Photoelectrochemical reactors for CO₂ utilization

Sergio Castro^{*}, Jonathan Albo and Angel Irabien

Department of Chemical & Biomolecular Engineering, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain

*Corresponding author, email: sergio.castro@unican.es

ABSTRACT

The photoelectrochemical reduction of CO_2 to renewable fuels and valuable chemicals using solar energy is a research topic that has attracted great attention recently due to its potential to provide value added products under the sun, solving the issues related to global warming at the same time. This review covers the main research efforts made on the photoelectrochemical reduction of CO_2 . Particularly, the study focuses in the configuration of the applied reactor, which is a topic scarcely explored in the literature. This includes the main materials used as photoelectrodes and their configuration in the photoelectrochemical reactor, which are discussed for technical uses. The review provides an overview of the state-of-the-art and aims to help in the development of enhanced photoelectroreactors for an efficient CO_2 utilization.

KEYWORDS: Photoelectrocatalysis; CO₂ reduction; reactor configurations; photoelectrodes; climate change

INTRODUCTION

The reduction of fossil fuels and the growing emission of carbon dioxide (CO_2) have accelerated research activities to produce fuels and chemicals from wasted CO_2 as a carbon source. CO₂ can be considered an unlimited, renewable and valuable carbon source instead of a greenhouse gas emission. However, due to the chemical properties of CO_2 , its transformation requires a high level of energy since the bond dissociation energy of C=O is \sim 750 kJ·mol⁻¹, higher than other chemical bonds such as C-H (\sim 430 kJ·mol⁻¹) and C-C (\sim 336 kJ·mol⁻¹).¹ Nowadays, there are several technologies able to chemically reduce CO_2 to value added products. Among them: thermochemical processes (i.e. hydrogenation, reforming), mineralization, electrochemical reduction and photo/photoelectro-chemical reduction.² Compared to thermochemical processes, mineralization processes present limitations that should be solved through further technological developments due to the low carbonation rates, high cost and energy penalties. It is also possible to dissociate CO₂ and H₂O by thermolysis at extremely high temperatures. Electrochemical processes, however, permit to dissociate H₂O or CO₂ at ambient conditions using electricity and has attracted worldwide interest due to their potential environmental and economic benefits.³ This technology not only offer a viable route to reuse CO₂ but also an excellent alternative to store intermittent energy from renewable sources in the form of chemical bonds.^{4, 5} When electrochemical reduction integrates a light source, a photoelectrochemical device is obtained, which has attracted an intense progress in recent years.^{6, 7} In principle, such integration reduces the system capital cost and enables higher efficiency by reducing losses in transporting electricity to the electrolysis cell, eliminating current collectors and interconnections between devices. The operation of a photoelectrochemical (PEC) cell is inspired by natural photosynthesis in which carbohydrates are formed from CO_2 . The goal is to use excited electrons that are generated when the semiconductor absorbs light to effect electrochemistry on a redox couple strategically chosen to produce the desired chemicals.⁸

Figure 1. Photoelectrochemical setup.⁹

The concept of a photoelectrochemical cell is comparable to a conventional electrochemical cell, except that energy necessary to cause redox reactions is partially provide by the light. This concept is represented in Figure 1. A semiconductor material absorbs the light at the working electrode, exciting electrons to a higher energy level that, together with the corresponding holes generated, are able of carrying out reduction and oxidation reactions at a semiconductor/liquid interface. In practice, several characteristics of the photoelectrodes must be satisfied simultaneously: the electronic band gap of the photoelectrode must be low enough for efficient photon collecting from the solar spectrum (<2.2 eV) and high enough such that the excited electrons have enough energy to split water (>1.23 eV or typically at least 1.6-1.7 eV for sufficient rates), the band edges must cover the water electrolysis redox potentials and the photoelectrochemistry is therefore a thrilling and interdisciplinary research fied that includes electrochemistry, surface science, solid-state physics and optics.¹¹

 CO_2 can be converted to a wide range of products such as CO, H₂, HCOOH, CH₃OH, CH₄, etc.¹² Equations 1–5 shows the thermodynamic potentials for CO₂ reduction products at neutral pH in aqueous solution versus a saturated calomel electrode (SCE) and 25°C and atmospheric pressure: ¹³

$$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$$
 $E^\circ = -0.77V (1)$

- $CO_2 + 2H^+ + 2e^- \rightarrow HCOOH$ $E^\circ = -0.85V (2)$
- $CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$ $E^\circ = -0.62V (3)$
- $CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$ $E^\circ = -0.48V (4)$

$$\operatorname{CO}_2 + e^- \to \operatorname{CO}_2^ \operatorname{E}_\circ = -2.14 \mathrm{V} \ (5)$$

The extent to which the reaction progresses depends mainly on the catalytic systems, as well as the reaction media and potential applied.¹² Typically, multiple proton coupled electron transfer steps must be orchestrated, presenting kinetic barriers to the forward reaction.¹³ Besides, part of the energy supplied to the system may be consumed by the competitive reaction for H₂ production from water electrolysis in the Hydrogen Evolution Reaction (HER). The state-of-the-art for the production of value added products from CO₂ using solar energy is still far from practical consideration, but knowledge has been accumulated through the years.¹⁴ Since the first report in 1978 on CO₂ photoelectrochemical reduction by Halman, ¹⁵ many review articles have been writing about different aspects of this photoelectrochemical technology, as shown in Table 1. In 2014, Ibrahim et al.⁹ collected the available knowledge about photoelectrochemical

2	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
 วา	
22	
23	
24	
25	
26	
20	
2/	
28	
29	
30	
31	
21	
52	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
⊿1	
41	
42	
43	
44	
45	
46	
40	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	
60	

reactions to produce biofuel from biomass. In 2015, Sudha et al.¹⁶ review the recent developments in the synthesis and application of composite photocatalysts derived from TiO₂, CdS, WO₃, SnS and ZnO. Moreover, Nikokavoura et al.¹⁷ presented alternative photocatalysts to TiO₂ for the photoelectroreduction of CO₂. Inorganic and carbon based semiconductors, mixed-metal oxides, salt composites and other groups of photocatalyst were examined in this review. Moreover, a simplified energetic and economic feasibility assessment for a solar refinery (including photoelectrochemical means) for the production of methanol was developed by Herron et al.^{18, 19}, concluding that at least a 15% solarto-fuel efficiency is required in order to compete with industrial methanol production. Besides, one of the most important factors affecting the CO₂ reduction performance is the configuration of the photoreactor. A complete discussion on photoreactoreactor analysis and design was carry out by P.L. Yue in 1985.²⁰ In this paper, the author presented and overview of the important engineering problems in the modelling and design of photoreactors. More recently, Cassano et al.²¹ in 2005, described the most important technical tools that are needed to design photoreactors using computer simulation of a rigorous mathematical description of the reactor performance, both in the laboratory and on a commercial scale.

Author (year)	Publication title	Ref.
A. I. Bard (1070)	Photoelectrochemistry and heterogeneous photo-	22
A. J. Dalu (1979)	catalysis at semiconductors	
$D \wedge Tryk (2000)$	Recent topics in photoelectrochemistry:	23
D.A. 119K (2000)	achievements and future prospects	23
B Kumar (2012)	Photochemical and Photoelectrochemical	
D. Kulliai (2012)	Reduction of CO ₂	
	Prospects for conversion of solar energy into	
A. Harriman (2013)	chemical fuels: the concept of a solar fuels	7
	industry	

Table 1. List of review articles on CO₂ photoelectrochemical reduction.

S N Habisreutinger (2013)	Photocatalytic reduction of CO ₂ on TiO ₂ and	24	
5.10 Hubbieddinger (2013)	other semiconductors	21	
N Ibrahim (2014)	Biofuel from biomass via photo-electrochemical	9	
11. Iorannii (2014)	reactions: An overview		
	Hybrid catalysts for photoelectrochemical		
L_{2} Theo (2014)	reduction of carbon dioxide: a prospective	25	
J. Zhao (2014)	review on semiconductor/metal complex co-	23	
	catalyst systems		
	Advances and Recent Trends in Heterogeneous		
J. Highfield (2015)	Photo(Electro)-Catalysis for Solar Fuels and	26	
	Chemicals		
V. Vor (2015)	Photoelectrocatalytic Reduction of Carbon	0	
r. ran (2013)	Dioxide	ð	
	Electrolyte-less design of PEC cells for solar		
$C_{\rm Ampalli}$ (2015)	fuels: Prospects and open issues in the		
C. Ampeni (2013)	development of cells and related catalytic	21	
	electrodes		
D Sudha (2015)	Review on the photocatalytic activity of various	16	
D. Sudila (2013)	composite catalysts	10	
	Photocatalytic and photoelectrocatalytic		
S. Xie (2016)	reduction of CO2 using heterogeneous catalysts	28	
	with controlled nanostructures		
A Nikokayoura (2017)	Alternative photocatalysts to TiO ₂ for the	17	
A. Nikokavoura (2017)	photocatalytic reduction of CO ₂	17	
	Inorganic semiconductors-graphene composites		
L. Y. Ozer (2017)	in photo(electro)catalysis: Synthetic strategies,	29	
	interaction mechanisms and applications		
D Wong (2019)	Recent Progress on Photo-Electrocatalytic	20	
r. wang (2010)	Reduction of Carbon Dioxide	30	

In any case, it seems that the effect of reactor configuration in the CO₂ photoreduction performance has not been discussed in literature as much as the development of active materials. To fill this gap, the aim of the present review is to provide a deeper analysis on the photoelectroreduction of CO₂ in terms of photoelectrochemical cell and photoelectrodes configuration, together with a discussion on photoactive materials applied and obtained products for each configuration as key variables in process performance. The discussion is structured as follows: (i) Photoelectrochemical reactor

configurations, (ii) Photoelectrode materials, (iii) Main reduction products and finally, (iv) Conclusions and future challenges. This compilation aims to be a step further towards real application of photoelectroreactors for CO₂ conversion.

