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Abstract

In the present work, we shall set the basis of a theoretical framework to treat

novel complex polarization patterns that arises in Ferroelectric heterostructures, and

are ideal candidates to be the ferroelectric counterpart of magnetic skyrmions.

In order to do so, we shall �rst study magnetic skyrmions, understand the origin

of their formation and give a mathematical, more concretely, a topological charac-

terization of its behaviour. Afterwards, we shall try to carry all this knowledge to

our ferroelectric case. Finally, we will show that Berry theory is very closely related

with many of the aspects treated through this paper and explain its quantum origin.

This work have been carried in collaboration with a phd student of the Luxem-

bourg Institute of Science and Technology, Mauro Gonçalves who was responsible of

all second principles simulations of the ferroelectric patterns studied here.

Keywords: Topology, skyrmions, topologically equivalent, vorticity, Skyrmion number,
chirality, Berry.

Resumen

En este trabajo, se darán los principios de un marco teórico para entender los

patrones de polarización complejos que emergen en heteroestructuras ferroléctricas

y son claros candidatos a ser los sustitutos de los conocidos skyrmiones magnéticos.

Para ello, primero, estudiaremos los mencionados skyrmiones magnéticos, enten-

deremos su origen y daremos una caracterización topológica de su comportamiento.

Seguidamente, intentaremos trasladar todo este conocimiento al caso ferroeléctri-

co. Finalmente, veremos que la teoría de Berry está íntimamente relacionada con

muchos de los aspectos tratados en este trabajo y explican su origen cuántico.

Este trabajo se realizó en colaboración con Mauro Gonçalves, estudiante de doc-

torado del Instituto de Ciencia y Tecnología de Luxemburgo, que realizó las simula-

ciones de segundos principios de los patrones ferroelectricos estudiados aquí.

Palabras clave: Topología, skyrmiones, equivalencia topológica, vorticidad, número
skyrmionico, quiralidad, Berry.
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1 Introduction

In this work we shall combine two di�erent scienti�c �elds that are apparently very far
away. Condensed Matter Physics and Topology. Since 2016 when Thouless, Duncan,
Haldane and Kosterlitz were awarded with the Nobel Prize of physics, the mixing of these
two �elds has generated huge interest and it has not reach its zenith.

Topology is the branch of Mathematics that is concerned with the properties that
are preserved under continuous mappings. Intuitively these continuous mappings can
be thought as deformations (such us expansions, contractions, rotations and so on) but
cannot include any kind of cuts or merges.

Two key concepts will be recurrent in this work: �Topologically equivalent� and �Topo-
logically protected�. We shall try here to give some intuitive ideas so that the reader can
get more used to this type of terms.
Let's start with the example schematized in Fig. 1. There we can see a cup and a torus.
If you ask someone in the street whether the two objects are the same, the answer will
be obviously no. However, for a topologist both objects are homeomorphic, or in other
words, they are topologically equivalent. We can continuously deform the cup into the
torus and vice versa as it is shown in Fig. 1. In general, we shall say that two mathemati-
cal objects such as, surfaces, volumes, vector �elds, mappings, and so on are topologically
equivalent if there exists continuous mappings that transforms one into the other. Using
rigorous mathematical notation, we shall say that two surfaces are homeomorphic, or that
the two maps are homotopically equivalent... But all these terms are particularizations
of the general idea of two objects that are topologically equivalent.

Figure 1: Topologically, a cup and a doughnut are equivalent: the cup can be continuously
deformed into a torus. Reprinted with permission from [1].

1



The second term �Topologically protected� means that our system is robust under small
perturbations such us, thermal �uctuations or applied electric �elds. A naïve example
that can help us to understand this is the following:
Imagine you want to send an important number to your friend and you have some strips
of paper, the easy solution is to write in each strip one digit of the number and send it
in order. However this is not a very safe way because the message can be partially erased
for example by the rain. Nevertheless, one wise solution is the following: you could write
your number in binary and identify the digit �0� with gluing the strip into a cylinder and
the digit �1� as a Möbius strip. Using this second possible solution there is no way that
environmental noise can turn one digit into another unless you completely destroy the
structure.

Topological is just one type of protection. Nevertheless there are others that the reader
might be more used to and can help us to understand the concept. For example in the
Ising model we have a symmetry breaking protected state that is immutable under small
perturbations, we shall introduce it now in order to illustrate what we understand by
protected.
Ising model is a very simple mathematical framework to account with collinear magnetism.
Within this model, a given material is discretized in a grid. At each point of the grid a
vector is de�ned to represent the local magnetic dipole. These dipoles are restricted to
point �up�(↑) or �down�(↓) represented, respectively, by +1 or −1. In order to discuss
what we are interested in is enough to consider short-range interactions, more concretely
�rst neighbours interactions. The Hamiltonian of the system takes the following form

H = −
∑
<i,j>

Jij ~Si · ~Sj,

where Jij is a positive constant. For the sake of simplicity, we shall assume that Jij is
independent of Temperature and is the same for every pair of magnetic dipoles in the
material. The sum extends for < i, j > nearest neighbours.
When the temperature is large enough, in particular larger than a critical value Tc, thermal
�uctuations permit any random distribution of the spins [Fig. 2(a)] giving rise to an
overall magnetization equal to zero, M = 0 [Fig. 2(c)]. However when we decrease the
temperature until T = 0K thermal �uctuations vanish and the system adopts its minimal
energy state where all the spins are aligned parallel. However because of the symmetry of
our Hamiltonian to the change ~S  −~S in principle our system can adopt two di�erent
degenerated states the one with M = 1 and the one with M = −1.[Fig. 2(b)]
As both states are degenerated in energy [Fig. 2(d)], both are equiprobably accessible.
However, if the system is large enough, once the system adopts one of the states, lets say
M = 1, it is statistically impossible to transit to the state M = −1 unless very strong
perturbations are realised to the system, for instance by an external magnetic �eld or an
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increase in the temperature.
In this sense the system M = 1 is protected, and our system has broken one symme-

try of our initial Hamiltonian. It is important to notice that protected does not mean
immutable, if we give the system enough energy to surpass the potential barrier we can
make a transition to the other state.

Figure 2: Ising model of a Ferromagnet. The arrows schematically represent the allowed
value of the local magnetic dipoles in a discretized two-dimensional square lattice. (a)
disordered con�guration due to large thermal �uctuations. (b) Degenerate ground states
at T = 0K. (c) Magnetization M as a function of temperature. (d) Energy as a function
of temperature.

2 Introduction to magnetic Skyrmions

The Ising model discussed up to this point is a classical textbook example to describe
some of the most technologically important magnetic materials. However, the last decade
has seen the explosion of more fancy magnetization patterns known as skyrmions.
Magnetic skyrmions are topologically protected whirling spin textures such as the one
schematically pictured in Fig. 3. These complex magnetic textures can be stabilized in
magnetic materials by an asymmetric exchange interaction, not present in the previous
Ising model, between neighbouring spins that imposes a �xed chirality [2]. They can be
described as a vector �eld with the following properties.

1. All the vectors point along a given direction at the external surface of the skyrmion
(vectors plotted in red in Fig.3, pointing in the positive direction.)
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2. The vectors point in the opposite direction at the centre of the skyrmion (vectors
plotted in blue in Fig.3, pointing in the negative direction.)

3. In the intermediate region the vector �eld rotates in a continuous way.

Figure 3: Schematic representation of a combed hedgehog magnetic skyrmion. Reprinted
with permission from [3].

Their small size, of the order of 90 nm, together with the robustness against external
perturbations, make magnetic skyrmions potential storage bits in a novel generation of
memory and logic devices [4].
Recent studies show promise for the application of the skyrmion to non-volatile magnetic
memory, which has the advantages of low driving current and high memory density over
the magnetic bubble and racetrack memory devices [5].
Their nature cannot be explained with the basic Ising model for ferromagnetic materials
explained above. In order to ascertain the origin of the whirling patterns we have to take
into account two di�erent interactions.
The �rst one is the exchange coupling which is responsible of the ferro- or antiferro-
magnetism. In this work we will refer to it as the symmetric part of our Hamiltonian
because the transformation (~r  −~r i.e. inversion) remains this part of the Hamiltonian
invariant. Its mathematical expression for a pair of spins ~S1 and ~S2 is

Hsym = −J · (~S1 · ~S2).

The second one is the Dzyaloshinskii-Moriya (DM) [6, 7] interaction that arises in systems
with strong spin-orbit coupling. We shall call this interaction the antisymmetric Hamil-
tonian because the transformation (~r  −~r) reverse its sign. Its mathematical expression
for a pair of spins ~S1 and ~S2 is

Hasym = − ~D12 · (~S1 × ~S2).
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Where the vector ~D12 measure the interaction between the two spins and depends on the
material and the distance between them. The vector ~D has some interesting properties
that are fundamental for the understanding of the interaction and are explained below.
Notice that if we perform the so called inversion then ~D12 change its sign as we picture
schematically in Fig 4.

Figure 4: Schematic view of how inversion reverses the sign of the DM interaction vector

Hence, as we anticipated before, even if the product ~S1 × ~S2 remains invariant under
the transformation, our Hamiltonian reverses sign. This implies for instance, that systems
with an inversion symmetry with respect to the centre of the two magnetic spins are not
allowed to present this interaction.
Another interesting property of the vector is its dependence with direction that makes it
anisotropic. For physical reasons Hasym12 = Hasym21 because we are measuring the energy
of the system in two di�erent frames, and therefore, it must be invariant. If we impose
this condition we arrive to the property

Hasym12 = − ~D12 · (~S1 × ~S2) = − ~D21 · (~S2 × ~S1) = + ~D21 · (~S1 × ~S2)⇒
~D21 = − ~D12

The direction of the vector ~Dij can lie either parallel or perpendicular to the line connect-
ing the two spins with the exact direction depending on the symmetry of our system [8].
The Hamiltonian that our system obeys is the balance between both interactions and has
the form

H = Hsym +Hasym = −J · (~S1 · ~S2)− ~D12 · (~S1 × ~S2).

As it is schematized in [Fig. 5(a)] when we only consider the symmetric part, ferro or
antiferro ordering arises because the system with lowest energy is the one where spins are
coupled parallel or antiparallel depending on the sign of J . However, if we only consider
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the DM interaction, [Fig. 5(b)], the energy is minimized for a con�guration where neigh-
bouring spins are orthogonal.
When both interactions take part in the overall Hamiltonian a compromise between both
extreme cases must be achieved. In order to minimize energy, the system cants neigh-
bour spins and provoke whirling textures such as the skyrmions or the ones depicted in
[Fig. 5(c)].
Naturally, depending on the orientation that the vector ~Dij presents we shall end up hav-
ing di�erent results that are physically distinguishable.
When the vector ~Dij lies parallel to the line connecting both spins the pattern shall look
like the helix schematically represented in [Fig. 5(c.1)]. This helical state is chiral and so
we can attach to it a handedness. The helix in Fig. 5(c.1) is right-handed. Depending on
the sign of ~Dij the handedness shall change. However, when the vector ~Dij lies orthog-
onal to the line connecting both spins the resulting pattern exhibits no chirality as it is
pictured in [Fig. 5(c.2)].Those states are hence physically distinguishable.

