770 .5510 .8430 .4818 .9772

Table 6.3: Rejection rates at level .05 of a process defined by (6.12). Sample size n = 500.
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q Test N(0,1) log N t10 χ2
1 χ2

10 U(0, 1) β(2, 1)

E .0648 .7836 .0578 .4572 .0826 .0888 .0942

-.9 G .0902 .9934 .1206 .8932 .2448 .0760 .1358

GE .0880 .9856 .1002 .8560 .2190 .1004 .1450

RP .0940 1 .3344 .9998 .8686 .5876 .8056

E .0530 1 .2574 1 .9764 1 1

-.5 G .0436 1 .6778 1 1 1 1

GE .0450 1 .6040 1 1 1 1

RP .0378 1 .7498 1 1 1 1

E .0490 1 .5946 1 1 1 1

0 G .0546 1 .9364 1 1 1 1

GE .0486 1 .9162 1 1 1 1

RP .0422 1 .8734 1 1 1 1

E .0550 1 .2534 1 .9966 1 1

.5 G .0482 1 .6788 1 1 1 1

GE .0424 1 .6016 1 1 1 1

RP .0484 1 .4348 1 .9994 .9738 .9996

E .0566 1 .1718 1 .9580 .9800 .9974

.6 G .0472 1 .5112 1 .9996 .9724 .9996

GE .0464 1 .4234 1 .9996 .9550 .9986

RP .0584 1 .2812 1 .9902 .7110 .9804

E .0594 1 .1162 1 .7720 .6338 .8632

.7 G .0418 1 .3104 1 .9744 .3642 .8830

GE .0558 1 .2380 1 .9672 .5642 .8724

RP .0598 1 .1754 1 .8888 .3554 .9036

E .0690 .9998 .0720 1 .4342 .2288 .4108

.8 G .0500 1 .1638 1 .6804 .0432 .3284

GE .0670 1 .1294 1 .6708 .2216 .4450

RP .0654 1 .0996 1 .7144 .1920 .9076

E .0902 .9152 .0880 .7690 .1836 .1170 .1686

.9 G .0346 .9944 .0636 .9136 .1574 .0174 .0574

GE .0690 .9926 .0798 .9206 .2178 .1040 .1596

RP .0736 .9844 .0678 .8580 .8328 .3946 .9774

Table 6.4: Rejection rates at level .05 of a process defined by (6.12). Sample size n = 1000.
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6.3.1 A stationary non-Gaussian process with Gaussian marginal

In this subsection, we discuss the behavior of the proposed procedure when used on a

non-Gaussian process with Gaussian marginal. We have worked with the process intro-

duced in Example 2.3 in Cuesta-Albertos and Matrán [22]. Its construction is explained

here for the sake of completeness.

Let p be a prime number, and let Y0, U and {Zm·p, m = 0, 1, . . .} be mutually inde-

pendent random variables all uniformly distributed on {0, 1, . . . , p− 1}. Set

Zm·p+k = Zm·p ⊕ (kY0) , k = 0, . . . , p− 1, m = 0, 1, 2, . . .

where ⊕ stands for sum modulus p. According to Cuesta-Albertos and Matrán [22] the

sequence Wn = Zn+U is composed of pairwise independent random variables and it is

stationary. Moreover, these random variables are not mutually independent because, by

construction, for every m ∈ N we have that

Zm·p + Zm·p+1 + . . . + Zm·p+p−1 = p(p− 1)/2,

and so,

Wmp−U + Wmp−U+1 + . . . + Wmp−U+p−1 = p(p− 1)/2. (6.13)

Therefore, the knowledge of the random variables Wn−U , Wn−U+1, . . . ,Wn−U+p−2 com-

pletely determines the value of Wn−U+p−1.

Now, given k ∈ {0, . . . , p − 1}, let qk be the quantile of order k/p of the standard

Gaussian distribution. For every n ∈ N, let us define the random variable W ∗
n condition-

ally to Wn as follows: If Wn = k, then draw the value of W ∗
n with a standard Gaussian

distribution conditioned to be in the interval (qk, qk+1), and independent of all the other

random variables.

Since Wn is uniformly distributed on {0, 1, . . . , p − 1}, we obviously have that W ∗
n is

a standard Gaussian r.v.. Moreover, the sequence (W ∗
n) inherits the remaining properties
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of (Wn): this is a strictly stationary sequence of pairwise independent Gaussian random

variables. However, if n > p− 1 and we are aware of the values W ∗
n−U , . . . ,W ∗

n−U+p−2, we

can recover the values Wn−U , . . . ,Wn−U+p−2 and, because of (6.13), we may deduce the

value of Wn−U+p−1. With this information, we know to which interval W ∗
n−U+p−1 belongs.

Therefore, the random variables (W ∗
n)n are not mutually independent and so, the process

is not Gaussian. For examples of such processes, see Figure 6.3.
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Figure 6.3: W∗ process for p = 5 (upside graph) and p = 13 (downside graph).

We have simulated the previous process 5, 000 times for different values of p and sam-

ple sizes n = 100, 500, 1000. Then, we have applied the RP test at the level α = .05. The

rejection rates appear in Table 6.5.
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p = 2 p = 3 p = 5 p = 7 p = 11 p = 13 p = 17

n = 100 .1448 .1268 .1676 .1516 .1602 .1380 .1146

n = 500 .3698 .3654 .4938 .5154 .5822 .5590 .5588

n = 1000 .6382 .6386 .6814 .7250 .7802 .7608 .7700

Table 6.5: Rejection rates for different sample sizes applying the RP test to the W∗ process at

the level α = .05.

For comparison, we show in Table 6.6 the rates of rejection when using the E, G

and GE tests in the case p = 5. Since these tests check for the non-Gaussianity of the

marginal, the rejection rates are not too high. However, it is worth paying some attention

to the rejection rates in this table. To begin with, they are below the intended level

(except GE with n = 100), but, more surprisingly, they show some decrease when the

sample size increases. We think that this is due to the fact that these tests see the process

W∗ as more Gaussian than a Gaussian process. The reason is that when we generate

observations of a Gaussian process, approximately a proportion of 1/p observations are

in the interval (qk, qk+1), with k ∈ {0, . . . , p − 1}. However, the process W∗ generates

exactly a proportion of 1/p observations in each interval (qk, qk+1). Thus, it has a “more

Gaussian” behavior than expected. Consequently, the rejection rates are lower than .05

and this fact becomes more apparent when n increases.

n = 100 n = 500 n = 1000

E .0338 .0266 .0186

G .0372 .0336 .0326

GE .0520 .0336 .0206

Table 6.6: Rejection rates using the E, G and GE tests of the W∗ process with p = 5, at the

level α = .05.
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6.3.2 Increasing the number of projections

Although the rejection rates shown in Table 6.5 are above the nominal level, they are not

so high, especially when the sample size is 100. A simple way to improve these rates is

to increase the number of random projections using the correction described in Section 5.4.

From Table 6.7 it can be seen how an increase in the number of random projections

employed noticeably improves the rates. In this table, half of the projections are taken

using the β(100, 1) distribution and the other half with the β(2, 7) and in each case we

compute half of the p-values with the E test and the other half with the G test. It is

important to note that as in Section 6.3.1 we have simulated 5,000 times the process

described there for samples sizes n = 100, 500, 1000 and apply the RP-test at level .05.

k = 2 k = 3 k = 5 k = 8

n = 100 .1676 .1906 .2288 .2674

n = 500 .4938 .5772 .6988 .8064

n = 1000 .6814 .7688 .8498 .8628

Table 6.7: Rejection rates for different sample sizes applying the RP test with 2k projections

to the W∗ process with p = 5.

6.3.3 Real data

Canadian lynx and Wolfer sunspot data

In this subsection, we work with the well-known Canadian lynx and Wolfer sunspot data

in order to illustrate the behavior of the random projection test. These data are displayed

in Figure 6.4.

The Canadian lynx data consists in the annual record of the number of lynxes trapped
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Figure 6.4: Canadian lynx (upside graph) and Wolfer sunspot data (downside graph).

in the Mackenzie River district of the North-West Canada for the period from 1821 to

1934 while the Wolfer sunspot data consists in the annual record of the sunspot activity

in the period from 1700 to 1960. These data were used in Epps [26] and previously in

Subba and Gabr [78], obtaining in both cases that the processes are not Gaussian.

We perform the random projection procedure to the lynx and sunspot data following

the indications in Subsection 6.2.2. The obtained p-values are displayed in Table 6.8 to-

gether with those obtained in Epps [26] and in Subba and Gabr [78].

In these examples, we obtain p-values having approximatively the same magnitudes
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RP Epps S.R. & G

lynx 1.029× 10−4 1.402× 10−5 1.084× 10−4

sunspot 1.314× 10−6 7.356× 10−6 2.818× 10−4

Table 6.8: P -values using the RP-test and the tests proposed in Epps [26] and in Subba and

Gabr [78] for the lynx and sunspot data.

as those of Epps [26] and Subba and Gabr [78].

Sea wave data

In this section, we analyze the Gaussianity of the heights of the sea level, which vary

continuously with the waves. Until recently, the statistical procedures used to work with

sea waves assumed the hypothesis of Gaussianity. It is known that when the sea is not

calm, this hypothesis is not verified. However, this is not yet proved for a calm sea. It

is believed by the experts that although the one-dimensional marginal of a calm sea is

normal, this does not hold for higher order marginals, which makes the data suitable for

our method.

The data we use here were measured with a datawell directional buoy on the East

Coast of the USA which is referenced as 15401 Block Island, RI. Its deployment latitude

and longitude are respectively 40 58.150’ N and 71 07.543’ W and the water depth is 48.16

meters. The location of the buoy can be seen in Figure 6.5.

The data have been downloaded from http://cdip.ucsd.edu. This web-site gives coastal

data from the first observations made in 1975 to values just five minutes old; these mea-

surements are being recorded by sensors in the water at this very moment.

We will work with the data of the first of November 2009 from 10:00 to 16:00, which

makes a total of 27,648 data. Our first aim was to obtain a segment that was stationary.
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Figure 6.5: This picture represents in dark blue the buoy 15401 Block Island, RI. It has been

taken from http://cdip.ucsd.edu.

For this we have used Soukissian’s algorithm (see Soukissian and Samalekos [79]). For

more information about segmentation algorithms for sea waves, see Hernández and Or-

tega [42]. Under the null hypothesis of Gaussianity, the first stationary segment we have

obtained goes from 10:00 to 10:35. Therefore, among the 27,648 observations, we take

the observations from 1 to 2,688. This segment can be visualized in Figure 6.6.

Secondly, we have applied the random projection procedure described in Subsection

6.2.2 and the GE-test, obtaining the p-values displayed in Table 6.9.

RP GE

p-value .0890 .3825

Table 6.9: p-values using the RP-test and the GE-test for the sea wave data.
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Figure 6.6: Height of the sea level measured the first of November of 2009 from 10:00 to 10:35,

by buoy 15401 Block Island, RI.

It is worth noting that although with the p-values described in Table 6.9 neither of the

two tests rejects the null hypothesis at level .05, the p-value obtained with the random

projection procedure is much smaller.