SUMMARY OF STUDIES

PEC reactor configuration

The reactor can be considered the heart of a photoelectrochemical system. In a PEC reactor, the illumination of the photoactive surface becomes crucial, together with other common variables in reactors such as mass transfer, mixing or reaction kinetics. ³¹ The design should be made based on a careful evaluation of different factors influencing reaction performance: ^{20, 21} (i) light source and geometrical configuration, (ii) construction material, (iii) heat exchange, (iv) mixing and flow characteristics and (v) phases involved and mode of operation.³² These are discussed as follows:

(i) For optimum results, light needs to be distributed homogenously through the entire photoactive surface.³³ The choice of the most suitable light source can be made by evaluating the reaction energy requirements with respect to the lamp specifications. The well-known Xenon arc lamp seems to be the most employed lamp in literature. This lamp produces a bright white light that closely mimics natural sunlight when electricity pass through the ionized Xe gas at high pressure.^{34, 35} If solar energy is being considered, it should be noticed that sunlight mainly consists of three different wavelengths: ultraviolet ($\lambda < 400$ nm), visible ($\lambda = 400$ -800 nm) and infrared ($\lambda > 800$ nm), accounting for 4%, 53%, and 43% of the total solar energy, respectively.³⁶ Moreover, it is recommended to give a certain pattern of irradiation by mounting the light source inside a glass sheath or some suitable optical assembly as Ampelli et al.³⁷ evaluated where the Xe-arc lamp of

300 W was protected by a housing and a set of lenses were employed. Regarding geometrical configuration, it is necessary to determine the optical path of the light inside the reactor, in a way to obtain the maximum benefit from the irradiation pattern and a good absorption of light photons. For photo-reactors, other aspects such as the spatial relation between reactor and light source and geometry are crucial. In all cases, the irradiation takes place normal to the reactor surface.

(ii) In photo-reactors, the requirements of light transmission influenced in the construction material election. The choice is usually limited to different types of glass being the Pyrex glass the most used in the bibliography for its adequate light transmission and cost, ³⁸⁻⁴⁰ although quartz glass is more expensive, but generally gives the best performance in terms of light transmission. At short wavelengths (λ < 300 nm) quartz seems to be the only appropriate material. In some cases, the glass has been substituted by the plastic Plexiglas, except the reactor window, which continuous being made of glass to allow UV light transmittance. For instance, Cheng et al.⁴¹ reduced CO₂ using a PEC Plexiglas reactor with a quartz window achieving a light intensity at the anode surface of 10 mW·cm⁻² with a 300 W Xe-arc lamp. Another important factor is the thickness of the reactor wall, which decreases the light transmission and limited the size of the reactor and the operating temperature and pressure. Others authors,^{42, 43} use a different design to illuminate the photocatalyst surface, avoiding the problems of construction materials and light transmission by combining the PEC cell with a solar panel (PEC-photosolar cell tandem). Thus, the photomaterial is directly illuminated, the light is not disturbed by aqueous media and H₂O could be oxidized in the photoanode without applying external bias.

(iii) Heat exchange should be particularly considered, especially in gas-solid systems. Suitable devices must be designed to remove the heat generated by the lamp, because of the glass low thermal conductivity.³² For example, Ong et al.⁴⁴ positioned a water jacket between the PEC cell systems and the Xe arc lamp to lessen the effects of heat on the Na₂SO₄ electrolyte solution during irradiation.

(iv) Mixing and flows depend on the phases involved in the process are also important factors to take into account. It is recommended to mix. In the case of heterogeneous photo-reactions, contact between reactants, photons and catalysts should be promoted, for example with agitation of the reacting mixture using a stirrer.³²

(v) Photoreactors applied for CO_2 photoconversion can be classified according to the phases involved (i.e., gas-solid, liquid-solid, gas-liquid-solid, etc.) and the mode of operation (i.e., batch, semi-batch or continuous). Moreover, the materials can be generally in suspended (fluidized bed) or immobilized forms (fixed bed) in reactors. The main pros and cons of different current photoreactor systems for CO_2 transformation are summarized in Table 2.³³ Figure 2 shows the schematic configuration of various types of photocatalytic reactors, which may serve as a reference for the design of new photoelectrocatalytic reactors (i.e. light incidence, flows inlet/outlet, photoactive surface configuration, etc.).

Table 2.	Photoreactor	systems:	advantages	and	disadvantages.
		2	0		\mathcal{U}

Reactor design	Advantages	Disadvantages	Ref.
	-Temperature	-Filters (liquid phase)	
	_		45-47
Fluidized and	gradients inside the	and scrubbers (gas) are	
slurry reactor	beds can be reduce	needed.	

2	
3	
4	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/	
38	
39	
40	
41	
4Z 42	
45 11	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

(multiphase)	through vigorous	-Flooding tends to	
	movements caused by	reduce the effectiveness	
	the solid passing	of the catalyst.	
	through the fluids.	-Difficulty of separating	
	-Heat and mass	the catalyst from the	
	transfer increase due	reaction mixture.	
	to agitated movement	-Low light utilization	
	of solid particles.	efficiency due to	
	-High catalyst	absorption and	
	loading.	scattering of the light by	
		the reaction medium.	
		-Restricted processing	
		capacities due to	
		limitations in mass	
		transfer.	
	-High surface area.	-Temperature gradient	
	-Fast reaction time.	between gas and solid	
	-The conversion rate	surface.	
	per unit mass of the		
Fixed had reactor	catalyst is high due to		48 40
Fixed bed feactor	the flow regime close		40, 49
	to plug flow.		
	-Low operating cost		
	due to a reduced		
	pressure drop.		

	-High surface to	-Low light efficiency	
	volume ratio and low	due to opacity of	
Monolith reactor	pressure drop with	channels of the	50, 51
	high flow rate.	monolith.	,
	-Configuration can be		
	easily modified.		
	-High surface area	-Maximum use of the	
Optical fiber	and light utilization	reactor volume is not	
reactor	efficiency.	achieved.	51. 52
	-Efficient processing	-Heat build-up of fibers	,
	capacities of the	can lead to rapid	
	catalyst.	catalyst deactivation.	

Figure 2. (a) Monolith photoreactor,⁵⁰ (b) Optical fiber photoreactor ⁵¹ and (c) Fixed bed photoreactor.⁴⁵

The recirculation of unconverted CO_2 also must be taken into account when designing an effective photoelectroreactor, since the separation of the products from CO_2 could account for 6-17% of the total energy required in the process.⁵³ Moreover, undivided photoelectrochemical reactors (Figure 3), in which plate-type electrodes are separated by a liquid phase that acts as both anolyte and catholyte have been commonly used. In these type of cells, the process costs increase due to the extra separation step required for the product recuperation.⁵⁴ For a practical use of PEC cells, the separation in two distinct

compartments where CO₂ reduction and water oxidation take place, is more appealing than the single compartment process, since one can deal with one reaction at a time. As a result, the efficiency of the redox reactions increase, as so the charge recombination and products separation .^{37, 55, 56} The election between single and dual compartment cell does not follow a determinant rule and depends on the case, although dual compartment cells are usually preferred. ^{37, 38, 40}

Besides, in order to allow an efficient collection/transport of electrons over the entire film as well as the diffusion of protons through the membrane (Figure 4), both anode and cathode should be in the form of a thin film separated by a proton-conducting membrane (Nafion or other materials)^{37, 57} and fixed onto a porous conductive substrate in the PEC cell. For CO₂ photoreduction, an efficient evolution of oxygen on the anode side is also needed, together with an efficient evolution of CO₂ and diffusion of reaction products on the cathode side. Moreover, the use of gas diffusion electrodes (GDEs) and gas phase operation on the cathode compartment is preferable, in order to avoid the limitations of CO₂ solubility.^{37, 58}

Figure 3. Single compartment cell (W= working electrode, R= reference electrode,

and C=counter electrode).59

The mass transport in the electrode is a limiting factor as better catalyst are progressively becoming available. For this, several elements have been considered: high pressure operation, the use of GDEs and no aqueous electrolytes. ⁶⁰ GDEs usually consists of a carbon fiber substrate (CFS), a micro porous layer (MPL), typically is composed of carbon powder and polytetrafluoroethylene (PTFE), and a catalyst layer (CL). Del Castillo et al., ⁶¹ compared a Sn-GDE with a Sn plate electrode and obtained higher rates for the Sn-GDE than for Sn plate electrode, demonstrating the exceptional performance of GDEs for CO₂ reduction. ^{60, 62} Gas phase CO₂ transformation by using GDEs can be also applied to enhance CO₂ transfer, allowing the operation at higher current densities in the cell as demonstrated by Merino-Garcia et al.,⁶³ in a dual compartment cell for methane and ethylene production by using a Cu-based membrane electrode assembly (MEA).

