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ABSTRACT 

This work presents an energetic continuum approach for the fracture assessment of rocks 

containing U-shaped notches and subjected to Mode I loading conditions. Three different 

methodologies are proposed in this article, all of them based on the premise that brittle failure 

will occur when the average strain energy density over a certain control area reaches a critical 

value that only depends on the material, as stated by the Strain Energy Density (SED) criterion.  

The first method proposed (A) deals with the application of the SED criterion through an 

expression with a series of already tabulated parameters, which are particularised for the 

analysed rocks by rational extrapolation. Therefore, this first method avoids the use of numerical 

analysis. By contrast, the second method (B) aims to obtain numerically the previously 

extrapolated parameters, and the third method (C) directly relates the strain energy density with 

the applied load, without the use of those parameters. 

The research is based on the results obtained from an exhaustive experimental programme 

comprising 300 fracture specimens tested in four-point bending conditions. These tests combine 

parallelepiped samples made of 6 different types of rocks (two marbles, two limestones, a 

sandstone and a granite) and containing 8 different notch radii (varying from 0.15 mm up to 15 

mm).  

Thus, this work aims to show the potential, capacity and limitations of the SED criterion in 

rock fracture analyses, comparing with this purpose the experimentally obtained fracture loads 

and those predicted by the three proposed methodologies.  

KEYWORDS: Strain Energy Density; Rock fracture, U-shaped notches; marble; sandstone; 

limestone. 
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1. INTRODUCTION  

The brittle condition of intact rocks, their high inherent strength and low toughness make 

them very sensitive to the presence of any defect like discontinuities, microcracks, pores, grain 

boundaries, etc. However, notch-type defects generate smaller stress fields and usually develop 

larger fracture resistance than sharp cracks. Therefore, the two types of defects should not be 

treated in the same way. Besides, rocks are usually subjected to relatively high loads both in 

nature and in industrial exploitations, which makes them even more sensitive to stress risers. All 

this leads to the necessity of developing accurate tools for rock fracture assessment different 

from the over-conservative ones derived from linear elastic fracture mechanics, where sharp 

crack behaviour is usually assumed for many practical situations, even for those with notch-type 

defects. Numerous examples can be found of traditional and conservative rock fracture 

mechanics, where crack-type defects are assumed for different applications of rock cutting, 

hydraulic fracturing or underground excavation [1-3].  

Dealing with fracture analyses of notched components subjected to Mode I loading, 

different criteria have been proposed in the last few decades. However, establishing a general 

classification of these existing criteria is not easy, since the boundary between them may 

sometimes be diffuse. First, the Global Criterion should be mentioned, which states that fracture 

will occur when the notch stress intensity factor (NSIF) reaches a critical value, 𝐾𝜌
𝑐, that depends 

on the material and notch radius [4,5]. On the other hand, [6] collects the Critical Distance 

methodologies, all of them using a characteristic material length parameter (the critical 

distance, L) when performing fracture assessment. Proceeding along similar tracks, [7] 

presented a criterion for brittle or quasi-brittle materials under monotonic loading, based on 

the cohesive zone models proposed in the past by [8] and [9] to describe stress fields and 

fracture processes near the defect tip. This criterion has led to successful predictions of the 

fracture loads of notched specimens [10-13] in parallel to other methods based on the Strain 

Energy Density (SED) concept [14-16]. The SED criterion combines the so-called elementary 

volume proposed by [17] and the local Mode I concept first proposed by [18]. It claims that 

brittle failure will occur when the average strain energy density over a given, well-defined, 

control volume is equal to a certain critical value (𝑊𝑐) dependent on the material. This energetic 

approach has been successfully applied to assess both the static fracture [19-22] and the fatigue 

behaviour [23,24] of notched components (including welded structures) subjected to 

predominant Mode I or even Mixed Mode loading [14-16,25]. Here, blunt U-shaped notches 

(opening angle 2𝛼 = 0, see Fig.1) will be studied in detail.  

The application of the SED criterion in materials like steels or polymers has been widely 

studied by many authors [10-16,26]. However, despite its huge potential and advantages, its 
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applicability in more heterogeneous and brittle materials like rocks requires further research, 

since it has not been until the last few years that it has begun to be applied to rocks, as for 

example by [27,28]. For this reason, trying to fill this knowledge gap, this paper focuses on the 

use of the SED criterion for the fracture prediction of six different rocks containing U-shaped 

notches and with notch radii varying from 0.15 mm to 15 mm. To this end, the study is based on 

the results of a systematic laboratory campaign performed by the authors of this article in 

[29,30], which successfully applied the Theory of the Critical Distances for the fracture 

assessment of those six rocks. 

 

 

Figure 1. Coordinate system and notch geometry 

with the corresponding nomenclature. 

 

With all this, Section 2 provides an overview of the SED criterion, particularising the 

expressions to the geometry and conditions studied in this paper. Section 3 contains the aspects 

related to the experimental program, where both the analysed materials and the performed 

tests are described. Subsequently, three different methodologies are proposed for rock fracture 

load prediction, based on the analytical frame developed in Section 2. All these methodologies 

are individually described in Section 4, including the corresponding results and their comparison.  

Finally, Section 5 focuses on the general conclusions and outcomes. 