Our work with this kind of data is in progress. However, the small example we have

shown here leads us to consider that the random projection method should be useful for

this aim. Finally, we would like to thank J.B. Hernández, J. León and J. Ortega for

introducing us to the world of sea waves.
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Chapter 7

Discussion

The random Tukey depth.

In this thesis, we introduce the random Tukey depth, which can be considered as a

random approximation of the Tukey depth. The new depth is interesting because of the

little effort required in its computation and because it can be extended to cover Hilbert

valued data. This depth satisfies most of the properties of a depth according to the defi-

nition in Zuo and Serfling [83]. In addition, this depth can be consistently estimated from

a random sample, both in the finite and the infinite dimensional settings. Moreover, it

characterizes discrete distributions.

The attraction of the random Tukey depth lies in the fact that by taking only a few

one-dimensional projections, it is possible to obtain results similar to those obtained with

more involved depths. The number of required projections is surprisingly low indeed.

Particularly, this is shown in the comparisons with the Tukey depth that we have carried

out. Those studies do not show relevant differences between the results obtained with

the Tukey depth and with the random Tukey depth. Thus, we conclude that, at least

under the considered conditions, the random Tukey depth is an alternative which is worth

considering because of its low computing time.
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When this depth is applied to classification problems, the results are similar to those

obtained with random forests but worse than those obtained with k-NN or kernel meth-

ods. However, the improvement which appears between the first and the second column

in Table 5.9 makes us relatively optimistic about the results which could be obtained if

an optimal procedure to select the distribution ν were applied.

Due to the generalization of the main results in Cuesta-Albertos et al. [15], which

appears in Cuevas and Fraiman [24], it is possible to extend the results on the random

Tukey depth to more general spaces.

Test of Gaussianity for stationary processes.

In Chapter 6, we have introduced the random projection test, RP-test, to check the

Gaussianity of stationary processes. Given a sample, this test is based on a three-step

procedure. First, a vector h must be drawn in a suitable Hilbert space which contains

the process. Then, the sample is projected on the one-dimensional space spanned by h.

Finally, we take advantage of the fact that, with probability one, the initial process is

Gaussian if the marginal of the projected one is Gaussian. Therefore, we only need to use

a test to check the Gaussianity of the marginal of a stationary process. In the final step,

we use a combination of the Epps and Lobato and Velasco tests.

The comparison of the RP-procedure with the Epps and Lobato and Velasco tests (as

well as with the combination of these) in situations in which the marginal is not Gaussian

is not bad, and there are cases in which the proposed test is clearly better. Moreover, the

RP test is able to detect alternatives with Gaussian marginal, while the other tests are

not designed to perform this task.



Appendix A

Computational codes

A.1 Preliminary results

A.1.1 Definition of data depth

The aim of the following program is to display the behavior of the data depths in dimension

2. It gives as output Figure 3.1 and Figure 4.1. Note that it calls Depth.m, which appears

next in order to compute the Tukey and the random Tukey depth.

% This program generates a sample, computes the Mahalanobis, Tukey

% and two random Tukey depths of it and plots the results.

clear all

% Setting

p=2; nX=200; nV1=2; nV2=20;

X=randn(nX,p); V1=rand(p,nV1); V2=rand(p,nV2);

% Mahalanobis depth

S=inv(cov(X)); mX=mean(X); Mh=zeros(1,nX);

for i=1:nX; xM=X(i,:)−mX; Mh(i)=inv(1+xM*S*xM'); end

% Tukey and random Tukey depths

IndiceTuc=0:pi/1000:pi; u=[cos(IndiceTuc) ; sin(IndiceTuc)];
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T=Depth(X*u); RT1=Depth(X*V1); RT2=Depth(X*V2);

% Plotting

s=10; i=0:2*pi/s:2*pi; r=.1; xc=r*cos(i); yc=r*sin(i);

figure(1);

for j=1:nX; x=X(j,1)+xc; y=X(j,2)+yc; fill(x,y,RT1(j)); hold on; end

figure(2);

for j=1:nX; x=X(j,1)+xc; y=X(j,2)+yc; fill(x,y,RT2(j)); hold on; end

figure(3);

for j=1:nX; x=X(j,1)+xc; y=X(j,2)+yc; fill(x,y,Mh(j)); hold on; end

figure(4);

for j=1:nX; x=X(j,1)+xc; y=X(j,2)+yc; fill(x,y,T(j)); hold on; end

Depth.m

% Input data: Prod = matrix containing the 1−dimensional projections

% of n points on k randomly chosen vectors.

% Output data: D = vector with the ranks associated to the depths of

% the n points.

function D=Depth(Prod)

[n k]=size(Prod);

% Vectors I1 and I2 are intended to compute the depths (ranks) in

% each projection. We give depth(rank) = 1 to the most outer point

% depth(rank) = 2 to the next one

% depth(rank) = integer part of n/2 to the

% deepest point

I1=1:n/2; I2=n:−1:(n/2+.1); PP=zeros(k,n); [SDat Indice]=sort(Prod);

for i=1:k; PP(i,Indice(I1,i))=I1; PP(i,Indice(I2,i))=n−I2+1; end

if k>1; D=min(PP)'; else D=PP'; end
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A.2 The random Tukey depth

A.2.1 Definition and main properties

To carry out Example 4.1.4 we have used the following program, which calls

RandomDepthV.m.

clear all

%Generating the sample, matrix A and vector in which to project

X=randn(3,2); A=randn(2,2); vi=randn(1,2); vi=vi/(norm(vi));

%Computing the depths of the points in the sample before and after

%multiplying by A

D=RandomDepthV(X,vi); DA=RandomDepthV((A*X')',vi);

RandomDepthV.m

% Input data: X = a data set, for example X=randn(n,p), in which the

% number of rows (=n) is the sample size and the number of columns

% (=p) is the dimension.

% vi = the vector in which to project, of dimension p.

% Output data: D = vector with the ranks associated to the depths of

% the points in the data set.

function D=RandomDepthV(X,vi)

n=length(X(:,1));

% Vectors I1 and I2 are intended to compute the depths (ranks) in

% each projection. We give depth(rank) = 1 to the most outer point

% depth(rank) = 2 to the next one

% depth(rank) = integer part of n/2 to the

% deepest point

D=zeros(n,1); I1=1:n/2; I2=n:−1:(n/2+.1); prod=X*vi';

[SDat Indice]=sort(prod); D(Indice(I1))=I1; D(Indice(I2))=n−I2+1;
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A.3 Applications of the random Tukey depth

A.3.1 How many random projections?

The next program gives us as output Figure 5.1. It uses the function funcion.m which

calls RandomDepth.m and covan.m.

clear all

% Paremeters for the figure

A=[0 0 1 2]; NX=[25 100 50 100 100 500 500]; P=[2 2 8 8 50 50 50];

veces=25; Ln=[25 25 100 100 100 500 500]; Sigma=[.9 0 0 0];

B=[1 1 1 1 1 1 0]; j=1; f=1;

% Plotting

while f≤7

nX=NX(f); p=P(f); ln=Ln(f); b=B(f);

for i=1:4

r=funcion(A(i),nX,p,veces,ln,Sigma(i),b); subplot(7,4,j);

j=j+1; plot(1:ln,r,'−')

end

f=f+1;

end

funcion.m

function r=funcion(a,nX,p,veces,numerovectores,sigma,b)

% Computes the Spearman correlation coefficients between:

% −the M∗ depth of a sample, given by a and sigma, in Rp of

% size nX and

% −each random Tukey depth calculated with a number of

% projections among two and numerovectores, of the same sample.

% Imput data: a = 0 for Gaussian marginals, 1 for double exponential
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% marginals and 2 for Cauchy marginals

% nX = sample size

% p = space dimension

% numerovectores = maximum number of projections we use.

% We start with two and continue until this number

% sigma = covariance between marginals

% veces = number of times we do the process

% b = 0 to compute the Mahalanobis depth with the exact

% value of the covariance matrix and 1 to compute it with the sample

% one.

% Output data: r = a number of times, veces, Spearman correlation

% coefficients between the M∗ depth and each of the random Tukey

% depths

ln=numerovectores; r=zeros(ln,veces); pMh=zeros(1,nX);

S=(1−sigma)*eye(p)+sigma*ones(p,p); ceros=zeros(1,p);

for j=1:veces

%Distribution

if a==0

X=randn(nX,p)*(Sˆ(.5)); mYY=mean(X);

if b==0; Si=inv(S); mYY=ceros; else Si=inv(cov(X)); end

% Mahalanobis depth

for i=1:nX; xMh=X(i,:)−mYY; pMh(i)=inv(1+xMh*Si*xMh'); end

elseif a==1

X=exprnd(1,nX,p)*(Sˆ(.5)); FX=find(rand(nX,p)>1/2);

X(FX)=−X(FX); mYY=median(X);

if b==0; Si=inv(S); mYY=ceros; else Si=inv(cov(X)); end

% Mˆ* depth

for i=1:nX;

xMh=X(i,:)−mYY; A=Siˆ(1/2)*xMh';
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pMh(i)=inv(1+abs(A(1))+abs(A(2)));

end

else

X=trnd(1,nX,p)*(Sˆ(.5)); mYY=median(X);

if b==0; Si=inv(S); mYY=ceros; else Si=inv(covan(X)); end

% Mˆ* depth

for i=1:nX;

xMh=X(i,:)−mYY; A=Siˆ(1/2)*xMh';

pMh(i)=inv(1+(1+(A(1))ˆ2)*(1+(A(2))ˆ2));

end

end

for i=1:nX; xMh=X(i,:)−mYY; pMh(i)=inv(1+xMh*Si*xMh'); end

RD=RandomDepth(X);

% Random Tukey depths and corelations

for i=2:ln

RDp=RandomDepth(X); RD=min(RD,RDp);

if max(RD) 6=min(RD)

r(i,j)=corr(RD,pMh','type','Spearman');

end

end

end

RandomDepth.m

% Input data: X = a data set, for example X=randn(n,p), in which the

% number of rows (=n) is the sample size and the number of columns

% (=p) is the dimension.

% Output data: D = random Tukey depth in terms of ranks of X using

% one projection

function D=RandomDepth(X)



133

[n p] = size(X); D=zeros(n,1); I1=1:n/2; I2=n:−1:(n/2+.1);

% Vectors I1 and I2 are intended to compute the depths (ranks) in

% each projection. We give depth(rank) = 1 to the most outer point

% depth(rank) = 2 to the next one

% depth(rank) = integer part of n/2 to the

% deepest point

vi=randn(1,p); vi=vi/(norm(vi)); prod=X*vi';

[SDat Indice]=sort(prod); D(Indice(I1))=I1; D(Indice(I2))=n−I2+1;

covan.m

% Imput data: W = sample in which the number of rows is the sample

% size and the number of columns is the dimension.