Figure 5: (a) Contribution of the symmetric Hamiltonian that tends to align parallel or
antiparallel neighbour spins depending on the sign of the constant J . (b) DM interaction
that tends to cant neighbour spins orthogonally. Depending on the direction of the vector
~Dij chains of spins rotate di�erently. (c) Interplay between both interactions that tends
to cant neighbour spins. (c.1) chiral helical state that arises when the DM vector lies
parallel to the line connecting the two spin sites. (c.2) non chiral phase that arises when
the DM vector lies orthogonal to the line connecting the two spin sites.[9]

For a deeper analysis of the DM interaction e�ect in our system of spins check Appendix
II.
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2.1 Mathematical description of a magnetic skyrmion

Magnetic skyrmions are typically formed at the interface in B20-type silicides and ger-
manides where the interplay between strong spin-orbit interaction and ferromagnetism
is present[10]. Therefore, the vector �eld of local magnetic moments is de�ned in a
2D−plane. It is important to note, that despite the fact that the position of a local spin
is de�ned in 2D, the spin itself can point in any direction of the three dimensional space,
as clearly depicted in Fig 3.
Mathematically, the spin textures can be described using a vector �eld of the form[11]

~n(~r) = (cos Φ(φ) sin Θ(r), sin Φ(φ) sin Θ(r), cos Θ(r)), (1)

where ~n(~r) is a normalised 3D vector de�ned in a 2D space and Φ(φ) and Θ(r) are func-
tions of the azimuthal angle φ and distance r (polar coordinates that describe the position
~r where the local spin is located).Particular functional forms will depend on the speci�c
pattern to be described, some of them will be discussed later on.
The vector ~n can be thought to be our order parameter. In magnetic skyrmions ~n repre-
sents the local magnetic moment. We shall replace latter in this work the magnetic dipole
by the electric polarization in complex ferroelectric textures. The Berry theory will be
underneath its behaviour as we shall explain in Sec. 4.

2.2 Topological characterization

Now that we have parametrized our magnetic skyrmions as Eq. (1) states we are able to
study its topological properties as a vector �eld de�ned in a surface (xy−plane).
As a �rst step we shall try to characterize this type of patterns simplifying the problem
and projecting the order parameter in the xy-plane. In other words, we shall �rst study
the tangent component of our vector �elds. A few patterns of the di�erent possible tan-
gent vector �elds are presented in Fig. 6
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Figure 6: Di�erent possible arrangements for magnetic textures in terms of m and φ.
Arrows represent the direction of the order parameter at given positions. These directions
are also indicated by the colour map according to the caption shown by the circle at the
right[11].

Where m stands for vorticity and measure how much our pattern rotate and γ indicates
the initial angle that our vector �eld makes with the axis x. Proper de�nitions will be
given in this section later on.
Some of the vector �elds of Fig. 6 are topologically equivalent and some are not, in ad-
vance, we shall show that vector �elds with the same number m will be equivalent. In
order to have a de�nition for the number m and study this topological equivalence we
will �rst give some basic de�nitions.
We say that a tangent vector �eld ~v de�ned on a surface S presents a singularity if for some
point of its domain x ∈ S, it holds that ~v(x) = 0. The reason why we call them singulari-
ties can be understood if we think the vector �eld as �velocity curves�. Because of Cauchy
theorem of uniqueness and existence of solution in di�erential equations given a direction
and a point we only have one integral curve. However, when the vector �eld vanishes
we do not have any information about the integral curves. Through that point it may
pass zero, one or in�nite (vortex, dipole, source) integral curves. Mathematically these
points are singular in the sense that they are rare, we need to study its neighbourhood
in order to understand them. Moreover, singularities also usually lead to discontinuities
of the vector �eld as it is shown in Fig. 7. As we approach as much as we want to the
origin marked with a cross, the vector �eld cant go continuously from the value it takes
on a point to the value it takes on its antipodal pair and so it presents a discontinuity on
(0, 0).
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Figure 7: Vector �eld with a singularity in the origin. This points is also a discontinuity
of our vector �eld.

Physically those points are interesting because singularities will correspond to defects of
our material. In this work we shall focus on point-like defects. However, higher dimen-
sional defects are also recurrent in condensed matter and can be studied with techniques
similar to the ones developed in this work.
We shall de�ne index of the singularity I(v, x) or equivalently, vorticity of the vector �eld
m at the point x as the number of times that the vector �eld wraps the unit sphere S1 of
radius ε centred in x. The degree of the vector �eld will be the sum of the indexes of all
its singularities deg(v) =

∑
x∈Sing I(v, x) and can be thought to be the global vorticity of

the vector �eld. We can see a sketch of how to compute this index in Fig. (8).

Figure 8: As we move counter-clockwise the unit sphere our vector �eld moves also
counter-clockwise. This sense of rotation will be taken as positive.
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Counting with the criteria of signs described in the Fig. 8, the index will be the number
of turns that the vector �eld does in just one turn to the unit sphere.
It can be mathematically proved that the index of the vector �eld is independent of the
choice of the radius of the sphere along the one we do the calculus as long as it only
contains one isolated singularity. Doing that exercise to all the vector �elds of Fig. (6) we
can �ll the following table.

Vector �eld vorticity

m = 1, γ = 0 1
m = 1, γ = ±π

2
1

m = 1, γ = π 1
m = −1, γ = 0 -1
m = −1, γ = ±π

2
-1

m = −1, γ = π -1

Table 1: Vorticity for some the �elds described in Fig. (6). As it was expected from the
de�nition m �ts vorticity values.

It is important to warn the reader that despite the fact that in this examples indexes
are only taking the values ±1 it also can be 0 for the constant �eld where we do not have
singularities for example, or arbitrarily high for other type of patterns. We shall discuss
this in a few moments, but �rst lets see a result that will tell us when two vector �elds
are homotopically equivalent1.
We have the following result proved by Hopf: �Two vector �elds are topologically equiv-
alent if and only if they have the same degree�. This means that we can continuously go
from any of the vector �elds to another if they share the same row of Fig. 6. Intuitively
we only have to rotate all the vectors a constant factor γ1−γ2. In this way γ is de�ned as
the angle that the vector �eld makes with the horizontal axis. In addition, the theorem
also allows us to say that it does not exist any continuous function that will take one
vector �eld of the �rst row into any of the second row.
We have that the index satis�es the following property: If a contour include two singu-
larities P and Q the index of the vector �eld along the contour will be the sum of the
indexes of two independent contours one including each of the singularities because, as
Fig. 9 shows we can continuously deform one contour into the other.

1This means that both can be related by continuous functions
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Figure 9: Two point singularities P and Q and two surrounding contours. The index on
the inner contour is the sum of the indexes determined by P and Q separately. Since the
inner contour can be continuously deformed into the outer one, this is also the index for
the outer contour. [12]

In particular, a vector �eld with two singularities x and y such that I(v, x) = +1 and
I(v, y) = −1 will be topologically equivalent to the constant �eld even if one has 2 defects
and the other has none. Moreover as we anticipated before, merging singularities of index
1 we can create �elds with arbitrarily high degree. For example in Fig. 10 we can see a
vector �eld with degree 2.

Figure 10: Singularity of index 2.[13]

However, when we are working in a crystal we are imposing periodic boundary conditions
and so we are identifying edges of the unit cell, this means that we are working in the
topology of the torus (T2) as it is depicted in Fig. 11.
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Figure 11: Scheme of how periodic boundary conditions induce the topology of the torus
in our unit cell.[14]

As a consequence of Poincaré-Hopf theorem, all tangent vector �elds de�ned in the surface
of a Torus must have degree zero which coincides with its Euler characteristic2. Lets study
what happen exactly when we impose periodic boundary conditions when for example we
have a single singularity of m = 1, γ = π

2
.

In Fig. 12 we show an schematic view of how new singularities appear, in the corners of
the unit cell they appear singularities of index 1 apart from the one in the centre of the
unit cell that was the original. In the middle of the edges we have singularities of index
−1 adding all of them up we get:

1 +
1

4
· (1 + 1 + 1 + 1)− 1

2
(1 + 1 + 1 + 1) = 0

Where we divide by 1
4
or 1

2
depending on the number of unit cells that share the same

singularity.

2We remember that the Euler characteristic of a triangulable surface is de�ned as χ(S) = v − e + f
where v, e, f stands for vertex, edges and faces of any triangulation.
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Figure 12: Scheme of how periodic boundary conditions induce the creation of new sin-
gularities. Blue points stand for singularities of index +1, whereas yellow ones stands for
singularities of index −1.

This is not a proof for the general case but as Poincaré-Hopf states, our vector �eld has
degree cero. This means that analysing the simpli�ed problem without the z component
of our order parameter wont let us to distinguish between the two following patterns
shown in Fig. 13. Nevertheless, we would be interested in di�erentiate both patterns
since pattern in (a) present a defect where as the pattern in (b) presents no defects.
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Figure 13: Two di�erent patterns that are indistinguishable after periodic boundary con-
ditions in terms of vorticity. In (a) Skyrmionic pattern that presents vorticitym = 0 when
periodic boundary conditions are imposed. In (b) monodomain pattern that presents also
vorticity m = 0. We will need higher dimensional topological invariants in order to
distinguish them.

