
Received June 13, 2018, accepted August 22, 2018, date of publication September 17, 2018, date of current version October 8, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2867452

Experimentation as a Service Over Semantically
Interoperable Internet of Things Testbeds
JORGE LANZA1, LUIS SÁNCHEZ 1, JUAN RAMÓN SANTANA1, RACHIT AGARWAL2,
NIKOLAOS KEFALAKIS3, PAUL GRACE4, TAREK ELSALEH5, MENGXUAN ZHAO6,
ELIAS TRAGOS7, HUNG NGUYEN7, FLAVIO CIRILLO8,9,
RONALD STEINKE10, AND JOHN SOLDATOS3
1Network Planning and Mobile Communications Laboratory, Universidad de Cantabria, Edificio Ingeniería de Telecomunicación, 39005 Santander, Spain
2MiMove Team, Inria, 75589 Paris Cedex 12, France
3Athens Information Technology, 15125 Marousi, Greece
4IT Innovation Centre, University of Southampton, Southampton SO16 7NS, U.K.
5Institute for Communication Systems, University of Surrey, Guildford GU2 7XH, U.K.
6Easy Global Market, Espace Beethoven, 06560 Valbonne, France
7Insight Centre for Data Analytics, NUI Galway, Galway, H91AEX4 Ireland
8NEC Laboratories Europe, 69115 Heidelberg, Germany
9University of Naples ‘‘Federico II’’, Corso Umberto I, 40, 80138 Napoli NA, Italy
10Fraunhofer Institute for Open Communication Systems FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

Corresponding author: Luis Sánchez (lsanchez@tlmat.unican.es)

This work was supported in part by the European Project ‘‘Federated Interoperable Semantic IoT/Cloud Testbeds and Applications
(FIESTA-IoT)’’ from the European Union’s Horizon 2020 Programme under Grant CNECT-ICT-643943 and in part by the Spanish
Government by means of the Project ADVICE ‘‘Dynamic Provisioning of Connectivity in High Density 5G Wireless Scenarios’’ under
Grant TEC2015-71329-C2-1-R.

ABSTRACT Infrastructures enabling experimental assessment of Internet of Things (IoT) solutions are
scarce. Moreover, such infrastructures are typically bound to a specific application domain, thus, not
facilitating the testing of solutions with a horizontal approach. This paper presents a platform that supports
Experimentation as s Service (EaaS) over a federation of IoT testbeds. This platform brings two major
advances. First, it leverages semantic web technologies to enable interoperability so that testbed agnostic
access to the underlying facilities is allowed. Second, a set of tools ease both the experimentation workflow
and the federation of other IoT deployments, independently of their domain of interest. Apart from the
platform specification, this paper presents how this design has been actually instantiated into a cloud-based
EaaS platform that has been used for supporting a wide variety of novel experiments targeting different
research and innovation challenges. In this respect, this paper summarizes some of the experiences from
these experiments and the key performance metrics that this instance of the platform has exhibited during
the experimentation.

INDEX TERMS Experimentation, Internet of Things, interoperability, semantics, testbeds.

I. INTRODUCTION
Experimentation is one of the basis for technological
advances [1]. Being able to test and assess the behaviour
and the performance of any piece of technology (i.e. pro-
tocol, algorithm, application, service, etc.) under real-world
circumstances is of utmost importance to increase the accep-
tance and reduce the time to market of these innovative
developments.

The Internet of Things (IoT) is unanimously identified
as one of the main technology enablers for the develop-
ment of future intelligent environments. It is driving the
digital transformation of many different domains
(e.g. mobility, environment, industry, healthcare, etc.) of our

everyday life. This is happening by realizing the paradigm of
more instrumented, interconnected and intelligent scenarios.
Instrumented through low-cost smart sensors and mobile
devices that turn the workings of the physical world into
massive amounts of data points that can be measured. Inter-
connected so that different parts of a core system, like net-
works, applications and data centres, are joined and ‘‘speak’’
to each other, turning data into information. And intelligent
with information being transformed into real-time actionable
insights at massive scale through the application of advanced
analytics.

The IoT concept has attracted a lot of attention from
the research and innovation community for a number of

VOLUME 6, 2018 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 51607

https://orcid.org/0000-0003-0136-3420


J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

years already [2]–[5]. One of the key drivers for this hype
towards the IoT is its applicability to a plethora of dif-
ferent application domains [6], like smart cities [7], [8],
e-health [9], [10], smart-environment [11], smart-home [12]
or Industry 4.0 [13].

Despite the advances that have been accomplished, there
is still enormous scope to develop novel and innovative
IoT-based solutions that aim at transforming our everyday
life. In this respect, real-life experimentation should play
a major role in these developments. Interestingly, there are
initiatives that, in order to improve these solutions’ matu-
ration and significant rollout, try to support the evaluation
of IoT solutions under realistic conditions in real world
experimental deployments [14], [15]. However, still they tend
to lack the necessary scale or they fail to fulfil some key
indicators [14], [16]. Nonetheless, large-scale infrastructures
enabling the assessment of developed solutions under real-
world circumstances are scarce and are not always available
for those willing to test their innovations. Moreover, such
infrastructures are typically bound to a specific application
domain, thus, not facilitating the testing of solutions with a
horizontal approach (i.e. fulfilling requirements from differ-
ent application domains).

Thus, it is deemed necessary to set-up IoT experimentation
infrastructures that have the appropriate scale, experimen-
tation realism, heterogeneity, interoperability and openness
to facilitate the development of innovative solutions that
can actually realize this paradigm of instrumented, intercon-
nected and intelligent scenarios.

This paper presents a platform that has been implemented
for enabling Experimentation as a Service (EaaS) over mul-
tiple IoT testbeds. In this sense, the key advance with respect
to the state of the art brought by the IoT EaaS Platform,
which this paper is describing, is twofold. On the one hand,
the tools and services underpinning the EaaS concept across
federated IoT data sources that reduce the effort to build
and run experiments. Experimenters assessing their research
on top of this IoT Platform are able to get data from any
of the underlying testbeds using a unique set of tools and
Application Programming Interfaces (APIs). On the other
hand, the interfaces and models provide IoT testbed semantic
alignment and interoperability so that the resulting platform
increases scale, heterogeneity, experimentation realism and
cross-domain innovation. These testbeds federate through
the semantic web platform allowing the interoperability and
seamless testbed-agnostic access to the services and data
that they provide. The paper describes the overall system
architecture as well as the tools implemented to support the
EaaS paradigm.

In addition to the description of the design princi-
ples and the specification of the different building blocks,
another contribution of the paper is the validation and
evaluation of the instantiation of the platform design that
has been created within the H2020 FIESTA-IoT project.1

1http://fiesta-iot.eu/

The implementation of this instance of the proposed inter-
operable IoT EaaS Platform does not only imply the devel-
opment of the different components integrated within, but
also the specification of the semantic information models
(i.e. ontologies and taxonomies [17]) that constitutes the
baseline of the semantic web-based solutions adopted. This
evaluation and validation is based on the performance of
the implemented instance during the realization of several
experiments on top of it. Additionally, it is also based on the
feedback received from the experimenters that actually run
the abovementioned experiments.

The structure of the remaining of the paper is as follows.
Section II briefly reviews existing infrastructures support-
ing the EaaS concept (with emphasis on IoT-related ones).
The integrated IoT EaaS Platform low-level architecture and
the different components that are part of it are presented
in Section III. In Section IV the workflow for federating
IoT testbeds and making their resources available through
the Platform is described. Section V summarizes the tools
and procedures that experimenters have at hand to access
the underlying testbeds datasets in a testbed-agnostic man-
ner and, thus, carry out their experiments. In Section VI,
the results of the validation and evaluation of the Platform
instantiation are presented. Finally, Section VII contains
some concluding remarks and discussion on the scenarios
enabled.

II. RELATED WORK
A. EXPERIMENTAL INFRASTRUCTURES
The need for IoT experimentation facilities is driven by the
effort and expense required to create realistic environments
to test new IoT technologies. This has led to the creation
of experimental testbeds. Wisebed [18], FIT IoT-Lab [19],
Fed4FIRE [20], and GENI [21] are all testbeds that support
wireless sensor network experimentation allowing the testing
of new communication and application protocols that under-
pin the IoT domain (in particular looking at improving the
properties of reliability, power consumption, performance,
etc. in IoT networking environments). Such environments
are technology specific and do not support experimentation
of new IoT applications and services. In response, Smart-
Santander [15] provides a large-scale, geographically dis-
tributed range of real-world sensors to test new innovative
IoT services; LiveLab [22] offers a facility to evaluate human-
usage of the technologies; and [23] presents aMobile Sensing
testbed of smart phones to support field-testing of new crowd-
sourcing applications. While enormously useful in their own
right, these higher-layer testbeds are either domain specific
(a particular type of experiment or technology domain) or do
not consider key IoT development concerns– namely achiev-
ing interoperability across domain silos and heterogeneous
technologies. The IoT EaaS Platform proposed in this paper
is technology and domain agnostic (federating multiple smart
city, smart home, crowd-sensing testbeds) to allow exper-
iments that demonstrate IoT interoperability across highly
heterogeneous IoT environments.

51608 VOLUME 6, 2018



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

FIGURE 1. Abstract IoT EaaS platform and testbed federation concepts overview.

B. SEMANTIC INTEROPERABILITY
The use of semantic web technologies to query and manage
information within federated cyber-infrastructures [24], [25]
is being explored as a promising approach to support the nec-
essary coherence among heterogeneous experimental infras-
tructures. However, most of them make a top-down approach
defining only the framework and assessing themeta-directory
service using their own ontologies [26], [27], or extensions
of established ontologies such as the W3C Semantic Sensor
Network (SSN) ontology [28]. They do not take into account
the necessities from already deployed infrastructures, and
neither define the procedures for them to join their feder-
ations. Moreover, some of them are still only design pro-
posals [29] that have not been implemented nor assessed.
Finally, those that present some kind of assessment of their
solutions’ implementation, while supporting the potential of
the solution, exhibit a lack of exposure to real-life situa-
tions and actual heterogeneous testbeds, including large-scale
IoT experimental infrastructures, which would show the true
scalability and flexibility of the solutions. At the time of writ-
ing, the FIESTA-IoT Platform has already integrated eight
different testbeds from heterogeneous application domains
(e.g. smart cities, maritime, smart building, crowdsensing,
smart grid, etc.) with over 5,000 IoT devices overall which
produce millions of observations per day.

III. FIESTA-IoT PLATFORM KEY CONSIDERATIONS AND
ARCHITECTURE
A. KEY DESIGN CONSIDERATIONS
The main aim of the Platform described in this paper
is to enable an EaaS paradigm for IoT experiments.

However, instead of deploying yet another physical
IoT infrastructure it enables experimenters to use a single
EaaS API for executing experiments over multiple existing
IoT testbeds that are federated in a testbed agnostic way.
Testbed agnostic implies in this case the ability to expose
a single testbed that virtualizes the access to the underly-
ing physical IoT testbeds. Experimenters learn once and
accordingly use the EaaS API to access data from any of the
underlying testbeds.