% Output data: C = robust covariance matrix of W defined as in

% Maronna et al. [63, p. 206].

function C=covan(W)

[n pc]=size(W); Dm=zeros(pc,pc); Y=zeros(n,pc);

Uw=zeros(pc,pc); Z=zeros(n,pc); L=zeros(pc,pc);

for i=1:pc; Dm(i,i)=1/mad(W(:,i),1); end

for i=1:n; Y(i,:)=W(i,:)*Dm; end

for j=1:pc

for k=1:pc

if k==j

Uw(j,j)=1;

else

Yj=Y(:,j); Yk=Y(:,k);

Uw(j,k)=1/4*(mad(Yj+Yk,1)ˆ2−mad(Yj−Yk,1)ˆ2);

end

end

end
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[E, nada]=eig(Uw);

for i=1:n; Z(i,:)=Y(i,:)*E; end

for i=1:pc; L(i,i)=mad(Z(:,i),1)ˆ2; end

A=inv(Dm)*E; C=A*L*A';

Computation time

The program Tiempo.m gives us Table 5.1. It uses RtMh.m and MhRt.m.

Tiempo.m

% Output data: ResultRT = Time, in seconds, needed to compute the

% random Tukey depth of all the points in a sample; for different

% dimensions and sample sizes.

% ResuktMH = Time, in seconds, needed to compute the

% random Tukey depth of all the points in a sample; for different

% dimensions and sample sizes.

function [ResultRT,ResultMH]=Tiempo

c=[2 8 50 ; 10 60 250]; d=[25 50 100 ; 100 100 500];

ResultRT=zeros(2,3); ResultMH=zeros(2,3);

for j=1:3;

p=c(1,j); nV=c(2,j);

for i=1:2

nX=d(i,j);

[MedioRT MHMedio]=MhRt(p,nV,nX);

[RTMedio MedioMH]=RtMh(p,nV,nX);

ResultRT(i,j)=mean([MedioRT RTMedio]);

ResultMH(i,j)=mean([MHMedio MedioMH]);

end

end
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RtMh.m

% Calculate the average time for 100 samples needed to compute the

% random Tukey depth and the Mahalanobis depths. The random Tukey

% depth is computed first.

% Imput data: p = dimension

% nV = number of random vectors

% nX = sample size

% Output data: RTEMedio = average time needed to compute the random

% Tukey depth

% MedioMH = average time needed to compute the

% Mahalanobis depth

function [RTMedio MedioMH]=RtMh(p,nV,nX)

veces=100; I1=1:nX/2; I2=nX:−1:nX/2+.1; bMh=zeros(1,nX);

MH=zeros(1,veces); RTE=zeros(1,veces); PP=zeros(nV,nX);

for t=1:veces

X=randn(p,nX);

%Random Tukey

tic

V=randn(nV,p); for v=1:nV; Vv=V(v,:); V(v,:)=Vv/norm(Vv); end;

P=V*X;

for vv=1:nV

[SDat Indice]=sort(P(vv,:));

PP(vv,Indice(I1))=I1; PP(vv,Indice(I2))=nX−I2+1;

end

ProfRT=min(PP)./nX; RTE(t)=toc; Y=X';

%Mahalanobis

tic

S=inv(cov(Y)); mY=mean(Y);

for i=1:nX; xMh=Y(i,:)−mY; bMh(i)=inv(1+xMh*S*xMh'); end;
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MH(t)=toc;

end

RTMedio=mean(RTE);MedioMH=mean(MH);

MhRt.m

% Calculate the average time for 100 samples needed to compute the

% random Tukey depth and the Mahalanobis depths. The Mahalanobis

% depth is computed first.

% Imput data: p = dimension

% nV = number of random vectors

% nX = sample size

% Output data: RTEMedio = average time needed to compute the random

% Tukey depth

% MedioMH = average time needed to compute the

% Mahalanobis depth

function [MedioRT MHMedio]=MhRt(p,nV,nX)

veces=100; I1=1:nX/2; I2=nX:−1:nX/2+.1; bMh=zeros(1,nX);

MH=zeros(1,veces); RTE=zeros(1,veces); PP=zeros(nV,nX);

for t=1:veces

X=randn(p,nX); Y=X';

% Mahalanobis

tic

S=inv(cov(Y)); mY=mean(Y);

for i=1:nX; xMh=Y(i,:)−mY; bMh(i)=inv(1+xMh*S*xMh'); end;

MH(t)=toc;

% Random Tukey

tic

V=randn(nV,p); for v=1:nV; Vv=V(v,:); V(v,:)=Vv/norm(Vv); end;

P=V*X;
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for vv=1:nV

[SDat Indice]=sort(P(vv,:));

PP(vv,Indice(I1))=I1; PP(vv,Indice(I2))=nX−I2+1;

end

ProfRT=min(PP)./nX; RTE(t)=toc;

end

MHMedio=mean(MH); MedioRT=mean(RTE);

A.3.2 Multidimensional random Tukey depth. Testing homogeneity

With the programs in this section we obtain Figure 5.2 and Tables 5.2, 5.4, 5.3, 5.5, 5.6

and 5.7. Regarding Figure 5.2, it has been plotted using the following program which

calls Depth.m , described in Section A.1.

% Generates two sample size with a change of scale, computes the

% Tukey random Tukey depths of the joint sample sample and plots the

% results.

% Setting:

p=2; nX=100; nV1=5; V1=rand(p,nV1);

X=randn(nX,p); Y=2*randn(2*nX,p); mX=median(X); mY=median(Y);

for j=1:nX; X(j,:)=X(j,:)−mX; Y(j,:)=Y(j,:)−mY; end; W=[X ; Y];

% Tukey and random Tukey depths

IndiceTuc=0:pi/1000:pi; u=[cos(IndiceTuc) ; sin(IndiceTuc)];

T=Depth(W*u); RT=Depth(W*V1);

% Plotting

s=10; i=0:2*pi/s:2*pi; r=.2; xc=r*cos(i); yc=r*sin(i);

st=3; i=0:2*pi/st:(2*pi−.1); r=.2; xct=r*cos(i); yct=r*sin(i);

figure(1);

for j=1:nX; x=W(j,1)+xc; y=W(j,2)+yc; fill(x,y,RT(j)); hold on; end
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for j=(nX+1):(2*nX);

x=W(j,1)+xct; y=W(j,2)+yct; fill(x,y,RT(j)); hold on

end

hold off

figure(2)

for j=1:nX; x=W(j,1)+xc; y=W(j,2)+yc; fill(x,y,T(j)); hold on; end

for j=(nX+1):(2*nX);

x=W(j,1)+xct; y=W(j,2)+yct; fill(x,y,T(j)); hold on

end

For Tables 5.2, 5.4 and 5.3 we use LiuGrande.m which calls Bootstrap.m, Depth.m

and test.m. In addition, Bootstrap.m calls MedianaPonderadaM.m. The code of Depth.m

is in Section A.1.

LiuGrande.m

% Input data: a = 0; Normal

% a = 1; DExp

% a = 2; Cauchy

% b = 0; Tukey depth

% b = 1; random Tukey depth

% Output data: MD = median of the number of vectors used in the

% random Tukey case and zero in the Tukey case.

% Rate = Rejection Rates

function [MD,Rate]=LiuGrande(a,b)

% Parameters

TM=[20 30 100]; RY=[349 804 9377]; Sigma=[1 1.2 2]; p=2;

repeticiones=5000; LTM=length(TM); LS=length(Sigma); LTMS=LTM*LS;

if b==1

R=[1.1 1.2 1.3 1.5 1.7 2 2.5 3 4 5 7 10];

nV=25; Boots=100; ob=.8*Boots; met=4;
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rboots=zeros(repeticiones, Boots); k=zeros(1,Boots);

else

pm=pi/1000; met=1;

IndiceTuc=pm:pm:pi; u=[cos(IndiceTuc) ; sin(IndiceTuc)]';

end

MD=zeros(LTMS,met); Rate=zeros(LTMS,met); K0=zeros(repeticiones,met);

for nn=1:LTM

nX=TM(nn); Ry=RY(nn);

for ss=1:LS

sigma=Sigma(ss); rate=zeros(1,met);

for repet=1:repeticiones

% Distribution

if a==0

X=randn(p,nX); Y=sigma.*randn(p,nX);

elseif a==1

X=exprnd(1,p,nX); FX=find(rand(p,nX)>1/2);

Y=sigma.*exprnd(1,p,nX); FY=find(rand(p,nX)>1/2);

X(FX)=−X(FX); Y(FY)=−Y(FY);

else

X=trnd(1,p,nX); Y=sigma.*trnd(1,p,nX);

end

% Centering

mX=median(X,2); mY=median(Y,2);

for j=1:nX; X(:,j)=X(:,j)−mX; Y(:,j)=Y(:,j)−mY; end

W=[X,Y];

if b==1

V=randn(nV,p);

% Selecting the number of vectors

for i=1:Boots
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[k(i) rboots(repet,i)]=Bootstrap(2*nX,nV,W,V,Ry,R);

end

ks=sort(k);

k0=[mean(k) median(k) max(k) ks(round(ob))];

K0(repet,:)=k0; rk=round(k0);

% The test

for rn=1:met

pa=Depth((V(1:rk(rn),:)*W)');

result=test(Ry,pa); rate(rn)=rate(rn)+result;

end

else

pa=Depth((u*W)'); result=test(Ry,pa);

rate=rate+result;

end

end

Cn=(nn−1)*LS+ss; MD(Cn,:)=median(K0); Rate(Cn,:)=rate;

end

end

Rate=Rate./repeticiones;

Bootstrap.m

% Input data: N = sample size of the joint sample

% nV = maximum number of vectors to be chosen

% W = joint sample

% V = vectors that are used to compute the random Tukey

% depth

% Ry = constant that gives the critical region

% R = grid

% Output data: k = number of vectors chosen by the bootstrap method
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% r = element of the grid that gave us the k

function [k,r]=Bootstrap(N,nV,W,V,Ry,R)

Nd=N/2; lR=length(R);

Xs=W(:,ceil(N*rand(1,Nd))); Ys=W(:,ceil(N*rand(1,Nd)));

mX=MedianaPonderadaM(Xs,Nd); mY=MedianaPonderadaM(Ys,Nd);

% Centering

for j=1:N/2; Xs(:,j)=Xs(:,j)−mX; Ys(:,j)=Ys(:,j)−mY; end

cte=0; cont=0;

while cte==0

if cont<lR; cont=cont+1; r=R(cont); else r=r+10; end;

Z=[Xs,r*Ys];

for j=1:nV

pa=Depth((V(1:j,:)*Z)');

if test(Ry,pa)==1; k=j; cte=1; break; end

end

end

test.m

% Input data: Ry = constant that gives the critical region

% pa = rank of each element of the sample associated to

% the depth

% Output data: rate = result of the Wilcoxon rank−sum test applied to

% the input data pa

function rate=test(Ry,pa)

N=length(pa); nX=N/2; cn=1;

% Tie−breaking random

for c=1:max(pa)

F=find(pa==c); bn=length(F)+cn; permu=randperm(bn−1);

b(F)=permu(find(permu≥cn)); cn=bn;
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end

rate=0; if sum(b(nX+1:N))≤Ry; rate=1; end

MedianaPonderadaM.m

% Input data: X = sample

% Nd = sample size

% Output data: mX = ponderate median of X

function mX=MedianaPonderadaM(X,Nd)

mX=median(X,2);

for h=1:2

m=mX(h); Xh=X(h,:); fc=find(Xh<m); fg=find(Xh>m);

sl=Nd−length(fc)−length(fg);

if sl>1

xfc=Xh(fc); xfg=Xh(fg); c=(max(xfc)+m)/2;

mX(h)=median([xfc xfg c+ rand(1,sl)*((min(xfg)+m)/2−c)]);

end

end

For Tables 5.5, 5.6 and 5.7 we use the function LiuChica.m. It calls BootstrapW.m and

testWallis.m. In addition, Depth.m and MedianaPonderadaM.m are also called. Depth.m

appears in Section A.1 and MedianaPonderadaM.m just above here.