 

2. STRAIN ENERGY DENSITY CRITERION 

This section gathers some theoretical background on the SED criterion, which has 

traditionally been used to express failure conditions for materials presenting both ductile and 

brittle behaviour [26]. According to the SED approach, the average strain energy density (�̅�) 

over a certain control volume is limited by a critical value (𝑊𝑐). Thus, fracture will occur when: 
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�̅� = 𝑊𝑐                                                                                                                                                          (1) 

 

The critical strain energy 𝑊𝑐 only depends on the material and its value is defined by the 

area under the corresponding stress-strain curve (Fig. 2).  

 

 

 

 

 

 

 

 Figure 2. Stress-strain curves for an elastic and an elastoplastic material. 

 

In the case of elastic and quasi-brittle materials like rocks (Fig. 2a), 𝑊𝑐 has a very simple 

expression and can be easily assessed through the conventional ultimate tensile strength (𝜎𝑢) 

and the Young’s modulus (E): 

 

𝑊𝑐 =
𝜎𝑢

2

2𝐸
                                                                                                                                                       (2) 

 

On the other hand, the control volume over which the energy is averaged becomes an area 

(Ω) in plane stress or plane strain conditions. This area is defined by a radius 𝑅𝑐 (see Fig. 3), 

which depends on the ultimate tensile strength 𝜎𝑢, the fracture toughness 𝐾𝐼𝐶  and the Poisson’s 

ratio 𝑣 of the material in the case of static loads. [31] provided an expression for 𝑅𝑐, which, in 

the case of 2𝛼 = 0, is as follows: 

 

𝑅𝑐 =
(1 + 𝑣)(5 − 8𝑣)

4𝜋
(

𝐾𝐼𝐶

𝜎𝑢
)

2

                                                                                                                (3) 

 

Considering the polar coordinates represented in Fig. 1 and their 3D extension to cylindrical 

coordinates (𝑟, 𝜃, 𝑧), the strain energy at a certain point for an isotropic material obeying a linear 

elastic law is: 

 

𝑊(𝑟, 𝜃, 𝑧) =
1

2𝐸
{𝜎𝜃𝜃

2 + 𝜎𝑟𝑟
2 + 𝜎𝑧𝑧

2 + 2𝜏𝑟𝜃
2 − 2𝑣(𝜎𝜃𝜃𝜎𝑟𝑟 + 𝜎𝜃𝜃𝜎𝑧𝑧 + 𝜎𝑟𝑟𝜎𝑧𝑧 − 𝜏𝑟𝜃

2 )}               (4) 

a) b) 
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Figure 3. Control volume (area, Ω) for U-notch under Mode I loading. 

 

The average strain energy density over the control area Ω depicted in Fig. 3 and defined by 

Eq. (3) can be expressed as: 

 

�̅� =
∫ 𝑊𝑑𝛺

 

𝛺

𝛺
=

1

𝛺
∫ 𝑑𝜃 ∫ 𝑊(𝑟, 𝜃)𝑟𝑑𝑟                           

𝑅2

𝑅1(𝜃)

�̅�

−�̅�

                                                           (5) 

 

These expressions are further developed for the general case of notches with different 

opening angles [15,26,32]. From the mathematical development of Eq. (5), Eq. (6) is derived for 

the calculation of the mean value of the SED, which simplifies to a great extent the analysis of 

fracture processes in notched components: 

 

�̅� = 0.785 · 𝐻 (𝑣,
𝑅𝑐

𝜌
) ·

𝜎𝑚𝑎𝑥
2

𝐸
                                                                                                                 (6) 

 

This expression is valid for the particular case of U-shaped notches subjected to Mode I 

loading conditions, where 𝜎𝑚𝑎𝑥 is the maximum stress at the notch tip for the applied load and 

E is the Young’s modulus of the analysed material. The function H, on the other hand, depends 

on the ratio 𝑅𝑐/𝜌 and on the Poisson’s ratio 𝑣 for U-shaped notches, and may be tabulated as 

in [15,26]. 

Thus, rock fracture analyses can be directly made comparing the critical value of the strain 

energy (𝑊𝑐) defined in Eq. (2) with the mean SED value (�̅�) provided by Eq. (6). With all this, 

only some basic mechanical properties of the material (E, 𝑣, 𝜎𝑢 and 𝐾𝐼𝐶) and the maximum 

principal stress at the notch tip (𝜎𝑚𝑎𝑥) are needed for fracture assessment, apart from the 

geometrical aspects of the notch.  
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3. EXPERIMENTAL PROGRAMME 

3.1.  MATERIALS 

The application of the SED criterion has been particularised to six representative rocks with 

different properties and microstructures, in an attempt to cover a wide casuistic of samples and 

thus prove its validity. The chosen rocks are a biotite granite (G), an oolitic limestone (O), a 

Moleano limestone (C), a Floresta sandstone (F), a Carrara (Italian) marble (I) and a Macael 

marble (M), all of them being isotropic and relatively homogeneous at the macro-scale. These 

rocks were previously analysed by the authors [29,30], who performed the rigorous laboratory 

campaign that is taken as a basis in this article. Table 1 summarises some of the most relevant 

technical properties of each rock. More details on their microstructure and components can be 

consulted in [29,30]. 

 

3.2. SIMPLE COMPRESSION TESTS AND BRAZILIAN TESTS 

60 compression tests were performed in total following [33,34], six in the case of the granite 

and oolitic limestone and twelve for the rest of the rocks. The deformations in the two main 

perpendicular directions were measured using strain gauges, which allowed the Young’s 

modulus and the Poisson’s ratio to be obtained. Analogously, 60 Brazilian tests were also 

performed in order to obtain the tensile strength of the rocks according to [35]. Table 2 gathers 

the obtained average results for each material. 