Figure 4. Dual compartment cell.⁶⁴

Moreover, the type of ion transport membrane applied is key in the CO_2 photoelectrochemical reduction performance, where proton exchange membranes (PEMs) are preferred due to their favored protons transport from the anode to the cathode than the anion exchange membranes (AEMs), with anions transported from the cathode to the anode compartment, but of course it may depend on the reaction conditions and cell configuration. ⁵⁴ The expected reactions in a PEM-based reactors are: ⁵⁵

Cathode:

 $\mathrm{CO}_2 + 2\mathrm{H}^+ + 2\mathrm{e}^- \to \mathrm{CO} + \mathrm{H}_2\mathrm{O} \tag{6}$

$$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \leftrightarrow \mathrm{H}_{2} \tag{7}$$

Anode:

 $2H_2O \leftrightarrow O_2 + 4H^+ + 4e^- \tag{8}$

While the expected reactions in a AEM are: 55

Cathode:

 $3\text{CO}_2 + \text{H}_2\text{O} + 2\text{e}^- \leftrightarrow \text{CO} + 2\text{HCO}_3^-$ (9)

 $2\text{CO}_2 + 2\text{H}_2\text{O} + 2\text{e}^- \leftrightarrow \text{H}_2 + 2\text{HCO}_3^- \tag{10}$

Anode:

$$2\text{HCO}_{3} \leftrightarrow \frac{1}{2}\text{O}_2 + \text{H}_2\text{O} + 2\text{CO}_2 \tag{11}$$

There are many examples on the use of PEMs in photoelectroreduction, ^{5, 65, 66} while AEMs are not usually employed, although some examples are reported in electrochemical devices where current densities as high as 130 mA·cm⁻² can be achieved.⁶⁷ This is the case for the new anion-conductive polystyrene methyl methylimidazolium chloride (tradenamed SustainionTM) AEM membrane developed by Masel and co-workers, which

excessed standards for product selectivity and current density with commercially available AEM. ⁶⁷

Moreover, bipolar membranes (BPM), made of an anion and cation exchange membranes, have recently gain interest for CO₂ transformation due to their ability to separate anode and cathode compartments and the high sensitivity on pH required to facilitate different electrolyte conditions for the anode and for the cathode by the selective transport of OH⁻ to the anode and H⁺ to the cathode. ^{68, 69} Maintaining the pH constant, BPMs allow the use of new earth-abundant metal anodes that are stable in basic conditions and highly active acid-stable cathodes for CO₂ reduction, which cannot be realized by using PEMs and AEMs ⁶² Recently, Zhou et al.,⁶⁹ reported a FE >94% to HCOOH (8.5 mA·cm⁻²) using a GaAs/InGaP/TiO₂/Ni photoanode and a Pd/C nanoparticle-coated Ti mesh cathode, employing as electrolytes 1.0 M KOH (pH=13.7) and 2.8 M KHCO₃ (aq) (pH=8.0) separated by a BPM that facilitated the separation of redox reactions to a single compartment cell.

In addition, the formation of liquid products from CO_2 reduction has mostly focused on batch PEC reactors. ^{3, 4, 70, 71} Only a few researchers deal with the concept of continuous flow photoelectrochemical reactors, ⁷² required in the production at industrial scale, minimizing capital costs and maximizing product consistency as demonstrated in case of electrochemical systems for CO_2 continuous reduction. To this end, a continuous flow PEC reactor (CFPR) was developed in 2015 by Homayoni et al.⁷³ to produce alcohols from CO_2 employing a CuO/Cu₂O photocathode (Figure 5). The results show long-chain alcohol products up to C_2 - C_3 (ethanol and isopropanol) with a production rate of 0.22 ml·m⁻²·h⁻¹, that was approximately 6 times higher than in a batch design.

Figure 5. (a) Schematic diagram of the CFPR set-up: (1) CFPR, (2) solar simulator, (3) electrochemical workstation, (4) CO₂ tank, (5) syringe pump, (6) fresh catholyte from a gas mixing chamber, (7) catholyte collector, (8) fresh anolyte, (9) pump, and (10) anolyte collector. The electrical connections to the electrodes are marked as WE, CE and RE for the cathode, anode and reference electrode respectively. (b) Schematic diagram of the CFPR itself consisting of: (1) catholyte inlet and location of the reference electrode, (2) optical window (transparent slab), (3) microchannel arrays slab on top of the cathode, (4) cathode, (5) microchannel arrays underneath the cathode, (6) ion exchange membrane, (7) microchannel arrays on top of the anode, (8) anode, (9) outlet of anolyte, (10) outlet of catholyte, and (11) inlet of anolyte.⁷³

Furthermore, there are different electrode configurations for the PEC systems on dependence on which electrode (i.e., anode, cathode, or both) acts as photoelectrode, ⁶⁵ as described in the following subsections.

Photocathode-dark anode.

Most of the studies employed a photocathode made of a *p*-type semiconductor, with a high conduction band energy suitable for CO_2 reduction, and an anode made of metal (Figure 6).^{74, 75} The first study was reported by Halmann in 1978, where a *p*-GaP semiconductor was used as photocathode, carbon rod as counter electrode and a buffered

aqueous solution as electrolyte.¹⁵ A 6 mA·cm⁻² current was detected when *p*-GaP was illuminated with an Hg lamp and a voltage bias of -1 V vs. SCE was applied. HCOOH, HCHO and CH₃OH were formed. More recently, this type of configuration was implemented by Qin et al.⁷⁶ using TiO₂ as photocathode and an electrode of Pt as anode to obtain HCOOH, HCHO and CH₃OH as main products.

Figure 6. Semiconductor as photocathode.²⁸

Unfortunately, the valence band in *p*-type semiconductors does not cover H₂O oxidation and a bias potential is required. Besides, these materials are usually expensive, toxic and unstable and two-electron compounds, such as CO and HCOOH, are usually obtained as it was demonstrated by Kaneco et al.⁷⁷ when a metal-doped (Pb, Ag, Au, Pd, Cu and Ni) *p*-InP photocathode and a Pt foil as counter electrode was applied at -2.5 V vs. SCE (-2.5 V vs. Ag/AgCl) potential. Overall, the efficiency of *p*-type semiconductor-based systems is low, and the improvement required in photocathode efficiency remains a challenge.

Photoanode-dark cathode.

The use of a *n*-type semiconductor (e.g., TiO_2 , ZnO, $BiVO_4$ or WO_3) which are earthabundant, cheap and stable as photoanode for H_2O oxidation, and a metallic electrocatalyst active for CO_2 reduction as the cathode to assemble a photoanode-dark Page 19 of 70

cathode PEC reactor is also an attractive option (Figure 7). ^{41, 78} CO₂ reduction in a photoanode-dark cathode PEC depends on two components: cathode catalysts and photoanode activity. This cell could improve CO₂ reduction values obtained in electrocatalytic systems and reduce energy input over the photoanode catalyst, requiring a lower external bias for an effective CO₂ reduction than the photocathode-dark anode configuration.^{28, 65} In this configuration, the photoanode plays a dual role during CO₂ reduction. On the one hand, the voltage generated by the light in the anode supply an extra negative potential to the cathode for CO₂ reduction and on the other hand, protons and electrons for CO₂ reduction in the cathode were provided by the oxidation of water in the anode.⁶⁵ Chang and coworkers ⁷⁹ used TiO₂ as a model photoanode and Cu₂O as a dark cathode to devise a stable system for photoconversion with a FE of 87.4% and a selectivity of 92.6% for carbonaceous products from CO₂. For instance, a Pt-modified reduced graphene oxide (Pt-RGO) cathode and a Pt modified TiO₂ nanotubes (Pt-TNT) photoanode converted CO2 into HCOOH, CH3OH, CH3COOH and C2H5OH under UV-Vis irradiation, applying a potential of 2 V.⁴¹ In further investigations, the cathode was substituted by Pt-RGO/Cu foam ⁷⁸ and Pt-RGO/Ni foam ⁶⁵ to improve products selectivity.

Figure 7. Semiconductor as photoanode.²⁸

Photocathode-photoanode.

Another option for the photoelectrodes in an assembly of PECs is the combination of a photocathode made of a p-type semiconductor for CO₂ reduction with a photoanode made of a *n*-type semiconductor for H₂O oxidation (Figure 8). This configuration, in contrast to the other two, allow realizing the transformation of CO₂ with H₂O without external electrical energy. In this case, the conduction band edge of the photoanode for H_2O oxidation must be more negative than the valence band edge of the photocathode for CO_2 reduction to guarantee the electron transfer from photoanode to photocathode through the external wire.²⁸ Sato et al.³⁸ employed this PEC configuration to produce HCOOH in a two-compartment Pyrex cell separated by a PEM using InP/[MCE]s and TiO₂/Pt as photocathode and photoanode respectively. By applying a light source, the twocompartment PEC cell could be run without external applied electrical energy. Not all the photocathode and a photoanode PECs cell configuration reported in literature are able to reduce CO₂ without an external potential. Some need extra electrical energy to overcome parasitic losses and reaction overpotentials, such as p-type Si nanowire/n-type TiO₂ nanotube where traces of C3-C4 hydrocarbons, CH4 and C2H4 were formed under band gap illumination and at 1.5 V vs. Ag/AgCl.⁸⁰

Figure 8. Semiconductors as both photocathode and photoanode.²⁸

PEC-solar cell tandem.