To this end, the testbeds that aim to participate in the feder-
ation have to implement common standardized semantics and
the interfaces that have been defined. This enables the meta-
platform to access the data that their devices produce as well
as the descriptions of their devices and the services that these
devices might expose.

As it can be seen in Fig. 1, the central component of the IoT
EaaS meta-platform is a directory service (so-called meta-
directory), where sensors and IoT resources from multiple
testbeds are registered. In the same way, the observations
produced by these resources are also stored. This directory
enables the dynamic discovery and use of IoT resources
(e.g., sensors, actuators, services, etc.) from all the intercon-
nected testbeds.

The key concept behind the federation of IoT testbeds is
the specification of a common Testbed API that defines the
interfaces to carry out the registration of the testbed resources
as well as pushing of the observations to the meta-platform.
Besides the actual technologies used for implementing these
interfaces, the main feature that underlies the Testbed API is
the fact that the information is exchanged in a semantically
annotated format.

VOLUME 6, 2018 51609



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

In this sense, the first main design decision is the use of
semantic technologies to support the interoperability between
heterogeneous IoT platforms and testbeds. Using a common
ontology makes it possible to seamlessly deal with data
from different sources. Federated testbeds have to implement
their own Semantic Annotators to transform the data they
handle internally to the common semantic ontology defined
by FIESTA-IoT. Different RDF representation formats
(e.g. RDF/XML, JSON-LD, Turtle, etc.) are supported as
long as the common ontology is used.

The second major design decision is to take as reference
the IoT ARM as defined in the IoT-A project [30]. This deci-
sion has brought out, within the IoT EaaS Platform context,
the need to comply with the Domain and Information Models
defined in the ARM. Thus, the architecture focus on defining
a canonical set of concepts which all IoT platforms, which can
be part of the federated IoT EaaS Platform can easily adopt.
The adoption of these essential concepts only require from
underlaying testbeds a straightforward tuning of the models
that they handle internally. In this sense, independently of
which internal model the testbeds uses, whether it is propri-
etary or based on existing standards [31], [32], they should
be able to find in a straightforward manner how to map the
internal modelling to the canonical concepts managed within
the IoT-related ontology used as a basis for the Platform.
The aforementioned tuning of models basically consist on
mapping the internal structure of information to the one that
uses the ontology as a basis. The less number of concepts to
map and the more fundamental these concepts are, the less
the chances to have existing IoT platforms that are unable to
perform the mapping between their internal data model and
the IoT-related ontology that is employed to enable interop-
erability among the federated IoT infrastructures.

The foremost aspect that these choices imply is that the
ontology that is used to regulate the semantic annotation of
the testbeds’ resources is only bound by the core concepts that
compose the aforementioned ARM Domain and Information
Models. These core concepts are:
• A Resource is a ‘‘Computational element that gives
access to information about or actuation capabilities on
a Physical Entity’’ [30].

• An IoT service is a ‘‘Software component enabling
interaction with IoT resources through a well-defined
interface.’’ [30].

These concepts conform the baseline for representing the
devices and overall IoT infrastructure. However, there is still
a major concept that is not tackled within the ARM models.
This concept relates to the actual data that is gathered by the
devices and offered through the services that expose them.
It is the Observation concept:
• AnObservation is a ‘‘piece of information obtained after
a sensing method has been used to estimate or calculate
a value of a physical property related to a Physical
Entity’’.2

2Observation description from Semantic Sensor Network (SSN) Ontol-
ogy. https://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Observation

The fact that the IoT EaaS Platform is not bound to any ontol-
ogy makes it design fundamentally re-usable and extendable.

B. FIESTA-IoT PLATFORM FUNCTIONAL ARCHITECTURE
The IoT EaaS Platform has been designed and imple-
mented having all these considerations in mind, both in
terms of enabling EaaS and allowing IoT testbeds federation.
Fig. 2 shows the Platform functional architecture.

FIGURE 2. IoT EaaS platform detailed functional architecture.

At the core of this architecture, the IoT-Registry is its key
component. It stores all the semantic information related to
underlying testbeds IoT devices and the observations that
they generate. Moreover, it exposes the interfaces necessary
to access this data.

On top of the IoT-Registry, the architecture consists of
the additional set of tools and APIs underpinning the EaaS
concept. They allow experimenters assessing their research
on top of the IoT EaaS Platform to get data in a testbed-
agnostic manner. Moreover, several experiment management
components, namely Experiment Execution Engine (EEE),
Experiment Registry Module (ERM), Experiment Manage-
ment Console (EMC) and Experiment Result Storage (ERS)
ease the experiment creation and management and the result
extraction. They allow the experimenter to define an experi-
ment in an XML-based document, schedule its execution in

51610 VOLUME 6, 2018



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

an unattended manner and store the results for later retrieval.
ERM and EMC are available via the Platform Portal, a web-
based UI open to the experimenters and testbed providers
(represented in Fig. 2 with browser icons).

In addition to these components, added-value services are
also provided as part of the Platform experimentation tools
portfolio. Through the Analytics and Reasoning modules
experimenters can easily get added-value data without the
need to implement the algorithms themselves. These modules
can be used within the workflow of the experiment to get
the raw data from the IoT-Registry and generate already
processed data that fits with the experimenter needs.

Below the IoT-Registry the IoT EaaS Platform is focused
on the interfaces and models supporting IoT testbed semantic
alignment and interoperability so that the resulting platform
has increased scale, heterogeneity, experimentation realism
and cross-domain innovation. Still at the testbed side, two
components must be implemented. The Semantic Annota-
tor and the Testbed Provider Services (TPS) respectively
transforms the data model used internally at the testbed
into semantically annotated data (based on the IoT-related
ontology defined for the specific instance of the IoT EaaS
Platform) and exposes the interfaces for the Platform to
access that data. The TPS interacts with the Data Man-
agement Services (DMS) already at the Platform side of
the architecture. The DMS proxies the observations that
arrives at the IoT EaaS Platform towards the IoT-Registry,
where they are stored indefinitely. Since the Platform does
not only manage information related to observations gen-
erated by underlying testbeds only but also the descrip-
tions of the actual IoT devices (i.e. sensors, actuators and
tags), the Testbed and Resource Registration (TRR) module
exposes the necessary interfaces to register the descriptions
of the testbeds’ resources. This registration is done either
via the Platform Portal or through the TRR API. Before any
RDF document is stored in the IoT-Registry, its compliance
with the IoT-related ontology employed as baseline for inter-
operability has to be validated. Otherwise, the data inserted
into the repository could be flawed and cause issues while
querying afterwards. The Semantic Validator is in charge of
this assessment both for the observations and the resource
descriptions.

Finally, all the interfaces exposed by the IoT EaaS Platform
are secured using HTTPS and the corresponding authentica-
tion and authorization filters. Every query received has to pass
through a Policy Enforcement Point (PEP) which checks if
it contains a valid security token and if that token actually
belongs to a user authorized to make such query.

C. IoT-REGISTRY
IoT-Registry’s main function is to store all the (seman-
tic) resource descriptions and observations that the underly-
ing testbeds provide. On top of this ‘‘collector’’ behaviour,
it implements a fully-fledged REST API that allows the inter-
play between users and the stored information. Fig. 3 shows
the internal architecture of the IoT-Registry.

FIGURE 3. IoT-Registry internal architecture.

At the core of the IoT-Registry is the Triplestore Database
(TDB) that provides the storage capacity for aggregating
the Resource Descriptions from the devices belonging to
the federated testbeds as well as the Observations that these
devices are constantly producing. In this sense, the TDB inter-
nal structure follows the canonical concepts defined by the
ARM information model. By using these concepts as a basis
for its internal structure, it is able to adapt to different
IoT-related ontologies.

However, this is only the storage part of the component
and the actual functionality of the module is implemented via
other sub-systems. The first of these functional modules is the
Data Endpoint that is responsible for exporting the SPARQL
endpoint of the TDB’s query engine into a web-based API.
It mainly acts as a proxy getting the SPARQL queries that are
carried in the body of the HTTP requests, injecting them into
the native SPARQL endpoint of the TDB and getting back the
corresponding response within the HTTP response packet.

The remaining two components, namely the Resource
Manager (RM) and the Resource Broker (RB), transform
the IoT-Registry from a regular Semantic Datastore into
an enabler of the Web of Things paradigm. The key idea
is that the services exposing the underlying IoT devices
(i.e. sensors and/or actuators) are accessed using a truly
web-oriented style. Both, the testbed-agnostic nature of the
IoT EaaS platform and the service-oriented character of the
IoT ARM [30], which underlies all the Platform architecture,
are behind this behaviour. Firstly, the IoT-Registry hides
the underlying resources by exporting a homogenized URI
under a common domain namespace for each of the federated
testbeds. It then provides a brokering mechanism that enables
unified and proxied access to the underlying resources and the
service endpoints that are used to expose them.

VOLUME 6, 2018 51611



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

1) STORAGE STRUCTURE OF THE TDB
As a result of the semantic modelling that underlies the
design of the Platform, the information that is stored at
the IoT-Registry relates to two different, but tightly bound,
realms. On the one hand, the descriptions of the resources
that form the underlying testbeds and, on the other hand,
the observations made by them. The internal structure of the
TDB follows a similar approach. The implementation of the
Jena-based query engine has two different graphs that are
virtually merged into a global one, as can be seen in Fig. 4.
The resources and observations graphs store the resource
descriptions of the IoT devices and the observations that they
generate, respectively.

FIGURE 4. IoT-Registry TDB internal structure.

The linked graphs that the instances of each of these items
form are mostly independent and, indeed, can be queried
individually if the experimenter is interested only on infor-
mation related to one of them. For example, the experi-
menter can look for the Service that is exposing any of
the IoT devices using the typical what (i.e. physical phe-
nomenon observed) and where (i.e. location) discovery cri-
teria. For this search, only the resources graph should be
explored by the query engine optimizing this way the discov-
ery and access performance. Similarly, if the experimenter
is interested on the data contained on the actual measure-
ments collected by the sensors as they are also self-contained
in terms of geo-location, timestamp and phenomenon
observed.

However, in the cases where the experimenter is looking
for extra information about the IoT device that has produced
an observation (e.g. accuracy, sensing procedure or other
metadata), this information can only be obtained from the
resources graph. If the two graphs weren’t virtually bound,
the experimenter would have to execute two different queries.
One over each of the two graphs. The solution adopted caters
for the flexibility of allowing optimized queries when they
target only one of the graphs but at the same time allows more
complex queries looking for information that is stored on both
of them.

2) DATA ENDPOINT
SPARQL is known to be the most common and widely
used RDF query language. Therefore, it is sensible to
offer a fully-fledged SPARQL interface, as part of the IoT
Registry module that enables the support for this kind of

semantic queries. The Data Endpoint (DE) module
implements this functionally by enabling a direct SPARQL
endpoint.