LiuChica.m

% Imput data: b = 0; Tukey depth

% b = 1; random Tukey depth

% Output data: MD = median of the number of vectors used in the

% random Tukey case and zero in the Tukey case.

% Rate = Rejection Rates

function [MD,Rate]=LiuChica(b)

% Parameters
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TM=[20 30]; Sigma2=[1 1.2 1.2 2]; Sigma3=[1 1.2 2 2]; p=2;

repeticiones=5000; LTM=length(TM); LS=length(Sigma2); LTMS=LTM*LS;

if b==1

R=[1.1 1.2 1.3 1.5 1.7 2 2.5 3 4 5 7 10]; nV=25; Boots=100;

met=4; rboots=zeros(repeticiones, Boots); k=zeros(1,Boots);

else

IndiceTuc=0:pi/1000:pi; u=[cos(IndiceTuc) ; sin(IndiceTuc)]';

met=1;

end

MD=zeros(LTMS,met); Rate=zeros(LTMS,met); K0=zeros(repeticiones,met);

for nn=1:LTM

nX=TM(nn);

for ss=1:LS

sigma2=Sigma2(ss); sigma3=Sigma3(ss); rate=zeros(1,met);

for repet=1:repeticiones

% Distribution

X=randn(p,nX); Y=sigma2.*randn(p,nX); Z=sigma3.*randn(p,nX);

mX=median(X,2); mY=median(Y,2); mZ=median(Z,2);

% Centering

for j=1:nX

X(:,j)=X(:,j)−mX; Y(:,j)=Y(:,j)−mY;

Z(:,j)=Z(:,j)−mZ;

end

W=[X,Y,Z];

if b==1

V=randn(nV,p);

% Selecting the number of vectors

for i=1:Boots

[k(i) rboots(repet,i)]=BootstrapW(nX*3,nV,W,V,R);
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end

ks=sort(k);

k0=[mean(k) median(k) max(k) ks(round(.8*Boots))];

K0(repet,:)=k0; rk=round(k0);

% The test

for rnn=1:met

pa=Depth((V(1:rk(rnn),:)*W)');

result=testWallis(pa);

rate(rnn)=rate(rnn)+result;

end

else

pa=Depth((u*W)'); result=testWallis(pa);

rate=rate+result;

end

end

Cn=(nn−1)*LS+ss; MD(Cn,:)=median(K0); Rate(Cn,:)=rate;

end

end

Rate=Rate./repeticiones;

BootstrapW.m

% Input data: N = sample size of the joint sample

% nV = maximum number of vectors to be chosen

% W = joint sample

% V = vectors that are used to compute the random Tukey

% depth

% R = grid

% Output data: k = number of vectors chosen by the bootstrap method

% r = element of the grid that gave us the k
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function [k r]= BootstrapW(N,nV,W,V,R)

Nt=N/3; lR=length(R);

Xs=W(:,ceil(N*rand(1,Nt))); Ys=W(:,ceil(N*rand(1,Nt)));

Zs=W(:,ceil(N*rand(1,Nt)));

mX=MedianaPonderadaM(Xs,Nt); mY=MedianaPonderadaM(Ys,Nt);

mZ=MedianaPonderadaM(Zs,Nt);

% Centering

for j=1:N/3

Xs(:,j)=Xs(:,j)−mX; Ys(:,j)=Ys(:,j)−mY; Zs(:,j)=Zs(:,j)−mZ;

end

cte=0; cont=0;

while cte==0

if cont<lR; cont=cont+1; r=R(cont); else r=r+10; end

Z=[Xs,r*Ys,Zs];

for j=1:nV

pa=Depth((V(1:j,:)*Z)');

if testWallis(pa)==1; k=j; cte=1; break; end

end

end

testWallis.m

% Input data: pa = rank of each element of the sample associated to

% the depth

% Output data: rate = result of the Kruskal−Wallis test applied to

% the input data pa

function rate=testWallis(pa)

N=length(pa); nX=N/3; dnX=2*nX; Nm=N+1; cn=1;

% Tie−breaking random

for c=1:max(pa)
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F=find(pa==c); bn=length(F)+cn; permu=randperm(bn−1);

b(F)=permu(find(permu≥cn)); cn=bn;

end

rate=0; Rbarra=[mean(b(1:nX)),mean(b(nX+1:dnX)),mean(b(dnX+1:N))];

T=(4/Nm)*sum((Rbarra−((N+1)/2)).ˆ2); if T≥5.991; rate=1; end

A.3.3 Functional random Tukey depth. Functional classification

Through this Section we use the following program Alturas.m that loads the file

heights.mat. It gives a matrix X formed by two groups. First group consists in 54 curves

(rows) and second in 39 curves (rows), each measured at 31 times (columns).

Alturas.m

% This program loads the data in the file heights.mat, which contains

% the matrix F with 54 curves measured 31 times and the matrix M

% with 39 curves measured 31 times.

% Output data: X = matrix that contains all the curves

% nA = number of curves of girls

% nO = number of curves of boys

% n = total number of curves

% MatDist = the distance matrix of the curves in X

function [X,nA,nO,n,p,MatDist]=Alturas

load heights;

X=[F;M]; nA=length(F); nO=length(M); n=length(X(:,1));

MatDist=zeros(n);

for i=1:n; for j=1:n; MatDist(i,j)=norm(X(i,:)−X(j,:)); end; end

The following program Graph.m gives us Figures 5.3 and 5.4.

clear all
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[X,nA,nO,n,p,Dist]=Alturas; F=X(1:nA,:); M=X(nA+1:n,:);

t=[1:0.25:2, 3:8, 8.5:0.5:18];

% Plots the height curves of boys and girls

plot(t,F), xlabel('Age in years', 'FontSize',16),

ylabel('Height in centimeters of girls', 'FontSize',16)

figure, plot(t,M), xlabel('Age in years', 'FontSize',16)

ylabel('Height in centimeters of boys', 'FontSize',16)

% Plots the height curves of boys and girls with each group centered

% by its component−wise median

Mm=median(M); Mt=zeros(nO,p); for i=1:nO; Mt(i,:)=M(i,:)−Mm; end

Fm=median(F); Ft=zeros(nA,p); for i=1:nA; Ft(i,:)=F(i,:)−Fm; end

figure, plot(t,Mt,'b'),

hold on

plot(t,Ft,'r'),

xlabel('Age in years', 'FontSize',16)

ylabel('Centered height of girls and boys', 'FontSize',16)

Program ClassificationCurve.m gives us Tables 5.8 and 5.9. To compute the rejec-

tion rates in the case S0,0 we do ClassificationCurve(0,0) and in the case Sa,c we do

ClassificationCurve([0, 1], [0, 1, 5]). This program needs of the following programs that

appear bellow: Alturas.m, restart1.m, DepthP.m and pesoMpon.m.

ClassificationCurve.m

% Computes the rates of mistakes using several classification methods

% based on the random Tukey depth. The distribution

% used to select the curves in which the data is projected depend on

% the input, a and b. The data is loaded inside the program.

% Input data: a=a vector with the possibilites for a in Sa,c

% c=a vector with the possibilites for c in Sa,c

% Output data: M1=vector caontaining the average rates of mistakes
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% when computing the methods M, AM, TAM, MD, DD and MI.

% k=vector containing the median of the vectors used in

% each of the first five methods

function [M1 k]=ClassificationCurve(a,c)

[X,nA,nO,n,p,M]=Alturas; CrosV=25; veces=100;

randV=[1:4,6:2:12,15:5:29,30:10:59,60:20:100];

% randV=[1:4,6:2:12,15:5:29,30:10:59,60:20:99,100:25:199,200:50:350,

% 400:100:1000];

sI=zeros(1,p); sI(2:5)=.25; sI(6:11)=1; sI(12:p)=.5; dev=sqrt(sI);

sI(1)=.125; sI(5)=.625; sI(11)=.75;

uma=.8; nu=n−1; nm=n−2; aci=zeros(veces,5);

K=zeros(veces*n,5); MaxV=length(randV); MaxK=max(randV);

lena=length(a); lenc=length(c); total=lena*lenc;

for kk=1:veces

T= ones(n,5);

for v=1:n

[nTA nTO TraA TraO]=restar1(nA,nO,1:n,v); Trai=[TraA TraO];

XT=X(Trai,:); XTA=X(TraA,:); XTO=X(TraO,:); XV=X(v,:);

Val2=randperm(nu); Valid2=Val2(1:CrosV);

PTin=zeros(nu,MaxK,total); PVin=zeros(1,MaxK,total);

ind=0; ABC=zeros(total,2); h=zeros(MaxK,p);

for ia=1:lena

for ic=1:lenc

for i=1:MaxK;

h(i,:)=BrownC(p,XTA,XTO,a(ia),c(ic),dev).*sI;

end

ind=ind+1; PTin(:,:,ind)=XT*h';

PVin(:,:,ind)=XV*h'; ABC(ind,:)=[a(ia),c(ic)];
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end

end

Max=zeros(1,5); MaxInCV=zeros(1,5); MaxIndk=zeros(1,5);

for inCV=1:total

for Indk=1:MaxV

k0=randV(Indk); ac=zeros(1,5);

for ii2=1:CrosV

i2=Valid2(ii2); PT2=PTin(:,:,inCV);

PZ=PT2(i2,1:k0); PT2(i2,:)=[];

[nTA2 nTO2 TraA2 TraO2]=restar1(nTA,nTO,Trai,i2);

PTA2=PT2(1:nTA2,1:k0);

PTO2=PT2(nTA2+1:nTA2+nTO2,1:k0);

DepkA=DepthP(PTA2); DepkO=DepthP(PTO2);

% M

x=X(Trai(i2),:);

[SA Aj]=sort(DepkA,'descend');

[SO Oj]=sort(DepkO,'descend');

umaA=1:floor(nTA2*uma); umaO=1:floor(nTO2*uma);

MDisA=norm(x−mean(X(TraA2(Aj(umaA)),:)));

MDisO=norm(x−mean(X(TraO2(Oj(umaO)),:)));

if (i2≤nTA&&MDisA<MDisO) | |(i2>nTA&&MDisO<MDisA)

ac(1)=ac(1)+1;

end

% AM

cteA=sum(DepkA); cteO=sum(DepkO);

pesoA=pesoMpon(M, Trai(i2), TraA2,DepkA);

pesoO=pesoMpon(M, Trai(i2), TraO2,DepkO);

pesoA=pesoA/cteA; pesoO=pesoO/cteO;

if (i2≤nTA&&pesoA<pesoO) | |(i2>nTA&&pesoO<pesoA)
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ac(2)=ac(2)+1;

end

% TAM

[DepkAsort IndAsort]=sort(DepkA);

s=IndAsort(nTA2:−1:nTA2−nTO2+1);

cteA=sum(DepkA(s));

pesoA=pesoMpon(M,Trai(i2),TraA2(s),DepkA(s));

pesoA=pesoA/cteA;

if (i2≤nTA&&pesoA<pesoO) | |(i2>nTA&&pesoO<pesoA)

ac(3)=ac(3)+1;

end

% MD

PTA2masi2=[PTA2; PTin(i2,1:k0,inCV)];