In order to solve this problem we shall need a higher dimensional topological invariant
which is the Pontryagin density or Skyrmion number de�ned as

Nsk =
1

4π

∫ ∫
d2r · ~n ·

(
∂~n

∂x
× ∂~n

∂y

)
. (2)

This is the higher dimension equivalent and counts the number of times that the vector
�eld wraps the unit sphere(S2).
If we want to topologically distinguish patterns with defects we need the information of
the third component of our order parameter. If we compute now the Skyrmion number
of the two �elds above we will get that Nsk = 1 for the �rst �eld and that Nsk = 0 for
the second one and, as one would expect we will be able to distinguish between the two
mappings.
Now that we know that the Skyrmion number is a good way to characterize di�erent
patterns we will learn how to compute it in a easy way. After all the calculus developed
in Appendix I we have proved that the Skyrmion number can be computed as

Nsk =
1

4π
[− cos Θ(r)]∞0 [Φ(φ)]2π0 (3)

Lets study �rst the meaning of the second and �di�cult� part of the integral [Φ(φ)]2π0 .
This, according to the expression of our order parameter Eq. (1) will be proportional to
the number of times that the in-plane component of our vector �eld wraps S1 lets see
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what this constant should be.
If we take the universal covering of the unit sphere

Ψ : R 7−→ S1 ⊂ C
t 7−→ ei2πt

we have that the path α(t) = t, with t ∈ [0, 1] lifts to the path that gives only one turn
to the unit sphere, as our parameter φ can take values in the interval [0, 2π] we have the
following relation,

m =
[Φ(φ)]2π0

2π
. (4)

We can now completely understand the functional form of Φ(φ) it will be described as
Φ(φ) = mφ+ γ where γ will be the initial angle that the spins make with respect to the
horizontal. In particular, it will also relates two �elds v1, v2 of the same vorticity with a
rotation of γ1 − γ2 radians.
The �rst part of the integral [− cos Θ(r)]∞0 is more easy and just count how the third
component of our order parameter has change. Hence we have an easy recipe to compute
the Skyrmion number Nsk = 1

2
[− cos Θ(r)]∞0 · m if our order parameter points down at

r →∞ and up at r = 0 then we have that Nsk = m and if at r →∞ and r = 0 it points
in the same direction then Nsk = 0 no matter what value takes the vorticity. Patterns
where the order parameter points up in r = 0 and are tangent to the xy−plane at r =∞
are called merons and have semi-integers topological numbers.
As a �nal note, and in parallelism with what we did in the two-dimensional case we shall
make a table labelling di�erent patterns shown in Fig. 14 in terms of its Skyrmion number,
and will try to give a intuitive idea to the phrase �wraps the sphere S2�.

Pattern NSk

Hedgehog antiskyrmion −1
Hedgehog Skyrmion +1
Bloch-antiskyrmion −1
Bloch-Skyrmion +1

Table 2: Skyrmion number for di�erent patterns.
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Figure 14: Di�erent types of patterns from top to bottom, left to right, Hedgehog anti-
skyrmion, Hedgehog skyrmion, Bloch-antiskyrmion, Bloch-Skyrmion.[15].

In Fig. (15) we show the intuitive idea of wrapping the sphere seeing the pattern as the
stereographic projection of a vector �eld de�ned on the sphere. There exists therefore a
bijection between the pattern de�ned in the unit sphere and the �extended� pattern in
the xy−plane, we shall say that the so-called pattern wraps the unit sphere if its bijected
representative do so.

Figure 15: Di�erent patterns of Nsk = −1 that wraps the sphere once.Reprinted with
permission from [16].

Is important to realize that what we are studying is the topology of our order parameter
space, that is to say, the space where our order parameter moves on. In the case were we
neglected the third component of ~n(~r) this space was the sphere S1 whose �rst homotopy
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group is π1(S1) ∼= Z.
This identi�cation of our order parameter space is obvious because we have unitary vec-
tors that can point anywhere in the plane and so, we bijectively map any unitary vector
with a point in S1, considering for example the angle our vector makes with the horizontal
axis and associate it with the point eiθ in the sphere as it is schematized in Fig. 16.

Figure 16: (a)Planar unitary vector in a given direction.(b)The representation of that
direction in the order parameter space. [12]

When we start considering the third component our order parameter space, it now be-
comes a sphere S2 whose �rst homotopy group is trivial and it holds π2(S2) ∼= Z. We can
map any pattern described by our vector �eld into a vector �eld de�ned on our order pa-
rameter space as it is shown in the example of Fig. 15. Hence, as it holds that πn(Sn) ∼= Z
it is not surprising that the dimensionality of our topological invariant increase with the
dimensionality of the order parameter space if we are working with sphere-type spaces.
In all this section we have learned how to characterize di�erent patterns from a topological
point of view, in particular we have seen that all these numbers are topological invariants
and so they are preserved under any continuous deformation, so they are robust under
small changes in Temperature for example.
As a �nal note to this section, we will study a very interesting and potentially applicable
property of Skyrmions, they can present Chirality.
Chirality is a type of asymmetry that makes an object distinguishable from its mirror
image. Mathematically, we say that a object is chiral if it can not be mapped to its
mirror image by rotations and translations.
It can be proved that chiral objects have a non zero Helicity integral: H =

∫ ∫
S

~n(~∇× ~n)
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and that the sign of the integral is opposite for its enantiomer. As it is proved in Ap-
pendix I, this integral can only be non zero in skyrmionic patterns such as the ones we
are studying with m = 1 and γ 6= kπ with k integer. As a consequence of this, we will
only expect chirality in m = 1, γ 6= kπ skyrmions.
In Fig. 17 we show two chiral skyrmion pairs. Both patterns share the same NSk but to
the �rst one we can attach a left hand whereas the second one is right handed.

Figure 17: Chiral pair of Skyrmions.[17].

An easy and naïve way to see the chiral state of an object without computing the integral
is to whirl the �ngers of your hand in the direction of the in-plane vectors. This will
determine the direction of the third component as the direction of your thumb. The hand
that �t the pattern is the handedness of the chiral state.
Again, in order to present chirality is essential to take into account the third component
of our order parameter, if we avoid this component we can not attach any handedness to
our objects. In Fig. 18 we have schematized both vector �elds that we are studying. If we
neglect the z component both vector �elds are related by the rotation of π degrees around
the z-axis. Nevertheless, when we include the third component of our order parameter
this does no longer hold and so chirality appears.

18



Figure 18: Schematic vision of the vector �elds of Fig. 17 in a neighbourhood of the
singularity.

What is interesting to note here is that both chiral states presents the same Skyrmion
number (NSk = −1) and as a consequence, both states are related by a continuous de-
formation, we do not have any topological barrier to go from one into the other and so
we should be able to control and change the chirality of our patterns with the action of
external magnetic �elds. This fact open the door for the appliance of this structures in
memory devices or other optical applications.
However, we can also have chirality in Skyrmions with Nsk = +1, in fact we can have two
right-handed skyrmions with equal vorticity but opposite skyrmion number, such as the
ones that are depicted in Fig. 19. In this case, if we try to transform one into the other by
changing the out of plane component of our order parameter we will pass through a critical
point as it was expected -I remind that having di�erent Nsk implies that the transforma-
tion cannot be continuous-. Nevertheless, if we perform this discontinuous transformation
we will realize that when the skyrmion goes from Nsk = +1 Nsk = −1 it also changes
its chiral state form RH  LH, hence, right-handed skyrmions are somehow related (by
a discontinuous deformation) with left-handed anti-skyrmions.
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Figure 19: Chiral anti-skyrmion skyrmion in the same chiral state.[17]

In conclusion what we obtain is that Skyrmion chirality is not topological because we
can have both chiral states without changing its topological characterization which is
the skyrmion number. It is proved that chiral states are due to Dzyaloshinskii-moriya
interaction whose Hamiltonian is described by Tokura as:

HDM = DM · ~n · (~∇× ~n).

As in the Apendix I we have seen that this Hamiltonian presents the form Eq. (16),
depending on the sign of the constant DM we will have that the lowest energy will be
achieved for m = 1 and γ = ±π

2
that is to say, either the right or left handed chiral state.

See Appendix II for a deeper analysis of the DM interaction.
In order to go from one state to another we have to surpass DM-barrier.

3 Ferroelectric complex heterostructures.

In Sec. 2 we have mathematically characterized complex topological vector �eld patterns
in terms of an order parameter that satis�es certain restrictions. Theory was illustrated
with examples borrowed from the study of magnetic skyrmions. Here we shall extend it
to the case of ferroelectric complex patterns of the electric dipole.
Many natural structures exhibit chirality and present topological phases that are essential
to their functional interactions, yet the chiral electronic structures found in condensed
matter systems have been primarily limited to magnetic materials. The electric dipole
equivalent of magnetic skyrmions has remained conspicuously elusive. However, new
theoretical predictions and experimental observations of the continuous rotation of electric
polarization in titanate superlattices suggest that such materials are ideal candidates
to present equivalent properties [18]. Some of the recent theoretical and experimental
progress are exposed in Fig. 20
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Figure 20: Topologically non trivial textures in ferroelectric materials. In (a) �rst the-
oretical prediction using calculation. It is composed of a BaTiO3 nanowire embedded
in a SrTiO3 matrix and it present vortex-like polarization in plane with an out of plane
normal component which turn it into an optical active material. In (b) rotational textures
found experimentally in PbTiO3/SrTiO3 superlattices observed with transmission elec-
tron microscopy. The structure is characterized by the spontaneous formation of laterally
alternating clockwise and counterclockwise vortices of electric polarization.[19, 20]

3.1 Introduction: creation of complex textures in ferroelectric

materials

In this section we shall try to introduce the origin of complex topologies and vortex-like
structures that arise in thin �lms or at the interfaces of ferroelectric materials.
It is well known from basic electrostatics that discontinuities of the polarization at a
surface originates an accumulation of bound charges as the following relation states

~∇~P = −ρb.

If we dispose of a bulk ferroelectric material (PbTiO3 for example), the phase of minimal
energy will be the polarized mono-domain and this phase will be stable. However when we
reduce the system size to thin-�lms or we work with superlattices formed by the merging
of ferro- and para- electric materials (FE,PE), the e�ect of this cumulative charges is no
more negligible.
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Imagine that we have a thin �lm of a ferroelectric material in the polarized phase or that
we are studying the interfaces between a FE and a PE material. The discontinuity of
the polarization in the surface will create, as we have just reminded, bounded charges of
opposite signs. This charges will create an electric �eld, which is usually called depolarizing
�eld that will be generally strong enough to suppress the spontaneous polarization of the
material. And making as a consequence this phase non stable.
The system, can present di�erent forms to decrease the e�ect of the depolarizing charges
and thus screening the depolarizing �elds that naturally emerge. They are schematized
in Fig. 22 and will be studied below.
The most obvious solution if our material is not isolated is to collect the charges formed
in the interfaces. This can be done either with a pair of electrodes or having the material
surrounded by an adsorbent atmosphere. However, if we consider our system isolated,
depending on its concrete characteristics di�erent solutions can appear. We shall discuss
them below, doing continuous reference to Fig. 22.

1. The �rst possible solution is that the polarization rotates pointing through a direc-
tion where the material can be thought to be in�nite. Which is the same, tangent
to the surface where cumulative charges were created. The system under certain
mechanical conditions can present this type of solution and remains stable because
depolarizing charges are no longer created in the material.