Traditionally, PEC cells and PV-electrolyzers are considered as different approaches, although some authors as Jacobsson et al.⁸¹ suggest than in many cases both approaches have certain similarities and should be considered under the acronym photo driven catalytic (PDC) devices. To be clear, a distinction should be made between the solar panel coupled in the photoanode ⁴² (PEC-solar cell tandem, Figure 9), and the photovoltaic panels used as electric source to the PEC cell (PV-electrolyzers), which is the same as electroreduction using renewable energy. ^{43, 82, 83} In order to value the potential importance that can develop the PEC-solar cell tandem configuration in photoelectroreduction, the authors consider treating this configuration as one more added to the previous.

The main benefit of using a PEC cell (i.e. photocathode-anode, cathode-photoanode, photocathode-photoanode or PEC-solar cell tandem) than PV-electrolyzers is the possibility to deal with the generation of electrons required and the oxidation of H_2O (if a photoanode is employed) or adjust the redox potential to the interest product (if a photocathode is used) in the same device.

Figure 9. Filter-press reactor including a Cu-Zn cathode and a Si/Ni foam photoanode.⁴²

Figure 9 is an example of a PEC-solar cell tandem. An experimental set-up using Si heterojunction solar cells in combination with Ni foam as photoanode and Zn coated Cu foam as cathode was applied, reaching CO FEs up to 85% at 0.12 V vs. SCE (0.8 V vs. RHE) with a CO current density of 39.4 mA·cm⁻², the highest reported for a Zn catalyst at such low overpotential. This reactor concept enhances the solar CO₂ conversion by the use of the well-known and developed Si heterojunction technology, which is nontoxic, abundant and cheap technology and it is being used in the photovoltaic industry nowadays.⁴²

Photoelectrode materials

The next section briefly discusses on the main photoactive materials applied in the different photoelectron-chemical reactor configurations for the reduction of CO_2 .²⁴ The two basic requirements for photoelectrode materials are optical response, to effectively absorb sunlight, and catalytic activity, required for the CO_2 reduction and H_2O oxidation reactions. In order to satisfy these requirements, the processing of materials with enhanced performance characteristics need to include a high solar energy conversion efficiency, stability in aquatic environments and low cost.⁹ In addition, the particle size of the photoelectrode material has a considerable effect on CO_2 photoreduction efficiency due to changes in CO_2 adsorption, available active surface area and transfer pathways for charge carriers to reach its surface. The performance can be normally enhanced at smaller particle sizes, although the smaller the size is the more the boundary of the particles, which leads also to a lower activity. Furthermore, it has been proved that the best way to improve the activity of photo-materials is controlling the facets of the photocatalysts applied.⁸⁴

Page 23 of 70

Typically, photoelectrocatalysis in contrast to common electrodes used in electrocatalysis, employs semiconductor electrodes. In addition, graphene-based nanocatalyst and organometallic complexes are commonly applied.² Semiconductor-based electrodes absorb light to generate electron-hole pairs. The holes generated at the photoanode, typically a *n*-type semiconductor, oxidize H₂O to O₂, while the electrons photogenerated at the cathode, usually a *p*-type semiconductor, reduce the CO₂ to valuable products such as CO, HCOOH, CH₃OH or hydrocarbons in the presence or absence of a co-catalyst.²⁸ TiO₂, ZnO, CdS and SiC are the most employed inorganic binary compounds as semiconductor materials.

TiO₂ photoelectrodes

TiO₂ is the most investigated semiconductor material for photocatalytic processes. It is a n-type semiconductor that possesses a wide band gap (3.0 eV) ⁸ and has been considered a cheaper and more environmental friendly material since the first report in 1979.⁸⁵ TiO₂ has three kind of polycrystalline phases: anatase, brookite and rutile ⁸⁶ with different symmetries, slip directions, theoretical crystal densities, close stacking planes and available interstitial positions, altering also the defect distribution and density. As an example, Liu et al.⁸⁷ studied the photocatalytic reduction of CO₂ on three TiO₂ nanocrystal polymorphs pretreated with helium and concluded that for TiO₂ surfaces engineered with defect sites, brookite provided the highest yield for CO and CH₄, followed by anatase and rutile, probably due to a lower formation energy of oxygen vacancies (V_O) on brookite.

The literature shows that TiO_2 has been tested for the photocatalytic reduction of CO_2 under various structures, such as nanosheets, nanocrystals, nanotube arrays, nanorods,

carbon-TiO₂ nanocomposites and mesoporous TiO₂-based materials.⁸⁸ Zhao et al.⁸⁹ reviewed the effects of surface point defects in the production of solar fuels from CO₂ photoreduction in H₂O. In TiO₂, oxygen vacancies, impurities, Ti interstitials, Ti vacancies, and defects at interfaces are examples of point defects. The defective TiO₂ materials show superior performance than pristine TiO₂ for CO₂ photoreduction, probably due to an enhanced dissociative adsorption of CO₂, an improved solar energy absorption due to a change in the electronic band structure and a reduced charge recombination due to the presence of charge traps. Unfortunately, TiO₂ mainly absorbs UV radiation, ⁹ which is only a small part of solar radiation. Although progresses have been made with TiO₂, it seems that different materials should be considered in order to enhance the photocatalytic transformation of CO₂ to useful products.

Alternative photocatalyst to TiO₂

Apart from TiO₂, other semiconductor-based photoelectrodes could be used. Figure 10 shows the band-gap positions of other semiconductor materials and the standard reduction potentials for CO₂ reduction to different products. However, the photogenerated electrons in the conduction band edge of all the candidate semiconductors do not have enough driving force to carry out the activation of CO₂ to CO_2^- (-2.14 V vs. SCE), which defines the efficiency for CO₂ photoreduction.⁶⁴

Figure 10. Conduction band (in red) and valence band (in blue) positions of some semiconductors and the redox potentials (vs. NHE) for CO₂ reduction and water splitting at $pH=0.^{64}$

Barton et al.⁹⁰ presented a selective and efficient conversion of CO₂ to CH₃OH at a *p*-type semiconductor electrode made of a narrow band single crystal *p*-GaP (111) in a pyridine solution. The current efficiency is 100% at -0.3 V vs. SCE. Recently, Yu et al.⁹¹ developed a novel material by depositing a conformal, ultrathin, amorphous TiO₂ film by low-temperature atomic layer deposition on top of black Si. A photocurrent density of 32.3 mA·cm⁻² at an external potential of 0.87 V vs. SCE (1.48 V vs. RHE) in 1 M NaOH electrolyte could be achieved. ZnO, a *n*-type semiconductor with a wide band gap energy has been also tested as photocatalytic material due to its photo-luminescence properties (including good transparency and high electron mobility) that shows potential for scintillator applications.¹⁶ WO₃ is also suitable and stable enough for sustained reduction of CO₂. A PEC system using WO₃ as photoanode and Cu or Sn/SnO_x as a cathode has been shown to achieve reduction of CO₂ at low bias potentials under visible light.⁹² Si is

also considered as a promising material due to its earth abundance, but a co-catalyst is required to enhance its CO₂ reduction. Song and co-workers ⁹³ employed a Si photoelectrode with a nanoporous Au film as co-catalyst in a photocathode-dark anode configuration. Applying a light intensity of 100 mW·cm⁻² a 91% FE to CO was achieved.

Doping the photocatalysts surface with a co-catalyst is another used procedure to achieve enhancements on both conversion efficiency and product selectivity.⁸⁴ In many cases, combination of a photocathode with a co-catalyst able to activate CO₂ molecules is needed since *p*-type semiconductor photocathodes do not act as a true catalyst for the activation of CO₂ molecules, but just as light harvesters to generate electrons and holes. For this purpose, metal complexes have attracted much attention, where the interface interaction between the semiconductor and the complex plays a decisive factor in the electron transfer and thus the CO₂ photoreduction efficiency.^{25, 28} Besides, Huang et al. ⁶⁶ employed Co_3O_4 as the light harvester and $Ru(bpy)_2dppz$ as electron transfer mediator and CO₂ activator to obtain HCOOH as main product. The results show a 380-fold increase in CO₂ concentration on this hybrid interface than that on CO₃O₄/FTO. The CO₂ conversion to HCOO⁻ occurred at an onset potential of -0.7 V vs. SCE (-0.45 V vs. NHE) under photoelectrochemical conditions, 160 mV more positive than its thermodynamic redox potential. At -0.85 V vs. SCE (-0.60 V vs. NHE), the selectivity of the HCOO⁻ yield reached 99.95%, with a production of 110 μ mol·cm⁻²·h⁻¹ and a FE of 86%. HCOO⁻ was obtained by Morikawa et al.⁹⁴ conjugating a *p*-InP:Zn photocathode with a Ru complexpolymer electrocatalyst [Ru(L-L)(CO)₂]_n, for CO₂ transformation with a TiO₂ photoanode for water oxidation. The conversion efficiency was 0.04%, which is closed to that value obtained in natural photosynthesis. Sahara et al. ⁹⁵ reported the first example of a molecular/ semiconductor photocatalyst hybrid-constructed PEC to transform CO₂

under visible-light in the presence of water, using a Ru(II)-Re(I) photo-cathode and a CoO_x/TaON photoanode.

Main reduction products

The most common products from the photoelectrochemical reduction of CO_2 are summarized hereafter. H_2 is a side reaction in CO_2 electroreduction, and so it is not thoroughly discussed in the section.