The DE is a conformant SPARQL protocol service as
defined in the SPARQL Protocol for RDF (SPROT) [33].
It allows users to query a knowledge base via the SPARQL
language. Results are returned in any of the common
data representation formats, namely JSON, XML, CSV,
etc. The default endpoint runs the query on the ‘‘global’’
graph. However, it is also possible to limit the scope
of the query to just the Resources or the Observations
graph.

Moreover, it also offers a system for the storage of
queries so that its execution can be programmed without
having to include the complete SPARQL sentence at every
request. This additional functionality would make it eas-
ier to share knowledge between experimenters or testbeds
and smooth the learning curve when it comes to cope with
the specific features of the IoT-related ontology that is
employed.

Finally, an additional functionality has been added to the
DE so that the stored SPARQL queries can be dynamically
adapted and used as templates rather than as static queries.
To achieve such a feature, the REST API wrapping the
DE allows some variables to be replaced with input param-
eters in the GET/POST requests based on a set of pre-defined
conventions. This feature has been added with a twofold
objective. On the one hand, it promotes sharing queries, thus
giving rise to a sort of ‘‘crowd-sourced’’ catalogue. More-
over, it enables the creation of optimized queries resolving
recurrent demands from experimenters. This way it is pos-
sible to create a ‘‘best-practices’’ catalogue open to experi-
menters. On the other hand, this option reduces the overhead
and eases the action of executing multiple times the same
SPARQL sentence as caching can be used to enhance the
query engine performance.

3) RESOURCE MANAGER
The Resource Manager (RM) exposes the single-entry point
for all the testbeds to register their IoT Resources’ descrip-
tions. Its main role is to homogenize the descriptions received
from the different testbeds. After syntactically checking the
annotated descriptions and guaranteeing that they are com-
pliant with the specific IoT-related ontology selected for that
instance of the IoT EaaS Platform, the RM transforms the
URI for all the resource descriptions in order to make them
belong to the common namespace. This process basically
consists of overwriting the bindings that points to the orig-
inal testbeds’ domains included in the annotated resource
descriptions. These bindings are transformed to the common
meta-platform domain so that every entity identifier and/or
IoT Service endpoint, independently of which testbed
they belong to, are exposed as if they belonged to a
unique graph, namely the federation graph. For exam-
ple, the resulting transformed URI for one of the testbeds
original URI:

51612 VOLUME 6, 2018



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

http://api.smartsantander.eu#SmartSantanderTestbed

becomes:

https://platform.fiesta-iot.eu/iot-
registry/api/testbeds/a1yp9GcKEPw37Bx5rslgRI4QLS
NCwEwBatCIOe_W0dHZCmzj2WmkExz3qoNuvWg1
pueAXn1Li0JrNjvBiQwV3Q==

Therefore, all the semantically annotated descriptions gener-
ated by the testbeds are stored in the Triplestore Database fol-
lowing the testbed-agnostic paradigm adopted for the design
of the IoT EaaS Platform. Once the necessary adaptations
to the resource descriptions have been done and internally
recorded for future use by the RB, the RM stores them into
the TDB.

While the communication interface between the RM and
the TDB is based on semantic requests, the interface with the
testbeds is based on standard HTTP encapsulating semantic
documents.

4) RESOURCE BROKER
Apart from the extraction of data from the TDB by executing
SPARQL queries, the Platform supports the access to the
services that directly expose the underlying IoT devices [34].

The Resource Broker is the component in charge of
enabling the access to IoT devices’ services while keeping the
testbed agnostic nature of FIESTA-IoT and homogenizing the
way of accessing them for the experimenter.

Graph’s nodes URIs are transformed for them to belong to
the unified Platform namespace. This transformation makes
the service endpoint to target the IoT EaaS Platform names-
pace and more specifically the IoT-Registry. The RB inter-
cepts the requests made to the transformedURIs and forwards
it to the corresponding testbed endpoint. This process is
carried out internally at the RB so that for the experimenter it
is completely transparent and it gets the service result without
having to care about the specific testbed requirements. The
RB manages any and all specific requirements (e.g. authen-
tication method, etc.) imposed by each of the underlying
testbeds.

D. EXPERIMENT DEVELOPMENT, DEPLOYMENT AND
MANAGEMENT
An experiment is defined as ‘‘a test under controlled condi-
tions that is made to demonstrate a known truth, examine the
validity of a hypothesis, or determine the efficacy of some-
thing previously untried’’.3 Nevertheless, our EaaS Platform
focus on data-oriented experimentation where experimena-
tion can be performed on the stored IoT data. The modules
that address all the steps in the execution of an experiment

3A. H. Soukhanov, K. Ellis, and M. Severynse, The American Heritage
Dictionary of the English Language. Boston: Houghton Mifflin, 1992.

(i.e. development, deployment and management) are shown
in Fig. 2.

The core of the experimentation support subsystem is the
Experiment Execution Engine (EEE). This module essen-
tially schedules or deploys the experiment based on the pro-
vided experiment specifications. The EEE exposes APIs that
are broadly divided into 5 categories: scheduling, polling,
subscription, monitoring and accounting. Scheduling API
enable creating a recurrent job that executes the query
included as part of the experiment specification. It also pro-
vides information (general description and status) about the
created job, API to change the execution status of the job
(start, stop, and resume job), change schedule parameters,
and API to delete the job. The polling API provides a way
to execute the experiment once and not to schedule it. The
subscription API let experimenter subscribe or unsubscribe
the public experiments. On the other hand, the accounting
and monitoring APIs provides log information and status
information about the execution of the experiments.

EEE fetches from the Experiment Registry Module (ERM)
the information about the experiments that is to be exe-
cuted. ERM basically stores the experiments’ specifications
and provides the interfaces to handle the storage process
(e.g. saving, deleting, sharing, etc.). EEE is accompanied
by an experiment controlling and management user interface
(Experiment Management Console or EMC) that enables
experimenters to view an execution summary and control
the execution of their experiment. Once an experiment is
executed by the EEE, the results are sent to experimenters.
The experimenters need to enable a Receiver on their side to
receive the results. In case the results are not delivered to the
experimenter, the results are stored in an Experiment Result
Storage (ERS) repository where experimenters can download
the results at will.

Dedicated APIs, which can be used by experimenters
to develop their own experiment workflow, comple-
ment the above tools. In the case where experimenters
do not want to use the graphical interfaces of these
tools, they can use the APIs of these modules or per-
form querying directly on IoT-Registry using the public
IoT-Registry APIs.

Another set of added-value services (described in
Section III.F) are provided to help experimenters with the
IoT data stored within IoT EaaS Platform.

E. TESTBED PROVIDER INTERFACE
The Testbed Provider Interface (TPI) specification consid-
ers the main functionalities and properties that should be
exposed by IoT testbeds in order to enable their integration
within the EaaS Platform for the purposes of testbed-agnostic
experimentation. The TPI is a set of RESTful web services
whose definition has been driven by various requirements,
including flexibility and ease in the integration of testbeds,
support of mainstream IoT standards for data and services
representation and compatibility with existing IoT testbeds.

VOLUME 6, 2018 51613



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

The TPI spans across two different realms (cf. Fig. 2). The
first is the EaaS Platform side with the TPI Configuration &
Management layer that controls the functionality of the TPI
by utilizing the offered user interface for the User (Testbed
provider). The second is the testbed side with the Testbed
Provider Services (TPS) API where the Testbed Provider
(TP) has to implement a set of services that enables the
management and manipulation of the offered data.

A testbed may expose internally various standard and/or
proprietary interfaces in order to interact with the sensor data.
Thus, a list of core services (TPS) that should be exposed by
a testbed in order to enable different connection methods to
the EaaS Platform have been specified.

The behaviour of these methods is controlled from a set
of services, provided by platform itself (so-called TPI Data
Management Services – DMS). They enable the TPs to con-
sume and control the TPS services that their testbeds expose
either by identifying a specific schedule or by enabling a data
stream connection.

In Fig. 5 we can see a simplified diagram of the different
service interaction between the DMS services and the TPS
ones for applying the different DMS functionalities described
below. These services are grouped into two types according
to the relation established between the testbed and the EaaS
Platform, namely get-based and push-based. The TP can
choose to either control the schedule of when to push the data
(TPS Push Observations towards DMS) or let the platform
control the schedule (DMS Get Observations from TPS).

FIGURE 5. DMS-TPS service interactions.

In the Push case, the TP triggers the TPS once in order to
start pushing. The observations are then sent to the EaaS Plat-
form as they are produced, or based on a scheduled controlled
within the testbed itself. In the Get case, the TP specifies
a schedule so that the testbed is polled at the configured
frequency in order to retrieve the observations.

In order to be able to initiate this configuration and set
up process, the TPs need to register first the metadata of
their testbeds and resources. This is done by utilizing the
services that are exposed by the Testbed & Resource Reg-
istration (TRR) (cf. Fig. 2). The TPI Configurator, which is
a User Interface component, enables the TP to discover the
available resources, and manage the data retrieval process.
It utilizes the IoT-Registry, TRR and TPI DMS services for
that.

1) TESTBED PROVIDER SERVICES (TPS)
As it has been described, in order to enable the ‘‘plugability’’
of the testbed to the EaaS Platform, it has to implement and
expose at least one (get or push) of the TPS services.

For the Get case, the getLastObservations and the
getObservations services responds with the latest observa-
tions from a list of sensors, and with the observations from list
of sensors for a specific time-period, respectively. The list of
sensors from whom the observations are retrieved is the input
parameter for both services.

For the Push case, the pushLastObservations and the
pushSingleObservation services correspondingly initiate a
stream at the testbed side that pushes the observations from
a list of sensors or from a specific sensor towards a specific
endpoint at the TPI DMS. Both the list of sensors or the spe-
cific sensor from whom the observations must be pushed are
the input parameters for each service. The stopPushOfOb-
servations service stops the pushing of observations initiated
by the said services and must be implemented in combination
with them.

2) DATA MANAGEMENT SERVICES (TPI DMS)
Regarding the TPI DMS services, which enable the TP to
manage the services exposed by the testbeds’ TPS, for the
Get case, the subscribeToObservations service queries the
corresponding get-based TPS service based on a specific exe-
cution schedule and pushes the observations in the response
to a specific endpoint. The unsubscribeFromObservation
service stops the periodic polling initiated before.

For the Push case, the subscribeToObservationStream
service instructs the testbed’s TPS to push the observa-
tions from a specific sensors’ list to a specific endpoint
(pushObservationsStreamProxy) as soon as they are gen-
erated. The said pushObservationsStreamProxy service is
used in combination with the previous onw. It essentially
creates a ‘‘proxy’’ between the TPS and the Message Bus
(MB) for the testbeds to push their annotated observations
measurements. Alternatively, the subscribeToObservation-
StreamWithTopic service triggers a similar behaviour on
the TPS, which, in this case, starts pushing the observa-
tions directly to the MB using the identifier of the sen-
sor that produced the observation as queue topic. Finally,
the streams initiated by the previous two services are
stopped using the unsubscribeFromObservationStream
service.