2. Another way to suppress the appearance of the depolarizing charges is to avoid the
discontinuity of the polarization. In tri-layer systems formed by merging PE-FE-PE
materials such as (SrTiO3-PbTiO3-SrTiO3) where the number of unit cells of the
FE material is bigger than those of the PE material, a polarization in the paraelec-
tric phase can emerge eliminating the discontinuity that created the depolarizing
charges. If the number of unit cells of the FE material is big enough the system is
stable polarizing the PE phase.

3. The most appealing solution for this work to avoid the depolarizing charges is the
formation of domains in the FE material. This will create vortex-like and topologi-
cally non trivial textures that we shall try to characterize later on.
In this case, the FE material brakes into di�erent domains where the polarization
component normal to the surface points in opposite directions. This provokes that
the average of the bound charge vanishes and therefore suppress the depolarizing
�eld. The number of domains and hence its size will be determined by the interplay
between the energy cost of the domain wall formation and the electrostatic energy
of each domain.
Di�erent domain walls can appear as they are pictured in Fig. 21.
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Figure 21: Di�erent domain walls that can arise in FE materials. In (a) Kittel domains
and in (b) closure domains.[21]

Closure domains were thought unlikely to appear in ferroelectrics due to the elastic
penalty in terms of energy. However, they have been observed and predicted and
such domains are the ones that induce vortex patterns.

4. The last solution that the material can present is the suppression of the spontaneous
polarization. Cumulative charges will obviously not appear and thus the depolariz-
ing �eld vanishes. This occur when all the previous methods fail and can happen
for example in tri-layers of PE-FE-PE materials where the number of unit cells of
the PE material is bigger than the ones of FE material.
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Figure 22: In the middle the depolarizing �eld that arise from the unscreened bound
charges on the surface of the FE material. The left part of the diagram illustrates screening
by free charges from metallic electrodes, ions from the atmosphere or mobile charges from
within the semiconducting ferroelectric itself. In the right part of the diagram, di�erent
ways of preserving the polar state despite the absence of su�cient free charges. One
possibility is to form polarization domains that lead to overall charge neutrality on the
surfaces. Under suitable mechanical boundary conditions another solution is rotate the
polarization plane. Reprinted with permission from [21, 22].

3.2 Ferroelectric bubbles.

Now we shall be interested in �nding a system which can be thought as the electric
counterpart of magnetic skyrmions.
A perfect candidate is the superlattice combining a ferroelectric perovskite oxide (PbTiO3)
with a dielectric (SrTiO3). Progress in layer by layer atomic deposition techniques (pulsed
laser deposition or molecular beam epitaxy) have allowed the growth of these superlattices
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with a control at the atomic level. Hand by hand with these experimental progress, this
system is well suited for �rst-principles [23, 24] and second-principles simulations[18, 25].

The formation of vortex were predicted by second principles calculations and also
experimentally detected as it is shown in Fig. 23 leading to chiral objects with an out of
plane polarization component that seemed to be easily switchable. All states pictured are
degenerated in energy.

Figure 23: Second principles calculation of electric polarization textures for
(SrTiO3/PbTiO3). Three di�erent local minima, degenerate in energy. Each texture
contains a pair of counterrotated cores yet has di�erent chiral properties. Black arrows
indicate the local dipoles, projected onto the (010) plane. A large axial component of the
polarization along ±[010], represented by the green and magenta domains, is observed.
Reprinted with permission from [18]

Although the system presents chirality, skyrmionic phases were neither predicted nor
experimentally observed within the previous work [18]. We highlight here that our positive
components along the z direction are not completely surrounded by negative regions as
requested by condition one in Sec. 2, but they form �tubes� with �Z�-like or �S�-like
patterns as shown in Fig. 23 A and C respectively.
In order to obtain a system where skyrmionic phases are potentially observable, at least,
we shall be requesting that the three conditions stated in Sec. 2 are ful�lled. In particular,
this can be accomplished if within a domain of positive polarization for example we
induce a negative polarization region. This can be experimentally accessible with AFM
microscopy and computationally tested as shown in Fig. 24. In this framework, condition
one in Sec. 2 is imposed and therefore it is trivially satis�ed, moreover it can be shown
that after the relaxation of the matrix the system remains in this metastable state.
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Figure 24: PbTiO3/SrTiO3 superlattices with previously induced polarization by external
�eld .

This system now presents a core were the polarization points upwards and it is surrounded
by a polarization that points downwards with a continuous rotating polarization in plane.
Which implies that all stated conditions in Sec. 2 are satis�ed. The system seems to
be the ideal candidate to be the electric analogue of magnetic skyrmion, in following
sections we shall try to topologically characterize and deeply study this patterns in order to
conclude whether this system is suitable enough to be the electric counterpart of magnetic
skyrmions.

3.3 Topological characterization of Ferroelectric bubbles.

In Sec. 2, we have introduced the basic concepts required to perform the topological char-
acterization of magnetic skyrmions. In the remaining of this section we will translate
them to the present context.

3.3.1 Order parameter

The order parameter is easily identi�ed with the local electric polarization, de�ned for
every single unit cell in space. Unlike it happens with magnetic spins which are nor-
malized, the local electric polarization is not. From our simulations, the local electric
polarization takes a non-zero value throughout the PbTiO3 column and it is obviously
bounded from above. Moreover it is a smooth function in the space. Despite the fact
that all the mathematical formalism described in Sec. 2.2 was developed for a vector �eld
that is normalised at every single point in space, it can be trivially generalized to our
ferroelectric nanostructure.
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Indeed the transformation from a non-normalized to a normalized vector �eld of our char-
acteristics is a continuous transformation that does not a�ect its topological properties.
More rigorously, the following normalization function is well de�ned (the norm of the local
electric polarization does not vanish at any point in space and so it admit inverse) and
smooth.

~p
||~p|| : R3 7−→ R3

(x, y, z) 7−→ ~p(x,y,z)
||~p(x,y,z)||

Finally, to completely justify the transformation, we have to show that the order param-
eter space after the normalisation transformation is a deformation retract of the order
parameter space before the transformation. Hence it has the same topological properties.
In order to do that, �rst we shall see what these spaces look like.
The order parameter space before the transformation can be identi�ed with the solid
sphere D3 =

{
p2
x + p2

y + p2
z ≤ pmax

}
r (0, 0, 0) where the sign r means that we do not

consider the point (0, 0, 0) because our polarization never vanishes3.
The order parameter after the transformation is the sphere S2 =

{
p2
x + p2

y + p2
z = 1

}
.

The deformation retract is given by the map

r : D3 r (0, 0, 0) 7−→ S2

~x 7−→ ~x
||~x||

This is a deformation retract and as a consequence both spaces share the same homotopy
type. An scheme of the so-called deformation is pictured in Fig. 25

Figure 25: Deformation retract from a spherical shell into a sphere.

3With out loss of generality we can suppose here that pmax > 1 because, as we are only interested in

the topology, spheres of di�erent radius will for us be equivalent
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3.3.2 Dimensionality

Once we have justi�ed that normalization is topologically permitted we have an order
parameter ~̃p = ~p

||~p|| that satis�es all the restrictions we gave in Sec. 2. However there
is still another di�erence between the magnetic skyrmions and the ferroelectric bubbles
which is the dimensionality of the system. Magnetic skyrmions are two dimensional
objects while our FE complex pattern is de�ned in three dimensions.
However we can study our system layer by layer and compute for each layer the Skyrmion
number following the recipe given in Eq.2. We will show that this number is well de�ned
independently from the layer where it is computed and so we can extend the de�nition of
Skyrmion number to such structures.
If we compute the Skyrmion number for each layer taking Eq. (3) we can solve the radial
part that is the same for each layer and we arrive to

NSk(z) =
1

4π
· 2 · Φ(φ)|2π0 = m(z)

The key point is that for every single layer the boundary conditions are the same for
the radial part: a downward pointing polarization in the matrix and an upward pointing
polarization inside the bubble and so the radial part is equivalent.
So in this case in each layer the Skyrmion number coincides with the vorticity m. We
only have to show that the vorticity is constant for each layer. To do so, lets consider the
following function

Ψ : R 7−→ Z
z 7−→ mz

This function maps each height z to the vorticity of the vector �eld de�ned in the
xy−plane at height z,(mz). As our polarization pattern is smooth everywhere in the
three-dimensional space, it is continuous concretely in the z direction and so Ψ is a con-
tinuous function de�ned from a connected space into a topological discrete space such
as Z and thus Ψ must be the constant function. Intuitively, and with the knowledge of
Sec. 2.2 the result is not surprising, because m is a topological invariant and continuous
functions shouldn't alter its value.
As a consequence, the skyrmion number is invariant and well de�ned for each layer and
we can compute it in each case. In Fig. 26 we can see many traversal cuts through all
the PTO column. There,we can observe that the Skyrmion number and the vorticity as
it was expected are invariant and take the value Nsk = m = +1 but for each plane we
have that γ varies from 0 to π passing through π

2
. We can observe that in both interfaces,

the Skyrmions dont present any chirality whereas in the intermediate states it is always
RH. As we conclude at the end of Sec. 2.2, chirality is not topological and so it is allow
to vary even if the change is smooth.

28



Figure 26: (a) Sketch of the system we are considering and how polarization rotates
around the matrix. (b) Di�erent traversal cuts of the PTO matrix where we can observe
di�erent polarization patterns. (c), (d) and (e) Traversal cuts of the top middle and
bottom layers respectively. (f), (g) and (h) Pontryagin density computed for the top, mid
and bottom layers.

3.3.3 Chirality

As we discussed in the case of magnetic skyrmions, although chirality is not topological
we shall now want to see if our ferroelectric bubbles present or not this property and
eventually if it is easily switchable. As we have mention our ferroelectric bubbles present
a constant chirality through all layers except in the interfaces where they are not chiral.
Obviously, if we change the z component of the polarization through all the matrix of
PbTiO3, that is changing pointing up polarizations with pointing down and viceversa will
change (the Skyrmion number) and the chirality. However, depending on the matrix size
this change might be not possible, we wish to induce a change in the chirality without
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changing the z component of our vector �eld, that is we would like to change the in plane
component.
Depending on the shear stress the substrate induce in the PbTiO3 matrix in-plane polar-
ization changes, as a consequence of this, depending on the shear stress we could end up
having either right-handed or left-handed columns.
Although it is not a common idea to apply mechanical �elds to switch ferroelectric do-
mains because stress σ or strain ε is coupled with electric polarization in even symmetry
−σ~p2 or −ε~p2. It is shown [26] that Gibbs energy presents a dependence on shear stress
of the form

G ∝ −σijpkpl.