PTO2masi2=[PTO2; PTin(i2,1:k0,inCV)];

DepkAmasi2=DepthP(PTA2masi2);

DepkOmasi2=DepthP(PTO2masi2);

DA2=DepkAmasi2(nTA2+1);

DO2=DepkOmasi2(nTO2+1);

if (i2≤nTA && DA2>DO2) | | (i2>nTA && DO2>DA2)

ac(4)=ac(4)+1;

end

% DD

[Ratio RatioZ]=DDt(k0,nTA2,nTO2,PTA2,PTO2,PZ);

[sr so]=sort(Ratio); rv=1; d=nTA2; D=nTA2;

for i=2:nm

im=i−1;

if so(im)≤nTA2;

d=d−1;

if sr(i) 6=sr(im) && d<D; rv=i; D=d; end
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else

d=d+1;

end

end

r=mean(sr(rv−1:rv));

if (RatioZ<r && i2≤nTA2) | |(RatioZ>r && i2>nTA2)

ac(5)=ac(5)+1;

end

end

for i=1:5

if ac(i)>Max(i)

Max(i)=ac(i);

MaxInCV(i)=inCV; MaxIndk(i)=Indk;

end

end

end

end

po=(kk−1)*n+v;

% M

kM=randV(MaxIndk(1)); Ma=MaxInCV(1);

PkTA=PTin(1:nTA,1:kM,Ma);

PkTO=PTin(nTA+1:nTA+nTO,1:kM,Ma);

DepkTA=DepthP(PkTA); DepkTO=DepthP(PkTO);

[SAT ATj]=sort(DepkTA,'descend');

[SOT OTj]=sort(DepkTO,'descend');

xT=X(v,:);

MDisA=norm(xT−mean(X(TraA(ATj(1:floor(nTA*uma))),:)));

MDisO=norm(xT−mean(X(TraO(OTj(1:floor(nTO*uma))),:)));

if MDisO < MDisA; T(v,1)=0; end;
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% AM

kAM=randV(MaxIndk(2)); Ma=MaxInCV(2);

PkTA=PTin(1:nTA,1:kAM,Ma); DepkTA=DepthP(PkTA);

PkTO=PTin(nTA+1:nTA+nTO,1:kAM,Ma); DepkTO=DepthP(PkTO);

cteA=norm(DepkTA,1); cteO=norm(DepkTO,1);

pesoA=pesoMpon(M,v,TraA,DepkTA); pesoA=pesoA/cteA;

pesoO=pesoMpon(M,v,TraO,DepkTO); pesoO=pesoO/cteO;

if pesoA > pesoO; T(v,2)=0; end;

% TAM

kTAM=randV(MaxIndk(3)); Ma=MaxInCV(3);

PkTA=PTin(1:nTA,1:kTAM,Ma); DepkTA=DepthP(PkTA);

PkTO=PTin(nTA+1:nTA+nTO,1:kTAM,Ma); DepkTO=DepthP(PkTO);

[DepkTAsort IndTAsort]=sort(DepkTA);

SelecTA=IndTAsort(nTA:−1:nTA−nTO+1);

cteA=sum(DepkTA(SelecTA)); cteO=sum(DepkTO);

pesoA=pesoMpon(M,v,TraA(SelecTA),DepkTA(SelecTA));

pesoO=pesoMpon(M,v,TraO,DepkTO);

pesoA=pesoA/cteA; pesoO=pesoO/cteO;

if pesoA > pesoO; T(v,3)=0; end

% MD

kMD=randV(MaxIndk(4)); Ma=MaxInCV(4);

PkTA=PTin(1:nTA,1:kMD,Ma); PkTO=PTin(nTA+1:nTA+nTO,1:kMD,Ma);

PTAmasi1=[PkTA; PVin(1,1:kMD,Ma)];

PTOmasi1=[PkTO; PVin(1,1:kMD,Ma)];

DepkAmasi1=DepthP(PTAmasi1); DepkOmasi1=DepthP(PTOmasi1);

DepAi1=DepkAmasi1(nTA+1); DepOi1=DepkOmasi1(nTO+1);

if DepOi1 > DepAi1; T(v,4)=0; end

% DD

kR=randV(MaxIndk(5)); MR=MaxInCV(5); PZ=PVin(1,1:kR,MR);
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PkTA=PTin(1:nTA,1:kR,MR); PkTO=PTin(nTA+1:nu,1:kR,MR);

[Ratio RatioZ]=DDt(kR,nTA,nTO,PkTA,PkTO,PZ);

[sr so]=sort(Ratio); rv=1; d=nTA; D=nTA;

for i=2:nu

im=i−1;

if so(im)≤nTA;

d=d−1; if sr(i) 6=sr(im) && d<D; rv=i; D=d; end

else

d=d+1;

end

end

if RatioZ>mean(sr(rv−1:rv)); T(v,5)=0; end

K(po,:)=[kM kAM kTAM kMD kR];

end

B=zeros(nO,5); B(find(T(nA+1:n,:)==0))=1; T(nA+1:n,:)=B;

aci(kk,:)=sum(T);

end

M1=1−mean(aci)/n; k=median(K);

restar1.m

% Given a sample with the first nTA elements from the first group

% and an element, i2, of the sample, this program deletes this

% element from the sample.

% Input data: nTA = number of elements of the group A in the

% initial sample

% nTO = number of elements of the group O in the

% initial sample

% Training = initial sample, formed by group A and O

% i2 = element of the initial sample we want to delete
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% from it

% Output data: nTA2 = number of elements from the group A in the

% sample after deleting i2

% nTO2 = number of elements from the group O in the

% sample after deleting i2

% TraA2 = elements from the group A in the sample after

% deleting i2

% TraO2 = elements from the group O in the sample after

% deleting i2

function [nTA2 nTO2 TraA2 TraO2]=restar1(nTA,nTO,Training,i2)

TraA2 =Training(1:nTA); TraO2=Training(nTA+1:nTA+nTO);

if i2>nTA; TraO2(i2−nTA)=[]; nTA2=nTA; nTO2=nTO−1;

else TraA2(i2)=[]; nTA2=nTA−1; nTO2=nTO;

end

BrownC.m

% Input data: p = number of times at which the curves are measured

% F = matrix with the curves of the group A. It has p

% columns

% M = matrix with the curves of the group B. It has p

% columns

% a = parameter of Sa,c

% c = parameter of Sa,c

% Output data: B = Sa,c defined in Subsection 5.3.1

function Brown=BrownC(p,F,M,a,c,dev)

Brown=zeros(1,p); mF=median(F); mM=median(M); Brown(1)=c;

for i=2:p

Brown(i)=Brown(i−1)+((mF(i)−mM(i))ˆa)*randn*dev(i);

end
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DepthP.m

% Input data: Prod = matrix containing the 1−dimensional projections

% of n points on k randomly chosen vectors.

% Output data: D = vector with the ranks associated to the depths of

% the n points.

function D=DepthP(Prod)

[n k]=size(Prod);

% Vectors I1 and I2 are intended to compute the depths (ranks) in

% each projection. We give depth(rank) = 1 to the most outer point

% depth(rank) = 2 to the next one

% depth(rank) = integer part of n/2 to the

% deepest point

I1=1:n/2; I2=n:−1:(n/2+.1); PP=zeros(k,n); [SDat Indice]=sort(Prod);

for i=1:k; PP(i,Indice(I1,i))=I1; PP(i,Indice(I2,i))=n−I2+1; end

if k>1; D=min(PP)'; else D=PP'; end; D=D/n;

% Taking into account that the maximum theoretical depth is 1/2, we

% divide by n and so, then the depths belong to the interval [1/n,1/2]

pesoMpon.m

% Input data: MatDist = distance matrix of the total sample

% Validat = element of the total sample

% TraA = elements of the group A

% DepkA = depth of the sample TraA

% Output data: pes = distance between Validat and the group A as a

% weighted mean of the distances between Validat and the members of

% the group where the weights are the depths of the points

function pes=pesoMpon(MatDist,Validat,TraA,DepkA)
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nVal=length(Validat); nTra=length(TraA); pes=zeros(nVal,1);

for i2=1:nVal

uno=Validat(i2);

for i3=1:nTra

otro=TraA(i3);

pes(i2)=pes(i2)+(MatDist(uno,otro)*DepkA(i3));

end

end

DDt.m

% Input data: k = number of vectors used in the computation of

% random Tukey depth

% nA = number of elements of group A in the training

% sample

% nO = number of elements of group A in the training

% sample

% prodA = matrix containing the 1−dimensional

% projections of nA training curves

% prodO = matrix containing the 1−dimensional

% projections of nO training curves

% prodZ = matrix containing the 1−dimensional

% projection of the test curve

% Output data: Ratio = Ratio of the DD procedure using the training

% data

% RatioZ = Ratio of the DD procedure using the test

% data

function [Ratio RatioZ]=DDt(k,nA,nO,prodA,prodO,prodZ)

n=nA+nO;

[DrespA, DZrespA]=D([prodA ; prodZ],prodO,nA,nO,n,k,0,0);
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[DrespO, DZrespO]=D([prodO ; prodZ],prodA,nO,nA,n,k,nA,nO);

Ratio=DrespO./DrespA; RatioZ=DZrespO/DZrespA;

D.m

% Input data: prodA = matrix containing the 1−dimensional

% projections of nA training curves and the test curve

% prodO = matrix containing the 1−dimensional

% projections of nO training curves

% nA = number of elements of group A in the training

% sample

% nO = number of elements of group A in the training

% sample

% n = nA+nO

% k = number of vectors used in the computation of

% random Tukey depth

% (e,b) = constants depending on the position of group

% A in the training sample

% Output data: DrespA = random Tukey depth of the training sample

% with respect to the set of curves formed by the test sample and

% the elements of the training in the group A

% DZrespA = random Tukey depth of the test sample with

% respect to the set of curves formed by the test sample and the

% elements of the training in the group A

function [DrespA, DZrespA]=D(prodA,prodO,nA,nO,n,k,e,b)

DrespA=zeros(1,n); nAZ=nA+1;

[SDat IA]=sort(prodA);

I1A=1:nAZ/2; I2A=nAZ:−1:(nAZ/2+.1); PP=zeros(k,nAZ);

for i=1:k; PP(i,IA(I1A,i))=I1A; PP(i,IA(I2A,i))=nAZ−I2A+1; end

if k>1; DA=min(PP)'; else DA=PP'; end;
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DrespA((1+e):(nA+e))=DA(1:nA); DZrespA=DA(nAZ)/nAZ;

PA=zeros(k,nO);

for i=1:nO

for j=1:k

pOi=prodO(i,j); pA=prodA(:,j);

infA=length(find(pA≤pOi));

supA=length(find(pA≥pOi));

PA(j,i)=min(infA,supA);

end

end

ini=nA+1−b;

fini=n−b;

if k>1; DrespA(ini:fini)=min(PA)'; else DrespA(ini:fini)=PA'; end;

DrespA=DrespA/nAZ; DrespA(find(DrespA==0))=10ˆ(−4);

Let us compute now Table 5.10. There, three methods are use, random forest, k-NN

and Kernel. As we said in the introduction, the computations of the random forests

have been done with a software downloaded from http://www.cs.waikato.ac.nz/ml/weka.