F. ADDED-VALUE SERVICES
1) SEMANTIC ANNOTATION VALIDATION
In order to guarantee the validity and the consistency of
the data stored in the IoT-Registry, all the input semantic
annotation of resources and observations are validated before
the storage.

The validation can be configured to use any ontology as the
reference ontology. In the current FIESTA-IoT use case, the
FIESTA-IoT ontology is set as the reference ontology [17].

51614 VOLUME 6, 2018



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

The Semantic and Syntactic Validator (cf. Fig. 2) performs
the validation at several levels:

1. Lexical check. It consists of verifying the correctness
of RDF serialization regarding to the declared type
(e.g. checking the XML format if the annotation is
declared to be in XML).

2. Syntactic checks. The syntactic check consists of ver-
ifying the correctness of the ‘‘syntax’’ of the RDF
triples represented by the underlined serialization for-
mat, more specifically:
a. Un-typed resources and literals. Here resource

refers to instances of a class, and literal refers
to a textual or numerical value. The type of
resource or literal is the link of an annotation
back to the ontology that enables the semantic
capabilities. Any un-typed element presented in
an annotation is problematic towards the semantic
interoperability.

b. Ill-formed URIs. They are checked against
RFC39864 that defines the syntax of URI.

c. Problematic prefix and namespaces. Namespaces
play the role of linking the annotation to the ref-
erence ontologies and vocabularies. A one-to-one
mapping between the prefix and namespace is
essential and shall be checked to ensure correct
referencing.

d. Unknown classes and properties. A prerequi-
site of semantic interoperability is that all the
resources use an agreed vocabulary. As conse-
quence, if any resource uses in its annotation a
class or property that is not defined in the refer-
ence ontology, other resourceswould have noway
to understand it, so that the semantic interoper-
ability is impossible.

3. Semantic checks. Following a successful syntactic val-
idation, the semantic check consists of verifying the
consistence of the semantic annotation regarding to the
reference ontology:
a. Problematic relationship or inheritance. Checks

whether there is amodel of Ontology (i.e. whether
there exists a (relational) structure that satisfies all
axioms in this ontology.

b. Consistency of A with respect to B: determine if
individuals in A do not violate descriptions and
axioms described by B.

An annotation is considered ‘‘valid’’ only if all the above
aspects are checked without errors. If any error occurs,
the annotation is not pushed to the IoT-Registry for storage,
and the data-provider receives a response from the valida-
tor containing a test report indicating what is wrong in the
submitted data. If the annotation is valid, it is pushed to the
IoT Registry, and a response containing the URI of the regis-
tered annotation in the IoT-Registry is returned.

4Uniform Resource Identifier (URI): Generic Syntax. https://
tools.ietf.org/html/rfc3986

FIGURE 6. Analytics service interaction.

2) ANALYTICS TOOL
Tomaximise the added value of the data being extracted from
the federated testbeds for the experimenter, it is important to
provide data analysis tools. As a result, a Data Analytics web
service (DAaaS) based on the Knowledge Acquisition Toolkit
(KAT) [35] has been developed for the EaaS Platform to
provide open access data analysis tools for data consumers as
a web service. Such a tool provides the following benefits: for
novice/beginner data consumer, the tools that would enable
them to analyse and obtain useful information. While for the
more advanced/experienced user providing the most effective
tools for a given data set.

The methods implemented as part of the Analytics tool are
mainly based on data pre-processing techniques and machine
learning techniques. For pre-processing, they involve the
removal of corrupted or noisy data points from the original
raw time series data. For machine learning, unsupervised
machine learning techniques enable the experimenter to dis-
cover patterns of interest in the data set being analysed. Super-
vised learning techniques are included to aid an experimenter
either to determine a relationship between a set of input and
output data points, or to obtain an estimate of the output data
points given the input data points.

There are also other methods that provide spectral anal-
ysis and data dependency estimation for the experimenter.
Spectral estimation tools are particularly useful for designing
digital filters for removing noise, while data dependency
estimation tools are particularly useful for linear regression.

As it is shown in Fig. 6, to invoke the Analytics service, a
HTTP POST request must be made. The body of the request
contains a JSON object that encapsulates the list of methods
and the corresponding parameters to be applied, the SPARQL
query of which the retuned dataset will be based on, and
the SPARQL endpoint where the dataset can be queried and
obtained.

VOLUME 6, 2018 51615



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

3) REASONING TOOLS
Apart from their capacity to enable interoperability, the key
feature of semantics is enabling the extraction of knowl-
edge out of information. This happens through ‘‘reasoning’’
engines that are mainly software components that allow the
inference of logical consequences from a set of rules. A key
part of the reasoning engines is the set of ‘‘rules’’. They are
normally specified by the end user (when they are linked
with applications) or they are following the ontologies of the
system.

In this sense, the EaaS includes a reasoning module that
eases the process to extract knowledge out of the measure-
ments generated by the integrated testbeds to the experi-
menters. The reasoning engine within the module is a rule-
based engine that is able to infer logical consequences from
the testbed measurements, simplifying the creation of rules.
The reasoning engine is developed based on the Apache Jena
open source framework.5 The reasoning module allows the
experimenters to define rules in the form of expressions ‘‘if
(condition) then (result)’’ as below:
• If (temperature) > (25degrees) then (notify_hot)
• If (temperature) < (19degrees) and (humidity) > (60%)
then (notify_unhealthy).

The architecture of the reasoning module is shown in Fig. 7.
It provides three APIs for creating a rule template, registering
a new rule for a sensor or a set of sensors and executing the
rule. The rules are stored in aMySQL database. The engine is
connected to the IoT-Registry for getting the sensors’ descrip-
tions and observations. The end users (experimenters) can
access the reasoning module’s functionalities either through
a simplified graphical interface or through the APIs, which
facilitates the way they can integrate the reasoning engine in
their applications.

FIGURE 7. Reasoning engine architecture.

4) ANNOTATOR AS A SERVICE
Data arriving to the EaaS Platform from the testbeds has to be
semantically annotated using a reference ontology. Thus, it is
necessary to map the data format managed internally by the
testbed to RDF documents complying with the selected ref-
erence ontology. The Annotator as a Service (AaaS) module
lowers the burden for the TPs as they do not have to imple-
ment this mapping completely but just take, from their infor-
mation models, the pieces of information that map into the

5Apache Jena Open Source framework. https://jena.apache.org/
index.html

desired reference ontology’s classes. AaaS receives as input a
JSON object with that pieces of information (organized using
a pre-defined JSON Schema) and generates the correspond-
ing RDF document. This way, the integration effort for the
TP is significantly reduced.

5) TESTBED AND PLATFORM MONITORING
In order to give a fast overview of the existing data and the
overall situation of the resources, the Testbed Monitoring
component is integrated. It helps the experimenters to check
in advance the situation of testbeds or resources involved in
their experiments. It also helps testbed owners to know if their
data is still inserted correctly into the Platform. The user of
the TestbedMonitoring can see at the overview page the status
of the connected testbeds by showing howmany sensors have
send an observation within the last day and the total number
of registered sensors. A detailed view per testbed is available
which lists all sensors of the testbed. Per sensor the meta data
like unit and the latest observation can be seen. Per sensor a
graph of the last observations can be shown.

Besides of these graphical features, the TestbedMonitoring
provides an API that serves the data used in the GUI in
JSON-format. Moreover, a notification system is provided so
that users can configure the module to send a notification to
them when the configured threshold is reached. This can be
used, for example, to inform testbed owners that no more data
is inserted into the platform anymore. Background tasks will
analyse the provided data in order to find anomalies in the
data streams that could help to find sensors that do not behave
correctly.

G. DATA SECURITY: AUTHENTICATION AND ACCESS
CONTROL
The EaaS Platform provides access to IoT data originating
from multiple IoT testbed sources (including sensor data that
may or may not contain personal information about people).
Here, there are a number of challenges that must be addressed
in order to create a secure infrastructure, which protects the
IoT data resources, the users of the EaaS Platform, and the
privacy of any observed persons.

The proposed architecture is secure-by-design and its
implementation puts in place access control solutions (using
OpenAM6 security software) at all critical points in the archi-
tecture. This is a PEP (Policy Enforcement Point) and PDP
(Policy Decision Point) pattern. That is, where IoT data is
either requested or published to the Platform – the authoriza-
tion of the user performing this action is evaluated against
defined security policies and the access decision is enforced.

This framework then provides the following key elements
of a secure IoT infrastructure:

1. Data authentication: Data retrieved by experimenters
must originate from authentic IoT testbed sources. Fed-
erated testbeds must authenticate themselves and send

6ForgeRock Identity Platform: Access Management. https://www.
forgerock.com/platform/access management/

51616 VOLUME 6, 2018



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

data via a secure encrypted channel. Only authorized
IoT sources can publish data to be available to experi-
menters.

2. Experimenter access control: The Platform controls
access to data to experimenters. By default all data
is protected to be only available to experimenters.
However, IoT data providers (testbeds) can also set up
policies to control which experimenters (or groups of
experimenters) can access to their data.

3. Subject privacy: observed persons must provide their
consent for these observations to be used by experi-
menters. Where they do not provide consent, then the
data is not included (or made available) in the plat-
form. The Platform requires and checks that individual
testbeds enforce this policy.

In summary, the whole EaaS process is secured by
fine-grained access control that can ensure that data
is accessed securely and in line with existing privacy
regulations.

IV. TESTBED FEDERATION
Integrating a testbed within the EaaS Platform can be
achieved by completing a set of steps 1) Develop your anno-
tator and TPS; 2) Get certified by the platform owner; 3)
Register your testbed and resources; and 4) Configure your
resources.

As it has been already described, data arriving to the Plat-
form from the testbeds has to be semantically annotated using
the selected reference ontology that is used as a basis for
guaranteeing interoperability. So, for the first step TPs can
either develop the annotator themselves or use the Annotator
as a Service API (cf. Section 3.F.3).

After successfully generating the testbed’s annotator the
TP should decide on how the captured observations are going
to be provided, this means if the ‘‘Get’’ or the ‘‘Push’’
methodology is going to be used, and develop the TPS accord-
ingly (see Section 3.E above). In order to facilitate the TPwith
the TPS development a skeleton component implementing
all the required services can be easily provided which would
only require the testbed’s internal data access and annotator
integration.

After successfully completing the TPS implementation the
next step would be to validate the implemented TPS and
annotator. In order to go over this step, the EaaS Platform
includes a Certification Portal that can be used by the TP to
get certified.

The next step would be to register the available testbeds
and resources to the IoT EaaS Platform. The TP can
make use of the tools at the Platform Portal UI for this
process.