And thus depending on the shear, if one component of the polarization si �xed by lets
say an electric �eld the other component must �ip in order to preserve minimum energy
as it is shown in Fig. 27

Figure 27: In (a) schematic of a polarization vector in a Cartesian coordinate system. In
((b) and (c)) schematic of two possible switching behaviours of a polarization vector by
shear stress.[26]

Now that we know that our objects can present chirality and that it can be determined
by the shear stress that our substrate induce on the material, the question should be
whether we can control this behaviour and switch chirality to our wish. However this line
of investigation will be further explored in future works and not in the present paper.
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4 Berry Theory

In this Section we shall develop the Berry theory which is in the base of many novel
aspects of the modern condensed matter physics such as quantum Hall e�ect, modern
theory of polarization, magnetic skyrmions and so on.
All the theory is based on the study of the geometrical phase that a system acquires
when it performs an adiabatic transformation. In order to introduce this idea we will
mention the classical analogous that �rst motivated Michael Berry to make this theory:
the Foucault's pendulum.[27]

4.1 Classical analogous

In this introduction we shall follow some of the ideas treated in [28]. Let us suppose
that we have a Foucault pendulum placed on the North pole of a sphere, and that we
move it adiabatically (i.e. very slowly) through a geodesic until we reach the equator.
Afterwards we move through the equator a certain distance and go back to the North
pole by a geodesic(as Fig. 28 schematically shows with the parallel transport of vector in
the sphere through a geodesic triangle).
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Figure 28: At a given point P , we de�ne a vector ~v that is going to be parallel transported
through the sphere. We de�ne the geodesic between P and another point in the sphere,
Q. This geodesic is the great circle that passes along these two points. When we move
along the geodesic, the vector ~v changes its orientation in such a way that the angle with
respect to the geodesic (ϕ) remains constant. At Q, we follow a second geodesic that
connects Q and R and proceed in the same way. Once at R, we close the circuit coming
back to P following a third geodesic. If we compare the initial vector (plotted in blue) and
the one that arrives after the excursion (plotted in red), they do have the same module,
both are contained in a plane tangent to the sphere at P but they form an angle. In other
words, its phase has change if we de�ne the vector in polar coordinates.

Geodesics in the sphere are great circles, that divide the sphere in exactly two halves.
Moving along a great circle in the sphere is like moving in a straight line in a �at space
and hence the plane of oscillation of the pendulum should not rotate. Intuitively, the two
halves of the sphere have equal mass and so there is nothing to break symmetry.
Studying this problem is the same as studying the parallel transport of a vector through a
surface where we impose two conditions: (i) First, the vector moves such that it remains
tangent to the surface; and (ii) second that keeps a constant angle with the path that is
making.
If the vector is being parallel transported along a �at surface, then the vector will not
accumulate any phase and will return to the initial position unchanged. However when the
surface presents some curvature, the vector will develop a phase after travelling around a
closed loop as it is pictured in Fig. 28 and Fig. 29.
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Figure 29: Parallel transport of a vector in di�erent surfaces. (a) Flat surface where the
vector accumulates zero change. (b) Curved surface where the change in the vector after
a closed loop is patent. k stands for the Gauss curvature of the surface. Adapted with
permission from [28]

In fact the change of the vector will be proportional to the integral of the curvature in
the surface enclosed by the path, as Gauss-Bonnet formula suggests. As it will be shown
in Sec. 4.2 this result will help us later to de�ne a local curvature on our Hilbert space.
If a pendulum is adiabatically transported trough a geodesic triangle such as in Fig. 28,
the changes in the oscillation plane are localized at the vertices of the geodesic triangle
(points P , Q and R in Fig. 28). Then the total shift α, will be the sum of the angles
α = θ1 + θ2 + θ3 − π and by the Gauss-Bonnet formula this equals to α =

∫
S

kdS, where

dS is a di�erential surface element and S is the surface enclosed by the geodesic circuit.
However, when the pendulum is on the non-frozen Earth (now we shall consider the usual
rotation of the Earth, not only a hypothetical static sphere) at a certain latitude θ0 the
path described as a consequence of the rotation is a circle at a given latitude (a parallel)
that it is not a geodesic (unless it is placed on the Equator) but it can be approximated
by in�nitely many geodesic paths as Fig. 30 suggests.
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Figure 30: Parallel at a given latitude θ0 approximated by in�nitely many geodesics (great
circles) plotted in dashed lines. Adapted with permission from [28].

And thus after a complete turn of the Earth it will be in the initial position. However it
shall present a shift with respect to the initial plane of oscillation equals to the solid angle
subtended at the centre of the Earth by the cyclic path which turns out to be the classical
formula that can be derived with classical mechanics and the Coriolis force α = 2π sin θ0.

4.2 Quantum mechanics viewpoint.

Let us suppose that we have a hamiltonian that depends adiabatically on a certain pa-
rameter λ. This parameter might be atomic displacements in the case for example of
modern theory of polarization, or might be the momentum ~k in the quantum hall e�ect,
or the spin positions in the magnetic Skyrmions...
Moreover we are able to diagonalize our hamiltonian for any possible value of λ and thus
we can construct a basis of eigenstates [29] [30].

H[λ(t)] |un[λ(t)]〉 = En[λ(t)] |un[λ(t)]〉

As the change is performed adiabatically there is no crossing in the energy levels and
so our wave function can be expressed as Eq. 5 states, see Appendix III for a complete
derivation.

|ψn(t)〉 = e
−i
~

t∫
0

En[λ(t′)]dt′

eiφn(t) |un[λ(t)]〉 . (5)

Where the �rst term is usually called the dynamical phase and the second one is known
as the geometric phase. Replacing Eq. (5) into the time dependent Schrödinger equation
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i~ |ψ̇n(t)〉 = H |ψn(t)〉, where the dot represents the derivative with respect to time, we
arrive to the relation

φ̇n = iλ̇ · 〈un|
d

dλ
un〉 ,

where the term

An(λ) ≡ i 〈un|
d

dλ
un〉 , (6)

is known as the Berry connection. If we perform the integral we arrive to

φn(t) =

t∫
0

An(λ)
dλ

dt
dt

=

λ(t)∫
0

An(λ)dλ (7)

Equation (7) contains one of the most important results, the phase variation only depends
on the realised path and not in th traversal rate, i.e. it is purely geometric.
It is important to notice that φn is real because 〈un| ddλun〉 is purely imaginary:

〈un|
d

dλ
un〉+ (〈un|

d

dλ
un〉)∗ = 〈un|

d

dλ
un〉+ 〈 d

dλ
un|un〉 =

d

dλ
〈un|un〉 = 0.

However if we select an arbitrary path where λi 6= λf because of the fact that our eigen-
states have an ill-de�ned global phase, di�erent selections of gauges will provoke changes
in the eigenstates of the type: |ũn(λ)〉 = e−iβn(λ) |un(λ)〉. These changes will induce
di�erent transformations on the Berry connection and hence in the Berry phase.

Ãn(λ) = An(λ) +
dβn
dλ

,

φ̃n = φn + βn(λf )− βn(λi).

Making this quantities strongly dependent on the selected gauge and completely ill de�ned.
Eventually we could select a gauge where the geometric phase vanishes and only the
dynamical phase remains. Nevertheless, if we now consider a closed path (λi = λf ) we
have that both states λi and λf label the same state and so following the previous notation
we have the relations

|un(λi)〉 = |un(λf )〉 ,
|ũn(λi)〉 = |ũn(λf )〉 .
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Imposing those restrictions we have that βn(λf ) = βn(λi) + 2πl where l is an integer and
it is called winding number of the gauge transformation and so φ̃n = φn + 2πl. So even
considering closed paths φ remains being a gauge dependent quantity. Moreover what we
have is that depending on the gauge where φ is calculated, there is a 2πl factor to be
considered.
This result can also be very easily sawn from the discrete approximation of the Berry
phase. In this approximation we have that

Figure 31: Discretized view of the eigen-
states.

φ = −= (ln [〈u0|u1〉 〈u1|u2〉 ... 〈un−1|un〉])

Where = stands for the imaginary part. And where the restriction |u0〉 = |un〉 holds
up to a phase. Depending on the selected gauge that relates both eigenstates we will have
that φ shall present a 2πl di�erential factor that arises naturally. It can be proved that
in the continuum limit both de�nitions are the same.
As a conclusion, for a closed path eiφn is gauge invariant which means that it is immutable
under gauge transformations and it is well de�ned. Is hence potentially a physical ob-
servable.
In general, our parameter λ might be a vector ~λ and so we will de�ne the Berry connection
as

~A = i 〈un|~∇un〉 (8)

On the one hand, in the case where ~λ is a 3D−vector we can de�ne the Berry curvature
as

~Ω ≡ ~∇× ~A = i 〈~∇u| × |~∇u〉 , (9)

and so its components will be
Ωx = −2=(〈∂yu|∂zu〉),
Ωy = −2=(〈∂zu|∂xu〉),
Ωz = −2=(〈∂xu|∂yu〉).
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On the other hand, if our parameter ~λ is only de�ned in a 2D space the Berry curvature
is a scalar and we have the relation.

Ω = Ωz = −2Im(〈∂xu|∂yu〉)

Because of the way that the Berry curvature is de�ned is clearly gauge invariant. Note
that even if the eigenstate u is multiplied by a phase, as in Eq. (9) it appears once as bra,
and once as ket this phase will cancel out. Moreover remember that the change in the
Berry connection was of the form Ã = A+∇β and as we know it holds that ∇×∇β = 0.
Stokes theorem makes the link between the de�nitions of the Berry connection [Eq. (6)]
and the Berry curvature [Eq. (9)]

φn(C) =

∮
C

~A ~dλ =

∫
S

~Ω · ~n dS ≡ Φ(S), (10)

Where S stands for the surface enclosed by the circuit C.
I would like now to clarify a potential doubt that a careful reader could be thinking of.
Meanwhile left hand side of Eq. (10) is, as we have said, gauge dependent module 2π.
The right hand side of Eq. (10) is de�ned as an integral of a fully determined gauge
independent quantity ~Ω and is hence gauge independent. It can be proved that if we
choose a gauge that is smooth all over the surface S including its boundary C then the
equality holds. However, it is true that in general for an arbitrary selection of gauge the
equality is only true module 2π.
With this theoretical background our aim now is to explain the origin of our topological
invariant, the Skyrmion number. We �nd the solution in the study of the Chern theorem
that states that for any closed surface S without edges it holds∮

S

~Ω · ~n dS = 2πC,

where the integer C is called Chern number.
We shall now see that we can relate the integrand of Eq. (2) with the curvature of a Berry
phase that is still to be de�ned. If we do so, we shall be able to identify the skyrmion
number with the Chern number, that is Nsk ≡ C.