 

Table 1. Some technical properties of each material. 

 (G) (O) (C) (F) (I) (M) 

Bulk density (kg/m3) 2660 2540 2500 2320 2709 2715 

Mean grain size (µm) 1000 800 810 350 300 690 

 

Table 2. Main mechanical properties of each material. 

 (G) (O) (C) (F) (I) (M) 

Compressive strength, 𝜎𝑐 (MPa) 122.5 135.7 78.8 50.4 97.8 86.6 

Young’s modulus, E50 (GPa) 45.6 64.1 38.4 19.6 57.1 73.4 

Poisson’s ratio, 𝑣 0.17 0.33 0.27 0.24 0.23 0.28 

Tensile strength, 𝜎𝑢 (MPa) 9.00 7.80 7.08 3.38 8.69 8.15 
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3.3.  FOUR-POINT BENDING TESTS 

The geometries of the specimens tested in four-point bending conditions differ slightly from 

each other among the rocks studied in [29] and those analysed in [30]. In this sense, the tested 

specimens of both the granite (G) and the oolitic limestone (O) consist of single edge notch beam 

(SENB) specimens of 150x20x30 mm (length, height, depth) with notch radii varying from 0.15 

mm to 10 mm (Fig. 4a). Conversely, for the Moleano limestone (C), the Floresta sandstone (F), 

the Italian marble (I) and the Macael marble (M) 180x30x30 mm size SENB specimens were used 

with notch radii up to 15 mm in these cases (Fig. 4b).  

All the notches, regardless of their radius, are located in the middle of the specimens with 

a length equal to half the height approximately, with possible slight variations attributable to 

the precision of the cutting processes. In any case, the relative notch length, which is defined as 

the ratio between the initial notch length (a) and the total height (h) of the specimen, will always 

guarantee high constraint conditions (0.45 ≤ a/ℎ ≤ 0.55). 

 

 

 

 

 

 

 

Figure 4. Schemes of the tested SENB specimens. Notch radii (ρ) vary from 0.15 mm up to                

10 mm (a) or up to 15 mm (b). 

 

The indications on these geometrical aspects and the experimental procedure followed are 

specified in [36,37]. This methodology allows the fracture toughness (𝐾𝐼𝐶) of the tested rocks to 

be obtained and it was first proposed by [38] for SENB ceramic specimens tested in four-point 

bending conditions. The four-point bending tests ensure pure and constant bending conditions 

between the inner loading points, and the described geometries enable plane strain conditions 

to be considered.  

As mentioned above, 300 four-point bending test have been performed: at least six for each 

material and notch radius, and twelve in some of the cases for verification. Table 3 presents the 

experimental results for each material. First, the fracture toughness (𝐾𝐼𝐶) is displayed for the six 

rocks. Both [29] and [30] describe in detail, following [36,37], how this parameter is obtained. 

a) b) 

http://www.linguee.es/ingles-espanol/traduccion/nevertheless.html
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Finally, the average failure loads as well as their standard deviations are also indicated for each 

material and notch radius. 

 

Table 3. Fracture toughness, average failure loads and standard deviation of the failure loads. 

  (G) (O) (C) (F) (I) (M) 

Fracture toughness, 𝐾𝐼𝐶  (MPa·m1/2) 1.24 0.72 0.73 0.37 0.74 1.14 

PEXP. (N) for ρ = 0.15 mm Mean: 696.71 358.66 375.05 175.17 353.45 552.12 

S. Dev.: 100.38 31.32 62.42 55.74 65.19 79.45 

PEXP. (N) for ρ = 0.5 mm 
Mean: 578.61 352.76 346.68 177.07 344.75 576.67 

S. Dev.: 44.35 24.18 43.57 18.33 70.52 53.28 

PEXP. (N) for ρ = 1 mm 
Mean: 546.81 362.14 411.10 152.49 333.81 521.62 

S. Dev.: 47.65 15.68 50.12 20.98 57.04 58.43 

PEXP. (N) for ρ = 2 mm 
Mean: 586.03 357.62 385.20 183.01 340.12 506.98 

S. Dev.: 61.57 7.38 35.21 23.47 35.56 122.24 

PEXP. (N) for ρ = 4 mm 
Mean: 571.95 378.92 413.79 186.15 312.67 571.73 

S. Dev.: 63.37 64.22 83.73 23.26 42.14 140.29 

PEXP. (N) for ρ = 7 mm 
Mean: 642.32 422.99 494.01 229.15 354.81 748.71 

S. Dev.: 26.08 18.30 45.91 14.89 60.43 115.33 

PEXP. (N) for ρ = 10 mm 
Mean: 558.70 432.66 477.34 208.95 368.05 751.12 

S. Dev.: 71.36 23.71 84.74 13.69 63.83 54.33 

PEXP. (N) for ρ = 15 mm 
Mean: - - 430.37 205.76 371.55 672.64 

S. Dev.: - - 59.71 13.64 48.89 178.94 

 

4. STUDY METHODOLOGIES AND RESULTS 

Three different methodologies are proposed in this section for rock fracture load 

prediction. They are all based on the failure criterion defined by Eq. (1), which states that failure 

occurs when the mean strain energy density (�̅�) over the control area (Ω) reaches a critical 

value (𝑊𝑐), that is, when Eq. (7) is fulfilled: 

 

𝑊𝑐 = �̅� = 0.785 · 𝐻 (𝑣,
𝑅𝑐

𝜌
) ·

𝜎𝑚𝑎𝑥
2

𝐸
                                                                                                     (7) 

 

Table 4 collects the values of 𝑊𝑐 for each of the six rocks, which correspond to the areas 

under the stress-strain curves depicted in Fig. 2 and calculated by Eq. (2).  

