
 

 
 

Facultad 
de 

Ciencias 
 

 
MÉTODO DE ELEMENTOS FINITOS PARA 
DINÁMICA DE CABLES SUBACUÁTICOS 

(Finite element method for underwater cable 
dynamics) 

 
 
 

Trabajo de Fin de Grado 
para acceder al 

 

GRADO EN MATEMÁTICAS 
 
 
 
 

Autor: Álvaro Rodríguez Luis 
 

Director: Luis Alberto Fernández 
 

Co-Director: José Antonio Armesto 
  

Junio - 2018 



Contents

1 Introduction 8

2 Numerical model 9

2.1 Damping coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Towing boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Snapping free cable condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Validation 13

3.1 Zhu’s experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Optimal simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Dependence on the internal damping coefficient . . . . . . . . . . . . . . . . . 15

3.1.3 Dependence on the number of nodes . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Koh’s experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Optimal simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Dependence on the internal damping coefficient . . . . . . . . . . . . . . . . . 19

3.2.3 Dependence on the number of nodes . . . . . . . . . . . . . . . . . . . . . . . 20

4 Analysis of different towing systems 21

4.1 Towing of a submerged body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Towing of a floating body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Higher order approach 27

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Alternate fist order FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 New first order FEM results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Third order approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6 Stability problem for high order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusions and further research 46

2



List of Figures

1 Maneuver of installation of a wind mill. . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Explicative diagram of the under water volume of the sphere. . . . . . . . . . . . . . 13

3 Zhu’s experiment layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Optimal validation with Zhu’s low frequency experiment results. . . . . . . . . . . . 14

5 Optimal validation with Zhu’s high frequency experiment results. . . . . . . . . . . . 15

6 Numerical results for different β values compared with experimental results. . . . . . 16

7 Numerical results for different number of nodes compared with experimental results. 17

8 Detailed numerical results for different number of nodes compared with experimental
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

9 Optimal validation with Koh’s experiment results. . . . . . . . . . . . . . . . . . . . 18

10 Results for a cable swing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

11 Numerical results for different β values compared with experimental results. . . . . . 19

12 Numerical results for different number of nodes compared with experimental results. 20

13 Submerged body towing system set up. . . . . . . . . . . . . . . . . . . . . . . . . . 21

14 Towing systems that differ in the cable length. . . . . . . . . . . . . . . . . . . . . . 22

15 Submerged towed bodies towed with cables for two different materials. . . . . . . . . 23

16 Submerged towed bodies towed at two different speeds. . . . . . . . . . . . . . . . . 24

17 Floating body towing system set up. Simple towing (black line), towing with
intermediate body (red lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

18 Floating bodies towed with cables of different lengths. . . . . . . . . . . . . . . . . . 25

19 Floating towed bodies towed with cables with different intermediate body arrangements. 26

20 Implementation scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

21 New first order FEM results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

22 Stability problem for higher order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3



List of Tables

1 Towing a submerged body data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Results at equilibrium of the tension on the boat’s end of the cable for floating body
towing systems with different cable lengths. . . . . . . . . . . . . . . . . . . . . . . . 22

3 Results at equilibrium of the tension on the boat’s end of the cable for submerged
body towing systems with different cable materials. . . . . . . . . . . . . . . . . . . . 23

4 Results at equilibrium of the tension on the boat’s end of the cable for floating body
towing systems with different ship speeds. . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Towing a floating body data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Results at equilibrium of the tension on the towed body’s end of the cable for floating
body towing systems with different cable length . . . . . . . . . . . . . . . . . . . . . 25

7 Results at equilibrium of the tension on the towed body’s end of the cable for floating
body towing systems with different intermediate body arrangements. . . . . . . . . . 26

4



Acknowledgements
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Resumen

Se ha desarrollado un modelo numérico para el estudio de maniobras de arrastre marinas. El modelo
propuesto está basado en el estudio dinámico de un cable moviéndose entre dos cuerpos, uno con
movimientos impuestos y otro libre. El modelo es una extensión de modelos previos empleados para
el estudio del comportamiento de cables de anclaje, basados en el método de elementos finitos de
primer orden y donde el effecto de la flexión del cable es ignorado. Las condiciones de contorno
requeridas fueron estudiadas.

El método fue implementado y el código resultante fue validado con éxito, empleando para ello
resultados experimentales de sistemas de arrastre presentes en la literatura. La dependencia de los
resultados numéricos en el coeficiente de amortiguamiento interno y en el número de elementos se ha
estudiado en este trabajo. Para ilustrar las aplicaciones de la herramienta desarrollada, se realizaron
simulaciones de sistemas de arrastre en escala real, y se analizaron las distintas configuraciones de
estos sistemas. Para cada configuración propuesta se analiza la variación de las tensiones en el
cuerpo arrastrado y la posición de este.

Con el objetivo de desarrollar un modelo numérico que incluya los efectos de la flexión del cable,
se plantea una formulación alternativa del método propuesto inicialmente. La nueva formulación
permite emplear métodos de elementos finitos de orden superior, imprescindibles para resolver la
ecuación del cable con el término de la fuerza de flexión. En base a esta formulación, se propone
un modelo numérico con un método de elementos finitos de tercer orden. Los dos últimos modelos
propuestos se implementaron y sus resultados son validados y analizados en este trabajo.

Palabras clave

Método de elementos finitos; Dinámica de cables; Sistemas de arrastre marinos; Amortiguamiento
interno
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Abstract

A numerical model to study marine towing maneuvers has been developed. The proposed model
is based on the dynamic study of a catenary line moving between two bodies, one with imposed
motions, and the other one free. The model is an extension of previous ones used to study the
behavior of mooring lines, based on a first order finite element method where the bending effects
were neglected. The needed boundary conditions have been studied.

The method was implemented and the resulting code was successfully validated using experimen-
tal results for towing systems found in the literature. Sensitivity analysis on the internal damping
coefficient and the number of elements have been included in the present work. As an example
of application of the developed tool, simulations of towing systems on real scale were analyzed for
different setups. The variation of the loads at the towed body and also the position of the body are
analyzed for the studied configurations.

Aiming to develop a numerical model that considers the bending effects on the lines, an alternative
formulation for the numerical model was given and implemented. This allows to use higher order
finite element methods, necessary to solve the line equation with the bending force term. Based
on this formulation, a numerical model with a third order finite element method was proposed and
implemented. Numerical results were validated and analyzed.

Keywords

Finite element method; Cable dynamics; Marine towing systems; Internal damping
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1 Introduction

The rapid development of floating structures like wave energy converters, floating wind turbines and
aquaculture structures have increased the use of sea waters. The new uses require new methodologies
to support these activities, like the installation of new floating devices. This is usually done by a
ship towing the device using a catenary line, like in Figure 1. On the other hand, submerged towing
systems are also used in numerous naval engineering applications such as sonars, seabed exploration,
fishing or spotting sea mines.

Figure 1: Maneuver of installation of a wind mill.

The need to guarantee that the towed body is properly controlled and that it does not get lost or
damaged in the sea leads to oversizing the towing system, which implies increasing the cost of the
lines and a higher fuel consumption. Therefore, reliable numerical models are needed to study this
operation. Being able to accurately simulate towing cable dynamics would allow to design more
efficient systems. The purpose of this project is to provide a numerical tool to analyze the towing
maneuver of floating and submerged bodies.

Both maneuvers involve a cable that connect a ship with the towed device. There are different
alternatives in the literature to study the mooring systems of floating bodies. These methods are
based on the study of the cable dynamics using finite element method (FEM) [1, 6] and lumped
mass models (LM) [4, 3]. This project is an extension of these models to the application of towing
maneuvers. Most of the models are considerably recent, although the problem is a classic one. For
instance, in 2010 Zhu [7] proposed a new nodal position FEM (NP-FEM) to study the towing of
submerged bodies.

The numerical FEM model used to study mooring systems [1] has been modified to study the towing
maneuvers. This implied the modification of the boundary conditions used in the model. In the study
of mooring lines one boundary moves with the moored body and the other boundary is fixed to the
seabed. In this case one boundary will be moved with enforced movements, simulating the motion
of the towing ship while the other boundary is free to move the body connected to it. The presented
model is validated against data published in the literature, [7, 5]. Also, a sensitivity analysis with
respect to the number of elements used in the discretization of the line and the damping included
in the model is performed.

8



The validated model have been used to study the towing of two bodies. The first example performed
was the simulation of the towing of a submerged body, like a sonar, by a moving ship. Different line
length and body weights have been evaluated to study the final position at which the towed body
navigated. In the second example the towing body is floating, like in Figure 1. In this case, also
different line lengths were tested. The effect of including an intermediate body to add extra buoyancy,
or weight, to the catenary was also studied, increasing or decreasing the vertical component of the
force at the towed body. Finally the influence of the vertical force was also evaluated depending on
the position of the intermediate body.

This project continues with a brief description of the numerical model used to study mooring lines
and the new boundary condition applied to the study of the towing maneuver. Then, the validation
of the proposed model using experimental works published in the literature is presented and the
proposed methodology is applied to the towing of two bodies, one submerged and one floating.
Finally, a new formulation for the presented method is proposed. The nodal nature of the finite
element method model in [1] getting hard to upgrade into higher order methods, and the new
formulation is based on a modal point of view. It is shown that higher order methods are vital for
solving the equations with bending effects terms. The new formulation is then used to present a
third order method. The work ends up with a discussion of the work done and potential further
work.