Thus, here we write the MatLab codes por k-NN and Kernel.

For k-NN we use the function dknn.m which calls Alturas.m , uknn.m and tknn.m.

Furthermore, uknn.m calls knno.m.

dknn.m

% Input data: K = 0, we use cross−validation (CV) to select the

% number of nearest neighbors

% K = 1, we do 1−NN

% K = 3, we do 3−NN, ..

% Output data: ETotal = rate of mistakes for k−NN when classifying by

% using CV

% kg = vector of length the number of curves whose



159

% components are the k's selected by CV when K=0 and are zero

% otherwise

function [Etotal kg]=dknn(K)

[J,chicas,chicos,m,p,d]=Alturas;

mm=m−1; NV=1:2:91; e=0; kg=zeros(1,m); k=K;

I(1:chicas)=ones(1,chicas); I(chicas+1:m)=zeros(1,chicos);

%In the following we classify the curves by leave−one−out CV

for j=1:m

XTrain(1:j−1)=1:j−1; XTrain(j:mm)=j+1:m;

YTrain(1:j−1)=I(1:j−1); YTrain(j:mm)=I(j+1:m);

%The following line choose the k to be used in k−nn when K=0

if K==0; k=uknn(XTrain,YTrain,d,NV); kg(j)=k; end

if tknn(k,XTrain,YTrain,j,d) 6=I(j); e=e+1; end

end

Etotal=e/m;

tknn.m

% K−Nearest−Neighbor−Classifier MatLab Code

% Input data: k = value of k to do k−NN

% TrainPattern = the elements we use as Training

% TrainLabel = labels of the elements we use as

% Training

% TestPattern = the element for which we want to predict

% its label

% d = vector of distances between curves

% Output data: PreLabel = Predicted Label using k−nn

function PreLabel=tknn(k,TrainPattern,TrainLabel,TestPattern,d)

N=length(TrainPattern); dr=zeros(1,N);

% Determines distances of all TrainPattern points to the TestPattern
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% point, creating a distance column vector with N rows

for i=1:N; dr(i)=d(TrainPattern(i),TestPattern); end

% The predicted label is the TrainLabel associated with nearest

% TrainPatterns points. This is done by determining the closest

% distances and their indices

[cldvalues clIndx]=sort(dr);

if sum(TrainLabel(clIndx(1:k)))>k/2; PreLabel=1; else PreLabel=0; end

uknn.m

% Input data: XTrain = the sample

% YTrain = the labels of the elements in the sample

% d = matrix of distances

% NV = the possible values for K

% Output data: K = is the K to be used in K−nn

function K=uknn(XTrain,YTrain,d,NV)

m=length(YTrain); e=zeros(1,length(NV));

for i=1:m

XTrain1(1:i−1)=XTrain(1:i−1); XTrain1(i:m−1)=XTrain(i+1:m);

YTrain1(1:i−1)=YTrain(1:i−1); YTrain1(i:m−1)=YTrain(i+1:m);

PredictedLabels=knno(XTrain1,YTrain1,XTrain(i),d,NV);

f=find(PredictedLabels 6=YTrain(i)); e(f)=e(f)+1;

end

[a b]=min(e); K=NV(b);

knno.m

% Input data: TrainPattern = elements we use as training

% TrainLabel = labels of the training elements

% TestPattern = element we want to label

% d = matrix of distances
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% NV = possible values of k to do k−nn

% Output data: PredictLabels = Label the procedure gives to

% TestPattern for each of the elements of NV

function PredictLabels=knno(TrainPattern,TrainLabel,TestPattern,d,NV)

N=length(TrainPattern); dr=zeros(1,N);

%creates distance column vector with N rows

for i=1:N; dr(i)=d(TrainPattern(i),TestPattern); end

%determines closest distances and their indices

[cldvalues,clIndx]=sort(dr); n=0; PredictLabels=zeros(1,length(NV));

for k=1:NV

n=n+1;

if sum(TrainLabel(clIndx(1:k)))>k/2; PredictLabels(n)=1; end

end

For Kernel we use the function ClasifKernel.m with H = 50 and a = 0 for the fifth

column of Table 5.10 and a = 1 for the sixth. This program calls Aciert.m. In addition,

it calls Alturas.m and restart1.m that appear above.

ClasifKernel.m

% Computes the rates of mistakes using a classification method based

% on kernels. The data is loaded inside the program.

% Input data: a = 0, when using the indicator kernel, K(u) = I[0,1](u).

% a = 1, when using the quadratic kernel,

% K(u) = (1− u2)I[0,1](u).

% H is used in order to choose the window so that we

% apply leave−one−out cross−validation to a grid of H values.

% Output data: fallo = rate of mistakes.

function fallo = ClasifKernel(H,a)

[X,nA,nO,n,p,Dist]=Alturas; Ihh=(1:H)/H; aciertos=zeros(n,1);

for i1=1:n
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[nTA nTO TraA TraO]=restar1(nA,nO,1:n,i1); Training=[TraA TraO];

nT=nTA+nTO; Dist2=Dist(Training,Training);

hM=max(max(Dist2)); hm=min(min(Dist2+hM*eye(nT)));

% As we have said, the kernel's window is chosen by

% leave−one−out CV. Vecth is the list of all possible windows.

Vecth=hm+(hM−hm)*Ihh; ac2=zeros(1,H);

for i2=1:nT

[nTA2 nTO2 TraA2 TraO2]=restar1(nTA,nTO,Training,i2);

Trai2=[TraA2 TraO2]; nT2=nTA2+nTO2; uno=Training(i2);

for i=1:H

h=Vecth(i);

ac2(i)=ac2(i)+Aciert(uno,i2,nT2,Trai2,Dist,h,nTA2,nTA,a);

end

end

[maximo indexh0]=max(ac2); h0=Vecth(indexh0);

% Note that we classify using the selected window, h0.

aciertos(i1) = Aciert(i1,i1,nT,Training,Dist,h0,nTA,nA,a);

end

fallo=1−sum(aciertos)/n;

Aciert.m

% Input data: uno = sample we test

% i1 = label of the sample we test with respect to the

% total number of curves

% nT = number of elements in the training sample

% Training = training sample

% Dist = Distance matrix of all the curves

% h0 = window for the kernel

% nTA = number of elements of the first class in the
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% training sample

% nA = number of elements in the first class between the

% training and the test sample.

% a = 0, when using the indicator kernel, K(u) = I[0,1](u).

% a = 1, when using the quadratic kernel,

% K(u) = (1− u2)I[0,1](u).

% Output data: ac = 1 if the test sample is correctly classified

% ac = 0 if the test sample is wrongly classified

function ac = Aciert(uno,i1,nT,Training,Dist,h0,nTA,nA,a)

ac=0; pesoA=0; pesoO=0; w=0;

for i2=1:nT

otro=Training(i2); D=Dist(uno,otro);

if D<h0;

if a==1; w=D/h0; end

if i2≤nTA; pesoA=pesoA+1−wˆ2; else pesoO=pesoO+1−wˆ2; end

end

end

if (i1≤nA && pesoA>pesoO) | | (i1>nA && pesoO>pesoA); ac=1; end

A.4 Test of Gaussianity for stationary processes

Here, we write the programs used in Section 6.3 to obtain Figures 6.1 and 6.2 and Tables

6.2, 6.3 and 6.4.

To compute Figure 6.1 we use the following program. It also produces Figure 6.3.

This program calls distribucionesp.m .

% This program computes two figures. The first one is four

% possibilities of AR(1) and the second one two processes of the
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% family of non−Gaussian processes with Gaussian families given in

% Cuesta-Albertos and Matrán [22].

clear all; n=1000; past=1000;

% First plot

% first subplot

figure; subplot(4,1,1); q=0; x=distribucionesp(0,1,n+past);

for i=2:n+past; x(i)=q*x(i−1)+x(i); end; x=x(past+1:past+n);

plot(1:n,x);

title('D \epsilon=N(0,1) , q=0'); xlabel('time'); ylabel('AR(1)')

% second subplot

subplot(4,1,2); q=0; y=distribucionesp(0,7,n+past);

for i=2:n+past; y(i)=q*y(i−1)+y(i); end; y=y(past+1:past+n);

plot(1:n,y);

title('D \epsilon=\beta(2,1) , q=0'); xlabel('time'); ylabel('AR(1)')

% third subplot

subplot(4,1,3); q=.9; x=distribucionesp(0,1,n+past);

for i=2:n+past; x(i)=q*x(i−1)+x(i); end; x=x(past+1:past+n);

plot(1:n,x);

title('D \epsilon=N(0,1) , q=.9'); xlabel('time'); ylabel('AR(1)')

% fourth subplot

subplot(4,1,4); q=.9; y=distribucionesp(0,7,n+past);

for i=2:n+past; y(i)=q*y(i−1)+y(i); end; y=y(past+1:past+n);

plot(1:n,y);

title('D \epsilon=\beta(2,1) , q=.9');

xlabel('time'); ylabel('AR(1)')

% Second plot

% first subplot

figure; subplot(2,1,1); x=distribucionesp(5,8,n); plot(1:n,x)

title('p=5'); xlabel('time'); ylabel('process')
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% second subplot

subplot(2,1,2); x=distribucionesp(13,8,n); plot(1:n,x);

title('p=13'); xlabel('time'); ylabel('process')

distribucionesp.m

% Input data: p = in case para=8. This specifies to which

% distribution we refer among the ones in the family given by 8

% para = a number that refer to a distribution

% c = sample size

% Output data: x = values generated from the distribution given by

% para and sample size given by c

function x=distribucionesp(p,para,c)

if para==1; x=randn(1,c);

elseif para==2; x=lognrnd(0,1,1,c);

elseif para==3; x=trnd(10,1,c);

elseif para==4; x=chi2rnd(1,1,c);

elseif para==5; x=chi2rnd(10,1,c);

elseif para==6; x=rand(1,c);

elseif para==7; x=betarnd(2,1,1,c);

elseif para==8

U=randi(p,1)−1; mf=ceil((c+U)/p); Y=randi(p,1)−1;

Zini=randi(p,mf)−1; mfp=mf*p; Z=zeros(1,mfp);

for M=0:mf−1

for K=0:p−1; Z(M*p+K+1)=mod(Zini(M+1)+K*Y,p); end

end

mfpU=mfp−U; W=zeros(1,mfpU); for i=1:mfpU; W(i)=Z(i+U); end

Q=zeros(1,p+1); Q(1)=−inf; Q(p+1)=inf;

for K=1:p−1; Q(K+1)=norminv(K/p,0,1); end; y=randn(1,mfpU);
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for m=1:mfpU; K=W(m)+1; We=y(m);

while We≤Q(K) | | We≥Q(K+1); We=randn(1); end; y(m)=We;

end

x=y(1:c);

end

Figure 6.2 is computed with the following program. This program calls Gc.m. In

addition Gc.m calls the programs distribucionesp.m, reproduced above, and

GestadisticoVn.m.