On the other hand, the control area Ω is defined by the radius 𝑅𝑐 as shown in Fig. 3. These 

radii are calculated for each material using Eq. (3) and the corresponding results are gathered in 

Table 5. The obtained 𝑅𝑐 values are of the order of millimetres due to the relatively low values 

of the tensile strength (𝜎𝑢) of rocks, which appears dividing in Eq. (3). As a consequence, the size 
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of Ω will be relatively large in the case of rocks. With all this, an individual and detailed 

description is given below for each of the proposed methodologies, focusing on the 

particularities as well as on the associated advantages and limitations. Likewise, all the results 

are described and discussed in the following subsections, comparing the different outcomes 

corresponding to each of the methods. 

 

Table 4. Critical SED values (𝑊𝑐) of each material. 

 (G) (O) (C) (F) (I) (M) 

𝑊𝑐 (KPa) 0.8882 0.4746 0.6527 0.2914 0.6613 0.4525 

 

Table 5. Values of 𝑅𝑐 of each material. 

  (G)  (O)  (C)  (F)  (I)  (M) 

𝑅𝑐 (mm) 6.4333 2.1283 3.0513 3.6419 2.2429 5.5005 

 

4.1. METHOD A: PUBLISHED VALUES OF H 

This first technique constitutes the simplest and most straightforward methodology, as the 

use of numerical modelling is avoided. Method A deals with analytical solutions based on the 

direct application of Eq. (7) through already tabulated values of the H function, as those 

proposed by [15,26] and shown in Table 6. 

 

Table 6. Values of the H function for U-notched specimens [26]. 

𝑅𝑐/𝜌 𝑣 = 0.10 𝑣 = 0.15 𝑣 = 0.20 𝑣 = 0.25 𝑣 = 0.30 𝑣 = 0.35 𝑣 = 0.40 

0.0005 0.6294 0.6215 0.6104 0.5960 0.5785 - - 

0.001 0.6286 0.6207 0.6095 0.5952 0.5777 - - 

0.005 0.6225 0.6145 0.6033 0.5889 0.5714 - - 

0.01 0.6149 0.6068 0.5956 0.5813 0.5638 0.5432 0.5194 

0.05 0.5599 0.5515 0.5401 0.5258 0.5086 0.4884 0.4652 

0.1 0.5028 0.4942 0.4828 0.4687 0.4518 0.4322 0.4099 

0.3 0.3528 0.3445 0.3341 0.3216 0.3069 0.2902 0.2713 

0.5 0.2672 0.2599 0.2508 0.2401 0.2276 0.2135 0.1976 

1 0.1590 0.1537 0.1473 0.1399 0.1314 0.1217 0.1110 
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The range of values of 𝑅𝑐/𝜌 of Table 6 vary from 0.0005 up to 1, which may be sufficient 

for materials such as steels or polymers [10-16,26], but falls short for rocks where that ratio 

reaches much higher values, of around 43 in the case of the studied granite for instance. For this 

reason, this first method proposes an extrapolation of the tabulated values of H, considering the 

corresponding Poisson’s ratio 𝑣 for each rock. Fig. 5 shows the case of the Moleano limestone 

(C) as an example, representing the values of H that correspond to 𝑣 = 0.27 (from linear 

interpolation of the values in Table 6) against the ratio 𝑅𝑐/𝜌.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Extrapolation of the H function for 𝑣 = 0.27 (e.g. Moleano Limestone (C)). 

 

In order to find the equation that best fits the tabulated values (dots in Fig. 5) some 

considerations must be taken into account first. In the case of a crack (ρ = 0), both the ratio 𝑅𝑐/𝜌 

and the maximum stress at the tip tend to infinite (𝜎𝑚𝑎𝑥 = ∞). Therefore, H must be zero to fulfil 

Eq. (7); by contrast, in the case of an infinite notch radius (ρ = ∞), the studied piece will develop 

a certain resistance and the maximum stress will have a finite value. Consequently, H will also 

have a finite value to accomplish Eq. (7). With all this, the equation sought will have a horizontal 

asymptote for H = 0 and will cut the vertical axis (𝑅𝑐/𝜌 = 0) in a certain finite value, as shown in 

Fig. 5. Among all the equations that meet these conditions, a rational equation of order 1 has 

the simplest form, provides a good adjustment and requires the fewest parameters: 

 

𝐻 =
𝑎′

𝑅𝑐/𝜌 + 𝑏′
                                                                                                                                           (8) 

 

where a’ and b’ are the only two parameters needed for the correct adjustment of the curve. 

Table 7 collects the corresponding values of the parameters for the best-fit curves of each 
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material. Proceeding in the same way, Table 6 can be extended for larger values of 𝑅𝑐/𝜌 as those 

shown in Table 8. 

 

Table 7. Fitting parameters for the first order rational curves described by Eq. (8). 

 
 (G)       

 𝑣 = 0.17 

 (O)       

 𝑣 = 0.33 

(C)         

 𝑣 = 0.27 

(F)         

 𝑣 = 0.24 

(I)          

 𝑣 = 0.23 

 (M)       

 𝑣 = 0.28 

a' 0.2199 0.1811 0.1973 0.2047 0.2070 0.1947 

b' 0.3546 0.3181 0.3331 0.3400 0.3422 0.3306 

 

Table 8. Extrapolated values of the H function. 