Finally, the TP should instantiate and schedule the
data pushing (testbed controls the scheduling) or retrieval
(platform controls the scheduling) whether using the TPI
configurator tool or directly calling the DMS services
(cf. Section 3.E).

V. EXPERIMENT AS A SERVICE WORKFLOW
In order to utilize the provided experimentation tools, the
experimenter has to create an Experiment Description Spec-
ification, so-called EDSpec, which serves as a Domain
Specific Language (DSL) for the experimentation tools to
know which the experimentation workflow to be followed
is. EDSpec is an XML document that contains Experiment
Model Objects (EMO). An EMO contains the description
and domain of interest of the experiment, and Experiment
Service Model Objects (ESMOs). ESMO is the main entity
that enables EEE to perform experiment related task. Note
that we interchangeably call an ESMO as a job when refer-
ring to an ESMO in the context of EEE. This is because
EEE creates a recurring job based on the specified param-
eters. Essentially, an ESMO contains a job description (such
as scheduling tag parameters, query to execute, tags notifying
where the experiment output should be sent, if result set is
empty whether to report to the experimenter or not, list of
dynamic attribute tags used within the query) for the EEE to
schedule and execute it accordingly.

An EDSpec can be created mainly in two ways: (i) using an
experiment editor which provides a graphical user interface
to ease the process, or (ii) using any XML editor tool. If the
EDSpec is created using an experiment editor, it is directly
stored in the ERM when the experimenter saves the EDSpec.
However, if an XML editor is used, the experimenters are
required to store the EDSpec using ERM client. Using ERM
client experimenters are able to review existing EDSpecs,
save new EDSpecs, and delete existing experiments. In addi-
tion to the user interface, the ERM client also exposes an
ERM API that can be used to programmatically manage the
experimenters’ EDSpecs (i.e. as the experiment editor does).
Once the experiment is saved using either of the two methods
described above, it is essential that the experiment is enabled
for the execution using EEE. As described in Section 3.D,
the EMC (a client for EEE) is used to perform such an activity.
Within EMC, experimenters first need to select a particular
experiment object (EMO) whose service (ESMO) they want
to enable then use the interface to view information about
the ESMO, start/stop the schedule (enable it for execution),
view execution log graphs that include run time and data
received information views or clear the execution history.
In addition to the above functionality, experimenters can sub-
scribe to already existing servicemodels that have been stored
and made publicly available within the EaaS Platform. Such
feature enables the experimenters to leverage from already
defined services. Once subscribed, experimenters can also
unsubscribe the experiment using the EMC. EMC internally
uses the EEE APIs (cf. Section 3.D) upon request from
the experimenters’ actions over the graphical user interface
available through the Platform Portal.

The execution of the query is managed in two ways accord-
ing to the given parameters. If within ESMO, the ‘‘widget’’
tag is specified the EEE executes analytics API. The analytics
API then executes the query in the ESMO in two phases: first,

VOLUME 6, 2018 51617



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

it executes the query on the IoT-Registry and retrieves the
results and then analysing the results based on the attributes
set in the widget. On the other hand, if the ‘‘widget’’ tag is not
specified the query is executed directly on the IoT Registry
DE. As the scope of the query can span both the resource and
observation graphs, the EEE executes the queries using the
global graph (c.f. Fig. 4).

Once the ESMO is executed using either the analytics tool
or IoT-Registry directly, it is essential to transfer the obtained
result set to the experimenter. If EEE executed the query
on the IoT-Registry directly, after obtaining the result set,
it sends the results to the experimenters using the endpoint
that they have to specify before running their experiments.
Note that, this endpoint is provided in the ESMO. The result-
set is sent as a multi-part file to enable large results to be
transferred successfully. If the sending fails due to any reason
(network failure or service location unavailable), the EEE
stores the results into the ERS. The experimenters can then
use the ERS API to download the results that were not sent to
them. To facilitate the experimenters, the EMC also displays
relevant information to the experimenters so that they can
use the information to call the ERS APIs. This information
mainly includes the JOBID and the EMOID. The analytics
tool, however due to its asynchronous behaviour, stores the
results in the ERS directly and experimenters are advised
to frequently check back if the results are available in the
ERS or not. ERS mainly has a POST and a GET API that
enables the EEE or the analytics tool to send the result set
to the ERS internal repository and experimenters to retrieve
the result sets. The GET API of the ERS is only made public.
Once the experimenters download the result sets, this GET
API also deletes the result sets from the repository. It should
also be noted that the EaaS Platform Portal is a one stop
shop that integrates all the UIs relating to the experiment
development, deployment and management services for easy
access.

In order to successfully execute the EDSpec, experimenters
should follow best practices that enable error free execution
of the experiment. These best practices include: correctly
specifying text tags, setting scheduling parameters such that
it does not overload the system (i.e. not specifying execu-
tion to happen every second, writing queries that are not
generic, or writing queries that result in huge datasets),
providing the correct location where the data should be
sent, and respecting the ontology structure in the SPARQL
query.

The above-described workflow is one way of executing the
experiments using the tools provided by the EaaS Platform.
However, an experimenter can create their own EEE like
tool using the APIs of the EEE, ERM, ERS and Analytics
tool and execute that component on their side. Nonetheless,
if an experimenter does not want to use the related APIs,
they can create their own tools to call the IoT-Registry API
and retrieve IoT data. As experimenters then can define their
own workflow, describing them is out of the scope of this
paper.

VI. FIESTA-IoT EXPERIMENTATION VALIDATION AND
EVALUATION
In this section we present the validation and evaluation of
the instantiation of the platform design that has been created
within the H2020 FIESTA-IoT project.1 The instantiation of
the IoT EaaS Platform in the so called FIESTA-IoT Platform,
and the appealing results of its evaluation implicitly validates
the adequacy of the design principles and the specification of
the different building blocks that have been presented in the
previous sections of the paper.

We carried out both qualitative and quantitative evaluation
of the FIESTA-IoT platform in order to demonstrate that the
hypotheses of this paper are correct. In particular, the evalu-
ation focuses on the following three contributions:

1. We carry out a case-study based evaluation to show
that the FIESTA-IoT platform supports semantically
interoperable and testbed agnostic access to IoT data
in order to allow cross-domain experimentation.

2. We performed a user-study, where external researchers
and developers with access to the FIESTA-IoT platform
performed experiments. Qualitative data from a ques-
tionnaire considers the extent to which the platform
provides a usable and valuable tool in the development
lifecycle.

3. Finally we carry out a performance evaluation of the
platform. The quantitative data demonstrates that the
platform is performant to users’ needs and scales to
increasing number of experimenters.

A. EXPERIMENTAL SETUP
The following documents the instantiation of the
FIESTA-IoT platform. The following core components and
tools of FIESTA-IoT were deployed and secured on three
virtual machines with the following characteristics:
• Core VM (32GB RAM, 12 vCPU cores and 1615GB
disk space, Ubuntu v14.04): hosts the central IoT-
Registry, the security components and all FIESTA-IoT
tools and services (highlighted in Figure 2).

• Monitoring VM (16GBRAM, 8 vCPU cores and 160GB
disk space, Ubuntu v14.04): hosts a Graylog server7 for
monitoring and analysing the FIESTA-IoT platform.

• Certification VM (8GB RAM, 4 vCPU cores and 80GB
disk space, Ubuntu v14.04): hosts the FIESTA-IoT cer-
tification portal8 with the tools used by new testbeds to
test they are ready to join the platform.

With the platform deployed, the next step was to integrate
cross-domain testbeds to provide the actual platform data
to be used by experiments. In the first phase, four testbeds
were integrated. This was followed by the integration of
six further testbeds. The four initial testbeds are: i) Smart-
Santander, a large-scale Smart City deployment containing
>3000 fixed and mobile sensors for environment, traffic, and
crowd-sensing; ii) SmartICS, a Smart Building Environment,
with >600 indoor sensors, iii) SoundCity, a large-scale

7https://www.graylog.org/
8http://certificate.fiesta-iot.eu/

51618 VOLUME 6, 2018



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

crowd-sensing testbed with sensors on phones measuring
noise, proximity, speed, location; and iv) CABIN, an indoor
and outdoor smart building Smart Environment deployment
with ∼200 sensors.

In order to enlarge the value of the offer and also to proof
the adequacy of the solutions designed to enable interoper-
ability among heterogeneous IoT platforms, two open calls
for testbed integration were conducted. As a result of these
Calls, seven more testbeds were selected.

The main aim of federating more IoT testbeds and not
restricting it to the original four ones is to challenge the
platform design. This way tuning of that design can be made
by following the lessons learnt and best practices that can only
be elicited from actual implementation. Moreover, addition
of more application domains also brings further challenges
that were not initially considered as they were not present
in the initial set of testbeds. This selection was based on
the following criteria: (1) Usefulness; (2) Complementarity;
(3) Sustainability; (4) Technical competence; and
(5) Feedback.

From a technical standpoint, each testbed implemented the
testbed TPS component based upon the skeleton9 to align
with core ontology underpinning the semantic interoperabil-
ity of the platform; in this case, we used the FIESTA-IoT
ontology [17].

The complete description of the FIESTA-IoT ontology is
out of the scope of this paper. A complete specification of
the FIESTA-IoT ontology is defined in [17]. It is important
to emphasize that this ontology is the baseline for the inter-
operability of the heterogeneous testbeds and IoT platforms
that are federated in the FIESTA-IoT Platform. The different
testbeds have to converge for participating in the federation
and they use this ontology as the reference for this conver-
gence. Precisely this is the main reason why the ontology has
been kept simple as a design decision.

Yet another important design consideration has been the re-
use, as much as possible, of alreadywell-established concepts
in the ontology. In this sense, for the core ARM concepts, the
FIESTA IoT ontology has taken the IoT-lite ontology [36],
a lighter version of the IoT-A ontology [37]. For the obser-
vations aspect, which is not correctly captured by IoT-Lite,
the SSN ontology has been used. This ontology is specially
chartered to describe sensors and observations, and related
concepts. Finally, the phenomena and units of measurement
related concepts have been incorporated to the FIESTA-IoT
ontology through the M3-Lite taxonomy. This taxonomy has
been created by integrating and aligning already existing
ontologies in order to homogenize the existing scattered envi-
ronment in which a quite large number of similar ontologies
define the same concepts in an overlapping manner.

B. CASE STUDY EVALUATION
To evaluate the FIESTA-IoT platform, we use a case-study
based methodology. That is, we consider particular use cases

9https://github.com/fiesta-iot/testbed.tpi

where FIESTA-IoT has been applied and observe the extent
to which these cases show the following hypotheses.

1. The FIESTA-IoT platform can be used to perform
IoT experiments atop semantically interoperable data;
thus facilitating the testing of solutions with a horizon-
tal approach

2. The FIESTA-IoT platform supports both experimenta-
tion and technology maturation under realistic condi-
tions in real world experimental deployments as part of
the innovation lifecycle.