2 Numerical model

In the current research on towing and mooring dynamics simulation, finite element methods (FEM)
are used to solve the partial differential equation (PDE) ruling cable dynamics. The equation used
in the literature generally ignores bending and torsion effects and it is based on the one dimensional
wave equation [1, 3, 4, 6]:

ρ0
∂2r(t, s)

∂t2
=

∂

∂s
(T (t, s)t(t, s)) + f(t, s)(1 + e(t, s)), (1)

where r(t, s) denotes the position of the cable parametrized by arc length, s ∈ [0, L] represents the
variable of the parametrization of the curve of the cable, t is the time variable, ρ0 denotes the linear
density of the cable, T (s, t) is the tension of the cable, t(t, s) is the unitary tangential vector to the
cable, f(t, s) is the external forces vector per unit of length and e(t, s) represents the strain of the
cable.

This is the Newton’s second law equation for a cable, written per unit of length. The mass times
acceleration term of usual Newton’s equation turns into the linear density times acceleration term.
In the right hand side, the forces term of Newton’s equation is divided into inner forces (tension)
and external forces. The tension force vector turns into the spatial derivative of tension force vector.
The external forces vector is already expressed per unit of length, but it needs to be multiplied by
the linear deformation term, (1 + e(t, s)).

The external forces f , are composed of the gravity and hydrostatic buoyancy force fhg, and the
hydrodynamic forces, the normal fdn and tangential fdt drag forces and the inertia force fmn.

f = fhg + fdt + fdn + fmn (2)
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These forces are defined as follows:

fhg = ρ0
ρc − ρw

(1 + e)ρc
g

fdn = −1

2
Cdndρw|vn|vn

fdt = −1

2
Cdtdρw|vt|vt

fmn = −Cmn
πd2

4
ρwan (3)

where: ρc is density of cable’s material, ρw is water density, Cdn and Cdt are normal and tangential
drag coefficients respectively, Cmn is hydrodynamic mass coefficient, d is diameter of the cable, v
and a denote velocity and acceleration, and subindex n and t denote normal or tangential component
of the vector respectively.

The gravity and buoyancy term is computed per unit of length using the Archimedes law with the
linear density instead of the mass, and it is divided by (1 + e) as it does not depend on the strain of
the cable. The hydrodynamic forces are based on Morison equations, and they are expressed per unit
of length by substituting the cross-sectional area or the volume of the body by the corresponding
length or area respectively.

In [1], first order FEM is used to solve equation (1) as follows: the PDE is transformed into the
generalized problem, the Galerkin method is used and the cable is discretized in n + 1 points
r(s, t) ≈ (r0, r1, ..., rn). Here rn is the position of the top support of the cable at the fairlead
of the body, and r0 the position of the opposite end of the cable, the position of a fixed anchor in [1]
and the position of the towed body in this research. This way, a system of lineal ordinary differential
equations (ODE) is generated. The following approximation can be considered:

ṙk−1 ≈ ṙk ṙk+1 ≈ ṙk r̈k−1 ≈ r̈k r̈k+1 ≈ r̈k (4)

what allows the matrices describing the system of ODE to become tridiagonal and gives simplified
expressions for the elementary matrices and vectors: mass elementary matrix Mk, drag elementary
matrix Dk, stiffness elementary vector kk and external forces elementary vector gk (only gravity
considered here). Although no detail on the expressions for these elementary matrices and vectors
and how they are obtained in [1] is given, a similar study is provided in Section 5. Assembling
of the elementary matrices results in the total system, where boundary conditions are applied by
substituting identity matrices and expected acceleration vectors on the appropriate positions on the
mass matrix and the total forces vector. In this work, the proposed model is implemented and
the system is solved with LAPACK routines [10]. ODEPACK routines are used to obtain the time
evolution of the problem: predictor-corrector Adams methods are chosen for non-stiff problems and
Backwards Differentiation Formula based methods are chosen for stiff problems [11].

2.1 Damping coefficient

In this work, as it was done in [2] the tension term of equation (1) is computed by considering each
element of a cable with section A0 as a Voigt-Kelvin spring: a combination of a spring with young

10



modulus E and a resistance with a damping coefficient β, as it is shown in equation (5).

T (t, s) = EA0

(
e+ β

∂e

∂t

)
(5)

In other words, the term EA0β
∂e

∂t
is added to the Hook’s law equation (T (t, s) = EA0e). The exact

and the numerical expressions of e(s, t) are given by equation (6). For the numerical expression the
strain will be considered constant on each element.

e(s, t) =

∣∣∣∣∂r(s, t)

∂s

∣∣∣∣− 1 ≈ 1

l
|rk − rk−1| − 1 = ek(t) (6)

where l is the length of each element that is considered in the cable, s ∈ ((k − 1) · l, k · l) and
k ∈ {1, ..., n}. Considering that rk = (xk(t), yk(t), zk(t)) equation (6) can be rewritten as:

ek(t) =
1

l
·
√

(xk(t)− xk−1(t))
2

+ (yk(t)− yk−1(t))
2

+ (zk(t)− zk−1(t))
2 − 1 (7)

Taking the derivative, considering that:
∂rk
∂t

= ṙk = (ẋk, ẏk, żk) ; a numerical expression for the

time derivative of the cable strain is obtained.

ėk =
1

l

1

|rk − rk−1|
[(xk − xk−1)(ẋk − ẋk−1) + (yk − yk−1)(ẏk − ẏk−1) + (zk − zk−1)(żk − żk−1)] (8)

For the tension term, Hook’s law is used in [1]. When the Voigt-Kelvin model is considered instead,
the only expression that changes is the one for the elementary stiff matrix:

kk =
EA

l

[(
εk − l
εk

· lk −
εk+1 − l
εk+1

· lk+1

)
+ β ·

(
ėk
εk
· lk −

ėk+1

εk+1
· lk+1

)]
(9)

In equation (9) the notation used in [1] is taken, where lk = rk − rk−1 and εk = |lk|.

2.2 Towing boundary condition

In order to implement the boundary conditions of a towing problem, the expected acceleration at
the towed body, a sphere in this work, needs to be calculated. First, it is necessary to compute the
total force applied on the body. In this work this is done using the Morison equation, which, for an
object submerged in a fluid with a certain flow, gives the force parallel to the flow applied in the
body. If the fluid density is ρ , the flow velocity is ~u and the body has volume V , cross-sectional
area perpendicular to the flow A, drag coefficient Cd and added mass coefficient Ca (Cm = 1 +Ca),
the Morison equation (10) is:

11



~FM = ρCmV · ~̇u+
1

2
ρCdA · ~u|~u| (10)

Also, other forces should be considered, like gravity, buoyancy and tension on the sphere. For the
gravity and buoyancy, if the body has a mass m and g is the gravity acceleration on Earth surface,
the force can be written as:

~Fgb = (Vu · ρ−m) · g · ez (11)

where Vu is the volume under water, studied in detail later for the spherical case. For the tension
force, since the body will be placed at the first node:

~FT = EA0 · (e1 + β · ė1) · r1 − r0
|r1 − r0|

(12)

Now, considering equations (10), (11) and (12), when the body is a sphere of radius R and mass m
located on the first node, the acceleration on the body is:

asphere =
~FM + ~Fgb + ~FT

m+ Ca
(13)

where the flow velocity or acceleration are taken to be the velocity or acceleration of the flow at the
point where the first node is minus the velocity or acceleration of the first node, and:

• Asphere = πR2 (cross-sectional area)

• V sphere = 4
3πR

3

• V sphereu = πh2

3 (3R− h)

• h = min{2R,max{0, R− zsphere}}

• Cspherem = 0.5

• Csphered = 0.47

Volume and cross-sectional area of the sphere are well known and the drag and mass coefficients
expressions are given in literature [8, 9]. The expression for V sphereu comes from the volume of a
spherical cap where h is the height of the cap. The expression for h gives the height of the spherical
cap that is under water where zsphere is the z coordinate of the center of the sphere, as shown in
Figure 2. The min and max in the h equation allow to consider the different possibilities for the
sphere’s relative position with the water level: completely submerged, most of it submerged, most
of it emerged and completely emerged.
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Figure 2: Explicative diagram of the under water volume of the sphere.

For a sphere located in a inner node i of the cable, the acceleration at that node would be replaced
by the acceleration in equation (13), but using the inner or intermediate node’s position, velocity

and acceleration. Then, ~FT in equation (12) is replaced by:

~FT = EA0 ·
[
(ei + β · ėi) ·

ri−1 − ri
|ri−1 − ri|

+ (ei+1 + β · ėi+1) · ri+1 − ri
|ri+1 − ri|

]
(14)

2.3 Snapping free cable condition

For the case where nothing is hanging from the towing cable, the boundary condition was
approximated as the boundary condition for a sphere with the cable’s density and diameter.

3 Validation

In order to validate our numerical results two distinct cases are studied: a sphere hanging with a
cable from a boat that oscillates vertically and a cable swinging after being released of one of the two
supports that were holding both of its ends at the same height. The first one uses the experimental
and numerical results shown in Zhu’s paper [7] and the second one uses the results from Koh’s one
[5].

3.1 Zhu’s experiment

This experiment considers a sphere hanging with a cable from a boat that oscillates vertically, as
shown in Figure 3, and it studies the vertical tension at the top of the cable. This is done for two
different frequencies (0.807 Hz and 1.27 Hz) and with a 78mm amplitude of oscillation. In this
project, the optimal results of the finite element method with a damping coefficient are displayed
for both frequencies and the dependence of the numerical results on the number of nodes and the
internal damping coefficient are studied for the higher frequency of vertical oscillation.
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Figure 3: Zhu’s experiment layout.