𝑅𝑐/𝜌 𝑣 = 0.10 𝑣 = 0.15 𝑣 = 0.20 𝑣 = 0.25 𝑣 = 0.30 𝑣 = 0.35 𝑣 = 0.40 

2 0.0982 0.0950 0.0911 0.0866 0.0815 0.0750 0.0688 

5 0.0433 0.0418 0.0400 0.0379 0.0356 0.0326 0.0298 

10 0.0224 0.0216 0.0207 0.0196 0.0184 0.0168 0.0153 

20 0.0114 0.0110 0.0105 0.0100 0.0093 0.0085 0.0078 

50 0.0046 0.0044 0.0042 0.0040 0.0038 0.0034 0.0031 

 

Once the H function is known from the extrapolation of the tabulated values, the maximum 

stress at the notch tip (𝜎𝑚𝑎𝑥) corresponding to the failure situation becomes the only unknown 

and, therefore, can be calculated using Eq. (7). The resultant value should be consistent with the 

expression proposed by Creager and Paris [39], which defines, for long and narrow notches, the 

stress distribution as a function of distance from the notch tip (r), the stress intensity factor (𝐾𝐼, 

as defined for crack-like defects), and the proper notch radius (𝜌): 

 

𝜎(𝑟) =
𝐾𝐼

√𝜋
·

2(𝑟 + 𝜌)

(2𝑟 + 𝜌)3/2
                                                                                                                          (9) 

 

The stress will be maximum at the notch tip for r = 0. Thus, Eq. (9) becomes: 

 

𝜎(0) = 𝜎𝑚𝑎𝑥 =
𝐾𝐼

√𝜋
·

2𝜌

𝜌3/2
                                                                                                                      (10) 

 

𝐾𝐼 can therefore be derived from Eq. (10), considering the value of 𝜎𝑚𝑎𝑥 obtained from Eq. 

(7). Likewise, there is an extensive bibliography that collects analytical solutions of 𝐾𝐼 for 

common test specimens (e.g., [40]), for which: 
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𝐾𝐼 =
𝑃

𝐵√ℎ
𝑌                                                                                                                                                (11) 

 

where B is the thickness and h is the height of the samples, and Y is a geometrical factor 

that depends on the relative notch length (a/ℎ) and the specimen geometry. For the test 

specimens analysed here [36,38]:  

 

𝑌 =
3 · (𝐿𝑜 − 𝐿𝑖) · (

a
ℎ

)
1/2

· 𝑋

2ℎ · (1 −
a
ℎ

)
3/2

                                                                                                               (12) 

 

with 

 

𝑋 = 1.9887 − [
(3.49 − 0.68

a
ℎ

− 1.35 (
a
ℎ

)
2

) ·
a
ℎ

· (1 −
a
ℎ

)

(1 +
a
ℎ

)
2 ] − 1.32 ·

a

ℎ
                                    (13) 

 

where 𝐿𝑜 and 𝐿𝑖 are the spans between the outer supporting rollers and the inner loading 

points as depicted in Fig. 4. 

Eventually, the loads P obtained by inverting Eq. (11) correspond to the fracture loads 

predicted by the SED criterion. Based on these outcomes, Fig. 6 gathers the results for the six 

analysed materials, representing the ratio of the predicted failure load (PSED) and the 

experimental failure load (PEXP.), against the notch radius (𝜌). The dots correspond to the 

individual results for each of the tested specimens, while the solid line represents the mean 

prediction for the different notch radii. Additionally, three horizontal lines have been included 

in the graphs. The horizontal solid line stands for the theoretically exact prediction, where 

PSED/PEXP. = 1. The values below this line imply an underestimation of the fracture load, while the 

values above it imply an overestimation. On the other hand, the dashed lines constitute the 

envelope of ±20%, which tries to encompass the intrinsic uncertainties of the performed 

laboratory tests and, especially, the variability of the fracture results due to the heterogeneous 

nature of the materials. Even though the variability of the experimental results is greater than 

20% in some of the cases, this strip delimited by the dashed lines will be considered as 

representative of the accuracy of the predictions for mean values. 
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Figure 6. SED predictions (Method A) of the failure load for each rock. 

 

In accordance with Fig. 6, Method A offers reasonable results even for the largest notches 

beyond the application range of Eq. (9). Nevertheless, the Carrara Marble (Fig. 6e) shows the 

worst predictions with almost 50% of the individual results outside the established limits, 

probably because of the significant variability of its experimental results, which make it difficult 

to obtain representative values of its key mechanical parameters, such as the fracture toughness 

or the tensile strength. The results for the rest of the rocks fall acceptably within the upper and 

lower bands, with more than 70% of the dots inside these limits in the case of the Macael Marble 

(Fig. 6f) and more than 80% for the remaining rocks (Fig. 6a, 6b, 6c and 6d). Finally, the 

predictions tend to be more conservative for the smaller notch radii. 