1) ENMONITOR CASE STUDY
In this case study we carried out an experiment to develop a
tool (named EnMonitor) to leverage cross-domain IoT data
from multiple IoT testbeds as defined in the FIESTA-IoT
platform previously described. The purpose of EnMonitor is
to display in an intuitive manner near real-time information
about the environment based upon data from all around the
globe.

EnMonitor provides an easy-to-use web-based graphical
interface where users can pinpoint to concrete regions on
a map, select among different environmental phenomena
and view different metrics (e.g. heatmap). To be specific,
EnMonitor uses the data available to enable the users to
do IoT resource discovery, perform observation harvesting,
view different statistics and view aggregated environmental
condition information.

The application is meant to be a proof-of-concept for
the key added-value of the IoT EaaS Platform, which is to
allow to access in a common way to multiple platforms that
offer different IoT services targeted for different applications.
Thus, when developing the EnMonitor application (as any
developer would do with her application) the EaaS API has
been used instead of having to learn and adapt the applica-
tion to each of the APIs from the underlying IoT platforms.
Examples of experiments and applications that have actually
leveraged this ability from the FIESTA-IoT Platform can be
found at http://fiesta-iot.eu/index.php/fiesta-experiments/.

EnMonitor and its interactions with the FIESTA-IoT plat-
form is shown in Fig. 8. Thus the purpose of the experiment
is twofold: i) to evaluate if the tool successfully interoperates
with multiple heterogeneous data sources and is performant
in terms of real-time data provision and responsiveness; and
ii) real-world conditions support technology maturation to
improve the tool towards offering citizens a holistic view of
the environment around them and enabling policymakers to
take advantage of federated data to complement their legacy
decision tools.

EnMonitor was developed to use the APIs of the
IoT-registry tool. Based on the user interactions from
the GUI it queries the IoT-registry to obtain the results from
the federated testbeds.
Analysis. EnMonitor successfully developed a performant

tool using heterogeneous IoT data from real-world deployed
sensors. The FIESTA-IoT platform provided a simple
method to integrate these semantically interoperable data in

VOLUME 6, 2018 51619



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

FIGURE 8. EnMonitor interactions with FIESTA-IoT platform (Source [38]).

a transparent way; as such the tool is also easily extensible
to consider new environmental phenomena as and when new
testbeds and sensor data are integrated into the FIESTA-IoT
platform. Hence, this shows the benefits the EaaS approach
atop semantically interoperable data provides. The access to
real-world sensor data also supported the quick maturation of
the tool (as opposed to working with simulated data)—that is,
the tool could be validated in the real environment with real
data.

2) EXTERNAL EXPERIMENTERS CASE STUDY
In this case study we made the FIESTA-IoT platform avail-
able to use by external experimenters. These were recruited
using an open call funding competition for 24 experiments
from academic researchers and/or commercial organisations.
External parties submitted experiment proposals that were
independently evaluated, and the winners obtained money
to carry out their proposed experiment over 6 months. That
is the funding to implement any technology and perform
experiments or technology validation. All 23 experiments
were successfully developed and deployed using the FIESTA-
IoT platform; the following summarizes the key outcomes:
• The experiments covered multiple IoT domains: 6 smart
city experiments, 4 smart energy, 2 smart agriculture,
6 data science, 1 data representation, 3 IoT platform, and
2 IoT Networking experiments.

• The experiments leveraged data from multiple testbeds.
10 experiments used 2 testbeds, 4 experiments used
3 testbeds, and there were 3 experiments that used 4,
5 and 6 testbeds respectively.

• The experiments covered different stages in the inno-
vation lifecycle: 11 carried out scientific research, and
13 technology innovation and validation experiments
(prior to market).

Analysis. The results of these external experiments demon-
strate that the results achieved in the EnMonitor experi-
ment case study have been replicated by third party users of
FIESTA-IoT; that is, these experiments have also benefited
from testbed-agnostic access to semantically interoperable
data from real-world IoT sensor deployments. Note, further
user-based evaluation of the platform (in terms of their expe-
rience with ease-of-use and value obtained) is described in
Section VI.C.

C. USER EVALUATION of EaaS
In this section we provide a more detailed evaluation of the
usefulness of the FIESTA-IoT platform.

1) METHODOLOGY
As independent users of the FIESTA-IoT platform,
the 23 selected external experimenters were asked, at the
end of their 6 months experience, to fill a questionnaire
and a KPIs evaluation form. The purpose of the questions
were to evaluate the users’ opinions about both the functions
provided by the platform and also the quality and perfor-
mance they observed. The 23 experimenters did not use the
FIESTA-IoT platform over the same time (or conditions).
There were two usage waves 6 months apart: the 1st wave
consisted of 6 experimenters, considered as alpha testers,
whilst 17 experimenters, seen as beta testers, participated to
the 2nd wave.

2) RESULTS
The questionnaires used a Likert scale to obtain the exper-
imenters attitude to questions about their usage of the
FIESTA-IoT platform; feedback was returned in form of
score between 1 and 5—in this scale, 1 stands for ‘‘very
poor’’ and 5 ‘‘excellent’’. As shown in Fig. 9 the experience
generally improved from the 1st to the 2ndwave. The stability
and usability of the platform reached a high level of satis-
faction (around 4) whilst the general performances, reaching
a steady 3.5, might be considered for improvement. The
performance and availability of the portal, used for designing
experiment, have significantly improved between the two
waves to reach grades of circa 4.5.

The process of integrating and deploying their experiments
using the tools available have been considered satisfactory
with a grade of almost 4. The questionnaire considered the
effort required by the external experiments. Here, the results
reported that an initial exploration of the platform needs less
than 15 days whilst for a full implementation and integration
of the experiment between 30 and 60 days development is
needed.

Also the tools offered by FIESTA-IoT have been assessed
quite satisfactory going over the 3.5. As explained in the
previous sections, users had the possibility to implement the

51620 VOLUME 6, 2018



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

experiment either as direct calls to the APIs exposing the
data and the resources, or via a textual definition of the
experiment, both of the two approaches expect the creation of
SPARQL queries. As reported in Fig. 9 the process of creating
the SPARQL query is considered ‘‘very good’’, enhancing
substantially between the 1st and 2nd wave.

FIGURE 9. Experience and satisfaction with FIESTA-IoT.

Whilst the assessment of the APIs is improved, the process
and the tools for the creation of the experiment within the
portal have not been always satisfactory. We believe that this
is not due to the particular deficiency of the tools but rather
to a higher familiarity with the APIs approach. As a matter of
fact the number of users preferring the APIs approach is 16,
the users that preferred the experiment description approach
is 5 and only 2 users have expressed no preference among
them.

The experimenters were also asked also about the market
appeal of the offered platform and the results are shown
in Fig. 10. As it can be seen, 55.5 % of the users would pay
for the service with different formulas: pay-per-use, return of
activity, one off charge, subscription basis. A user, instead,
would consider paying if the return of investment is attractive
for their business. Finally among the 33.3% not willing to
pay, most of the users consider that such asset should be
maintained by public institutions, whereas only one user
would consider payment as option only after improvements
of the platform. Such results highlight that the experimenters
identify the importance of the capabilities provided by the
platform.

The weakest point of the platform seems to be the quality
and the quantity of the data. This point is not directly affected

FIGURE 10. Market appeal of FIESTA-IoT.

by the platform concept and functionalities but rather by the
quality of testbed deployment integrated.

Finally, considering the questions concerning overall
satisfaction with the FIESTA-IoT platform, 15 of the experi-
menters responded with a ‘‘full satisfaction’’, 8 with ‘‘a par-
tial satisfaction’’ and none of them responded with complete
negative feedback. We believe that enhancing the integrated
testbeds, by the number or by the quality, would address the
main roots of dissatisfactions. In any case, all of the users
stated they would recommend the FIESTA-IoT platform to
other experimenters.

D. PERFORMANCE EVALUATION
In the previous section we have analyzed the functional evalu-
ation of the platform,mainly based on the experience reported
and gathered from experimenters. However, in order to com-
plete the evaluation of the FIESTA-IoT Platform considering
the technical aspects, we have also performed a performance
assessment through the analysis of the time that the Platform,
more specifically the IoT-Registry component, took to reply
to the queries that it received while the experiments were con-
ducted. Moreover, the analysis also presents the demand that
the FIESTA-IoT Platform was handling in terms of requests
per unit of time.

The analysis focuses on the SPARQL query response time
because of two main reasons. On the one hand, this is the
most time consuming procedure. When the experimenter is
using the functionalities of the Resource Broker (i.e. the other
alternative to retrieve data from the underlying resources),
the IoT-Registry basically acts as a proxy, thus, introducing
only some milliseconds of processing delay. On the other
hand, most of the experimenters used the SPARQL endpoint
of the IoT-Registry to retrieve data.

The analysis was carried out between 6th February 2018
and 15th March 2018. Fig. 11 shows the amount of queries
that the IoT-Registry received each day. It is important to
highlight that the IoT-Registry is not only serving the exper-
imenters’ demands but, at the same, it has to keep storing
the observations that are constantly coming from the under-
lying testbeds. In average the FIESTA-IoT Platform received
13,000 queries per day, which is equivalent to 9 queries per
minute.

VOLUME 6, 2018 51621



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

FIGURE 11. Number of queries received by IoT-Registry.

FIGURE 12. Cumulative distribution function of SPARQL queries
processing times.

Fig. 11 shows that the overall workload that the Platform
had to handle was quite steady, except for 17th and 18th

February, when there is an abrupt reduction on the number of
queries. Maintenance and updates tasks were scheduled those
days and only the internal testing queries were received.

As it can be seen in Fig. 12, 90% of the queries are handled
in less than 3.23 seconds while the amount of queries taking
more than 10 seconds is negligible. Moreover, it is interesting
to highlight that more than half of the queries were responded
in less than 100 milliseconds. In this respect, it has to be
noted that when the SPARQL query was wrongly formatted
(e.g. because of experimenter mistake) the processing delay
was 0 as the Data Endpoint of the IoT-Registry immediately
detected the syntactic errors.

Whereas these wrongly formatted queries accounted for
around 10% of the total, as it can be seen in Fig. 13 still
most usual response times are below 40 milliseconds.
It is important to note that the Probability Density shown
in Fig. 13 excludes queries solved in 0-time.

Taking into account these results, we can conclude that the
FIESTA-IoT Platform, which is a running instance of the IoT
EaaS Platform described in this paper, is showing a quite
good performance which should fulfil the needs from any
experiment or application requesting semantically interoper-
able data from it.

FIGURE 13. Probability density function of SPARQL queries processing
times.

VII. CONCLUSIONS
Enabling seamless experimentation over real-world testbeds
represents a major advantage to underpin research and inno-
vation aimed at having direct and fast impact in our everyday
lives. This paper has presented the design considerations of
an IoT EaaS Platform and the specification of its building
blocks. This platform has been instantiated in a cloud-based
environment and it is currently integrating 11 different IoT
testbeds with over 2,500 sensors in total. These testbeds have
different application domains, from smart cities to maritime
environmental monitoring, but a common denominator, all of
them are deployed in real-world environments.