Carbon monoxide

CO₂ reduction to CO can be seen as the simplest route for CO₂ conversion. CO is also an intermediate product for the synthesis of other products, such as CH₃OH and hydrocarbon fuels.⁹⁶ Petit and co-workers ⁹⁷ proposed the reduction CO₂ to CO in a photocathode-dark anode configuration using two systems: p-GaAs/0.1 M KClO₄, H₂O, Ni(cyclam)²⁺ and p-GaP/0.1 M NaClO₄, H₂O, Ni(cyclam)²⁺, which assist a selective photo-reduction at -0.44 V vs. SCE (-0.2V vs. SHE) using an anode of Pt, separated from the working-electrode compartment by glass frits. Using a similar photocathode (p-GaAs)-dark anode (Pt) cell configuration as Petit and co-workers in a one compartment cell, Hirota et al.⁹⁸ reduced CO_2 to CO photoelectrochemically in $CO_2 + CH_3OH$ at high-pressure conditions (40) atm). P-InP and p-Si as photoelectrodes were tested at different applied potentials. For 50 mA·cm⁻², p-InP required -1.1 V, p-GaAs -1.6 V and p-Si -1.8 V, demonstrating that CO₂ can be converted to CO at more positive potentials than for a Cu under similar experimental conditions and without illumination. Moreover, Kumar and co-workers ⁹⁹ using a one compartment cell configuration and a p-type H-Si photocathode with a Re(bipy-But)(CO)₃Cl 4,4'-di-tert-butyl-2,2'-bipyridine) electrocatalyst (bipy-But) achieved a 600 mV lower potential (FE=97%) than with a Pt electrode. The photocathode

+ anode electrode configuration is usually employed to produce CO, since two-electron chemical products are commonly found over p-type semiconductors. More recently, Sahara et al. ⁹⁵ generated CO using a dual photocathode-photoanode cell configuration with an external electrical (0.3 V) and chemical bias (0.10 V) in a hybrid photocathode of NiO-RuRe and a photoanode of CoO_x/TaON. The work can be considered the first example of a molecular-semiconductor hybrid PEC cell using water to reduce CO₂. Different photoelectrodes, apart from those mentioned above, are also reported with good results such as *p*-type silicon nanowire with nitrogen-doped graphene quantum sheets (N-GQSs); ¹⁰⁰ *p*-GaAs and *p*-InP; ¹⁰¹ CoSn(OH)₆; ¹⁰² and NiO-RuRe.¹⁰³ Figure 11 compares the FEs reported in literature for CO for the different electrode configurations in the PEC: photocathode-dark anode (PC+A), photoanode-dark cathode (PA+C) and photocathodephotoanode (PA+PC). The results seem to show an enhanced reaction performance for a PC+A configuration.

Figure 11. FEs for CO at different electrode configurations in PEC cells.

Formic Acid

Particular reference is made in the literature to the formation of HCOOH, this being a product for which there is a growing demand and which is currently made by processes that are neither straightforward nor environmentally friendly.¹² Morikawa and coworkers⁹⁴ successfully achieved the photoreduction of CO₂ to HCOOH without applying any electrical bias, employing a photocathode-photoanode configuration separated by a PEM membrane, using water as a proton source and electron donor by conjugating a InP/Ru-complex for CO₂ reduction with a TiO₂ photocatalyst for water oxidation. HCOOH was generated continuously with a FE of > 75%. However, the TiO₂ high band gap critically reduce its excitation wavelength to the UV range. Jiang et al. ¹⁰⁷ expanded the TiO₂ optical absorption region from the UV absorption to the visible light region by depositing Fe_2O_3 (Fe_2O_3/TiO_2 NTs) with an onset wavelength of ~600 nm. The maximum selectivity was 99.89% with a rate of HCOOH production of 74896.13 nmol·h⁻¹·cm⁻² under optimal conditions in a photocathode-dark anode dual chamber cell using Pt as counter electrode. Employing a similar photoelectroreactor configuration, Gu and coworkers ¹⁰⁸ reduced CO₂ to HCOOH without the need for a co-catalyst at an unparalleled underpotential. However, FE was limited due to the competitive reaction for H₂ formation (HER). In his work, a p-type Mg-doped CuFeO₂ electrode was found to reduce CO_2 to HCOOH photoelectrochemically with a maximum conversion efficiency at -0.9 V vs. SCE using a LED source (470nm) in experiments of 8 to 24 hours. Shen and co-workers ¹⁰⁹ reported in 2015 one of the highest yields to HCOOH. In this work, CO_2 was reduced using a photocathode-dark anode configuration at Cu nanoparticles decorated with Co₃O₄ nanotube arrays achieving a selectivity of nearly 100% employing a single compartment cell. The production of HCOOH was as high as $6.75 \text{ mmol} \cdot \text{L}^{-1} \cdot \text{cm}^{-2}$ in 8 h of experimental time. One year later, Huang et al. ⁶⁶ improved the yield reported by Qi Shen and co-

 workers employing also Co_3O_4 as the light harvester, and $Ru(bpy)_2dppz$ as the electron transfer mediator and CO_2 activator. The photoelectroreduction of CO_2 to HCOOH has been realized for 8 hours with an onset potential as low as -0.69 V vs. SCE (-0.45 V vs. NHE) and an anode made of graphite. At an applied potential of -0.84 V vs. SCE (-0.60 V vs. NHE), the selectivity for HCOOH reached 99.95%, with a FE of 86% and a production of 110 µmol·cm⁻²·h⁻¹.

Figure 12. Photoelectrochemical flow cell scheme using a TiO₂ photoanode.¹¹⁰

Nowadays, improvements in HCOOH formation continues with new strategies. Irtem and co-workers, continuing with their research line using Sn,^{110, 111} proposed two strategies: concentration of solar light on the photoanode and adjustment of cathode area. At a voltage of 1.2 V and with a TiO₂ photoanode and a Sn cathode, FEs of 40-65% for HCOO⁻ production were obtained, with energy efficiencies as high as 70% using a two-compartment cell divided (Figure 12). This study demonstrated that a stable photoanode optimized the system efficiency using a GDE as a cathode to enhance mass transfer and provide a wide photovoltage for O₂ evolution reaction (OER). Besides, three PEC cell

electrode configurations can be found in literature for HCOOH production, where PC+A seems to be beneficial as it is observed for HCOOH production (Figure 13).

Figure 13. FEs for HCOOH at different electrode configurations in PEC cells.

Methanol

CH₃OH as a key commodity has become an important part of our global economy. Several articles deal with CH₃OH production ¹¹⁵⁻¹¹⁷ since it may directly replace fossil fuels without modifications of the actual energy distribution infrastructure.^{3, 96, 118} Moreover, CH₃OH is used in paints, building blocks for plastics, and organic solvents, among others. Ogura and Uchida ¹⁴ were one of the first reporting the formation of CH₃OH by photoelectroreduction of CO₂ using a *n*-TiO₂ photoanode and a metal complex-confined Pt cathode separated by a PEM and a 500 W Xe lamp. In their experiments, it was observed that the feasibility for CO₂ reduction in a photocell depended mainly on the anolyte pH. pH higher than 12 led to CH₃OH formation in the cathode , and O_2 evolved at the photoanode. The photoreduction of CO_2 only occurred at a pH below 11 when applying external energy.

Yuan el al.¹¹⁹ proposed the photoelectroreduction of CO₂ using a Cu₂O photocahode and a graphite sheet as dark anode, obtaining a concentration and FE for CH₃OH formation of 1.41 mmol and 29.1%, respectively, after 1.5 h of operation at 1.5 V vs. SCE in a single compartment cell with an irradiation of 100 mW·cm⁻² emitted from a Xe lamp. The formation rate of CH₃OH was 23.5 µmol·cm⁻²·h⁻¹. A higher rate for CH₃OH (45 µmol·cm⁻ $^{2}\cdot$ h⁻¹) was achieved in a light-driven two compartment reactor using Cu₂O/graphene/TiO₂ nanotube array (TNA) heterostructures and Pt as working electrode and counter electrode, respectively by Li et al.⁴⁰ An intensity of 100 mW·cm⁻² was applied by a 300 W Xe arc lamp with a UV cutoff filter. Similar materials, but with different structure and in a single compartment cell, were employed by Lee and co-workers, ¹²⁰ enhancing FE and stability towards CH₃OH production from CO₂ using Cu₂O nanowires photocathodes with a TiO₂-Cu⁺ shell. The FE after 2 h of operation improved from 23.6% for a Cu₂O photocathode to 56.5% for Cu₂O with a TiO₂-Cu⁺ shell mainly due to a lower resistance to charge transfer and an increased CO₂ adsorption. Recently, Yang et al. ¹²¹ compared the CH₃OH formation at different catalytic processes (PEC, photocatalysis, electrocatalysis) on a SnO₂ NRs/Fe₂O₃ NTs photocathode and a Pt wire anode employing a single compartment cell. The largest CH₃OH production (2.05 mmol·L⁻¹·cm⁻²), obtained under visible light (1.1 V extra) was far higher than that individually electro-or-photo-catalytic reduction. As it is the case for CO and HCOOH, the production of CH₃OH can be enhanced with a PC+A configuration (Figure 14). The extraordinary high FE obtained for CH₃OH formation (i.e. >100%) for PA+C system using TiO₂ as photoanode and Pt as cathode,¹⁴ has been removed for a clear comparison.