 

 

4.2. METHOD B: NUMERICAL EVALUATION OF FUNCTION H 

The second proposed method deals with numerical modelling in order to generate a new 

table for the H function, adapted to the range of 𝑅𝑐/𝜌 values appropriate for the analysed rocks. 

a) 

c) d) 

e) f) 

b) 

https://www.linguee.es/ingles-espanol/traduccion/nevertheless.html
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The H function is theoretically independent of the notch radius (𝜌𝑓𝑒𝑚) considered in the 

calculation model, only depending on 𝑣 and on the ratio 𝑅𝑐/𝜌 as long as U-shaped notches 

(2𝛼 = 0) are considered. For this reason, from a strict point of view, it is necessary to conduct a 

single numerical model for each material with a specific notch radius, thereby obtaining the 

values of H that correspond to each 𝑅𝑐/𝜌  with this unique model. Theoretically, for a given 

value of that ratio and for each 𝑣, only one value of H is possible. Consequently, any combination 

of 𝑅𝑐 and 𝜌 offering the same ratio will also provide the same H for a certain material. However, 

this statement is rather limited, since the bigger the notch radius (ρ) the larger the control area 

(defined by 𝑅𝑐) for a given value of 𝑅𝑐/𝜌, and the other way around. Fig. 7 shows, as an example, 

the case of the Moleano Limestone. It is observed how, for a certain value of 𝑅𝑐/𝜌, the size of 

the control area increases with the size of the modelled notch, representing the cases of 𝜌𝑓𝑒𝑚 

= 1, 𝜌𝑓𝑒𝑚 = 2 and 𝜌𝑓𝑒𝑚 = 4 mm, respectively. Thus, the chosen notch radius for the numerical 

model will influence the dimensions of the control area (Ω) over which the strain energy is 

averaged. The lower bound of this area is delimited by the refinement of the mesh, while the 

upper bound has a double limitation. First, the geometry of the numerical model physically limits 

the maximum size of that area and, second, the closed form expressions are only valid in the 

vicinity of the notch. In fact, the applied methodology assumes that the local stress field assessed 

from the notch tip to a distance 𝑅𝑐 is governed by the Generalised Notch Stress Intensity Factor 

𝐾𝐼, which is true up to a distance where the influence of the outer limit of the specimen is 

negligible, but is no longer valid for large values of 𝑅𝑐 where the influence of the boundary 

becomes noticeable. 

 

 

 

Figure 7. Control areas (Ω) of the Moleano Limestone (C) for 𝑅𝑐/𝜌 = 1.526 (corresponding to 

𝑅𝑐= 3.0513 mm and ρ = 2 mm) and for a model with (a) 𝜌𝑓𝑒𝑚 = 1, (b) 2 and (c) 4 mm. 

 

In order to use a single numerical model for each of the rocks with a single notch radius 

(𝜌𝑓𝑒𝑚), the considered critical radius 𝑅𝑐_𝑓𝑒𝑚 in the calculation will vary so as to maintain the 

ratio 𝑅𝑐/𝜌. Thus, 𝑅𝑐_𝑓𝑒𝑚 will have to fulfil the following expression: 

Ω 
Ω 

Ω 

a) b) c) 
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𝑅𝑐

𝜌
=

𝑅𝑐_𝑓𝑒𝑚

𝜌𝑓𝑒𝑚
      →       𝑅𝑐_𝑓𝑒𝑚 = 𝑅𝑐 ·

𝜌𝑓𝑒𝑚

𝜌
                                                                                       (14) 

 

According to Eq. (14), when the notch radius that is implemented in the model (𝜌𝑓𝑒𝑚) is 

larger than the notch radius that is being assessed in the fracture prediction (𝜌), the value of 

𝑅𝑐_𝑓𝑒𝑚 that is considered in the calculation will be larger than the critical 𝑅𝑐 corresponding to 

the rock. Therefore, it can be concluded that the larger 𝜌𝑓𝑒𝑚 is selected for the model, the larger 

the required control areas. By contrast, the control area will get smaller as lower values of 𝜌𝑓𝑒𝑚 

are considered in the model. Therefore, it is necessary to define a notch radius for the numerical 

model that ensures an adequate control area (Ω) size to obtain the optimum results. 

A sensitivity analysis has been carried out in order to determine the most suitable notch 

radius to be implemented in the model. First of all, a notch with 𝜌𝑓𝑒𝑚 = 1 mm has been 

considered, obtaining the corresponding values of H. These values have proven to be very similar 

to those proposed by [26] and shown in Table 6, which were, in origin, obtained numerically for 

𝜌𝑓𝑒𝑚 = 1 mm. Thus, the defined model has been validated and can be considered suitable for 

the numerical analysis. Likewise, the numerical models made with the rest of the available notch 

sizes have also been checked, and it was observed that the best results correspond to the model 

with the smallest notch radius, 𝜌𝑓𝑒𝑚 = 0.15 mm, while the largest radii offer the poorest results. 

This generality makes sense, since the control area (Ω) becomes larger as higher values of 𝜌𝑓𝑒𝑚 

are implemented in the model, even exceeding its geometric limits. For these reasons and for 

the sake of simplicity, only the results for 𝜌𝑓𝑒𝑚 = 0.15 mm and 𝜌𝑓𝑒𝑚 = 1 mm are presented here.  