4.3 Berry physics of magnetic skyrmions

In the remaining of this Section we shall focus on establish the mentioned relation between
the skyrmion number and the Chern number, and study some properties of the Chern
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invariants.
The Hamiltonian for a spin under the e�ect of a magnetic �eld presents the following form

H =
−γB0~

2
· ~n · ~σ, (11)

where B0 is the modulus of the applied magnetic �eld, ~n is the complex skyrmionic spin
texture represented in Eq. (1) and ~σ the Pauli matrix vector. As we are working with
fermions of spin s = 1/2 they are 2 × 2 matrices. Using Eq.(1) and performing the dot
product ~n · ~σ one obtain

sin Θ(r) cos Φ(φ)

(
0 1
1 0

)
+ sin Θ(r) sin Φ(φ)

(
0 i
−i 0

)
+ cos Θ(r)

(
1 0
0 −1

)
.

�nally, the Hamiltonian takes the form

H =
−γB0~

2
·
(

cos(Θ(r)) sin(Θ(r))e−iΦ(φ)

sin(Θ(r))eiΦ(φ) − cos(Θ(r))

)
.

The Hamiltonian operator depends adiabatically on the position, through the explicit
dependence on r and φ. Our Hamiltonian matrix (H) satis�es that detH = −1 and
tr(H) = 0 and therefore the eigenvalues of the matrix are ±1. If we compute the eigen-
states we arrive to

χ+(~r) =

(
cos Θ(r)

2

sin Θ(r)
2
eiΦ(φ)

)
,

χ−(~r) =

(
sin Θ(r)

2
e−iΦ(φ)

− cos Θ(r)
2

)
.

Now lets compute the Berry connection and curvature of our two-dimensional spin ar-
rangement for the case where χ+ is the fundamental level. According to Eq. 6, we have

A0(l) = −i 〈χ(r)|∂lχ(r)〉 ,

where l is a two dimensional vector that stands for the varying position parameter that
in our case can take values in the xy plane.

A0(l) = −i
(

cos Θ(r)
2

sin Θ(r)
2
e−iΦ(φ)

)
·

(
− sin Θ(r)

2
· ∂Θ
∂l
· 1

2

cos Θ(r)
2

∂Θ
∂l
· 1

2
· eiΦ(φ) + i∂lΦ sin Θ(r)

2
eiΦ(φ)

)
= sin2 Θ

2
· ∂lΦ =

1

2
(1− cos Θ) · ∂lΦ
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If we now compute the Berry curvature Ωz = ∂xAy − ∂yAx, we �nally obtain

Ωz =
1

2r
sin Θ

∂Φ

∂φ

∂Θ

∂r
, (12)

which has exactly the same form of the integrand of the Skyrmion number Eq. (2) as it
is proven in Appendix I. To be rigorous we have the following relation∮

S

ΩzdS = 2πNsk = 2πC.

Thus the skyrmion number and the Chern number are equivalent for our spin system.
It is important to notice that this number will obviously depend on the pattern of spins
de�ned on the surface of our order parameter space and not only on the surface itself.

There exists di�erent types of topological invariants. The Euler characteristic for
example, which is behind some of the results given in this work (Poincaré-Hopf theorem
essentially) depends only on the genus of our surface but it is invariant of the pattern we
are considering. The Chern index in contrast is not a characteristic of the surface itself,
but of the manifold of eigenstates |un(λ)〉 de�ned over the surface.
In relation with what we have said about Eq. (10) I would like to think of here whether
the Chern number is always zero (because Gauss theorem relates our integral with the
integral in a volume of the divergence of a curl) or, as we have seen in many examples
of Skyrmionic patterns it can take non-zero values. For simplicity and because we are
interested in the particular order parameter space of spins in a plane we will consider that
S = S2 i.e. our surface is the unit sphere.
As it is pictured in Fig. 32 we divide our surface in two regions A and B that share the
same boundary but with opposite orientations.
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Figure 32: Division of the surface of the sphere in two regions A and B that share the
same boundary C.

Dividing the domain of integration we have that∮
S

Ω · ~n dS =

∫
A

Ω · ~n dS +

∫
B

Ω · ~n dS

Applying Stokes theorem it follows∮
S

Ω · ~n dS =

∮
C

~AA ~dλ−
∮
C

~AB ~dλ

Both integrals measure φC but a priori in di�erent gauges so its di�erence would be in
general a multiple of 2π.
Only in the case where a global smooth gauge can be de�ned to all the surface the integral
vanish.
As a �nal note we are now able to explain some of the basic properties that magnetic
skyrmions should satisfy and have been recurrent during this work. As we said in Sec. 2
and we emphasized later in Sec. 3 we need to have a region where the out of plane compo-
nent of our order parameter points in one direction and it is surrounded by a region where
the out of plane component points oppositely so in particular, regular patterns divided in
domains such as the one depicted in Fig. 21(a) should present Nsk = 0.
We are now able to prove this fact, if we map our pattern to the sphere with the stere-
ographic projection in a similar way as we did in the example Fig. 15 we shall get that
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a neighbourhood of the north pole is uncovered because of the fact that we do not have
a region covering the rest of the pattern. And so we can de�ne a global gauge in our

manifold of eigenstates (for example we can simply get

(
cos Θ(r)

2
e−iΦ(φ)

sin Θ(r)
2

)
), this gauge is

obviously smooth and note that is global because the only point where is not well de�ned

is the north pole θ = 0 where its value

(
e−iΦ(φ)

0

)
would depend on the directional limit

we take. As we can always select a global gauge when this conditions are assumed as a
corollary of the previous result we get that their Nsk = 0.

5 Conclusions

During all this study we have �rst explained the physical mechanism whereby magnetic
skyrmions are created, and afterwards we have characterized their patterns in a topo-
logical way. Although theory is not extended to the ferroelectric counterparts in the
bibliography, in this work we have set the basis for their topological treatment.
To follow the same order as in magnetic skyrmions we can deduce the following main
points.

1. Although there is no ferroelectric interaction to substitute the function that the DM
interaction does in the magnetic case, vortex and topologically non trivial textures
are formed as a consequence of the depolarizing �eld and the mechanism to avoid
the accumulation of bound charges.

2. Even if the order parameter space is not a sphere S2 as in the magnetic case, it admits
a transformation that is in fact a deformation retract into the desired sphere and so
it share the same homotopy types and are equivalent in the treatment followed in
this work.

3. Despite that the dimensionality of our ferroelectric bubbles (3D) is bigger than the
magnetic skyrmions (2D) we can consider our system layer by layer, we show that
it present a well de�ned skymion number that is preserved through al the matrix
and therefore we can de�ne the skyrmion number of the system to be the skyrmion
number of any layer.

4. We have see that our ferroelectric bubbles present chirality. In future works, we
shall study whether the handedness of our pattern can be easily switched with an
external stimulus.
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6 Appendix I: Derivation of basic formulas.

In this appendix we will develop some of the calculus behind Skyrmion number integral
and the vector �eld ~n.
Due to the symmetry of our system ( either, ferroelectric dipoles or magnetic spins) it
will be useful to work in the following framework.
The direction of the spin shall be denoted by ~n(r) it will be a 3D parameter de�ned
at spacial position r = (x, y) in polar coordinates and shall be expressed as equation (1)
states. The following fundamental relationships shall be needed throughout the derivation
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of many concrete parts of this work.

x = r cosφ,

y = r sinφ,

r =
√
x2 + y2,

φ = arctan(
y

x
),

∂r

∂x
= cosφ,

∂r

∂y
= sinφ,

∂φ

∂x
= − sinφ/r,

∂φ

∂y
= cosφ/r.

As a consequence of this, the derivatives with respect to x and y, will be computed
according to the chain rule theorem as follows

∂n

∂x
=
∂n

∂r
· ∂r
∂x

+
∂n

∂φ
· ∂φ
∂x

=
∂n

∂r
cosφ− ∂n

∂φ
sinφ/r, (13)

∂n

∂y
=
∂n

∂r
· ∂r
∂y

+
∂n

∂φ
· ∂φ
∂y

=
∂n

∂r
sinφ+

∂n

∂φ
cosφ/r. (14)

As in many parts of the work we have highlighted, even if our order parameter is three
dimensional we are working in a two dimensional frame and as a consequence it has no
sense to talk about ∂z. Throughout this work it will be important to distinguish between
the dimension of the magnetic spin or electric polarization vector and the dimensionality
of the system itself.
We shall compute now the integrand of the Skyrmion number de�ned by Tokura as (2).
In order to compute the integrand we �rst develop the cross product ((∂~n

∂x
× ∂~n

∂y
)).∣∣∣∣∣ i j k

sinΦsinΘ ∂Φ
∂φ
sinφ/r+cosΦcosΘ ∂Θ

∂r
cosφ −cosΦsinΘ ∂Φ

∂φ
sinφ/r+sinΦcosΘ ∂Θ

∂r
cosφ −sinΘ ∂Θ

∂r
cosφ

−sinΦsinΘ ∂Φ
∂φ
cosφ/r cosΦsinΘ ∂Φ

∂φ
cosφ/r+sinΦcosΘ ∂Θ

∂r
sinφ −sinΘ ∂Θ

∂r
sinφ

∣∣∣∣∣
Doing the algebra...
~i

[
cosΦsinΘ ∂Φ

∂φ
sinφ/rsinΘ ∂Θ

∂r
sinφ−

((((
(((

((((
sinΦcosΘ ∂Θ

∂r
cosφsinΘ ∂Θ

∂r
sinφ + cosΦsinΘ ∂Φ

∂φ
cosφ/rsinΘ ∂Θ

∂r
cosφ +

((((
(((

((((
sinΦcosΘ ∂Θ

∂r
cosφsinΘ ∂Θ

∂r
sinφ

]
~j

[
sinΦsin2Θ ∂Φ

∂φ
sin2φ/r ∂Θ

∂r
+
((((

((((
(((

cosΦcosΘsinΦsinΘcosφ ∂Θ
∂r

∂Θ
∂r

+ sinΦsin2Θ ∂Φ
∂φ
cos2φ/r ∂Θ

∂r
−
((((

((((
(((

cosΦcosΘsinΦsinΘcosφ ∂Θ
∂r

∂Θ
∂r

]
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~k


((((

(((
((((

(((
sinΦsinΘ ∂Φ

∂φ
sinφ/rcosΦsinΘ ∂Φ

∂φ
cosφ/r + sin2ΦsinΘ ∂Φ

∂φ
cosΘ ∂Θ

∂r
1
r
−
((((

(((
((((

(((
sinΦsinΘ ∂Φ

∂φ
sinφ/rcosΦsinΘ ∂Φ

∂φ
cosφ/r + cos2ΦsinΘ ∂Φ

∂φ
cosΘ ∂Θ

∂r
1
r


Rearranging things up we get

∂n

∂x
× ∂n

∂y
=

(
cosΦsin2Θ

∂Θ

∂r

∂Φ

∂φ

1

r

)
~i

+

(
sinΦsin2Θ

∂Θ

∂r

∂Φ

∂φ

1

r

)
~j

+

(
sinΘcosΘ

∂Θ

∂r

∂Φ

∂φ

1

r

)
~k

Finally we arrive to the result

n

(
∂n

∂x
× ∂n

∂y

)
=

1

r

∂Θ

∂r

∂Φ

∂φ
sin Θ (15)