Figure 14. FEs for CH₃OH at different electrode configurations in PEC cells.

Methane

Kaneco et al. ¹⁰⁴ demonstrated that the selectivity for the photoelectrochemical reduction of CO₂ can be tuned by adding metal particles into the catholyte to form CH₄ in a dual compartment cell by adding Cu particles suspended CH₃OH using a *p*-InP and a Pt foil as photocathode and anode, respectively. A maximum FE for CH₄ of 0.56% was achieved at 265K under a 5000 W Xe lamp. In order to enhance the CH₄ production efficiency, Wang and co-workers ⁸⁸ presented the use of ordered mesoporous TiO₂ as photocathode and Pt as anode for CO₂ reduction to CH₄. The ordered mesoporous TiO₂ exhibits a higher and stable production efficiency for CH₄ (0.192 μ mol·g_{catalyst}⁻¹·h⁻¹) which is 71 and 53 times higher than that for a commercial TiO₂ (P25) and disordered mesoporous TiO₂, respectively. Employing a photoanode-dark cathode electrode configuration in a dual cell compartment, a FE of 67% for CH₄ at -1.39 V vs. SCE (-0.75 V vs. RHE) and 71.6% for all carbon-containing products at -1.34 V vs. SCE (-0.65 V vs. RHE) was achieved by

Magesh et al. ⁹² using Cu as a cathode electrocatalyst and WO₃ as photoanode under bias potential. Moreover, in a photocathode-dark anode electrode configuration, Ong and coworkers ⁴⁴ reached 2.923 μ mol·g_{catalyst}⁻¹·h⁻¹ of CH₄ under visible light irradiation employing a carbon nanodot/g-C₃N₄ (CND/pCN) hybrid heterojunction photocatalyst with a mass loadings of 3% of CNDs and a Pt foil as anode. This improved in 3.6 times the CH₄ generated with pCN pure. Thompson et al, ¹²³ reported an initial conversion rate of 2596 μ L·g_{catalyst}⁻¹·h⁻¹ of CH₄, the highest reported to date, employing Cu as cathode and TiO₂ as photoanode without using an external wire. Only UV light as an energy source was employed to reduce CO₂. In any case, FEs to CH₄ are rarely reported with values ranging from 54.6 to 67 % for a PA+C configuration.^{79, 92}

Long chain hydrocarbons.

Attending to thermodynamics, CO₂ reduction to long chain hydrocarbons is more challenging because of the number of electron required.⁴ For instance, CO₂ reduction to CH₃OH requires 6-electron process, while CO₂ reduction to isopropanol is a 18-electron reduction. These liquid fuels have higher energy densities and are more convenient for transport and storing. Ampelli et al. ^{37, 124} reduced CO₂ to liquid fuels (mainly CH₃CH(OH)CH₃) employing carbon-nanotube based electrodes, Pt/CNT and Fe/CNT and nanostructured TiO₂ as photoanode in a homemade Plexiglas-quartz window PEC reactor, reaching a production of 2.28.10⁻²·µmol·h⁻¹·cm⁻² of CH₃CH(OH)CH₃ for the Fe/CNT cathode. As it can see in Figure 15, better results were achieved when instead of Fe-CNT, Fe-nitrogen-doped carbon nanotubes were employed (5.74.10⁻² µmol·h⁻¹·cm⁻²).

Figure 15. Electroreduction of CO_2 in the gas phase over Nafion® 117/Pt or Fe(10%)/CNT)20%/carbon GDEs.¹²⁴

Genovese et al.⁵⁷ employed the same material but operated under a gas-phase electrocatalytic cell using electrodes based on metal nanoparticles supported and TiO₂ as photo-anode. Long C-chain products (i.e. CH₃CH(OH)CH₃ and C8-C9) were obtained from CO₂. Employing also a TiO₂ photoanode and a nanostructured Pt/graphene aerogel deposited onto a Cu foam (Pt/GA/CF), Zhang and co-workers ¹¹⁴ revealed that the Pt/GA/CF electrode improved CO₂ reduction significantly and facilitated the conversion of C1 to high-order products due to enhanced charge transportation. HCOOH, CH₃COOH, C₂H₅COOH, CH₃OH, C₂H₅OH were the main products detected. Recently, Yuan et al. ¹²⁵ showed is his study an outstanding performance for C₂H₅OH production. At the Cu₂O foam cathode, the solar driven conversion of CO₂ to C₂H₅OH led to a formation rate as high as 71.67 μ mol·cm⁻²·h⁻¹ at only 131 mV within 1.5 h. There are a variety of FEs reported for different hydrocarbons, with values ranging from 32.6 to 52% for PC+A configurations ^{59, 73} and 2.7 for 45% to PA+C configurations.

Finally, Tables 3, 4, 5 and 6 summarize the literature on the topic, paying special attention to the photoelectron-reactor/electrode configuration, but also including photoelectrocatalytic materials, main products obtained and process conditions.

 Table 3. Experimental conditions and main products in a Photocathode-dark anode configuration.

Photocathode	Anode	Light source/ Intensity	Electrode Potencial (V vs. SCE)	Product	FE/ Productivity	Ref.
<i>p-</i> GaP	Carbon road	Hg-lamp (λ=365 nm)	-1 V	СН ₂ О НСООН СН ₃ ОН	_	15
<i>p</i> -GaAs	Pt	150W Tungsten	-1.2 V	СО	47%	
<i>p</i> -Gap	Pt	lamp (λ > 380 nm)	-1 V	СО	85%	97
<i>p</i> -InP	Pt	500 W Yo lown	-1.1 V	СО	89%.	
<i>p</i> -GaAs	Pt	500 W Xe lamp	-1.6 V	СО	74%.	98
<i>p</i> -Si	Pt	(<i>k</i> > 370 mm)	-1.8 V	СО	75%.	
<i>p</i> -InP/deposited-metal [Pb, Ag, Au, Pd, Cu and Ni]	Pt	5000 W Xe lamp (λ> 300 nm)	-2.5 V	CO HCOOH	-	77
<i>p</i> -GaAs			-2 4 V	СО	CO: 24.9%	
	Dt	5000 W Xe lamp	2.4 V	HCOO ⁻	HCOO ⁻ : 14%	101
<i>p</i> -InP	I L	(λ> 300 nm)	-2.5 V	CO HCOO ⁻	CO: 41.5% HCOO ⁻ : 15%	

<i>p</i> -GaP	Pyridine	200 W Hg-Xe arc light (λ> 365 nm)	-0.4 V	CH ₃ OH	88%-100%	90
<i>p</i> -InP	Pt	5000 W Xe lamp (λ> 300 nm)	-2.4 V to -2.8 V	СО НСООН	CO at -2.7 V: 45.2% HCOOH at -2.6 V: 21.1%	104
<i>p-</i> Si	Pt	150 quartz halogen lamp (λ<1000 nm)	-0.6 V	СО	97%	99
<i>p</i> -InP-Zn	[Ru(L– L)(CO) ₂] _n	Xe light (400 nm <λ< 800 nm)	-0.6 V	HCOO ⁻	34.3 %	112
Cu ₂ ZnSnS ₄ (CZTS)	[RuCE + RuCA	(400 nm <λ< 800 nm)	-0.4 V	HCOO ⁻	82 %	113
meso- tetraphenylporphyrin FeIII chloride at <i>p</i> -type Si	CF ₃ CH ₂ OH	Halogen fibre optic lamp (λ _{max} = 650 nm)	-1.1 V	СО	92%	39
Mg-doped CuFeO2	Pt	75 W Xe (350 nm<λ> 1350 nm)	-0.9 V	HCOO ⁻	10%	108

Cu/Cu ₂ O	Pt	125 W Hg lamp	0.2 V	CH ₃ OH	-	115
Cu/Cu ₂ O	Pt	LED light (435 nm<λ> 450 nm)	-2.0 V	CH ₄ C ₂ H ₄	C ₂ H ₄ : 32.69%	59
Wedged N-doped CuO	Pt	Xe lamp ($\lambda \ge 420$ nm)	-1.2 V	CH ₃ OH	84.4%	116
Ordered mesoporous TiO ₂	Pt	300 W Xe arc lamp	-0.4 V	CH4 CO	-	88
<i>p</i> -type CuO/Cu ₂ O	Stainless steel 378	(AM 1.5) Solar simulator (Newport Model 91160).	-0.3 V	C ₂ H ₅ OH C ₃ H ₈ O CH ₃ OH	C ₂ H ₅ OH:52% C ₃ H ₈ O:40% CH ₃ OH:4%	59
Cu/Cu ₂ O	Pt	125 W Hg lamp	0.20 V	CH ₃ OH C ₂ H ₅ OH CH ₂ O C ₂ H ₄ O CH ₃ COCH ₃	-	117
Cu-Co ₃ O ₄ NTs	Pt	300 W Xe lamp	-0.9 V	HCOO ⁻	-	109
Cu ₂ O-TiO _{2-x}	-	150 W Xe lamp (AM 1.5)	-0.07 V to -0.77 V	CH ₃ OH HCOOH	-	34
NiO	Pt	LED with an output of 1000 lm.	-0.4 V	H ₂	-	75