In this work, a finite element code called PLAXIS 2D [41] has been used to model the test 

specimens. A linear elastic model is used to simulate the rocks, so only two parameters are 

needed: the Young’s modulus (E) and the Poisson’s ratio (𝑣). The applied load is not 

determinant, since H is independent of the maximum stress at the notch tip (𝜎𝑚𝑎𝑥) and 

proportional to the mean strain energy density (�̅�), which are the only required outputs for this 

second proposed method. Both Table 9 and Table 10 gather, on one side, the 𝑅𝑐 and 𝑣 values 

of the analysed rocks and, on the other, the H values for the different notch radii. These values 

are directly obtained by inverting Eq. (6), both from the model with 𝜌𝑓𝑒𝑚 = 1 mm and 𝜌𝑓𝑒𝑚 = 

0.15 mm, respectively. All the values in Table 6 and Table 9 are obtained numerically with a 

notch radius 𝜌𝑓𝑒𝑚 = 1 mm, but only those indicated in bold are comparable with the values 

proposed by [26] in Table 6, since the corresponding 𝑅𝑐/𝜌 ratios are in the same range. By 
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contrast, the remaining values are outside that range and must therefore be compared with the 

extrapolated values of the first methodology. 

 

Table 9. H function obtained numerically from the model with 𝜌𝑓𝑒𝑚 = 1 mm (Method B). 

  (G)  (O)  (C)  (F)  (I)  (M) 

𝑣 0.17 0.33 0.27 0.24 0.23 0.28 

𝑅𝑐 (mm) 6.4333 2.1283 3.0513 3.6419 2.2429 5.5005 

𝜌 = 0.15 mm 0.0032 0.0049 0.0037 0.0032 0.0051 0.0027 

𝜌 = 0.5 mm 0.0058 0.0191 0.0155 0.0130 0.0236 0.0072 

𝜌 = 1 mm 0.0135 0.0420 0.0344 0.0295 0.0509 0.0174 

𝜌 = 2 mm 0.0328 0.0907 0.0726 0.0629 0.1066 0.0379 

𝜌 = 4 mm 0.0719 0.1910 0.1524 0.1311 0.2186 0.0797 

𝜌 = 7 mm 0.1318 0.2939 0.2570 0.2281 0.3290 0.1456 

𝜌 = 10 mm 0.1909 0.3564 0.3264 0.3018 0.3929 0.2091 

𝜌 = 15 mm - - 0.3955 0.3762 0.4593 0.2889 

 

Table 10. H function obtained numerically from the model with 𝜌𝑓𝑒𝑚= 0.15 mm (Method B). 

  (G)  (O)  (C)  (F)  (I)  (M) 

𝑣 0.17 0.33 0.27 0.24 0.23 0.28 

𝑅𝑐 (mm) 6.4333 2.1283 3.0513 3.6419 2.2429 5.5005 

𝜌 = 0.15 mm 0.0025 0.0077 0.0069 0.0059 0.0102 0.0035 

𝜌 = 0.5 mm 0.0110 0.0270 0.0243 0.0214 0.0354 0.0131 

𝜌 = 1 mm 0.0231 0.0542 0.0482 0.0428 0.0699 0.0266 

𝜌 = 2 mm 0.0472 0.1101 0.0948 0.0848 0.1348 0.0529 

𝜌 = 4 mm 0.0937 0.2373 0.1939 0.1663 0.2940 0.1022 

𝜌 = 7 mm 0.1614 0.3375 0.3340 0.3121 0.4539 0.1796 

𝜌 = 10 mm 0.2269 0.4242 0.4391 0.4087 0.5148 0.2886 

𝜌 = 15 mm - - 0.5001 0.5113 0.5495 0.3937 

 

Once the H function is known, the predicted failure load (PSED) is calculated proceeding in 

the same way as in Method A, starting from Eq. (7). The pertinent results are shown in Fig. 8 and 

Fig. 9. 
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Figure 8. SED predictions (Method B: 𝜌𝑓𝑒𝑚= 1 mm) of the failure load for each rock. 

 

Fig. 8 shows the results obtained using the H values from the numerical model with 𝜌𝑓𝑒𝑚 = 

1 mm superposed on the previous results depicted in Fig. 7. For the range of comparable 𝑅𝑐/𝜌 

values, that is, the non-extrapolated part but the overlapping one, the coincidence should be 

reflected in the last segment of the plotted curves, from 𝜌 = 4 mm onwards for the oolitic 

limestone (Fig. 8b), Moleano limestone (Fig. 8c), Floresta sandstone (Fig. 8d) and Carrara marble 

(Fig. 8e) and from 𝜌 = 7 mm on for the granite (Fig. 8a) and Macael marble (Fig. 8f). All the curves 

reveal a clear similarity in this range of values, except the granite that shows some differences. 

On the contrary, the initial part of the curves is to be compared with the extrapolated values of 

Method A. It can be observed that the adjustment between both curves is somewhat worse in 

this zone. A generalized overestimation is observed in Fig. 8 for the smallest notch radii in all the 

analysed rocks. The control area over which the strain energy density is averaged exceeds the 

boundary condition in these cases, which explains the observed overestimations. However, the 

predictions for the biggest notches (corresponding to the relatively small control areas) offer 

more accurate predictions according to Fig. 8. Thus, it can be concluded that the numerical 

a) 

c) d) 

e) f) 

b) 
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model with 𝜌𝑓𝑒𝑚 = 1 mm might be sufficient to obtain the H for 𝑅𝑐/𝜌 ratios common in 

materials like steels or polymers with lower critical radii (𝑅𝑐), but falls short in materials like 

rocks where 𝑅𝑐 is of the order of several millimeters, specially in the case of evaluating the 

fracture of small notches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. SED predictions (Method B: 𝜌𝑓𝑒𝑚 = 0.15 mm) of the failure load for each rock. 