3.1.1 Optimal simulation

Optimal simulation uses 40 nodes, a 0.01s time-step and an internal damping coefficient β = 10−4.
For the lower frequency, the results are shown in Figure 4. It is observed that the new method’s
numerical results show great accuracy at predicting the peak tension, improving Zhu results as those
predict a lower tension. This does not happen for the minimum tension, where Zhu results are better
and our results predict a higher tension. This means that the presented method may be more reliable
at predicting peak tensions, what is desirable when designing mooring or towing systems, as it lets
the researcher know if the cable is going to break or not. Higher peak tensions are studied for the
high frequency experiment, when the cable starts ”snapping” in watter.

Figure 4: Optimal validation with Zhu’s low frequency experiment results.
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For the higher frequency results, displayed in Figure 5, the presented method shows lower noise
than Zhu’s, a constant peak tension and an excellent agreement with the maximum peak tension
registered in the experimental results. This backs the method as a good predictor of the peak
tension, as it was seen for low frequency. The fact that for most of the peaks seen in experimental
results the new method predicts a higher peak tension than the measured one could be a problem,
but as the maximum tension registered in the experiment is accurately predicted numerically, it can
be considered that these differences are due to horizontal dispersion of energy or ”chaotic” damping
effects caused by turbulence not registered by the model, which don’t take place on every oscillation
in reality. On the one hand this is starting to show the limitations of the model, but on the other
hand it is not needed to consider so many physical phenomena to predict maximum peak tensions
in the cable, and, as it was previously said, this is probably the most important information that
can be obtained when simulating mooring or towing systems.

Figure 5: Optimal validation with Zhu’s high frequency experiment results.

3.1.2 Dependence on the internal damping coefficient

The study of the dependence on the internal damping coefficient is done in Figure 6 and shows that
for zero internal damping, a great amount of noise is produced, similar to Zhu’s numerical results.
This was expected as introducing the internal damping coefficient is one of the main differences
of this method with Zhu’s model. For a high internal damping coefficient, the snap tension is not
observed anymore. Then it can be assured than an appropriate election of the internal damping
coefficient is essential to accurately predict the maximum peak tensions. The computational times
for the β = 0, β = 10−4, and β = 0.1 internal damping coefficients simulations were 30 s, 1.2 s
and 1.9 s for each second of simulation respectively, which shows that introducing the β coefficient
implies lower computational time. Lower noise is highly related with lower computational time: the
lower the internal oscillations, the faster the convergence of the ODE solvers is.
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Figure 6: Numerical results for different β values compared with experimental results.

3.1.3 Dependence on the number of nodes

Furthermore, the analysis of the dependence on the number of nodes is also performed. Figures 7
and 8 show low dependence on the number of nodes. The detailed figure shows better agreement
with the maximum peak tension and lower noise for the higher number of nodes, as it was expected.
The computational times for the 5, 10, 20 and 40 nodes simulations are 0.7 s, 1.2 s, 4.6 s and 18.2
s for each second of simulation respectively. This means that using a low number of elements the
results well be slightly conservative (larger prediction for peaks). Also, the computational cost is
smaller for lower number of nodes.
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Figure 7: Numerical results for different number of nodes compared with experimental results.

Figure 8: Detailed numerical results for different number of nodes compared with experimental
results.

3.2 Koh’s experiment

This experiment measures the shape of a cable and its tension at the top support when it swings.
The cable is initially hanging as in the initial condition shown in Figure 10a, the swing is produced
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after the cable is released from one of the two supports that were holding both ends of the cable at
the same height. Further detail on the experiment can be found at Koh’s paper [5]. In this project
the new method’s numerical results are compared for the shape of the cable and the tension with
Koh’s numerical and experimental results . Also the dependence of the tension results with the
internal damping coefficient and the number of elements are studied.

3.2.1 Optimal simulation

The optimal simulation uses 80 nodes, a 10−3 s time-step and an internal damping coefficient
β = 6.2 · 10−2, as Koh does in his paper. In Figure 9 it can be observed that the new method’s
results for the tension are really similar to Koh’s numerical results. The tension oscillation for
the first 0.5 seconds is lower for the presented method, showing an slightly better agreement with
the experimental results than Koh’s. For the peak tension at 0.6 s, Koh is slightly closer to the
experimental results, but the presented method has better accuracy when the snap tension shows.
From 0.6s to 1.4s, both numerical results are almost the same but fail to predict accurately a
minimum on the tension at 0.8s. At 1.7s, experimental results show one more snap tension peak,
that the presented method predicts more accurately. Overall the presented method is at least as
reliable as Koh’s method.

Figure 9: Optimal validation with Koh’s experiment results.

Comparing Figures 10a and 10b shows that the shape of the cable swing is almost the same as the
measured in the experiment, and no remarkable differences can be observed.
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(a) Experimental results. (b) Numerical results.

Figure 10: Results for a cable swing.

3.2.2 Dependence on the internal damping coefficient

A similar behavior was observed in relation to the dependence of the results on the damping
coefficient value, as before. Figure 11 presents that high internal damping smooths all the tension
oscillations, zero internal damping results implies too much noise and the optimal internal damping
gives good results. The computational times for β = 0, β = 0.062, and β = 1 internal damping
coefficients simulations are 59.0 s, 13.6 s and 15.7 s, respectively. This reinforces the conclusion
observed before relating the computational cost and the oscillation of the results.

Figure 11: Numerical results for different β values compared with experimental results.

19



3.2.3 Dependence on the number of nodes

Again, a study of the dependence on the number of nodes is developed. Figure 12 shows that the
lower the number of nodes is, the smoother the oscillations are and the phase differences become
bigger. The computational times for the 10, 20, 40 and 80 elements simulations are 0.27 s, 0.71 s,
2.25 s and 13.6 s, respectively. There is no significant difference among the results for 40 and 80
elements, but the computational times for 80 nodes are six times higher. It makes no sense to keep
increasing the number of nodes to reach higher agreement with the experimental results. The lack
of agreement here is probably due to the physical phenomena that is not considered in the equation
that is used: the forces caused by the bending of the cable as it swings may be contributing to the
movement of the cable and the tension at the top support.

Figure 12: Numerical results for different number of nodes compared with experimental results.
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4 Analysis of different towing systems

In this section different towing systems will be studied as the towed body can be floating or sub-
merged. It is also interesting to study cases with intermediate bodies that can help to optimize the
towing systems. To accomplish this goal, the cable is set on a certain boundary condition (vertical as
in Zhu’s experiment or hanging horizontally as in Koh’s one) and the boundary condition at the top
support is imposed to be a horizontal displacement: it starts moving after 5 seconds of simulation
(so the system gets stable before the top support starts moving at a constant speed). In general the
final shape of the cable is studied as well as the time dependence of some parameters, for example
the depth of the towed body.

4.1 Towing of a submerged body

First, a submerged body towing system is studied by choosing a sphere with density higher than
water. The setup of the towing is shown in Figure 13. The initial condition is hanging vertically as
in Zhu’s experiment. Two different cable configurations have been used. The characteristics of the
system are shown in Table 1.

Figure 13: Submerged body towing system set up.

Cables Towed body
Material Nylon Polyethylene D 4.8 m
λ 4.8 kg/m 2.9 kg/m M 7.74 · 104 kg
EA 3.87 · 108 N·m 1.02 · 108 N·m Cd 0.5
L 55 m 55 m Cm 0.18
d 88 mm 72 mm
Cdt 0.01 0.01
Cdn 1.2 1.2
Cmn 0.5 0.5

Table 1: Towing a submerged body data.
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Figures 14a and 14b show the results once they reach equilibrium and the time evolution of the
depth of the sphere respectively for three different towing systems. These systems use the same
spheres and the same cables, but three different lengths for the cables. The cable used was the
Nylon one and the speed of the boat was 3.4 m/s. Table 2 shows the computed cable tension at the
boat support.

(a) Shapes of the cables. (b) Time evolution of the variation of the submerged
bodies’ vertical coordinate respect to the initial value.

Figure 14: Towing systems that differ in the cable length.

Cable length (m) Tx (N) Tz (N) |T | (N)
50 3.052 · 104 1.736 · 105 1.763 · 105

55 3.346 · 104 1.730 · 105 1.762 · 105

60 3.638 · 104 1.724 · 105 1.761 · 105

Table 2: Results at equilibrium of the tension on the boat’s end of the cable for floating body towing
systems with different cable lengths.

As it was expected, the longer the cable the deeper and the further away the towed body stays.
Figure 14b also shows that as the length increases, the higher the towed body rises due to the
speed of the boat, and that the time evolution of the depth of the body shows the same behavior
disregarding the length of the cable. The tension has larger horizontal component and lower vertical
component for longer cables, although the total tension does not depend so much on the length.
This gives useful information on how to choose the length of a cable for this type of towing systems
within the length ranges that may be considered on a design, for example: in terms of fuel efficiency
it could be more desirable that the cable tension pulls the boat horizontally rather than vertically,
and longer cables would lead to better efficiency.

Figures 15a and 15b show the same results as the two previous figures, but here, the towing systems
have two different cable material instead of three different cable lengths. The cable length was kept
constant at 55 m and the speed of the boat was 4.6 m/s. Table 3 shows the cable tension at the
boat support.
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(a) Cables shapes at equilibrium. (b) Time evolution of the vertical coordinate the towed
body.