% This program computes the rejection rates under the null hypothesis

% of three AR(1) processes, one with q = 0, other with q = 0.5 and

% another with q = −0.9 using the Lobato and Velasco test for different

% values c and sample sizes.

clear all

% Computation of the rejection rates

Ru=zeros(3,31); Rd=zeros(3,31); Rt=zeros(3,31); s=[100 500 1000];

for i=1:3

ss=s(i); Ru(i,:)=Gc(1,ss,0,5000);

Rd(i,:)=Gc(1,ss,.5,5000); Rt(i,:)=Gc(1,ss,−.9,5000);

end

% First plot

figure; subplot(3,1,1)

plot(1:31,Ru(3,:),'b*−'); hold on;

plot(1:22,Ru(2,1:22),'r+−')

plot(1:10,Ru(1,1:10),'yo−')

plot(1:31,.05*ones(1,31),'g')

legend('n=1000', 'n=500', 'n=100');axis([0 35 0.01 0.054])

title('q=0'); xlabel('c'); ylabel('rejection rates')
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% Second plot

subplot(3,1,2)

plot(1:31,Rd(3,:),'b*−'); hold on;

plot(1:22,Rd(2,1:22),'r+−')

plot(1:10,Rd(1,1:10),'yo−')

plot(1:31,.05*ones(1,31),'g')

legend('n=1000', 'n=500', 'n=100'); axis([0 35 0.01 0.054])

title('q=.5'); xlabel('c'); ylabel('rejection rates')

% Third plot

subplot(3,1,3)

plot(1:31,Rt(3,:),'b*−'); hold on;

plot(1:22,Rt(2,1:22),'r+−')

plot(1:10,Rt(1,1:10),'yo−')

plot(1:31,.05*ones(1,31),'g')

legend('n=1000', 'n=500', 'n=100'); axis([0 35 0.01 0.105])

title('q=−.9'); xlabel('c'); ylabel('rejection rates')

Gc.m

% Input data: para = distribution we use to compute the AR(1)

% process

% n = sample size

% q = parameter of the AR(1) process

% repetitions = number of times we run the test

% Output data: Rate = rejection rates at level 0.05. of the Lobato and

% Velasco's test for different values of c.

function Rate=Gc(para,n,q,repetitions)

past=1000; N=2; dN=2*N; rate=zeros(1,31); cc=chi2inv(1−.05,dN−2);

if n==100; d=10; elseif n==500; d=22; elseif n==1000; d=31; end

for rep=1:repetitions
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% Definition of the process

x=distribucionesp(p,para,n+past);

for i=2:n+past; x(i)=q*x(i−1)+x(i); end; x=x(past+1:past+n);

% Computing the statistic

for c=1:d

T=GestadisticoVn(x,c); if T≥cc; rate(c)=rate(c)+1; end

end

end

Rate=rate/repetitions;

GestadisticoVn.m

% Input data: y = process we want to test whether is Gaussian

% c = constant use to know until when the sum involved

% in the Lobato and Velasco test is computed

% Output data: G = statistic of the Lobato and Velasco test for the

% process y using the value given in c

function G=GestadisticoVn(y,c)

n=length(y); me=mean(y); mu2=var(y)*(n−1)/n;

mu3=sum((y−me).ˆ3)/n; mu4=sum((y−me).ˆ4)/n;

hn=ceil(c*sqrt(n)−1); gamma=zeros(1,hn);

for j=1:hn; yt=y(1:n−j); gamma(j)=sum((yt−me).*(y(1+j:n)−me))/n; end

hnm=hn+1; gat=zeros(1,hn); for j=1:hn; gat(j)=gamma(hnm−j); end

F3=abs(2*sum(gamma.*(gamma+gat).ˆ2)+mu2ˆ3);

F4=abs(2*sum(gamma.*(gamma+gat).ˆ3)+mu2ˆ4);

G=n*(mu3ˆ2/(6*F3)+(mu4−3*mu2ˆ2)ˆ2/(24*F4));

For the computation of Tables 6.2, 6.3 and 6.4 we use the following program. It calls

GoE.m, GE.m and testrandom.m. In turn, they call GestadisticoVn.m that can be found

above and Sub.m that is below. Sub.m needs of Quadratic.m and amoebam.m.
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Q=[−.9 −.5 0 .5 .6 .7 .8 .9]; lq=length(Q); N=[100 500 1000];

repetitions=5000; E=zeros(lq,7,3); G=zeros(lq,7,3);

ge=zeros(lq,7,3); TR=zeros(lq,7,3);

for j=1:lq

q=Q(j);

for para=1:7

for i=1:3

n=N(i);

E(j,para,i)=GoE(2,0,para,n,q,repetitions);

G(j,para,i)=GoE(1,0,para,n,q,repetitions);

ge(j,para,i)=GE(0,para,n,q,repetitions);

TR(j,para,i)=testrandom(4,0,para,n,q,repetitions);

end

end

end

% Table 6.2

E(:,:,1)

G(:,:,1)

ge(:,:,1)

TR(:,:,1)

% Table 6.3

E(:,:,2)

G(:,:,2)

ge(:,:,2)

TR(:,:,2)

% Table 6.4

E(:,:,3)

G(:,:,3)

ge(:,:,3)
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TR(:,:,3)

GoE.m

% Input data: Test = 1 if we want to apply the Lobato and Velasco's

% test and any other value if we want to apply the Epps' test

% p = in case para=8, this specifies to which

% distribution we refer among the ones in the family given by 8

% para = distribution we use to compute the AR(1)

% process

% n = sample size

% q = parameter of the AR(1) process

% repetitions = number of times we run the test

% Output data: Rate = rejection rate at level 0.05. of the Lobato

% and Velasco's test (if Test=1) or the Epps' test (if Test 6= 1)

function Rate=GoE(Test,p,para,n,q,repetitions)

past=1000; N=2; dN=2*N; rn=floor(nˆ.4);

rate=0; cc=chi2inv(1−.05,dN−2);

for rep=1:repetitions

% Definition of the process X

x=distribucionesp(p,para,n+past);

for i=2:n+past; x(i)=q*x(i−1)+x(i); end; x=x(past+1:past+n);

% Statistic

if Test==1;

T=GestadisticoVn(x,1);

else

deviSt=std(x)*(n−1)/n;

T=Sub([1 2]/deviSt,x,deviSt,rn,n,dN,N);

end

if T≥cc; rate=rate+1; end
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end

Rate=rate/repetitions;

GE.m

% Input data: p = in case para=8, this specifies to which

% distribution we refer among the ones in the family given by 8

% para = distribution we use to compute the AR(1)

% process

% n = sample size

% q = parameter of the AR(1) process

% repetitions = number of times we run the test

% Output data: Rate = rejection rate at level 0.05. of the combination

% using FDR of Epps' test and Lobato and Velasco's test

function Rate=GE(p,para,n,q,repetitions)

v=2; past=1000; N=2; dN=2*N; rn=floor(nˆ.4); rate=0; Cs=0;

for i=1:v; Cs=Cs+1/i; end; cc=zeros(1,v);

for i=1:v; cc(i)=chi2inv(1−.05*i/(v*Cs),dN−2);end; T=zeros(1,v);

for rep=1:repetitions

% Definition of the process X

x=distribucionesp(p,para,n+past);

for i=2:n+past; x(i)=q*x(i−1)+x(i); end; x=x(past+1:past+n);

% Statistics

deviSt=std(x)*(n−1)/n;

T(1)=GestadisticoVn(x,1);

T(2)=Sub([abs(randn) 2*abs(randn)]/deviSt,x,deviSt,rn,n,dN,N);

F=sort(T,'descend');

for i=v:−1:1; if F(i)≥ cc(i); rate=rate+1; break; end; end

end

Rate=rate/repetitions;
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testrandom.m

% Input data: v = is the number of projections we use. Half of them

% for the Epps' test and the other half for the Lobato and Velasco's

% test

% p = in case para=8, this specifies to which

% distribution we refer among the ones in the family given by 8

% para = distribution we use to compute the AR(1)

% process

% n = sample size

% q = parameter of the AR(1) process

% repetitions = number of times we run the test

% Output data: Rate = rejection rates at level 0.05. of the random

% projection test

function Rate=testrandom(v,p,para,n,q,repetitions)

past=1000; N=2; dN=2*N; rn=floor(nˆ.4); rate=0; Cs=0;

for i=1:v; Cs=Cs+1/i; end; cc=zeros(1,v);

for i=1:v; cc(i)=chi2inv(1−.05*i/(v*Cs),dN−2);end; T=zeros(1,v);

for rep=1:repetitions

% Definition of the process X

x=distribucionesp(p,para,n+past);

for i=2:n+past; x(i)=q*x(i−1)+x(i); end; x=x(past+1:past+n);

% Definition of the process Y

for i=1:v

if mod(i,2)==1; A=100; B=1; elseif mod(i,2)==0; A=2; B=7; end

ch=1; HH=betarnd(A,B,1,n); C=n;

while ch>10ˆ(−15) && C>1;

a=ch*HH(C); ch=ch−a;

if C==n; HH(C)=sqrt(a); else HH(C)=sqrt(a)/(n−C); end

C=C−1;
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end

HH(C)=sqrt(ch)/(n−C); h=HH(C:n); k=length(h); y=zeros(1,n);

for j=1:(k−1); y(j)=x(1:j)*h(k−j+1:k)'; end

for j=k:n; y(j)=x(j−k+1:j)*h'; end

% Statistic

dev=std(y)*(n−1)/n;

if i≤v/2;

T(i)=GestadisticoVn(y,1);

elseif i>v/2;

T(i)=Sub([abs(randn) 2*abs(randn)]/dev,y,dev,rn,n,dN,N);

end

end

F=sort(T,'descend');

for i=v:−1:1; if F(i)≥ cc(i); rate=rate+1; break; end; end

end

Rate=rate/repetitions;

Sub.m

% Input data: lambda = points at which it is verified whether the

% characteristic function of the process y is equal to the

% characteristic function of a Gaussian distribution

% y = process at which we compute the statistic

% deviSt = standard deviation of y

% rn = number needed in the computation of the

% estimator of the spectral density at zero

% n = size of y

% dN = two times N

% N = number of elemnts of lambda

% Output data: Tr = statistic of the process y using the Epps' test
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function Tr=Sub(lambda,y,deviSt,rn,n,dN,N)

% Definition of gn, the emprical characteristic function computed on

% lambda

gmatrix=zeros(n,dN);

for i=1:n; ly=lambda*y(i); co=cos(ly); si=sin(ly);

for j=1:N; j2=j*2; gmatrix(i,j2−1:j2)=[co(j), si(j)]; end

end

gn=mean(gmatrix);

% Definition of Gm, the generalized inverse of two times the

% spectral density function at zero

dpifcero=zeros(dN,dN);

for j=1:n; zj=gmatrix(j,:)−gn; dpifcero=dpifcero+zj'*zj; end

de2=zeros(dN,dN);

for r=1:rn

de1=zeros(dN,dN);

for j=1:n−r; de1=de1+(gmatrix(j,:)−gn)'*(gmatrix(j+r,:)−gn); end

de2=de2+de1*(1−r/rn);

end

dpifcero=(dpifcero+2*de2)/n; Gm=pinv(dpifcero); me=mean(y);

sts=deviSt/sqrt(n); ts2=sqrt(2/n); Va=deviStˆ2;