 

Finally, the results obtained using H values from the numerical model with 𝜌𝑓𝑒𝑚 = 0.15 mm 

are shown in Fig. 9. The accuracy of the predicted failure loads (PSED) is reasonable in all the 

studied rocks, even for the Carrara Marble which offered the worst results in the previous cases. 

More than 80% of the individual results fall, on average, within the ±20% strip defined by the 

dashed lines, except the Carrara Marble, where the percentage is considerably lower despite 

the improvement in the mean results (Fig. 9e). Moreover, the tendency observed when applying 

the extrapolation (Method A), consisting in obtaining less conservative results when increasing 

the notch radius, is not perceived here (neither in Fig. 8, nor in Fig.9). 

a) 

c) d) 

e) f) 

b) 
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4.3. METHOD C: NUMERICAL EVALUATION OF �̅̅̅� 

The two previous methods are based on [39] to define the stress distribution at the notch 

tip (Eq. (9)). This corresponding expression is theoretically valid only for long and narrow 

notches, so the largest analysed radii are outside its application range, despite having proven to 

offer reasonable results. This third methodology aims to avoid the use of Eq. (9), directly relating 

the applied load (P) in the numerical model with the obtained strain energy density. In fact, it is 

based on the existing proportionality relation between P and the mean strain energy density 

corresponding to a given control area (�̅�). This proportionality is squared (Eqs. (6,10,11)), so 

that twice the applied load (2P) involves four times the average strain energy density (4�̅�).  

On this basis, Method C calculates, using finite element analyses, the necessary load for the 

mean strain energy density (�̅�) to be equal to the critical strain energy density (𝑊𝑐). This load 

defines the failure condition and will therefore be equal to the predicted failure load (PSED).  

The results of this last proposed methodology are depicted in Fig. 10. It is generally 

observed that the accuracy of the predictions is quite reasonable for the largest notch radii (e.g. 

Fig. 10d), where the use of [39] was theoretically out of application. However, the predicted 

failure loads for the smallest notch radii do not provide such good results and there is a clear 

and general tendency to overestimate them (e.g. Fig. 10b and Fig. 10f). Finally, the results 

corresponding to the granite (Fig. 10a) are noticeably above the theoretical failure line, which 

implies an overestimation factor of around 1.4 on average. Among all the studied rocks, the 

granite is the one with the largest critical radius and with the smallest specimen height (Fig. 4a). 

For this reason, the influence of the boundary is more noticeable than in the rest of rocks. 

Besides, Method C directly applies Eq. (6) for the fracture assessment, which is theoretically only 

valid when the control area embraces the semi-circular edge of the notch and not its rectilinear 

flanks [26]. This statement justifies the worsening of the results in Method C, especially in the 

case of the granite and in the case of evaluating the failure of the smallest notch radii. However, 

this effect is somehow smoothen when applying Method B, where the fracture is assessed 

according to Creager and Paris [39] through the application of Eq. (9). 

Finally, it should be pointed out that although Method C avoids the use of Eq. (9), it requires 

the realization of a different numerical model for each test condition, that is, one for each 

material type and notch radius. This implies an important drawback, as the required workload 

for the fracture assessment increases considerably. 
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Figure 10. SED predictions (Method C) of the failure load for each rock. 

 

5. CONCLUSIONS 

This paper presents the fracture analysis of six different types of rocks, which is based on 

two main aspects: firstly, on the results of an exhaustive experimental program described in 

Section 4; secondly, on the application of the Strain Energy Density (SED) criterion for the 

prediction of fracture loads, which is applied through three different methods (here named A, B 

and C).  

After observing and analysing the results obtained when using these three methods, several 

conclusions must be highlighted: The SED criterion has proven to provide reasonable fracture 

load predictions within a range of ±20% with respect to the average experimental failure loads. 

In this sense, the results of the Carrara Marble offer the poorest fitting, probably because of the 

high scatter observed in the experimental tests. 

Method A provides a good agreement between the predicted and the experimental failure 

loads, avoiding the use of numerical analyses and using tabulated values of the H function (and, 

a) 

c) d) 

e) f) 

b) 
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when necessary, their corresponding extrapolation). By contrast, Method B requires a simple 

numerical analysis in order to calculate the H function. The best results correspond to the 

numerical model with the smallest notch radius (𝜌𝑓𝑒𝑚 = 0.15 mm), and it has been 

demonstrated that the results of Method B (derived from the numerical model with 𝜌𝑓𝑒𝑚 = 1 

mm) and Method A (whose tabulated values were also numerically obtained for 𝜌𝑓𝑒𝑚 = 1 mm) 

are quite similar in the comparable range of values. Both Method A and B provide reasonable 

results even beyond the application range of the Creager and Paris stress distribution, which is 

supposed to be only valid for long and narrow notches. Conversely, Method C requires a more 

laborious numerical modelling analysis than Method B, but avoids the use of the Creager and 

Paris stress distribution. Satisfactory fracture load predictions are obtained for the largest notch 

radii with this third method, while for the smallest notches significant overestimations are 

generated.  

Finally, it can be concluded that in the case of rocks the size of the control areas are 

relatively large. Thus, especial care must be taken in order to ensure that the influence of the 

boundary can really be neglected. One solution to this problem is applying the Method B with a 

sufficiently small 𝜌𝑓𝑒𝑚 value that guarantees tiny critical radii. In this way, the local stress field 

evaluated from the notch tip to a radial distance 𝑅𝑐 will still be governed by the Generalised 

Notch Stress Intensity Factor 𝐾𝐼 and the assumed hypothesis will be valid. 
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