Ru(bpy)2dppz-Co3O4/CA	graphite plate	Xe lamp (λ>420 nm)	-0.84 V	HCOO ⁻	86%	66
1T@2H-MoS ₂	Pt	Visible-light illumination (400nm <λ> 800 nm)	-0.6 V	-	-	126
Au ₃ Cu NP/Si NW	-	-	-0.8 V	СО	-	127
Si Photoelectrode with the RA-Treated Au Thin Film Mesh	-	100 mW cm^{-2}	-0.73 V	СО	91%	105
Cu ₂ O/graphene/TNA	Pt	300 W Xe Arc lamp (λ>400 nm)	-0.8 V vs. SCE	CH ₃ OH	45 μmol cm ⁻² h ⁻¹	40
Ti/ZnO–Fe ₂ O ₃	Pt	300 W Xe lamp(400 nm <λ< 800 nm)	-0.5 V	СН ₃ ОН НСООН СН ₂ О	CH ₃ OH: 0.773 mmol/cm ²	74
Cu-ZnO/GaN/n ⁺ -p Si	-	300 W Xe lamp	-0.6 V	СО	70%	35
Cu ₂ O Cu ₂ O/TiO ₂ –Cu ⁺	Pt	LS 150 with AM1.5 G filter	-0.3 V	CH ₃ OH	23.6% 50.7%	120
CdSeTe NPs/TiO ₂ NTs CdSeTe NSs/TiO ₂	Pt	500W Xe lamp (λ≥420 nm)	-1.2 V	CH ₃ OH CH ₃ OH	88% 25%	122

SnO ₂ NRs/Fe ₂ O ₃ NTs	Pt	Xenon lamp (λ≥420 nm)	-1.1 V	CH ₃ OH	87.04%	121
Cu ₂ O	Graphite sheet	100 mW cm ⁻²	-0.6 V	C ₂ H ₅ OH	$0.071 \text{ mmol} \cdot \text{cm}^{-2} \cdot \text{h}^{-1}$	125
0D/2D CND/pCN	Pt	300 W Xe arc lamp (λ> 400 nm)	-0.5 V	CH4 CO	CH4: 2.9 μ mol· $g_{catalyst}^{-1}$ · h^{-1} CO: 5.8 μ mol· $g_{catalyst}^{-1}$ · h^{-1}	44
Si/Au	Graphite-rod	100 mW cm ⁻²	0 V	СО	96%	93

Table 4. Experimental conditions and main products in a Photoanode-dark cathode configuration.

Cathode	Photoanode	Light source/ Intensity	Electrode Potencial (V vs. SCE)	Product	FE/ Productivity	
Pt	<i>n</i> -TiO ₂	500 W Xe- lamp	-2 V	CH ₃ OH	100%	
Pt-RGO	Pt-TNT	300 W Xe-arc lamp	-2 V	С ₂ H ₅ OH CH ₃ COOH CH ₃ OH	CH ₃ OH: 5% HCOOH: 2.5% CH ₃ COOH:20%	41

			НСООН	C ₂ H ₅ OH:45%	
			СО	CO: 0.6%	
	500 W Hg	-1.39 V	CH ₄	CH4:67%	
WO ₃	lamp ($\lambda > 420$		C_2H_4	C ₂ H ₄ :2.7%	92
	nm)		СО	CO:15.9%	
/SnO _x	-1.34 V		НСООН	HCOOH:27.5%	
	300 W Xe-arc		HCOOH CH ₃ COOH		78
TiO ₂ nanotube	nm<λ>410 nm)	-2 V	C ₂ H ₅ COOH CH ₃ OH C ₂ H ₅ OH	-	
Pt-TNT	300 W Xe arc lamp (320 nm<λ>410	-2 V	С ₂ H ₅ OH CH ₃ COOH CH ₃ OH HCOOH CO	C ₂ H ₅ OH: 1350 nmol·cm ⁻² ·h ⁻¹ CH ₃ COOH: 1150 nmol·cm ⁻² ·h ⁻¹ CH ₃ OH: 875 nmol·cm ⁻² ·h ⁻¹ HCOOH: 820 nmol·cm ⁻² ·h ⁻¹ CO: 650 nmol·cm ⁻² ·h ⁻¹	128
	WO3 TiO2 nanotube Pt-TNT	WO3 500 W Hg lamp ($\lambda > 420$ nm) S00 W Xe-arc nm) Iamp (320 nm< $\lambda>410$ nm) 300 W Xe-arc lamp (320 nm $<\lambda>410$ nm) 300 W Xe Pt-TNT (320 (320 nm< $<\lambda>410$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NO3 HCOOH 500 W Hg -1.39 V CH4 100 M Hg -1.39 V CH4 100 M Hg -1.39 V CH4 100 M Hg -1.34 V CO 100 M Hg -1.34 V HCOOH 100 M Xe-arc 100 M Xe-arc HCOOH 1102 nanotube 100 M Xe-arc HCOOH 1102 nanotube 100 M Xe-arc HCOOH 1100 mm (320) -2 V CH3COOH 1100 mm 100 M Xe C2H3OH 1100 mm 100 M Xe C13OH 1100 mm 100 M Xe C13OH	$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$

Pt	Cu-RGO- TiO ₂ /ITO	150 W Xe arc lamp	-0.61 V	HCOOH CH ₃ OH	CH ₃ OH: 255 mmol·cm ⁻² ·h ⁻¹ HCOOH: 189.06 mmol·cm ⁻² ·h ⁻¹	129
Pt-RGO	Pt (5%)-TNT	300 W Xe arc lamp (320 nm<λ>410 nm)	-2 V	HCOOH CH ₃ OH CH ₃ COOH C ₂ H ₅ OH	HCOOH: 80 nmol·cm ⁻² ·h ⁻¹ CH ₃ OH: 75 nmol·cm ⁻² ·h ⁻¹ CH3COOH: 250 nmol·cm ⁻² ·h ⁻¹ C_2H_5OH : 280 nmol·cm ⁻² ·h ⁻¹	65
Cu ₂ O	TiO ₂	100 mW·cm ⁻² AM 1.5G	-1.49 V	CH4 CO CH3OH	CH ₄ : 54.63% CO:30.03% CH ₃ OH:2.79%	79
Pt	b- Si/TiO ₂ /Co(OH) ₂	150W Xe lamp light	1.04 V	-	-	91
Pt/GA/CF	TiO ₂	300 W Xe arc lamp (320 nm<λ>410 nm)	-2 V	HCOOH C3COOH C2H5COOH	НСООН: 19% СН ₃ СООН: 24% С ₂ Н ₅ СООН:23%	114

				CH ₃ OH	CH ₃ OH: 5%	
				C ₂ H ₅ OH	C ₂ H ₅ OH: 29%	
Sn-GDE	TiO ₂	300 W Xe lamp	-1.2 V	HCOO ⁻	40–65%	110
Cu	TiO ₂ NWs	250 W lamp (λ<400 nm)	0 V	CH ₄	$2596 \mu L \cdot g_{catalyst}^{-1} \cdot h^{-1}$	123
Pd/C	GaAs/InGaP/Ti O ₂ /Ni	100 mW·cm ⁻² AM 1.5G	0 V	HCOO ⁻	94%	69

Table 5. Experimental conditions and main products in a Photocathode-Photoanode configuration.

Photocathode	Photoanode	Light source/Intensity	Electrode Potential (V vs. SCE)	Product	FE/ Productivity	Ref.
InP/[MCE]s	TiO ₂ /Pt	1 sun (AM 1.5)	0 V	HCOO ⁻	70%	38
<i>p</i> -type Si nanowire	<i>n</i> -type TiO ₂ nanotube	Photocathode:150W Xe lamp (AM 1.5) Photoanode: 25W Hg arc lamp	-1.5 V	$\begin{array}{c} {\rm CO} \\ {\rm CH4} \\ {\rm C4H8} \\ {\rm C2H4} \\ {\rm C3H8} \\ {\rm C4H_{10}} \end{array}$	CO: 824 nmol/cm ² ·h CH ₄ : 121.5 nmol/cm ² ·h C ₂ H ₄ : 80 nmol/cm ² ·h	80
InP/Ru-complex	TiO ₂	1 sun, Air Mass 1.5	0 V	HCOO ⁻	75%	94
Si NWs@CoP/CN	TiO ₂ NWs@CoP/CN	-	-0.81 V	CO CH ₄	CO: 90%	106
NiO-RuRe	CoO _x /TaON	300 W Xe lamp (λ> 460 nm)	-0.3 V	СО	-	95

Table 6. Experimental conditions and main products in a PEC-Solar cell tandem configuration.

Photo/cathode	Photo/anode	Light source/Intensity	Electrode Potential (V vs. SCE)	Product	FE/ Productivity	Ref.
ZnTe-Based	Co-Ci	100 mW cm^{-2}	0 V	СО	-	130
GaN	Pt	300 W Xenon lamp	-	CH ₄	19 %	131
Cu _x O	WO ₃	200 W Xenon lamp (AM 1.5)	0 V	CO HCOO ⁻	-	132
Cu-Zn	Si/Ni	150 W Xenon lamp AM 1.5	0 V	СО	85 %	42

CONCLUSIONS AND FUTURE PERSPECTIVES

The photoelectrocatalytic reduction of CO_2 is a promising technological alternative that combines the advantages of electrocatalysis and photocatalysis, reducing the applied voltage needed in CO_2 conversion to useful chemical. Undoubtedly, many issues remain to be solved before photoelectrocatalysis processes come to reality, although the technology presents potential for an enhanced CO_2 reduction efficiency under the sun.