P=[me−sts Va*(1−ts2); me+sts Va*(1−ts2); me Va*(1+ts2)];

Y=zeros(3,1);

for i=1:3; Y(i)=Quadratic(P(i,:),gn,lambda,Gm,N,dN); end

Tr=amoebam(P,Y,n,gn,lambda,Gm,N,dN);

Quadratic.m

% Input data: m = vector containing a mean and a variance

% gn = emprical characteristic function computed on
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% lambda

% lambda = points at which it is verified whether the

% characteristic function of the process y is equal to the

% characteristic function of a Gaussian distribution

% Gm = generalized inverse of two times the spectral

% density function at zero

% N = number of elemnts of lambda

% dN = two times N

% Output data: q = quadratic form needed to compute the statistic of

% Epp's test

function q = Quadratic(m,gn,lambda,Gm,N,dN)

mu=m(1); sigma=m(2);

ml=mu*lambda;

e=exp(−sigma*(lambda.ˆ2)/2);

re=e.*cos(ml); im=e.*sin(ml); gms=zeros(1,dN);

for j=1:N; j2=j*2; gms((j2)−1:j2)=[re(j), im(j)]; end

g=gn−gms;

q=g*Gm*g';

amoebam.m

% The following program is the translation to MatLab of the program

% amoeba that can be found in Press et al. [71]

% Input data: P = 3 times 2 matrix containing three pairs of

% inicializations, mean and variance

% Y = vector of length 3 containig the value of the

% quadratic form involved in the Epps' test

% n = size of the process we are testing

% gn = emprical characteristic function of the process

% computed on lambda
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% lambda = points at which it is checked whether the

% characteristic function of the process y is equal to the

% characteristic function of a Gaussian distribution

% Gm = generalized inverse of two times the spectral

% density function at zero

% N = number of elemnts of lambda

% dN = two times N

% Output data: mf = computes the minimizer of the quadratic function

% nearest the sample mean and variance of the process

function mf=amoebam(P,Y,n,gn,lambda,Gm,N,dN)

NDIM=2; FTOL=.0001; NMAX=20; ALPHA=1; BETA=0.5; GAMMA=2; ITMAX=500;

PR=zeros(1,NMAX); PRR=zeros(1,NMAX); MPTS=NDIM+1; ITER=0; IXXX=1;

while IXXX==1

ILO=1; if Y(1)>Y(2); IHI=1; INHI=2; else IHI=2; INHI=1; end

for I=1:MPTS

if Y(I)<Y(ILO); ILO=I; end

if Y(I)>Y(IHI); INHI=IHI; IHI=I;

elseif Y(I)>Y(INHI) && I 6=IHI; INHI=I;

end

end

RTOL=2.*abs(Y(IHI)−Y(ILO))/(abs(Y(IHI))+abs(Y(ILO)));

if RTOL<FTOL; mf=n*min(Y); break; end

if ITER==ITMAX; mf=n*min(Y); break; end

ITER=ITER+1; PBAR=zeros(1,NDIM);

for I=1:MPTS;

if I 6=IHI; for J=1:NDIM; PBAR(J)=PBAR(J)+P(I,J); end; end

end

for J=1:NDIM

PBAR(J)=PBAR(J)/NDIM;
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PR(J)=(1.+ALPHA)*PBAR(J)−ALPHA*P(IHI,J);

end

YPR=Quadratic(PR,gn,lambda,Gm,N,dN);

if YPR≤Y(ILO)

for J=1:NDIM; PRR(J)=GAMMA*PR(J)+(1.−GAMMA)*PBAR(J); end

YPRR=Quadratic(PRR,gn,lambda,Gm,N,dN);

if YPRR < Y(ILO);

for J=1:NDIM; P(IHI,J)=PRR(J); end

Y(IHI)=YPRR;

else

for J=1:NDIM; P(IHI,J)=PR(J); end; Y(IHI)=YPR;

end

elseif YPR≥Y(INHI)

if YPR < Y(IHI);

for J=1:NDIM; P(IHI,J)=PR(J); end

Y(IHI)=YPR;

end

for J=1:NDIM; PRR(J)=BETA*P(IHI,J)+(1.−BETA)*PBAR(J); end

YPRR=Quadratic(PRR,gn,lambda,Gm,N,dN);

if YPRR<Y(IHI);

for J=1:NDIM; P(IHI,J)=PRR(J); end

Y(IHI)=YPRR;

else

for I=1:MPTS;

if I 6=ILO;

for J=1:NDIM;

PR(J)=0.5*(P(I,J)+P(ILO,J)); P(I,J)=PR(J);

end

Y(I)=Quadratic(PR,gn,lambda,Gm,N,dN);
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end

end

end

else for J=1:NDIM; P(IHI,J)=PR(J); end; Y(IHI)=YPR;

end

end

A.4.1 A stationary non-Gaussian process with Gaussian marginal

In this subsection we have the codes to compute Tables 6.5 and 6.6. The code for Figure

6.3 appears at the beginning of this section. The program for Table 6.5 is the following

one. It calls testrandom.m, reproduced above in the section.

P=[2 3 5 7 11 13 17]; N=[100 500 1000]; JC=zeros(3,7);

for i=1:7

p=P(i); for j=1:3; JC(j,i)=testrandom(4,p,8,N(j),0,5000); end

end

% Table 6.5

JC

The following program computes Table 6.6. It calls GoE.m and GE.m, which are stated

above in the section.

N=[100 500 1000]; repetitions=5000;

E=zeros(1,3); G=zeros(1,3); ge=zeros(1,3);

for i=1:3

n=N(i); E(i)=GoE(2,0,8,n,0,repetitions);

G(i)=GoE(1,0,8,n,0,repetitions); ge(i)=GE(0,8,n,0,repetitions);

end
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% Table 6.6

E

G

ge

A.4.2 Increasing the number of projections

The following program is used to compute Table 6.7. It calls testrandom.m that can be

found above in the section.

K=[2ˆ3 2ˆ5 2ˆ8]; Rk=zeros(3,3); N=[100 500 1000];

for i=1:3

k=K(i); for j=1:3; Rk(j,i)=testrandom(k,5,8,N(j),0,5000); end

end

% Last three columns of Table 6.7

Rk

A.4.3 Real data

Canadian lynx and Wolfer sunspot data

Here we deal with Figure 6.4 and Table 6.8. Regarding Figure 6.4 we use the following

program.

figureReal2.m

% This program computes a Figure with two plots. In the first one is

% plotted the Canadian lynx data and the second one with the Wolfer

% sunspot data

% Input data: x = Canadian lynx data, it is a row vector

% y = Wolfer sunspot data, it is a row vector
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function figureReal2(x,y)

% first subplot

subplot(2,1,1); plot(1:length(x),x); axis([0 115 0 7500])

title('Canadian lynx data'); xlabel('time'); ylabel('process')

% second subplot

subplot(2,1,2); plot(1:length(y),y); axis([0 262 0 200])

title('Wolfer sunspot data'); xlabel('time'); ylabel('process')

In order to compute the first column of Table 6.8 we use the program RealData.m

where for the first column we take the Canadian lynx data and for the second one the

Wolfer sunspot data. The other two columns of Table 6.8 are taken from their respective

papers. RealData.m calls GestadisticoVn.m and Sub.m that are above in the section.

RealData.m

% Input data: x = is the process we want to test, it is given in a

% row vector

% Output data: Pvalue = p−value obtained by doing the random

% projection test for the process x

function Pvalue=RealData(x)

v=4; n=length(x); N=2; dN=2*N; rn=floor(nˆ.4); T=zeros(1,v);

Cs=0; for i=1:v; Cs=Cs+1/i; end;

cc=zeros(1,v); for i=1:v; cc(i)=chi2inv(1−.05*i/(v*Cs),dN−2);end;

for i=1:v

if mod(i,2)==1; A=100; B=1; elseif mod(i,2)==0; A=2; B=7;end

ch=1; HH=betarnd(A,B,1,n); C=n;

while ch>10ˆ(−15) && C>1;

a=ch*HH(C); ch=ch−a;

if C==n; HH(C)=sqrt(a); else HH(C)=sqrt(a)/(n−C); end

C=C−1;

end



181

HH(C)=sqrt(ch)/(n−C); h=HH(C:n); k=length(h); y=zeros(1,n);

for j=1:(k−1); y(j)=x(1:j)*h(k−j+1:k)'; end

for j=k:n; y(j)=x(j−k+1:j)*h'; end

% Statistics

dev=std(y)*(n−1)/n;

if i≤v/2

T(i)=GestadisticoVn(y,1);

elseif i>v/2

T(i)=Sub([abs(randn) 2*abs(randn)]/dev,y,dev,rn,n,dN,N);

end

end

F=sort(T,'descend'); p=zeros(1,4);

for i=1:v; p(i)=(1−chi2cdf(F(i),2))/i; end; Pvalue=min(p)*25/3;

Sea waves data

The following program computes Figure 6.6 and Table 6.6. It calls RealData.m (above),

RealDataGE.m (below) and soukissian.m. We have obtained soukissian.m by courtesy

of J.B. Hernández.

% Output data: Pvalue = $p$−value obtained by doing the RP−test

% PvalueGE = $p$−value obtained by doing the GE−test

function [Pvalue PvalueGE]=Olas

% With Datos we obtain a matrix D whose fourth column contains the

% 27,648 data measured between 10:00 and 16:00 the first of November

% 2009.

Datos

lD=length(D);

% Cm is the number of observations in 5 minutes
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Cm=lD/72; dCm=Cm*2; n=ceil((lD−3*Cm)/dCm); Hs=zeros(n,1);

ini=1; fini=3*Cm;

for i=1:35

Hs(i)=4*std(D(ini:fini,4)); ini=fini−Cm; fini=fini+dCm;

end

% Apply de Soukissian Algorithm

[S,R,Hs]=soukissian(Hs,n); Souki=[S.ini' ; S.fin']'

S.est

% Once selected the stationary segment, we compute the $p$values

sCm=1:7*Cm; O=D(sCm,4)'; Pvalue=RealData(O); PvalueGE=RealDataGE(O);

% Plot of the selected the stationary segment

plot(sCm,D(sCm,4))

RealDataGE.m

% Input data: x = is the process we want to test, it is given in a

% row vector

% Output data: Pvalue = p-value obtained by doing the GE−test to the

% process x

function Pvalue=RealDataGE(x)

v=4; n=length(x); N=2; dN=2*N; rn=floor(nˆ.4); T=zeros(1,v);

Cs=0; for i=1:v; Cs=Cs+1/i; end;

cc=zeros(1,v); for i=1:v; cc(i)=chi2inv(1−.05*i/(v*Cs),dN−2);end;

for i=1:v

% Statistics

dev=std(x)*(n−1)/n;

if i≤v/2

T(i)=GestadisticoVn(x,1);

elseif i>v/2

T(i)=Sub([abs(randn) 2*abs(randn)]/dev,x,dev,rn,n,dN,N);
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end

end

F=sort(T,'descend'); p=zeros(1,4);

for i=1:v; p(i)=(1−chi2cdf(F(i),2))/i; end

Pvalue=min(p)*25/3;
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