Figure 15: Submerged towed bodies towed with cables for two different materials.

Cable material Tx (N) Tz (N) |T | (N)
Polyethylene 4.909 · 104 1.693 · 105 1.763 · 105

Nylon 5.882 · 104 1.661 · 105 1.762 · 105

Table 3: Results at equilibrium of the tension on the boat’s end of the cable for submerged body
towing systems with different cable materials.

It is observed that the nylon cable rises more and keeps a longer distance with the boat than the
polyethylene one, although nylon’s density is higher. This is due to higher tangential drag forces on
the cable due to its thicker diameter. This has a great effect on the tension at the boat support, as it
is shown at Table 3, and it can be deduced that the thicker the cable, the more horizontal its shape
is, and the bigger the horizontal component of the tension gets. This should also be considered with
the cable length, previously studied, when designing a towing system.

Figures 16a and 16b show the results for the shape of the cables once they reach equilibrium and
the time evolution of the depth of the sphere respectively for three different cases. This system uses
the same spheres and the same cable (the 55 m Nylon cable) for the three cases, but different ship
speeds. Table 4 shows the computed cable tension at the boat support.

Speed (m/s) Tx (N) Tz (N) |T | (N)
3.4 3.346 · 104 1.730 · 105 1.762 · 105

4.6 5.882 · 104 1.661 · 105 1.762 · 105

6.7 1.059 · 105 1.411 · 105 1.764 · 105

Table 4: Results at equilibrium of the tension on the boat’s end of the cable for floating body towing
systems with different ship speeds.

23



(a) Cables shapes at equilibrium. (b) Time evolution of the vertical coordinate the towed
body.

Figure 16: Submerged towed bodies towed at two different speeds.

Figures show that the higher the boat speed is, the lower the depth of the towed body is. A surpris-
ing result here is the low dependence of the total tension on the speed observed in Table 4. This is
because drag forces for the considered speeds are low compared to the weight of the body.

4.2 Towing of a floating body

Finally, a floating body towing system is studied. To do so, a sphere with density lower than water
is chosen, and the initial condition sets the cable hanging horizontally as in Koh’s experiment [5].
The setup of the towing is shown in Figure 17. Similarly to the previous section, the dependence of
the system on the length of the cable is studied. Figure 18a displays the shapes of the cables after
they reach equilibrium and Figure 18b the time evolution of the z-coordinate of the deepest point
of the cable and the time evolution of the horizontal span between the top support and the towed
body. The initial horizontal span is the same for the three systems, the boat speed is 3.4 m/s and
the characteristics of the towing systems are shown in Table 5. Table 6 shows the computed cable
tension at the towed body.

Figure 17: Floating body towing system set up. Simple towing (black line), towing with
intermediate body (red lines).
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Cable Towed body Intermediate body
λ 20.68 kg/m D 8.5 m D 2.5 m
EA 2.45 · 108 N m M 3.11 · 105 kg M 3.11 · 102 kg
L 60 m Cd 0.5 Cd 0.5
d 80 mm Cm 0.18 Cm 0.18
Cdt 0.01
Cdn 1.2
Cmn 0.5

Table 5: Towing a floating body data.

(a) Cables shapes at equilibrium. (b) Time evolution of the horizontal span and the
minimum vertical coordinate of the cable.

Figure 18: Floating bodies towed with cables of different lengths.

Cable length (m) Tx (N) Tz (N) |T | (N)
55 7.54 5.482 · 103 5.482 · 103

60 7.54 5.999 · 103 6.000 · 103

65 7.54 6.531 · 103 6.532 · 103

Table 6: Results at equilibrium of the tension on the towed body’s end of the cable for floating body
towing systems with different cable length

In Figure 18a it is observed that, when the system is stable, the depth of the cable and horizontal
span grows with cable length. In Figure 18b, it can be seen that both the horizontal span, Xspan,
and the cable depth, Zmin, are decreasing for the first 20 seconds. This is because when the top
support is not moving, the weight of the cable pulls the sphere towards the top support and then
the cable gets deeper. Once the top support, ship, starts moving, it is seen how both Xspan and
Zmin, increase rapidly. For minimum cable depth, in Figure 18b, a big difference can be observed
among the three systems, as the initial horizontal span is set to be the same, so the longer cable
hang deeper. There is a smaller difference among the three systems at final equilibrium, as the
horizontal span is not the same anymore. For horizontal span, it is observed that, as expected, the
initial span is the same, but as the system reaches equilibrium, the longer cables let the sphere hold
more distance with the top support.
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In terms of the tension at the towed body, the length difference leads to a constant horizontal ten-
sion, which is opposing the drag forces on the body, while the vertical tension increases as the longer
cables are significantly heavier.

Finally, the inclusion of an intermediate body in the towing systems is studied. To do so, the
intermediate body boundary conditions described in Section 2.2 are imposed. This can be done for
any internal node of the cable, and for different sizes and masses of the spheres chosen to be placed
as an intermediate body. Figure 19a displays the final state of three towing systems of a floating
body: again, one with no intermediate body, and two with a floating intermediate body, one on the
center and the other one closer to the towed body (at the nodes 50 and 80 respectively, where the
total number of nodes was 100). Figure 19b shows the time evolution of the horizontal span, Xspan,
and the deepest point of the cable, Zmin, and Table 7 shows the computed cable tension at the
towed body. Apart from the intermediate body difference, all the remaining parameters are kept
the same as in Table 5.

(a) Cables shapes at equilibrium. (b) Time evolution of the horizontal span and the
minimum vertical coordinate of the cable.

Figure 19: Floating towed bodies towed with cables with different intermediate body arrangements.

Intermediate body Tx (N) Tz (N) |T | (N)
No intermediate body 7.603 5.999 · 103 6.000 · 103

Central floating body 7.603 2.696 · 103 2.697 · 103

Lateral floating body 7.603 0.7785 · 103 0.7792 · 103

Table 7: Results at equilibrium of the tension on the towed body’s end of the cable for floating body
towing systems with different intermediate body arrangements.

In Figure 19, it is observed that the horizontal span is higher for the system with the intermediate
body in the middle of the cable, then for the system with the intermediate body closer to the towed
body and finally for the system with no intermediate body. The same order is valid for increasing
depth of the lowest point of the cable. The interesting result here is the low vertical tension over
the towed body for the systems with intermediate bodies, specially for the system with the floater
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closer to the towed body. This shows that using hydrodynamic floaters attached to the cable near
the towed body can lower the vertical tension on the towed structure. When this happens, the
submerged volume of the structure decreases slightly and consequently the drag forces are reduced,
what might increase efficiency.

5 Higher order approach

5.1 Motivation

On the validation of the numerical results given by the method in the previous sections with the
experimental results in Koh’s paper [5], it was seen that the agreement was low. Then, it was
explained that bending and torsion effects could imply significant effects on the forces on the cable,
not considered in equation (1). Equation (15), as it appears in [12], considers these effects on the
cable:

−(EIr′′)′′ + [(T − EIκ2)r′]′ + [GJτ(r′ × r′′)]′ + q =

(
1

4
πdρcI

)
r̈; (GJτ)′ = 0 (15)

A brief look at these equations, without paying attention to their meaning, is enough to see that
there are fourth order spatial derivatives in the equation unknown, r. This implies that a first order
FEM would not success at solving precisely this equation, as even for the generalized problem, it
would be necessary to take the third derivative of the linear functions of the basis chosen when using
the Galerkin method. Those derivatives go to zero and information is lost in the process. Also, even
if the higher order methods where not necessary to solve equation (15), they are known to be faster
and more precise than first order methods.

In this project, the FEM used in [1] was not deeply explained. That was because although the
IHAC had an implementation of that method, on the first part of this project the objective was
improving that implementation with the internal damping coefficient and adding the towed body
boundary condition to the code and at the same time, understand the principles of the finite element
method and the equation studied. It was also noticed that due to the approximations taken in that
method, and its nodal set up, increasing the order of the method was a hard task to achieve, so it
was decided to develop a new first order FEM without approximations, and with a set up focused
on the elements, and not in the nodes, as we will see in the following section, in some way that
increasing the order of the method was simple. Considering this, it was more interesting to explain
this new finite element method in detail, rather than the method in [1].

5.2 Alternate fist order FEM

Let us recall equation (1), rewriting it slightly:

ρ0
∂2r

∂t2
=

∂

∂s

EA0

e+ β
∂e

∂t
1 + e

∂r

∂s

+ f(1 + e), (16)
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by taking:

t(t, s) =
1

1 + e

∂r

∂s
,

T (t, s) = EA0

(
e+ β

∂e

∂t

)
,

e =

∣∣∣∣∂r

∂s

∣∣∣∣− 1.

And, for simplicity, let’s use the notation T (t, s) = EA0

(
e+ β ∂e∂t

)
1

1+e :

ρ0
∂2r

∂t2
− ∂

∂s

(
T (t, s)

∂r

∂s

)
− f(1 + e) = 0 (17)

Weak formulation of the problem needs to be obtained in order to use the finite element method,
and to do so, equation (17) is multiplied by a continuous test function, w(s, t) belonging to V , the
space of solution functions, that must meet w(0, t) = w(L, t) = 0, and the integral is taken on the
whole domain, [0, L], where L is the length of the cable:

∫ L

0

(
ρ0
∂2r

∂t2
− ∂

∂s

(
T (t, s)

∂r

∂s

)
− f(1 + e)

)
wds = 0 (18)

Using integration by parts on the second term:

∫ L

0

(
ρ0
∂2r

∂t2
w +

(
T (t, s)

∂r

∂s

)
∂w

∂s
− f(1 + e)w

)
ds−

[(
T (t, s)

∂r

∂s

)
w

]L
0

= 0 (19)

Given the conditions over w, the term outside of the integral vanishes, and the weak formulation is
obtained.