The IoT EaaS Platform exposes a unique set of tools and
APIs aimed at reducing the experimenters’ effort to build
and run experiments that might expand across federated
IoT deployments. Throughout the paper, the experimentation
workflow is described together with the platform’s compo-
nents that enables it. In this sense, the EaaS paradigm enabled
by the IoT EaaS Platform described in the paper ranges from
plain access to raw data and/or services offered by any of the
underlying testbeds to autonomous scheduling and execution
of experiments involving added-value analytics and/or rea-
soning techniques.

Taking advantage of the actual instantiation of the Platform
design and the integration of real IoT testbeds, the design has
been refined together with the interfaces and models support-
ing IoT testbeds semantic alignment and interoperability. The
resulting platform increases scale, heterogeneity, experimen-
tation realism and cross-domain innovation as more testbeds
are joining the federation.

In order to proof the validity and appropriateness of
the proposed design, the instance of the IoT EaaS Plat-
form that have been developed in the framework of the
EU H2020 FIESTA-IoT project has been subject of both
qualitative and quantitative evaluation. This evaluation has
been done in the framework of actual experimental-based
research and innovation made over the instantiated IoT EaaS
Platform. The results have shown that the proposed design
have fulfilled experimentation requirements demonstrating
excellent performance even under heavy duty.

Future work includes the continuous extension of this
instance of the Platform through the addition of more testbeds

51622 VOLUME 6, 2018



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

as well as the support for publish-subscribe interactions with
the platform so that experimenters can be notified upon occur-
rence of an event in which they are interested. Currently,
the experimenter can only retrieve data upon direct request.

ACKNOWLEDGMENT
The authors would also like to thank the FIESTA-IoT consor-
tium for fruitful discussions.

REFERENCES
[1] S. H. Thomke, Experimentation Matters: Unlocking the Potential of New

Technologies for Innovation. Boston, MA, USA: Harvard Business School
Press, 2003.

[2] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[3] A. Rachedi, M. H. Rehmani, S. Cherkaoui, and J. J. P. C. Rodrigues, ‘‘IEEE
access special section editorial: The plethora of research in Internet of
Things (IoT),’’ IEEE Access, vol. 4, pp. 9575–9579, 2017.

[4] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. McCann, and K. Leung,
‘‘A survey on the IETF protocol suite for the Internet of Things: Standards,
challenges, and opportunities,’’ IEEE Wireless Commun., vol. 20, no. 6,
pp. 91–98, Dec. 2013.

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
4th Quart., 2015.

[6] P. Neirotti, A. De Marco, A. C. Cagliano, G. Mangano, and F. Scorrano,
‘‘Current trends in smart city initiatives: Some stylised facts,’’ Cities,
vol. 38, pp. 25–36, Jun. 2014.

[7] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
‘‘Internet of Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1,
pp. 22–32, Feb. 2014.

[8] J. M. Hernández-Muñoz et al., Smart Cities at the Forefront of the Future
Internet. Berlin, Germany: Springer, 2011, pp. 447–462.

[9] L. Zhang et al., ‘‘A remote medical monitoring system for heart failure
prognosis,’’ Mobile Inf. Syst., vol. 2015, Sep. 2015, Art. no. 406327.

[10] S. M. Riazul Islam, D. Kwak, M. H. Kabir, M. Hossain, and
K.-S. Kwak, ‘‘The Internet of Things for health care: A comprehensive
survey,’’ IEEE Access, vol. 3, pp. 678–708, Jun. 2015.

[11] K. Zheng, S. Zhao, Z. Yang, X. Xiong, and W. Xiang, ‘‘Design and
implementation of LPWA-based air quality monitoring system,’’ IEEE
Access, vol. 4, pp. 3238–3245, 2016.

[12] K.-L. Tsai, F.-Y. Leu, and I. You, ‘‘Residence energy control system based
on wireless smart socket and IoT,’’ IEEE Access, vol. 4, pp. 2885–2894,
2016.

[13] J. Wan, M. Yi, D. Li, C. Zhang, S. Wang, and K. Zhou, ‘‘Mobile services
for customization manufacturing systems: An example of industry 4.0,’’
IEEE Access, vol. 4, pp. 8977–8986, 2016.

[14] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and
T. Razafindralambo, ‘‘A survey on facilities for experimental Internet
of Things research,’’ IEEE Commun. Mag., vol. 49, no. 11, pp. 58–67,
Nov. 2011.

[15] L. Sanchez et al., ‘‘SmartSantander: IoT experimentation over a smart city
testbed,’’ Comput. Netw., vol. 61, pp. 217–238, Mar. 2014.

[16] A.-S. Tonneau, N. Mitton, and J. Vandaele, ‘‘A survey on (mobile) wireless
sensor network experimentation testbeds,’’ inProc. IEEE Int. Conf. Distrib.
Comput. Sensor Syst., May 2014, pp. 263–268.

[17] R. Agarwal et al., ‘‘Unified IoT ontology to enable interoperability and
federation of testbeds,’’ in Proc. IEEE 3rd World Forum Internet Things
(WF-IoT), Dec. 2016, pp. 70–75.

[18] G. Coulson et al., ‘‘Flexible experimentation in wireless sensor networks,’’
Commun. ACM, vol. 55, no. 1, pp. 82–90, Jan. 2012.

[19] C. Adjih et al., ‘‘FIT IoT-LAB: A large scale open experimental IoT
testbed,’’ in Proc. IEEE 2nd World Forum Internet Things (WF-IoT),
Dec. 2015, pp. 459–464.

[20] W. Vandenberghe et al., ‘‘Architecture for the heterogeneous federation of
future internet experimentation facilities,’’ in Proc. Future Netw. Mobile
Summit, 2013, pp. 1–11.

[21] M. Berman et al., ‘‘GENI: A federated testbed for innovative network
experiments,’’ Comput. Netw., vol. 61, pp. 5–23, Mar. 2014.

[22] A. Misra and R. K. Balan, ‘‘LiveLabs,’’ ACM SIGMOBILE Mobile Com-
put. Commun. Rev., vol. 17, no. 4, pp. 47–59, Dec. 2013.

[23] G. Cardone, A. Cirri, A. Corradi, and L. Foschini, ‘‘The participact mobile
crowd sensing living lab: The testbed for smart cities,’’ IEEE Commun.
Mag., vol. 52, no. 10, pp. 78–85, Oct. 2014.

[24] A. Willner, M. Giatili, P. Grosso, C. Papagianni, M. Morsey, and
I. Baldin, ‘‘Using semantic Web technologies to query and manage infor-
mation within federated cyber-infrastructures,’’ Data, vol. 2, no. 3, p. 21,
Jun. 2017.

[25] M. Avgeris, N. Kalatzis, D. Dechouniotis, I. Roussaki, and
S. Papavassiliou, Semantic Resource Management of Federated IoT
Testbeds. Cham, Switzerland: Springer, 2017, pp. 25–38.

[26] I. Tachmazidis et al., A Hypercat-Enabled Semantic Internet of Things
Data Hub. Cham, Switzerland: Springer, 2017, pp. 125–137.

[27] A. D’Elia, F. Viola, L. Roffia, P. Azzoni, and T. S. Cinotti, ‘‘Enabling
interoperability in the Internet of Things: A OSGi semantic information
broker implementation,’’ Int. J. Semantic Web Inf. Syst., vol. 13, no. 1,
pp. 147–167, 2017.

[28] R. Petrolo, V. Loscri, and N. Mitton, ‘‘Towards a smart city based on
cloud of things—A survey on the smart city vision and paradigms,’’ Trans.
Emerg. Telecommun. Technol., vol. 28, no. 1, p. e2931, Jan. 2017.

[29] A. Palavalli, D. Karri, and S. Pasupuleti, ‘‘Semantic Internet of Things,’’
in Proc. IEEE 10th Int. Conf. Semantic Comput. (ICSC), Feb. 2016,
pp. 91–95.

[30] A. Bassi, Enabling Things to Talk. Cham, Switzerland: Springer, 2013.
[31] S. Cox, ‘‘Observations and measurements,’’ Open Geospatial Consortium

Best Pract. Document, no. 05-087r4, p. 21, 2006.
[32] FIWARE Data Models. Accessed: May 24, 2018. [Online]. Available:

https://www.fiware.org/developers/data-models/
[33] K. G. Clark, K. Grant, and E. Torres, SPARQL Protocol for RDF,

document 20080115, W3C Recommendation, 2008. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-protocol/

[34] J. Lanza, L. Sanchez, D. Gomez, T. Elsaleh, R. Steinke, and
F. Cirillo, ‘‘A proof-of-concept for semantically interoperable federation
of IoT experimentation facilities,’’ Sensors, vol. 16, no. 7, p. 1006,
Jun. 2016.

[35] A. Ahrabian, S. Kolozali, S. Enshaeifar, C. Cheong-Took, and
P. Barnaghi, ‘‘Data analysis as a Web service: A case study using
IoT sensor data,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Mar. 2017, pp. 6000–6004.

[36] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor, ‘‘IoT-lite:
A lightweight semantic model for the Internet of Things,’’ in Proc. Int.
IEEE Conf. Ubiquitous Intell. Comput., Adv. Trusted Comput., Scalable
Comput. Commun., Cloud BigData Comput., Internet People, SmartWorld
Congr., Jul. 2016, pp. 90–97.

[37] S. De, P. Barnaghi, M. Bauer, and S. Meissner, ‘‘Service modelling for the
Internet of Things,’’ in Proc. Federated Conf. Comput. Sci. Inf. Syst., 2011,
pp. 949–955.

[38] R. Agarwal, D. Gomez, J. Lanza, L. Sanchez, N. Georgantas, and
V. Issarny. EnMonitor: Experimentation Over Large-Scale Semantically
Annotated Federated IoT Data Environment. Accessed: May 24, 2018.
[Online]. Available: https://hal.inria.fr/hal-01579413v2

JORGE LANZA received the Ph.D. degree in
telecommunications engineering from University
of Cantabria in 2014. He has participated in
several research projects, national and interna-
tional, with both private and public funding. He
is a Senior Researcher at the Network Planning
and Mobile Communications Laboratory, Univer-
sity of Cantabria, Spain. His current research is
focused on IoT infrastructures toward federating
deployments in different locations using semantics

technologies. In addition, his work has included combined mobility and
security for the wireless Internet.