Which, as we wanted to prove has the same form as Eq. 12 up to constant factors.
As a �nal step, we can arrive to a more visual form of the Skyrmion number performing
the integral and obtaining

Nsk =
1

4π

∫ ∫
d2r · n ·

(
∂n

∂x
× ∂n

∂y

)

=
1

4π

∞∫
0

2π∫
0

�rdrdφ
�
�
�1

r

∂Θ

∂r

∂Φ

∂φ
sin Θ =

1

4π
[− cos Θ(r)]∞0 [Φ(φ)]2π0

And hence we have recovered Equation (3). Studying this expression we can see that the
term cos Θ(r) is only related with the third component of our order parameter and the
term in Φ(φ) has to do with the in plane component.
Now we will compute the surface integral of ~n(~∇×~n), as a �rst step, using all the notation
we have shown in this section the reader can easily arrive to

~n(~∇× ~n) = sin((m− 1)φ+ γ)

[
∂Θ

∂r
+ sin(2Θ)

m

2r

]
(16)

Where we have used some well known relations of the type sinα cos β − cosα sin β =
sin(α− β). Now lets compute the integral of surface of Eq. (16).∫ ∫

sin((m− 1)φ+ γ)

[
∂Θ

∂r
+ sin(2Θ)

m

2r

]
dxdy =

∫ ∫
sin((m− 1)φ+ γ)

[
∂Θ

∂r
+ sin(2Θ)

m

2r

]
rdrdφ

=

2π∫
0

sin((m− 1)φ+ γ)dφ

∞∫
0

[
∂Θ

∂r
+ sin(2Θ)

m

2r

]
rdr
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The integral in φ is easy to compute and we obtain

2π∫
0

sin((m− 1)φ+ γ)dφ =

{
if m 6= 1 cos((m−1)φ+γ)

(1−m)

2π

0
= 0

if m = 1 2πsin(γ)

And so if we want that the integral of Eq. (16) is non zero we have to impose m = 1 and
γ 6= kπ.

7 Appendix II: DM interaction revisited.

In this section we shall revisit the DM interaction and how depending on the direction
of the vector ~Dij some patterns are more stable than others. Just as a remind, our DM
Hamiltonian for a pair of spins was of the form

Hasym = − ~D12 · (~S1 × ~S2). (17)

In the �rst place, as we said in Sec. 2, we shall analyse the case when the vector ~Dij points
in the direction of ~rij = ~ri − ~rj for a pair of spins at positions ~ri and ~rj, as it is shown in
[Fig. 33(a)].
The Hamiltonian in Eq. (17) refers to the energy of a couple of spins. We hall now take
the step towards a continuum model performing a sum over �rst neighbours. Assuming
a square lattice as shown in [Fig. 33(b)].

Figure 33: (a) Sketch of how spins align with a given DM vector. (b) Schematic repre-
sentation of �rst neighbours and their place in the lattice, vectors ~rij and ~d as explained
above for each site.
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In order to do this we will have to compute the sum of the interaction − ~Dij(~Si × ~Sj) to
the four neighbour sites giving the following result:

Hasym(u) =

neigh∑
v

Hasym(u, v) =− ~dx · (~Sij × ~Si+1,j) + ~dx · (~Sij × ~Si−1,j)

− ~dy · (~Sij × ~Si,j+1) + ~dy · (~Sij × ~Si,j−1),

where, as we have said, the interaction vector ~d is in the direction of the vector ~rij and
it has obviously opposite direction for right or left neighbours as explained in Sec. 2.
Performing the previous sum we obtain

Hasym(u) =− dx {Sy(i, j)[Sz(i+ 1, j)− Sz(i− 1, j)] + Sz(i, j)[Sy(i− 1, j)− Sy(i+ 1, j)]}−
dy {Sz(i, j)[Sx(i, j + 1)− Sx(i, j − 1)] + Sx(i, j)[Sz(i, j − 1)− Sz(i, j + 1)]}

If we now approximate by �nite di�erences and we suppose that dx = dy = 1 (i.e., we
normalize the DM vector), we obtain (up to factors two coming for the �nite di�erences
approximation that we ignore for the moment) the following expression

Hasym(u) = −Sy(i, j)∂xSz(i, j) + Sz(i, j)∂xSy(i, j)− Sz(i, j)∂ySx(i, j) + Sx(i, j)∂ySz(i, j)
(18)

Knowing that ∇× ~S has the form,

∂y ~Sz~i− ∂x~Sz~j + (∂x~Sy − ∂y ~Sx)~k,

where we have assumed that since the skyrmion lie in the xy plane it is non-sense to
compute derivatives with z. Then Eq. (18) reduces to ~S(∇× ~S).
That is the DM Hamiltonian for the interaction between one spin and its �rst neighbours.
To know the full Hamiltonian we have to sum over all the lattice sites.

Hasym =
1

2

∑
<i,j>

− ~Dij(~Si × ~Sj)

The factor 1/2 cancels with the factor 2 of the �nite di�erences approximation. Performing
the sum we �nally arrive to

Hasym = D~S(∇× ~S),

where D is a constant that measure the force of the interaction and we recover the
Hamiltonian of [11]. As we have proven in Appendix I that Hamiltonian has the following
form for our pattern of spins

Hasym = D sin [(m− 1)φ+ γ]

[
∂Θ

∂r
+ sin(2Θ)

m

2r

]
.
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And, as we can check, the most stable skyrmion is the m = 1, γ = ±π
2
depending on

the sign of D, those are, chiral Bloch type Skyrmions as we anticipated in Sec. 2. Its
handedness will depend on the sign of the constant D.
Now we shall do te same for the DM interaction where the vector ~Dij is orthogonal to
the direction of ~rij. In this case we shall analyse what happens when the vector ~Dij lies
orthogonal to the vector ~rij as it is pictured in [Fig. 34(a)].
As in the former case we shall compute the overall Hamiltonian performing �rst a sum
over �rst neighbours for a given site. Assuming the same square lattice as schematically
shown in [Fig. 34(b)].

Figure 34: (a) Sketch of how spins align with a given DM vector. (b) Schematic repre-
sentation of �rst neighbours and their place in the lattice, vectors ~rij and ~d as explained
above for each site.

Hasym(u) =

neigh∑
v

Hasym(u, v) =− ~dy · (~Sij × ~Si+1,j) + ~dy · (~Sij × ~Si−1,j)

− ~dx · (~Sij × ~Si,j+1) + ~dx · (~Sij × ~Si,j−1),

where now the vector ~D is perpendicular to the direction of ~rij. Performing the sum as in
the previous example and approximating by �nite di�erences we arrive in a very similar
way to

Hasym(u) = Sz(i, j)∂xSx(i, j) + Sz(i, j)∂ySy(i, j)− Sx(i, j)∂xSz(i, j)− Sy(i, j)∂ySz(i, j)

As in the former case this is the Hamiltonian for the interaction of one spins with its
nearest neighbours. Performing the sum to every site we can compute the full Hamiltonian
(where factor 2 coming from �nite di�erences approximation cancel as it happened before)
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and we obtain the same than in [31] and performing the derivatives we obtain the following
expression

Hasym = D cos [(m− 1)φ+ γ]

[
∂Θ

∂r
+ sin(2Θ)

m

2r

]
.

And as we can check the most stable skyrmion is the m = 1, γ = 0, π depending on the
sign of D, those are, Hedgehog non-chiral type skyrmions as we anticipated in Sec. 2.

8 Appendix III: Adiabatic theorem and �rst steps on
Berry theory

In this Appendix we shall explain the starting point for develop Berry theory and prove
Eq. 5 with a complete derivation.
An adiabatic transformation is de�ned by a gradual change of the external conditions
in a given process. Typically, there are two times involved. (i) First, we have Ti is the
�internal� time, representing the characteristic time of the system itself. (ii) Second, we
have Te is the �external� time over which the parameters of the system change appreciably.
In an adiabatic transformation it holds Te >> Ti. Let us now suppose, that we have a
Hamiltonian whose spectrum is discrete and non-degenerate, and it depends on a certain
parameters that changes adiabatically. The adiabatic theorem states that if the particle
was initially in the n−th state of Hi it will be carried into the n−th eigenstate of Hf .

Proof. If the Hamiltonian changes with time, then the eigenfunctions and eigenstates
follow the following relation

H(t)ψn(t) = En(t)ψn(t)

And in each instant of time they form a complete and orthonormal basis 〈ψn(t)|ψm(t)〉 =
δnm. And because they form a complete set, the general solution of the time-dependent
Schrödinger equation

i~
∂

∂t
Ψ(t) = H(t)Ψ(t),

can be expressed as a linear combination of them

Ψ(t) =
∑
n

cn(t)ψn(t)eiθn(t). (19)

Replacing Eq. 19 in the time dependent Schrödinger equation we obtain

i~
∑
n

[ċn(t)ψn + cnψ̇n + icnψnθ̇n]eiθn =
∑
n

cn(Hψn)eiθn
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As θn(t) is the usual phase of temporal evolution and it takes the form:

θn(t) ≡ −1

~

t∫
0

En(t′)dt′ ⇒ θ̇ = −1

~
En(t)

The last term of left hand side and the right hand side cancel out giving rise to∑
n

ċnψne
iθn = −

∑
n

cnψ̇ne
iθn

multiplying the last equation by the �bra� 〈ψm| and using the orthogonal property of our
basis of eigenstates we get

ċm = −
∑
n

cn 〈ψm|ψ̇n〉 ei(θn−θm). (20)

We save for the moment this result and now we di�erentiate the time dependent Schrödinger
equation in order to obtain an easier relation for the term 〈ψm|ψ̇n〉 obtaining

Ḣψn +Hψ̇n = Ėnψn + Enψ̇n

Proceeding in the same way we multiply by the �bra� 〈ψm|

〈ψm|Ḣ|ψn〉+ 〈ψm|H|ψ̇n〉 = Ėn〈ψm|ψn〉+ En〈ψm|ψ̇n〉

Exploiting now the hermiticity of our Hamiltonian

〈ψm|H|ψ̇n〉 = 〈ψ̇n|H|ψm〉 = Em〈ψ̇n|ψm〉 = Em〈ψm|ψ̇n〉

And then, it follows that for the case n 6= m

〈ψm|Ḣ|ψn〉 = (En − Em) 〈ψm|ψ̇n〉 (21)

Finally from Eq.20 and Eq. 21 we get

ċm(t) = −cm〈ψm|ψ̇m〉 −
∑
n 6=m

cn
〈ψm|Ḣ|ψn〉
En − Em

e(−i/~)
∫ t
0 [En(t′)−Em(t′)]dt′ .