∫ L

0

(
ρ0
∂2r

∂t2
w +

(
T (t, s)

∂r

∂s

)
∂w

∂s
− f(1 + e)w

)
ds = 0 (20)

Choosing a basis

Now, a finite dimension subset Vh of V is considered, and a basis is taken {ϕi}Ni=0. The solution of
the equation can be written as the linear combination of the functions on the basis.
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r(s, t) =

N∑
i=0

ri(t)ϕi(s). (21)

And the spatial derivatives:

∂r

∂s
(s, t) =

N∑
i=0

ri(t)
∂ϕi
∂s

(s). (22)

Taking w = ϕk in equation (20) with k = 0, 1, . . . , N , and using the two previous equations:

∫ L

0

(
N∑
i=0

ρ0
∂2ri
∂t2

ϕiϕk +

N∑
i=0

(
T (t, s)ri

∂ϕi
∂s

)
∂ϕk
∂s
− f(1 + e)ϕk

)
ds = 0 ∀k (23)

Taking N nodes in the domain, {s1, . . . , sN}, two of them in both ends of the cable, we define two
functions for each element:


ϕi(s) =

si+1 − s
si+1 − si

ϕi+1(s) =
s− si

si+1 − si

if s ∈ [si, si+1];

{
ϕi(s) = 0
ϕi+1(s) = 0

if s 6∈ [si, si+1] (24)

From PDE to a ODE system

On the element [si, si+1], there are two non-zero functions, ϕi and ϕi+1, using linearity of the integral
and taking k = i, equation (23) is turned into:

ρ0
∂2ri
∂t2

∫ si+1

si

ϕiϕids+ ρ0
∂2ri+1

∂t2

∫ si+1

si

ϕi+1ϕids

+

∫ si+1

si

T (t, s)ri
∂ϕi
∂s

∂ϕi
∂s

ds+

∫ si+1

si

T (t, s)ri+1
∂ϕi+1

∂s

∂ϕi
∂s

ds−
∫ si+1

si

f(1 + e)ϕids = 0 (25)

Now, taking k = i+ 1:
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ρ0
∂2ri
∂t2

∫ si+1

si

ϕiϕi+1ds+ ρ0
∂2ri+1

∂t2

∫ si+1

si

ϕi+1ϕi+1ds

+

∫ si+1

si

T (t, s)ri
∂ϕi
∂s

∂ϕi+1

∂s
ds+

∫ si+1

si

T (t, s)ri+1
∂ϕi+1

∂s

∂ϕi+1

∂s
ds

−
∫ si+1

si

f(1 + e)ϕi+1ds = 0 (26)

Both equations can be written together in a matrix expression:

ρ0


∫ si+1

si

ϕiϕids

∫ si+1

si

ϕiϕi+1ds

∫ si+1

si

ϕi+1ϕids

∫ si+1

si

ϕi+1ϕi+1ds




∂2ri
∂t2

∂2ri+1

∂t2



+


∫ si+1

si

T (t, s)
∂ϕi
∂s

∂ϕi
∂s

ds

∫ si+1

si

T (t, s)
∂ϕi
∂s

∂ϕi+1

∂s
ds

∫ si+1

si

T (t, s)
∂ϕi
∂s

∂ϕi+1

∂s
ds

∫ si+1

si

T (t, s)
∂ϕi+1

∂s

∂ϕi+1

∂s
ds


 ri

ri+1



=


∫ si+1

si

f(1 + e)ϕids

∫ si+1

si

f(1 + e)ϕi+1ds

 (27)

Recalling the definition of T (t, s), and as EA0 is constant for every element:

∫ si+1

si

T (t, s)
∂ϕi
∂s

∂ϕi
∂s

ds = EA0

∫ si+1

si

(
e+ β

∂e

∂t

)
1

1 + e

∂ϕi
∂s

∂ϕi
∂s

ds (28)

That leads to:
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ρ0


∫ si+1

si

ϕiϕids

∫ si+1

si

ϕiϕi+1ds

∫ si+1

si

ϕi+1ϕids

∫ si+1

si

ϕi+1ϕi+1ds




∂2ri
∂t2

∂2ri+1

∂t2



+EA0


∫ si+1

si

(
e+ β

∂e

∂t

)
1

1 + e

∂ϕi
∂s

∂ϕi
∂s

ds

∫ si+1

si

(
e+ β

∂e

∂t

)
1

1 + e

∂ϕi
∂s

∂ϕi+1

∂s
ds

∫ si+1

si

(
e+ β

∂e

∂t

)
1

1 + e

∂ϕi
∂s

∂ϕi+1

∂s
ds

∫ si+1

si

(
e+ β

∂e

∂t

)
1

1 + e

∂ϕi+1

∂s

∂ϕi+1

∂s
ds


 ri

ri+1



=


∫ si+1

si

f(1 + e)ϕids

∫ si+1

si

f(1 + e)ϕi+1ds

 (29)

Computing the integrals

In order to solve these integrals, a variable change will be taken, moving from the interval [si, si+1]
to [0, 1]. To do so, the following function is defined::

Fi : [0, 1] −→ [si, si+1]
x −→ x(si+1 − si) + si

(30)

To be able to use the Change of Variables theorem1, the Jacobian of this function must be computed:

J(Fi) = si+1 − si = li (31)

obtaining the length of the i-th element. Using this in the basis functions that are non-zero on the
i-th element we have:

φk = ϕi−1+k ◦ F−1i , k = 1, 2. (32)

and then,

φ1(x) = x, y φ2(x) = 1− x (33)

By the Change of Variables theorem:

1Change of Variables theorem g : A→ B and f : B → R then
∫
B f =

∫
A f ◦ g|J(g)|
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∫ si+1

si

ϕi(s)ϕi(s)ds =
1

li

∫ 1

0

(1− x)2dx =
1

li

1

3
(34)

∫ si+1

si

ϕi+1(s)ϕi+2(s)ds =
1

li

∫ 1

0

x2dx =
1

li

1

3
(35)

∫ si+1

si

ϕi(s)ϕi+1(s)ds =
1

li

∫ 1

0

x(1− x)dx =
1

li

1

6
(36)

For the space derivatives:

∫ si+1

si

ϕ′i(s)ϕ
′
i(s)ds =

1

li

∫ 1

0

(−1)2dx =
1

li
(37)

∫ si+1

si

ϕ′i+1(s)ϕ′i+1(s)ds =
1

li

∫ 1

0

12dx =
1

li
(38)

∫ si+1

si

ϕ′i(s)ϕ
′
i+1(s)ds =

1

li

∫ 1

0

1(−1)dx = − 1

li
(39)

For equation (29), considering

(
e+ β

∂e

∂t

)
1

1 + e
constant on each element, the following is obtained:

ρ0
1

6

1

li

 2Id3 Id3

Id3 2Id3




∂2ri
∂t2

∂2ri+1

∂t2

+ EA0

(
e+ β

∂e

∂t

)
1

1 + e

1

li

 Id3 −Id3

−Id3 Id3

 ri

ri+1



=


∫ si+1

si

f(1 + e)ϕids

∫ si+1

si

f(1 + e)ϕi+1ds

 (40)

where Id3 is the 3× 3 identity matrix.

Using the Simpson rule on the external forces integrals:

∫ b

a

f(x)dx ≈ b− a
6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
, (41)
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that is:


∫ si+1

si

f(1 + e)ϕids

∫ si+1

si

f(1 + e)ϕi+1ds

 ≈

(1 + e)
si+1 − si

6


f(si)ϕi(si) + 4f

(
si + si+1

2

)
ϕi

(
si + si+1

2

)
+ f(si+1)ϕi(si+1)

f(si)ϕi+1(si) + 4f

(
si + si+1

2

)
ϕi+1

(
si + si+1

2

)
+ f(si+1)ϕi+1(si+1)

 (42)

Recalling that:

ϕi(si) = 1; ϕi

(
si + si+1

2

)
=

1

2
; ϕi(si+1) = 0 (43)

ϕi+1(si) = 0; ϕi+1

(
si + si+1

2

)
=

1

2
; ϕi+1(si+1) = 1 (44)

We get:


∫ si+1

si

f(1 + e)ϕids

∫ si+1

si

f(1 + e)ϕi+1ds

 ≈ (1 + e)
si+1 − si

6


f(si) + 4f

(
si + si+1

2

)
1

2

4f

(
si + si+1

2

)
1

2
+ f(si+1)

 . (45)

Building the system

Assembling the matrices that were found in the previous section properly, leads to a system of second
order ordinary differential equations (as shown in [13]):

M · r̈(t) + K(t) · r(t) = F(t), (46)

where M is the mass matrix, K the stiff matrix and F the external forces vector. Vector r denotes

the positions of each node and r̈(t) =
∂2r

∂t2
(t).

On every time step, the acceleration is computed as:

r̈(t+ δt) = M−1 · (F(t)−K(t) · r(t)) (47)
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But the mass matrix is never inverted, a numerical method as LU or Cholesky is used.