VOLUME 6, 2018 51623



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

LUIS SÁNCHEZ received the Telecommunica-
tions Engineering and Ph.D. degrees from the Uni-
versity of Cantabria, Spain, in 2002 and 2009,
respectively. He is currently an Associate Profes-
sor at the Department of Communications Engi-
neering, University of Cantabria. He is active on
IoT-enabled smart cities, meshed networking on
heterogeneous wireless scenarios, and optimiza-
tion of network performance through cognitive
networking techniques. He has a long research

record involved in projects belonging to the fifth, sixth, seventh, and
H2020 EU Framework Programs. He has authored over 60 papers at inter-
national journals and conferences and co-authored several books. He often
participates in panels and round tables discussing about innovation sup-
ported by IoT in smart cities. He also acts as an expert for French ANR
(Agencie National Recherche) and Italian MIUR (Ministero dell’Istruzione,
dell’Università e della Ricerca) reviewing and evaluating research and devel-
opment proposals.

JUAN RAMÓN SANTANA received the Telecom-
munication Engineering degree from the Univer-
sity of Cantabria (UC) in 2010. He is currently a
Research Fellow with the Network Planning and
Mobile Communications Laboratory, Telecommu-
nication Research Group, UC. Prior to his current
occupation, he did an internship at the University
of Strathclyde, Glasgow, where he was involved
in IoT solutions. He has also been involved in
several projects, such as SmartSantander, EAR-

IT or FESTIVAL, and European collaborative projects related to the Smart
City paradigm and the Internet of Things. Among his research interests
are wireless sensor networks, M2M communications, and mobile phone
application research.

RACHIT AGARWAL received the Ph.D. degree
in computer science and telecommunications from
the University of Pierre and Marie Curie, Paris,
in 2013, with the laboratory situated at Telecom
SudParis. He holds a post-doctoral/Researcher
Engineer position at Inria-Paris and is associated
to the MiMove Research Team within Inria. His
research interests mainly span the areas related to
ICT, especially relating to Internet of Things (IoT),
human mobility aspects, semantic technologies,

and network science. In the past, he has been associated to several projects
and has been the Co-PI of Inria’s Sarathi Associate Team. He has won
the 2015 Semantic Web Challenge. He is currently a reviewer to many
international journals and conferences, and has served as a PC Co-Chair for
the Advanced and Trusted Internet of Things and Smart City Track at the
12th IEEE International Conference on Advanced and Trusted Computing
(ATC 2015), Beijing, China, in 2015.

NIKOLAOS KEFALAKIS received the Diploma
degree in electronic computing systems from
the Higher Technological Educational Institute of
Piraeus and the M.Sc. degree in information tech-
nology and telecommunications from the Athens
Information Technology. Since 2008, he has been
involved in the IoT Systems Group of AIT in the
area of Intelligent RFID Systems and Internet of
Things (IoT), where he is a Senior Researcher. He
has been involved in various EU projects and more

specifically in the context of ASPIRE and OpenIoT FP7 projects. He is the
Manager, System Architect, and Developer Lead of the AspireRFID OS
Project (http://wiki.aspire.objectweb.org/) and the multiple award winning
OpenIoT OS project (https://github.com/OpenIotOrg/openiot). His main
area of technical expertise is IoT systems, auto-ID technologies (RFID, bar-
codes. . . ), semantic sensor networks, multitier architecture systems, enter-
prise systems, and embedded and electronics digital systems.

PAUL GRACE received the B.Sc. degree in com-
puter science from the University of York, U.K.,
and the M.Sc. and Ph.D. degrees in distributed
systems from Lancaster University, U.K. He is
currently a Senior Researcher with the School of
Electronics and Computer Science, University of
Southampton. His research interests are in: secure
distributed systems, privacy engineering, middle-
ware, and software modelling.

TAREK ELSALEH received the B.Eng. degree
(Hons.) in electronic engineering from Oxford
Brookes University and the M.Sc. degree in com-
munications, networks, and software from theUni-
versity of Surrey. He is a Research Fellow and a
Systems Developer at the Institute for Commu-
nication Systems, University of Surrey. His pre-
vious work experience and degree projects have
revolved around sensors and data management.
His background includes sensor system design and

instrumentation, localization, embedded software development, Web devel-
opment, media content adaption, Internet of Things, Web of Things, and
Linked Open Data. He has been involved in IoT EU FP7/H2020 and U.K.
research projects, including SENSEI, IoT-A, FIWARE, and currently in
FIESTA-IoT, NHS Testbeds, and ACTIVAGE.

MENGXUAN ZHAO received the Ph.D. degree in
computer science from the University of Grenoble.
In her thesis, she brought the classical discrete
control theory into the new application domain
of the IoT using semantic techniques. She joint
Easy Global Market in 2015 after three years of
work of thesis preparation in Orange Labs, Greno-
ble. She mainly involved in European research
projects, including Fiesta-IoT (semantic interop-
erability of testbeds), Festival (EU-JP, interoper-

ability and federation of ICT services and testbeds), and several 5G-related
projects (5GinFIRE, 5GTANGO). Her research interests include IoT, data
interoperability, and testing methodology. She also participates and con-
tributes to standardization works, including participation and organization
of plugtest events.

ELIAS TRAGOS received the M.B.A. degree in
business administration in techno-economics and
the Ph.D. degree in wireless communications.
He has been actively involved in many EU and
national research projects as a Researcher, Tech-
nical Manager, and Project Coordinator. He is a
Research Project Manager at the Insight Centre
for Data Analytics, University College Dublin, Ire-
land. He has authored or co-authored over 70 peer-
reviewed conference and journal papers, receiving

over 1800 citations. His research interests lie in the areas of wireless and
mobile communications, Internet of Things, cognitive radios, network archi-
tectures, fog computing, security, privacy, and recommender systems.

HUNG NGUYEN received the B.S. degree in
information technology from the Hue University
of Science, Vietnam, in 2007. He is an Expe-
rienced Software Developer, having involved in
multiple small to large software developing com-
panies as a Java, .Net, and Cloud developer. He
was a Team Leader, Software Architect, Scrum
Master, and Software Designer. He is currently a
Researcher at the Insight Centre for Data Analyt-
ics, National University of Ireland, Galway, where

he is involved in several EU funded projects. His research interests include
Internet of Things, artificial intelligence, micro-services, deep learning, and
security and privacy.

51624 VOLUME 6, 2018



J. Lanza et al.: EaaS Over Semantically Interoperable IoT Testbeds

FLAVIO CIRILLO received the master’s degree
in computer engineering from the University of
Naples Federico II in 2014. He is a Research Sci-
entist with the IoT Research Team, NECLaborato-
ries Europe, Germany. His research focus is in the
Internet-of-Things analytics and platforms field,
especially scalability and federation aspects and
semantics enablement, in the scenario of Smart
Cities. He is currently one of the main developers
and maintainers of the IoT Backend layer of the

IoT Architecture of FIWARE. He was involved in IoT-related European
research project, such as FIWARE, FIESTA-IoT, AUTOPILOT, SynchroniC-
ity, and others. He is currently part of the Information Technology and
Electrical Engineering Ph.D. Programme XXXIII Cycle at the University of
Naples Federico II.

RONALD STEINKE is currently pursuing the
computer engineering degree with Technische
Universität Berlin with a focus on network tech-
nologies. From 2009 to 2012, he was a Student
Researcher at the TKN Institute, Technische Uni-
versität Berlin, where he was involved in the area
of network coding and future Internet. In 2012, he
joined the NGNI Department, Fraunhofer FOKUS
Institute, as a Student Researcher. At NGNI, he
was helping developing the OpenMTC Platform

and was involved in the area of M2M and IoT. In 2014, he wrote his Diploma
Thesis at the NGNI Department with the title Design and Implementation of
an ETSIM2MCompliant Control Framework for Smart Grids and graduated
as a Graduate Engineer. In 2014, he joined the Chair Next Generation
Networks at Technische Universität Berlin. In 2015, he joined Fraunhofer
FOKUS continuing developing the OpenMTC Platform and involved in
several projects.

JOHN SOLDATOS received the Ph.D. degree in
electrical computer engineering from the National
Technical University of Athens in 2000. He was
an Adjunct Professor at Carnegie Mellon Uni-
versity from 2007 to 2010. Since 2006, he has
been an Associate Professor at Athens Information
Technology. Since 2014, he has been an Honorary
Research Fellow at the University of Glasgow,
U.K. From 2014 to 2016, he was a member of the
European Crowdfunding Stakeholders Forum, and

from 2012 to 2015, he was the Coordinator of the IoT Identification, Naming
and Discovery Group, European Internet-of-Things Research Cluster. He has
had a very active role in many EC co-funded research and development
projects, in the scope of the FP6, FP7, and H2020 programmes, includ-
ing several projects in pervasive computing, cloud computing, Internet-of-
Things, and BigData. He has also participated in major enterprise con-
sulting projects as a principal business consultant in the areas of ICT,
industry, energy, and healthcare. He is co-founder of the open source plat-
forms OpenIoT (https://github.com/OpenIotOrg/openiot) and AspireRFID
(http://wiki.aspire.ow2.org). He has authored or co-authored over 180 arti-
cles in international journals, books, and conference proceedings.

VOLUME 6, 2018 51625


	INTRODUCTION
	RELATED WORK
	EXPERIMENTAL INFRASTRUCTURES
	SEMANTIC INTEROPERABILITY

	FIESTA-IoT PLATFORM KEY CONSIDERATIONS AND ARCHITECTURE
	KEY DESIGN CONSIDERATIONS
	FIESTA-IoT PLATFORM FUNCTIONAL ARCHITECTURE
	IoT-REGISTRY
	STORAGE STRUCTURE OF THE TDB
	DATA ENDPOINT
	RESOURCE MANAGER
	RESOURCE BROKER

	EXPERIMENT DEVELOPMENT, DEPLOYMENT AND MANAGEMENT
	TESTBED PROVIDER INTERFACE
	TESTBED PROVIDER SERVICES (TPS)
	DATA MANAGEMENT SERVICES (TPI DMS)

	ADDED-VALUE SERVICES
	SEMANTIC ANNOTATION VALIDATION
	ANALYTICS TOOL
	REASONING TOOLS
	ANNOTATOR AS A SERVICE
	TESTBED AND PLATFORM MONITORING

	DATA SECURITY: AUTHENTICATION AND ACCESS CONTROL

	TESTBED FEDERATION
	EXPERIMENT AS A SERVICE WORKFLOW
	FIESTA-IoT EXPERIMENTATION VALIDATION AND EVALUATION
	EXPERIMENTAL SETUP
	CASE STUDY EVALUATION
	ENMONITOR CASE STUDY
	EXTERNAL EXPERIMENTERS CASE STUDY

	USER EVALUATION of EaaS
	METHODOLOGY
	RESULTS

	PERFORMANCE EVALUATION

	CONCLUSIONS
	REFERENCES
	Biographies
	JORGE LANZA
	LUIS SÁNCHEZ
	JUAN RAMÓN SANTANA
	RACHIT AGARWAL
	NIKOLAOS KEFALAKIS
	PAUL GRACE
	TAREK ELSALEH
	MENGXUAN ZHAO
	ELIAS TRAGOS
	HUNG NGUYEN
	FLAVIO CIRILLO
	RONALD STEINKE
	JOHN SOLDATOS