And now we apply the adiabatic approximation where we assume that Ḣ is extremely
small and thus can be neglected obtaining

ċm(t) = −cm 〈ψm|ψ̇m〉
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whose solution is of the type
cm(t) = cm(0)eiφm(t),

where φm(t) = i
t∫

0

〈ψm(t′)| ∂
∂t′
ψm(t′)〉 dt′ turns out to be the Berry phase.

Therefore if cn(0) = 1 y cm(0) = 0 for every m 6= n the particle remains in the n−th
state.

As a conclusion we obtain that two phases naturally arises in the evolution of an
adiabatic process, one of them is the usual dynamic phase which has to do with the
Hamiltonian and is independent of the geometry of the path traversed and another one
that is purely geometric and is the analogue to the geometric phase arising in the Foucault
Pendulum because of the nonholonomic process.
Now that Eq. (5) is fully explained we replace it in the time dependent Schrödinger
equation and we obtain

(((
((((

(((
((((

(((
((((

En(λ(t)) · e
−i
~

t∫
0

En(λ(t′))dt′

eiφn(t) |un(λ(t))〉+ i~e
−i
~

t∫
0

En(λ(t′))dt′

i · φ̇neiφn(t) |un(λ(t))〉+

+i~e
−i
~

t∫
0

En(λ(t′))dt′

eiφn(t) · λ̇ |dun
dt
〉 =
(((

((((
(((

((((
(((

((((

En(λ(t)) · e
−i
~

t∫
0

En(λ(t′))dt′

eiφn(t) |un(λ(t))〉

Rearranging things up we arrive to the following expression

i · φ̇n |un〉 = −λ̇ |dun
dt
〉

Multiplying each side by the bra 〈un| we �nally obtain

φ̇n = iλ̇ 〈un|
dun
dt
〉

As a �nal note to this Appendix, we shall obtain the relations for the Berry curvature.
We shall do it step by step for Ωx being equivalent for the rest of components.
Taking Eq. (9) as a reference we have that

Ωx = (∂yAz − ∂zAy) = ∂y(i 〈un|∂z|un〉)− ∂z(i 〈un|∂y|un〉)

Expanding the previous relation we obtain

Ωx = i 〈∂yun|∂zun〉+((((
(((i 〈un|∂y∂zun〉

− i 〈∂zun|∂yun〉 −(((((
((i 〈un|∂z∂yun〉

= i 〈∂yun|∂zun〉 − i 〈∂yun|∂zun〉∗ = −2= 〈∂yun|∂zun〉

What proves the relations used in Sec. 4.
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9 Appendix IV: Maths underneath.

In this section we shall introduce some of the basic theory related with topology, and more
concretely with homotopy. We shall be focusing in basic de�nitions and useful results that
help us to understand basic concepts developed in this work, most of these results are not
going to be proved here but can be easily found in for example [32, 33]
Algebraic topology starts with the purpose of stablish a functorial link between the cat-
egory of topological spaces and the category of groups. That is to say to relate topology
and algebra. In that way we shall correspond every topological space with a group, to ev-
ery continuous mapping a homomorphism. With this identi�cation a necessary condition
for two spaces being homeomorphic is that their homotopy groups are isomorphic.

De�nition 9.1. Let X be a topological space. A path in X is a continuous mapping
γ : [0, 1]→ X. If γ(0) = γ(1) we say that γ is a loop.
We de�ne as product or concatenation of γ and δ as the path.

γ ∗ δ(s) =

{
γ(2s) 0 ≤ s ≤ 1/2

δ(2s− 1) 1/2 ≤ s ≤ 1

As we have been discussing in this work we would like to know when two paths are
comparable. In order to stablish this relation the concept of homotopy appears.

De�nition 9.2. Let γ, δ : [0, 1] → X be two paths in a topological space X. We
shall say that γ is homotopic to δ relative to {0, 1} if there exists a continuous mapping
H : [0, 1]× [0, 1]→ X that satis�es:

1. H(s, 0) = γ(s), ∀ s ∈ [0, 1]

2. H(s, 1) = δ(s), ∀ s ∈ [0, 1]

3. H(0, t) = γ(0) = δ(0)

4. H(1, t) = γ(1) = δ(1)

De�nition 9.3. In general we would say that two mappings f and g are homotopic
relative to the subset A ⊂ X if there exist a continuous function such that

F :X × [0, 1]→ Y

F (x, 0) = f(x) ∀x ∈ X
F (x, 1) = g(x) ∀x ∈ X
F (a, t) = f(a) = g(a) ∀a ∈ A, ∀t ∈ [0, 1]
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Path-homotopy is a particular case of the former de�nition where A = {0, 1} and f
and g are paths in X.
It can be easily proved that the relation being homotopic de�nes an equivalence relation-
ship in the set of paths with origin x0 and end x1. With that property we can already
de�ne the fundamental homotopy group as follows.

De�nition 9.4. Let X be a topological space and lets �x x0 ∈ X. We shall denote
π1(X, x0) to the set of equivalence classes [γ] given by the previous relationship of loops
γ in X with base in x0.
Given two elements [γ], [δ] ∈ π1(X, x0) we de�ne [γ] · [δ] = [γ ∗ δ]. This operation gives
π1(X, x0) a group structure whose neutral element is ex0(s) = x0 the constant loop and
the inverse of a path γ(s) is γ(s)−1 = γ(1− s).

If our topological space X is path-connected the group is independent of the base
point and so we shall talk about π1(X).

De�nition 9.5. Let X and E be two topological spaces. A continuous mapping p : E →
X is a covering if veri�es:

1. p is surjective

2. For all x ∈ X there exist a neighbourhood x ∈ U ⊂ X such that p−1(U) =
⋃
i∈I
Vi

where the Vi are open sets in E that satis�es Vi ∩ Vj = ∅ and p|Vi : Vi → U is a
homomor�sm.

Figure 35: Figure obtained from https://en.wikipedia.org/wiki/Covering_space
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We say that the covering is a universal covering if the space E is simply connected.
For this work we are specially interested in the covering of S1 the standard one is the
following.

Example 9.1. We have that the following function is a covering:

p : R 7−→ S1

t 7−→ (cos 2πt, sin 2πt)

In order to see this as every point is equivalent is enough to prove that there exists a
neighbourhood of (1, 0) that satis�es the properties of the de�nition.
We claim U =

{
(cos 2πθ, sin 2πθ) : −1

4
≤ θ ≤ 1

4

}
. Then we have that p−1(U) =

⋃
n∈Z

(−1
4

+

n, 1
4

+ n) that ful�l all desired conditions. Note that all �bers are in�nite.

De�nition 9.6. Given a covering p : E → X and a continuous application f : Y → X
a lifting of f is a continuous mapping f̃ : Y → E such that makes commutative the
following diagram p ◦ f̃ = f

E

p
��

Y

f̃
>>

f // X

Now we shall consider the following result that studies the uniqueness of the lifting.

Proposition 9.1. Let p : E → X a covering and f : Y → X a continuous mapping. Let
x0 ∈ X, y0 ∈ Y and e0 ∈ E such that f(y0) = x0 = p(e0). If Y is connected and there
exists a lifting f̃ of the function f such that f̃(y0) = e0 then f̃ is unique.

De�nition 9.7. Let p : E → X a covering function let x0 ∈ X and e0 ∈ p−1(x0) a point
in the �ber of x0. We de�ne he function

Φ : π1(X, x0) 7−→ p−1(x0)
[σ] 7−→ σ̃(1)

where σ̃(1) is the lifting of σ with σ̃(0) = e0.

Proposition 9.2. Let's suppose X is path-connected. Then

1. E is path-connected ⇐⇒ Φ is surjective.

2. E is simply connected ⇐⇒ Φ is bijective.

With al this knowledge we can prove that π1(S1) = Z.
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Example 9.2. Lets compute the fundamental group of the unit circumference.
We consider the universal covering p : R → S1 given in Example 9.1. As R is simply
connected there is a bijection between π1(S1, x0) and p−1(x0). We saw in Example 9.1
that the �ber of each point is p−1(x0) = Z. So, to conclude the result we only have to
show that Φ : π1(S1)→ Z is a group homomorphism.
Φ([σ] · [τ ]) = Φ([σ])+Φ([τ ]). In order to prove this let X0 = (1, 0). Let σ̃ and τ̃ the lifting
of σ and τ to paths in R with σ̃(0) = τ̃(0) = 0.
If n = σ̃(1) and m = τ̃(1) then we have that Φ([σ]) + Φ([τ ]) = n+m.
Now we have to compute Φ([σ][τ ]) = Φ([στ ]). However, we have that σ̃ ∗ τ = σ̃ ∗ τ̃ ∗,
where τ̃ ∗ is the lifting of τ with origin in σ̃(1) = n.
Then we conclude that Φ is a bijective group homomorphism and so it is a isomorphism
and π1(S1) = Z.

We shall now want to generalize the idea of the fundamental homotopy group, in order
to do this lets see the following results of what is known by topological degree theory.

De�nition 9.8. Let h : S1 → S1 a continuous application. Let h∗ denote the application
between the fundamental groups induced by h, that is:

h∗ : π1(S1, b0) 7−→ π1(S1, h(b0))
1 7−→ d

we say that h∗(1) = d is the degree of h.

Proposition 9.3. Two mappings h1 : S1 → S1 and h2 : S1 → S1 are homotopic if and
only if they have the same degree.

From the last result we deduce that there is a bijection between the homotopy classes
of functions f : S1 → S1 and Z. We can understand π1(X, x0) as the set of homotopy
classes relatives to x0 of applications from S1 to X.
This allows us to generalize the fundamental homotopy group to the n-th homotopy group
of X and denote it by πn(X, x0) as the set of homotopy classes of applications from Sn to
X that maps b0 ∈ Sn to x0.
As we had in the case of n = 1:

1. πn(Sn) = Z.

2. Every continuous application h : X → Y induces a homomorphism between their
n-th homotopy groups.

3. Given h1, h2 : Sn → Sn. They are homotopic if and only if they have the same
degree.
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