First, let’s write again the elementary matrices. For each element k, the corresponding elementary
mass matrix is:

Mk =
ρ0
lk

1

6

[
2Id Id
Id 2Id

]
. (48)

where Id is the 3× 3 identity matrix.

It is a matrix constant in time, and there is a matrix constant for every element, M0, that multiplied
by the scalar ρ0/lk gives the specific information of the element.

M0 =
1

6

[
2Id Id
Id 2Id

]
. (49)

The elementary stiffness matrix for the element k is:

Kk(t) =
EA0

lk

1

1 + ek(t)
[ek(t) + βėk(t)]

[
Id −Id
−Id Id

]
(50)

In this case, the matrix is not constant in time, but a matrix constant in time can be taken as:

K0 = EA0

[
Id −Id
−Id Id

]
, (51)

For every time step this matrix will be multiplied by a scalar, to obtain stiffness elementary matrix:

Kk(t) =
1

1 + ek(t)

1

lk
[ek(t) + βėk(t)]K0. (52)

where ek and ėk are computed as it was done in equations (7) and (8).

The external forces elementary vector is:

Fk = (1 + ek)
sk+1 − sk

6


f(sk) + 4f

(
sk + sk+1

2

)
1

2

4f

(
sk + sk+1

2

)
1

2
+ f(sk+1)

 . (53)

where the external forces follow equation (2).
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To assemble the matrices, two (3 · N × 3 · N) zero matrices M and K and a (3 · N) zero column
vector F are first built. Then a simple algorithm is followed, for k = 1 to k = N :

M(6(k − 1) + 1 : 6k, 6(k − 1) + 1 : 6k) = M(6(k − 1) + 1 : 6k, 6(k − 1) + 1 : 6k) +Mk

K(6(k − 1) + 1 : 6k, 6(k − 1) + 1 : 6k) = K(6(k − 1) + 1 : 6k, 6(k − 1) + 1 : 6k) +Kk

F(6(k − 1) + 1 : 6k) = F(6(k − 1) + 1 : 6k) + Fk

Boundary and initial conditions

Let Ftotal = F−K · r be the total forces vector. In general the accelerations at the ends of the cable
are known, r̈1 and r̈N . Then, for every time step, after computing M and Ftotal, in order to impose
the boundary conditions:

M(1 : 3, 1 : 3) = Id3, M(N − 2 : N,N − 2 : N) = Id3

M(1 : 3, 4 : N) = 0, M(N − 2 : N, 1 : N − 3) = 0

Ftotal(1 : 3) = r̈1, Ftotal(N − 2 : N) = r̈N

Also, if the speed or position for some of the ends of the cable are known, their values are updated
with the expected one for every time step.

For the initial condition, the shape of the catenary is computed analytically and the velocity and
acceleration are supposed to be zero.

Time evolution

Finally, the time evolution of the system is obtained using subroutines of the Fortran library
ODEPACK, as it was done in Section 2.
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5.3 Implementation

The alternative first order FEM described in the previous section was also implemented using
Fortran90. Figure 20 shows a scheme of the implementation. Three files are used to write the
code (in black rectangles in the figure) and other three files contain the information used by the
code that the user must provide (red rectangles). The main program is represented with a blue
background and the subroutines used have an orange background. Blue arrows denote subroutine
calls and red arrows denote data files reading.

At the IHAC, there is a code, NuevoFEM, with the main structure, and more than 2000 lines. This
code did not work properly. For that reason, I created new subroutines, changed how the linear
system was solved to a banded matrix method, implemented different boundary conditions and tried
different ODE solvers, until the code could be validated. I also made several MatLab and Python
scripts to analyze and paint the code results, and I learned how to use the gfortran debugging tools,
and Ubuntu operative system. For the first order code in the previous sections, I had to develop
a similar task. On the other hand there was not an existing code at the IHAC for the third order
method proposed in Section 5.5, and I had to rewrite NuevoFEM to implement it.

36



Figure 20: Implementation scheme.
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The main program begins reading the data given by the user, either reading it directly in the main
program or calling a subroutine that does it. The data obtained is saved on some variables and
used to allocate other. These variables were either previously declared on the main program or
subroutine, or on a data structure created on a separated file. Variables saved on the data structure
can be used on every subroutine of the code.

Following this scheme, time is set to be zero and the initial condition is imposed. To do this, a
subroutine that uses the data on the position of the boat, given by the user and previously read,
is called. This subroutine, GetPosicionCuerpo, saves the position, velocity and acceleration of the
fairlead on the data structure for the current time-step using interpolation and numerical deriva-
tion. Subroutine FEM InitLine is then called, it uses the position of the fairlead, the position of the
opposite end of the cable, given by the user and saved on the data structure previously, and some
subroutines based on the analytic expressions for the shape of a catenary to set the initial condition
and save it on the variable of the data structure that contains the positions of the nodes on the
cable, a 3 ·N vector, where N is the number of nodes. Velocity and acceleration of the cable is set
to zero.

The next step is to start the temporary loop. Time is set to be dt. Then, the time loop begins
calling GetPositionCuerpo again, and continues calling the ODEPACK subroutine that solves the
time evolution of the system, imposes boundary conditions on the position and velocity substituting
the appropriate values on the vectors containing this information, writes the results on the output
files, and updates time t = t+ dt. The ODEPACK routine requires as an input a subroutine, called
FEM TimeEvolutionOdepack in this project, that for a given time, position and speed, returns the
acceleration. Using this, numerical methods for solving ODE systems are used on the ODEPACK
subroutine, as it was said before, predictor-corrector Adams methods are chosen for non-stiff prob-
lems and Backwards Differentiation Formula based methods are chosen for stiff problems. In order
to assure the correct solution of the system, the relative and absolute tolerances are chosen to be
10−7 and 10−9 respectively.

All that is left to see is how FEM TimeEvolutionOdepack works. First, for the current position,
velocity and acceleration of the cable, three subroutines that assemble the elementary matrices
and vectors generated by three other subroutines. The assembled mass matrix M, stiff matrix K
and external forces vector F are saved on the data structure this way. Using the stiff matrix and
the position of the cable r, the tension at both ends of the cable is computed and written in the
corresponding output files. After this, the total forces vector is computed as Ftotal = F − K · r,
and boundary conditions are imposed on M and Ftotal. Finally the system M · r̈ = Ftotal is solved
using LAPACK subroutines, where r̈ is the vector containing the accelerations on the cable. To do
this two extra subroutines not showed in the figure are used, one computes the external forces on
each node given the position, speed and acceleration of that node, and this subroutine is called by
an other one that computes the elementary forces vectors. The other extra subroutine gets water
velocity and acceleration on any required point using potential wave theory, to use the appropriate
value of the speed and acceleration of the flow with respect to the cable while computing the external
forces.

5.4 New first order FEM results

The alternative first order method was used for mooring system simulation. This choice was due
to the great agreement of Aamo [1] based simulations with experimental results for this kind of
systems. The purpose of reformulating the first order was to take a step forward on the process
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of increasing the order to be able to solve the cable equation with the bending term. This is why
towing systems simulations are not used here; the objective is not to see how the numerical results
are for towing systems, but to see if the cable equation is properly solved with the new formulation.

To simulate mooring systems, a new term of interaction with the seabed was added to the external
forces. The boundary condition for a mooring is really simple: imposing the position of anchor at
the end of the cable, and zero velocity and acceleration. The experiment consisted on a boat moored
to the seabed with a cable oscillating horizontally, and the horizontal tension of the cable at the
tension was studied. Figure 21 shows a comparison of Aamo [1] based FEM and the new first order
FEM results.

Figure 21: New first order FEM results.
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We observe the excellent agreement in Figure 21. The new method shows lower noise and a smaller
tension peak, but overall it can be concluded that the cable equation was successfully solved with the
alternative formulation. The computational times were found to be very similar for both methods,
one second per second of simulation approximately. The next step is to use this formulation to
increase the order of the FEM method.

5.5 Third order approach

In this case, the formulation theory is exactly the same, just changing the election of the function
basis.

Choosing a basis

For first order, degree one polynomials were chosen for the basis. Now, degree three polynomials are
chosen, and four different polynomials will be defined on each element. To do so the polynomials
are first defined in the [0, 1] interval. The conditions imposed on these polynomials are their values
and the derivatives values at the nodes, each polynomial will have only one of those values equal to
one, an the rest of them zero, as shown in equation (54). This way, the coefficients of the solution
expansion in terms of functions of the basis, won’t have position meaning exclusively, but also space
derivative meaning.Let {φ1, φ2, φ3, φ4} be the four polynomials, then:


φ1(0) = 1, φ′1(0) = 0, φ1(1) = 0, φ′1(1) = 0
φ2(0) = 0, φ′2(0) = 1, φ2(1) = 0, φ′2(1) = 0
φ3(0) = 0, φ′3(0) = 0, φ3(1) = 1, φ′3(1) = 0
φ4(0) = 0, φ′4(0) = 0, φ4(1) = 0, φ′4(1) = 1

(54)

Using divided differences interpolation technique:


φ1(x) = 2x3 − 3x2 + 1
φ2(x) = x3 − 2x2 + x
φ3(x) = −2x3 + 3x2

φ4(x) = x3 − x2
x ∈ [0, 1] (55)

And the first derivative:


φ′1(x) = 6x2 − 6x

φ′2(x) = 3x2 − 4x+ 1
φ′3(x) = −6x2 + 6x
φ′4(x) = 3x2 − 2x

x ∈ [0, 1] (56)

Choosing these functions guarantees the continuity of the derivative of the solution. In order to
define the actual functions of the basis, the same change of variable function is used and the following
functions are obtained.:
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ϕ4(k−1)+1(s) = φ1(F−1k (s))

ϕ4(k−1)+2(s) = lk · φ2(F−1k (s))
ϕ4(k−1)+3(s) = φ3(F−1k (s))

ϕ4(k−1)+4(s) = lk · φ4(F−1k (s))

s ∈ [sk, sk+1] (57)

And their derivatives, using the chain derivation rule:


ϕ′4(k−1)+1(s) = 1

lk
· φ′1(F−1k (s))

ϕ′4(k−1)+2(s) = φ′2(F−1k (s))

ϕ′4(k−1)+3(s) = 1
lk
· φ′3(F−1k (s))

ϕ′4(k−1)+4(s) = φ′4(F−1k (s))

s ∈ [sk, sk+1] (58)

In equation (58) it is clear that the terms lk where introduced at φ2 and φ4 on equation (57), to
have that ϕ′4(k−1)+2(0) = 1 and ϕ′4(k−1)+4(1) = 1. This is necessary for the coefficients to have the
physical meaning of spatial derivative.

From PDE to ODE system

Considering the element [sk, sk+1], we have four non-zero functions defined over it, ϕn+1, ϕn+2,
ϕn+3, ϕn+4 and ϕn+5 where n = 4 · (k − 1), using these functions in equation (23):

ρ0

∫ sk+1

sk

[(
∂2rk
∂t2

ϕn+1 +
∂2r′k
∂t2

ϕn+2 +
∂2rk+1

∂t2
ϕn+3 +

∂2r′k+1

∂t2
ϕn+4

)
ϕj+

+

(
T (t, s)rk

∂ϕn+1

∂s
+ T (t, s)r′k

∂ϕn+2

∂s
+ T (t, s)rk+1

∂ϕn+3

∂s
+

+T (t, s)r′k+1

∂ϕn+4

∂s

)
∂ϕj
∂s
− f(1 + e)ϕj

]
ds = 0 (59)

where j ∈ {n+ 1, n+ 2, n+ 3, n+ 4}. Using integral linearity:

ρ0
∂2rk
∂t2

∫ sk+1

sk

ϕn+1ϕjds+ ρ0
∂2r′k
∂t2

∫ sk+1

sk

ϕn+2ϕjds+

+ ρ0
∂2rk+1

∂t2

∫ sk+1

sk

ϕn+3ϕjds+ ρ0
∂2r′k+1

∂t2

∫ sk+1

sk

ϕn+4ϕjds+

+ rk

∫ sk+1

sk

T (t, s)
∂ϕn+1

∂s

∂ϕj
∂s

ds+ r′k

∫ sk+1

sk

T (t, s)
∂ϕn+2

∂s

∂ϕj
∂s

ds+

+ rk+1

∫ sk+1

sk

T (t, s)
∂ϕn+3

∂s

∂ϕj
∂s

ds+ r′k+1

∫ sk+1

sk

T (t, s)
∂ϕn+4

∂s

∂ϕj
∂s

ds−

−
∫ sk+1

sk

f(1 + e)ϕjds = 0 (60)
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Using the four possible values for j, four equations are obtained that can be expressed with a matrix
notation. Proceeding as it was done for first order:

ρ0 ·M0,k ·
∂2

∂t
rk + EA0

(
e+ β

∂e

∂t

)
1

1 + e
·K0,k · rk = Fk (61)

where M0,k and K0,k are (12× 12) matrices and ∂2

∂t r, r and Fk are column vectors with dimension
12. The elements of these matrices and vectors are defined as follows:

(62)

• Mij
0,k = Id ·

∫ sk+1

sk
ϕiϕjds

• ∂2

∂t2 rk =
(
∂2rk
∂t2 ,

∂2r′k
∂t2 ,

∂2rk+1

∂t2 ,
∂2r′k+1

∂t2

)T
• Kij

0,k = Id ·
∫ sk+1

sk
ϕ′iϕ

′
jds

• rk =
(
rk, r

′
k, rk+1, r

′
k+1

)T
• Fk = [F1

k,F
2
k, . . . ,F

N
k ]T

• Fik = (1 + e)
∫ sk+1

sk
fϕids

Here it should be considered that i and j go from 4 · (k − 1) + 1 to 4 · (k − 1) + 4 (four possible
values), Id is dimension 3 identity matrix and rk = (x, y, z) and f = (fx, fy, fz) (dimension three)
in order to understand that the dimension of these matrices and vectors is 12 (=4·3).

This way a general system is obtained for an element, linked with the systems on the neighbor

elements. All of them should be assembled to get the global ODE system: M · ∂
2

∂t r + K · r = F.

Computing the integrals

Using the same procedure as in first order, the following expressions are obtained for the integrals
(i and j go from 1 to 4):

∫ sk+1

sk

ϕ4(k−1)+i(s)ϕ4(k−1)+j(s)ds =


lk
∫ 1

0
φi(x)φj(x)dx if i, j odd

l2k
∫ 1

0
φi(x)φj(x)dx if i even, j odd

l3k
∫ 1

0
φi(x)φj(x)dx if i, j even

(63)

For the derivatives:

∫ sk+1

sk

ϕ′4(k−1)+i(s)ϕ
′
4(k−1)+j(s)ds =


1
lk

∫ 1

0
φ′i(x)φ′j(x)dx if i, j odd∫ 1

0
φ′i(x)φ′j(x)dx if i even, j odd

lk
∫ 1

0
φ′i(x)φ′j(x)dx if i, j even

(64)

These integrals are easy to compute, for example, using the symbolic calculus tool of MatLab.
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Computing the elementary vector integrals is different for third order with respect to fist order. Con-
sidering f in equation (2), and the forces that build it up, it is seen that the force is only known at the
nodes, so linear interpolation is used. This linear term multiplied by the linear basis functions on first
order lead to a second order term, so Simpson rule was appropriate. For third order, a fourth order
term is obtained and Simpson is not exact. To compute these integrals, let fk be the force at the node
k. Then the force for the integral over the element k will be taken as f = sk+1−s

sk+1−sk · fk + s−sk
sk+1−sk · fk+1

and, for integrals over (0, 1) the following is considered: f = (1− x) · fk + x · fk+1.

Building the system

The elementary matrices and vectors can be rewritten:

• Mk = ρ0 · lkMk
0

• Kk = EA0

lk

(
ek + βk

∂ek
∂t

)
1

1+ek
Kk

0

• Fk = [F1
k,F

2
k,F

3
k,F

4
k]T

• F1,3
k = (1 + ek) · lk

∫ 1

0
fφidx = (1 + ek) · lk

[
fk ·
∫ 1

0
(1− x)φidx+ fk+1 ·

∫ 1

0
xφidx

]
• F2,4

k = (1 + ek) · l2k
[
fk ·
∫ 1

0
(1− x)φidx+ fk+1 ·

∫ 1

0
xφidx

]
Where:

• Mk
0 =


Id ·

∫ 1

0
φ1φ1dx Id · lk ·

∫ 1

0
φ1φ2dx Id ·

∫ 1

0
φ1φ3dx Id · lk ·

∫ 1

0
φ1φ4dx

Id · lk ·
∫ 1

0
φ2φ1dx Id · l2k ·

∫ 1

0
φ2φ2dx Id · lk ·

∫ 1

0
φ2φ3dx Id · l2k ·

∫ 1

0
φ2φ4dx

Id ·
∫ 1

0
φ3φ1dx Id · lk ·

∫ 1

0
φ3φ2dx Id ·

∫ 1

0
φ3φ3dx Id · lk ·

∫ 1

0
φ3φ4dx

Id · lk ·
∫ 1

0
φ4φ1dx Id · l2k ·

∫ 1

0
φ4φ2dx Id · lk ·

∫ 1

0
φ4φ3dx Id · l2k ·

∫ 1

0
φ4φ4dx



• Kk
0 =


Id ·

∫ 1

0
φ′1φ

′
1dx Id · lk ·

∫ 1

0
φ′1φ

′
2dx Id ·

∫ 1

0
φ′1φ

′
3dx Id · lk ·

∫ 1

0
φ′1φ

′
4dx

Id · lk ·
∫ 1

0
φ′2φ

′
1dx Id · l2k ·

∫ 1

0
φ′2φ

′
2dx Id · lk ·

∫ 1

0
φ′2φ

′
3dx Id · l2k ·

∫ 1

0
φ′2φ

′
4dx

Id ·
∫ 1

0
φ′3φ

′
1dx Id · lk ·

∫ 1

0
φ′3φ

′
2dx Id ·

∫ 1

0
φ′3φ

′
3dx Id · lk ·

∫ 1

0
φ′3φ

′
4dx

Id · lk ·
∫ 1

0
φ′4φ

′
1dx Id · l2k ·

∫ 1

0
φ′4φ

′
2dx Id · lk ·

∫ 1

0
φ′4φ

′
3dx Id · l2k ·

∫ 1

0
φ′4φ

′
4dx


These matrices can be obtained as the product term by term of M0 with Lk and K0 with Lk
respectively. As M0 and K0 are the same for all elements, it is only needed to compute them once,
and only compute Lk for each element:

• M0 =


Id ·

∫ 1

0
φ1φ1dx Id ·

∫ 1

0
φ1φ2dx Id ·

∫ 1

0
φ1φ3dx Id ·

∫ 1

0
φ1φ4dx

Id ·
∫ 1

0
φ2φ1dx Id ·

∫ 1

0
φ2φ2dx Id ·

∫ 1

0
φ2φ3dx Id ·

∫ 1

0
φ2φ4dx

Id ·
∫ 1

0
φ3φ1dx Id ·

∫ 1

0
φ3φ2dx Id ·

∫ 1

0
φ3φ3dx Id ·

∫ 1

0
φ3φ4dx

Id ·
∫ 1

0
φ4φ1dx Id ·

∫ 1

0
φ4φ2dx Id ·

∫ 1

0
φ4φ3dx Id ·

∫ 1

0
φ4φ4dx



• K0 =


Id ·

∫ 1

0
φ′1φ

′
1dx Id ·

∫ 1

0
φ′1φ

′
2dx Id ·

∫ 1

0
φ′1φ

′
3dx Id ·

∫ 1

0
φ′1φ

′
4dx

Id ·
∫ 1

0
φ′2φ

′
1dx Id ·

∫ 1

0
φ′2φ

′
2dx Id ·

∫ 1

0
φ′2φ

′
3dx Id ·

∫ 1

0
φ′2φ

′
4dx

Id ·
∫ 1

0
φ′3φ

′
1dx Id ·

∫ 1

0
φ′3φ

′
2dx Id ·

∫ 1

0
φ′3φ

′
3dx Id ·

∫ 1

0
φ′3φ

′
4dx

Id ·
∫ 1

0
φ′4φ

′
1dx Id ·

∫ 1

0
φ′4φ

′
2dx Id ·

∫ 1

0
φ′4φ

′
3dx Id ·

∫ 1

0
φ′4φ

′
4dx
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• Lk =


Id Id · lk Id Id · lk

Id · lk Id · l2k Id · lk Id · l2k
Id· Id · lk Id Id · lk
Id · lk Id · l2k Id · lk Id · l2k


Assembling the matrices and vectors is analogous to what was done for first order.

Boundary and initial conditions

Boundary and initial conditions are imposed using the same technique as in first order. For the
initial condition, there is no problem because the analytic expressions for the shape of the catenary
also give information about its derivative. The problem comes at giving boundary conditions for the
second time derivatives of the first space derivative of the position at the ends of the cable, that is
∂2r′1
∂t2 and

∂2r′N
∂t2 . Those values are also unknown, in the current research several options were chosen:

not imposing any boundary condition for these values, setting the values to be zero or limiting the
modulus of those vectors, but any of those where good to solve the stability problem.

5.6 Stability problem for high order

The third order method is implemented in a very similar way as for first order. This was possible
because the theory behind both methods followed the same structure. During the research, even
fifth order was implemented. But for both methods there were stability problems, as it can be seen
in Figure 22, where the results of the simulations for the experiment seen in section 5.4 by Aamo
[1] based FEM and the new third order FEM are displayed.

Figure 22: Stability problem for higher order.

During the first 4 seconds of simulation, the third order method agrees with the fist order Aamo
based method. But after that, the noise starts increasing until for second 5 the simulation stops

44



after NaN value is obtained. This is a stiff problem behavior, but even for the Backwards Differen-
tiation Formula based methods, recommended for stiff problems, the method remains unstable. A
big amount of time was spent looking for an error on the code, trying different boundary and initial
conditions for the derivatives without success in solving this problem. Techniques as limiting the
maximum values of the spatial derivatives where considered, what made the method stable, but the
agreement with the validated results was lost. For simpler problems, with smaller amplitude for the
boat oscillations and without ground effects, the method was stable.

The main idea to explain this behavior is that the spatial derivatives are not controlled. When the
distance among the nodes gets larger, given the way that the strain is computed, the tension force
also increases, what gets the nodes back together, bounding the values for the positions of the nodes.
On the other hand, the values of the spatial derivatives on the nodes are not used when computing
any forces, so if these values start increasing, the forces will not act on the cable limiting that in-
crease. Not having a mechanism to bound the spatial derivatives this way, allows them to increase
without control until a NaN value is obtained. Bad election of boundary or initial conditions over
the spatial derivatives may also be contributing to the problem. Two solutions are proposed to solve
this problem.

The first solution would be studying how to introduce the numerical values of the spatial derivatives
on the nodes in the forces equations or in the strain calculations, in a way that the forces act like
recovery forces for these values. The second solution is more drastic and it would imply changing
the basis functions, choosing the four polynomials on the [0, 1] interval verifying:


φ1(0) = 1, φ1(1/3) = 0, φ1(2/3) = 0, φ1(1) = 0
φ2(0) = 0, φ2(1/3) = 1, φ2(2/3) = 0, φ2(1) = 0
φ3(0) = 0, φ3(1/3) = 0, φ3(2/3) = 1, φ3(1) = 0
φ4(0) = 0, φ4(1/3) = 0, φ4(2/3) = 0, φ4(1) = 1

(65)

This way, the meaning of all the coefficients used is position of a point of the catenary and it is easier
to implement the initial and boundary conditions, and the external forces would act like recovery
forces over all the coefficients.

Developing these solutions and implementing the resulting methods is left as further research.
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6 Conclusions and further research

The numerical model introduced in [1] has been extended with the implementation of different
boundary conditions. These extensions opened the door to the study of towing maneuvers. Also the
Voigt-Kelvin model for springs was used instead of the Hook’s law, as it was done in [2], an internal
damping coefficient was introduced in the equations.

The results obtained with the presented model were validated using experimental results published
in literature, in particular, Zhu’s [7] and Koh’s [5] experiments were considered for validation. The
presented method showed good accuracy at predicting tension peaks for snapping cables when the
bending effects where not important. On the other hand, it failed at predicting properly the tension
on a cable exposed to larger bending effects, as the model ignore such effects. Bending effects are
negligible for most of towing systems used in modern days naval procedures, this being a reason to
consider the proposed method a potential tool to design towing maneuvers.

The sensitivity analysis of the results to the internal damping coefficient and the number of nodes
was studied. It was shown that an appropriate election of the damping coefficient was necessary to
predict accurately the peak tension of the cable. The method used to choose the internal damping
coefficient was the calibration of different values selecting the values that gave a good agreement
with the experimental results. It was also found that introducing internal damping lead to lower
computational times. This is due to its effect of reducing the vibrations on the cable, what allows
faster convergence of the ODE solvers. For the number of nodes dependence, results showed that
for simple problems it was enough with a low number of nodes, approximately 10. More complex
problems, as the cable swing, required a higher number, at least 20. In both cases increasing the
number of nodes further from the minimum requirements did not increase accuracy significantly, but
it did increase computational time, and it can be concluded that choosing an appropriate number
of nodes, using calibration techniques, is essential to guarantee a correct result and a low computa-
tional time.

Application cases of towing systems were studied. The method provides important results for the
tension of the cable at both ends, boat and towed body, and for the position of the cable and the
towed body. The information provided is a step forward in the tools used for the design of towing
maneuvers.

Finally, the necessity of implementing higher order finite element methods for solving the cable
equation that considers the bending effects was shown. The presented method was not easy to modify
into a higher order, so a new first order finite element method was proposed and implemented. This
method could be easily modified into a higher order method, and the code was successfully validated.
Then the method was modified into third order, but the resulting method was found unstable.

Further research would involve solving the stability problems of the third order method. A proposed
strategy to do this is changing the basis function, so the meaning of all the coefficients is position of
the cable, instead of position and spatial derivative of the cable, and the current boundary and initial
conditions and the computation of external forces guarantees a good control of all the coefficients
of the solution. Other proposed solution is modifying the way that forces are computed, and/or
the boundary and initial conditions, so for the current basis functions all the coefficients are well
controlled. Once this problem is solved implementing the same method for the cable equation that
considers bending would be the next step.
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[3] J. Azcona, X. Munduate, L. González and T.A. Nygaard. Experimental validation of a dynamic
mooring lines code with tension and motion measurements of a submerged chain. Ocean
Engineering. 129 : (415 – 427), 2017.

[4] M.Hall and A.Goupee. Validation of a lumped-mass mooring line model with DeepCwind
semisubmersible model test data. Ocean Engineering,104:590 – 603, 2015.

[5] C. G. Koh and Y. Zhang and S. T. Quek. Low-Tension Cable Dynamics: Numerical and
Experimental Studies. Journal of Engineering Mechanics, 125(3): 347-354, 1999.

[6] J. Palm, C. Eskilsson and L. Bergdahl. An hp-adaptive discontinuous Galerkin method for
modelling snap loads in mooring cables. Ocean Engineering, 144: 266-276, 2017.

[7] Z. H. Zhu. Dynamic modelling of cable system using a new nodal position finite element method.
International journal for numerical methods in biomedical engineering, 26: 692-704, 2010.

[8] J.N. Newman, Marine Hydrodynamics, The Massachusetts Institute of Technology, 1977

[9] J. Pantaleone and J. Messer, The added mass of a spherical projectile. American Journal of
Physics, Volume 79, Issue 12, pp. 1202-1210 (2011)

[10] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, LAPACK Users’ Guide,
Philadelphia, PA: Society for Industrial and Applied Mathematics, 1999.

[11] A. C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solver, Editors:Stepleman,
Carver, Peskin, Ames and Vichnevetsky: IMACS Transactions on Scientific Computation, 1983.

[12] M.R. Escalante, M.B. Rosales, R. Sampaio and T. Ritto, Reduced order model of a 3D cable
using proper orthogonal decomposition. Mec. Comp.. 30. 1143-1158. 2011
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