The design of a photoelectrochemical reactor should be made based on a careful evaluation of different factors, such as light source, geometrical configuration, construction material, heat exchange, mixing and flow characteristics, etc. Two key parameters in the process are the phases involved and the mode of operation (i.e., batch, semi-batch or continuous). Photocatalysts can be generally tested in either fluidized or fixed bed reactors. Besides, the anode and cathode in the photoelectrochemical device should be preferably in the form of thin films separated by a proton-conducting membrane and deposited over porous substrates, which allows an efficient collection/transport of electrons as well as the diffusion of protons through the membrane. For CO_2 photoreduction, an efficient evolution of oxygen on the anode side is also needed, as well as an efficient diffusion of CO_2 on the cathode side.

Photocathode-dark anode configuration has been commonly reported for CO_2 reduction. This configuration employes a photocathode made of a *p*-type semiconductor because of their high conduction band energy suitable for CO_2 reduction, but its efficiency is limited. In the last years, the photoanode-dark cathode configuration is being used more frequently due to the benefits of using *n*-type semiconductors instead of *p*-type semiconductors, which are earth abundant, cheap and stable for H_2O oxidation. Another option for the arrangement of the photoelectrodes in the PEC cells is the combination of a photocathode made of a *p*-type semiconductor for CO_2 reduction with a photoanode made of a *n*-type semiconductor for H_2O oxidation. This configuration, in contrast to the other two, allows realizing the reduction of CO_2 with H_2O without an external electric bias.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under the project CTQ2016- 76231-C2-1-R and Ramón y Cajal programme (RYC-2015-17080).

REFERENCES

(1) Peng, Y.P.; Yeh, Y.T.; Wang, P.Y.; Huang, C.P. A solar cell driven electrochemical process for the concurrent reduction of carbon dioxide and degradation of azo dye in dilute KHCO₃ electrolyte. Sep. Purif. Technol. **2013**, 117, 3–11, 10.1016/j.seppur.2013.03.044.

(2) Zheng, Y.; Zhang, W.; Li, Y.; Chen, J.; Yua, B.; Wang, J.; Zhang, L.; Zhang, J. Energy related CO₂ conversion and utilization: Advanced materials/ nanomaterials, reaction mechanisms and technologies. Nano Energy **2017**, 40, 512-539, 10.1016/j.nanoen.2017.08.049.

(3) Albo, J.; Alvarez-Guerra, M.; Castaño, P.; Irabien, A. Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem. **2015**, 17, 2304–2324, 10.1039/c4gc02453b.

2
3
4
5
6
7
8
å
9 10
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
50 27
27
38
39
40
41
42
43
44
45
16
40
4/
48
49
50
51
52
53
54
55
55
50
57
58
59

60

(4) Albo, J.; Irabien, A. Cu₂O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO_2 to methanol. J. Catal. **2016**, 343, 232-239, 10.1016/j.jcat.2015.11.014.

(5) Albo, J.; Beobide, G.; Castaño, P.; Irabien, A. Methanol electrosynthesis from CO₂ at Cu₂O/ZnO prompted by pyridine-based aqueous solutions. J. CO₂ Util. **2017**, 18, 164-172, 10.1016/j.jcou.2017.02.003.

(6) Das, S.; Daud, W.M.A. Photocatalytic CO₂ transformation into fuel: A review on advances in photocatalyst and photoreactor. Renew. Sust. Energ. Rev. **2014**, 39, 765-805, 10.1016/j.rser.2014.07.046.

(7) Harriman, A. Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry. Phil. Trans. R. Soc. A **2013**, 371, 20110415-20110415, 10.1098/rsta.2011.0415.

(8) Yan, Y.; et al. Photoelectrocatalytic Reduction of Carbon Dioxide. In *Carbon Dioxide Utilisation*; Styring, P., Quadrelli, E. A., Armstrong, K. Eds.; Elsevier B.V., 2015.

(9) Ibrahim, N.; Kamarudin, S.K.; Minggu, L.J. Biofuel from biomass via photoelectrochemical reactions: An overview. J. Power Sources **2014**, 259, 33-42, 10.1016/j.jpowsour.2014.02.017.

(10) Graves, C.; Ebbesen, D.; Mogensen, M.; Lackner, S. Sustainable hydrocarbon fuels by recycling CO₂ and H₂O with renewable or nuclear energy. Renew. Sust. Energ. Rev. 2011, 15, 1-23, 10.1016/j.rser.2010.07.014.

(11) Jiang, Z.; Xiao, Z.; Kuznetsov, V.L.; Edwards, P.P. Turning carbon dioxide into fuel.Phil. Trans. R. Soc. A **2010**, 368, 3343-3364, 10.1098/rsta.2010.0119.

(12) Chaplin, R.P.S.; Wragg, A.A. Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to

formate formation. J. Appl. Electrochem. **2003**, 33, 1107-1123, 10.1023/B:JACH.0000004018.57792.b8.

(13) Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C.P.
Photochemical and Photoelectrochemical Reduction of CO₂. Annu. Rev. Phys. Chem. **2012**, 63, 541-69, 10.1146/annurev-physchem-032511-143759.

(14) Ogura, K.; Uchida, H. Electrocatalytic reduction of CO₂ to methanol. J. Electroanal. Chem. **1987**, 220, 333-337, 10.1016/j.jcat.2018.08.017.

(15) Halmann, M. Photoelectrochemical reduction of aqueous carbon dioxide on *p*-type gallium phosphide in liquid junction solar cells. Nature **1978**, 275, 115-116, 10.1038/275115a0.

(16) Sudha, D.; Sivakumar, P. Review on the photocatalytic activity of various composite catalysts. Chem. Eng. Prog.: Process Intensification 2015, 97, 112-133, 10.1016/j.cep.2015.08.006.

(17) Nikokavoura, A.; Trapalis, C. Alternative photocatalysts to TiO_2 for the photocatalytic reduction of CO₂. Appl. Surf. Sci. **2017**, 391, 149–174, 10.1016/j.apsusc.2016.06.172.

(18) Herron, J. A.; Kim, J.; Upadhye, A. A.; Huber, G. W.; Maravelias, C. T. A general framework for the assessment of solar fuel technologies. Energy Environ Sci. **2015**, *8*, 126-157, 10.1039/C4EE01958J.

(19) Herron, J. A.; Maravelias, C.T. Assessment of solar-to-fuels strategies: photocatalysis and electrocatalytic reduction. Energy Technol. 2016, 4, 1369-1391, 10.1002/ente.201600163.

(20) Yue, P.L. Introduction to the modelling and design of photoreactors. In *Photoelectrochemistry, Photocatalysis and Photoreactors*; Schiavello, M., Eds.; Springer: Dordrecht, 1985.

2
3
4
5
ر م
6
7
8
a
10
10
11
12
13
11
14
15
16
17
18
10
19
20
21
22
23
21
24
25
26
27
28
20
29
30
31
32
33
24
54
35
36
37
38
20
39
40
41
42
43
11
44
45
46
47
48
10
49
50
51
52
53
51
54
55
56
57
58
50
55

60

(21) Cassano, A.E.; Alfano, O.M. Design and Analysis of Homogeneous and Heterogeneous Photoreactors. In: *Chemical Engineering: Trends and Developments*; Galán, M. A.; Del Valle, E.M., Eds.; John Wiley & Sons, Ltd: Chichester, U.K., 2005.
(22) Bard, A.J. Photoelectrochemistry and heterogeous photo-catalysis at semiconductors. Journal of Photochem. **1979**, 10, 59-75, 10.1016/0047-2670(79)80037-4.

(23) Tryk, D.A.; Fujishima, A.; Honda, K. Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim. Acta **2000**, 45, 2363-2376, 10.1016/S0013-4686(00)00337-6.

(24) S. N. Habisreutinger; L. Schmidt-Mende; J. K. Stolarczyk. Photocatalytic Reduction of CO₂ on TiO₂ and Other Semiconductors. Angew. Chem. Int. Ed. **2013**, 52, 2-39, 10.1002/anie.201207199.

(25) Zhao, J.; Wang, X.; Xu, Z.; Loo, J.S.C. Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: a prospective review on semiconductor/metal complex co-catalyst systems. J. Mater. Chem. A **2014**, 2, 15228-15233, 10.1039/C4TA02250E.

(26) Highfield, J. Advances and Recent Trends in Heterogeneous Photo (Electro)-Catalysis for Solar Fuels and Chemicals. Molecules 2015, 20, 6739-6793, 10.3390/molecules20046739.

(27) Ampelli, C.; Centi, G.; Passalacqua, R.; Perathoner, S. Electrolyte-less design of PEC cells for solar fuels: prospects and open issues in the development of cells and related catalytic electrodes. Catal. Today. 2016, 259, 246-258, 10.1016/j.cattod.2015.07.020.
(28) Xie, S.; Zhang, Q.; Liu G.; Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO₂ using heterogeneous catalysts with controlled nanostructures. Chem.

Commun. 2016, 52, 35-59, 10.1039/C5CC07613G.

(29) Ozer, L.Y.; Garlisi, C.; Oladipo, H.; Pagliaro, M.; Sharief, S.A.; Yusuf, A.; Almheiri,

S.: Palmisano. G. Inorganic semiconductors-graphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. J. Photochem. photobiol. C: Photochem. Rev. 2017. and 33. 132-164, 10.1016/j.jphotochemrev.2017.06.003.

(30) Wang, P.; Wang, S.; Wang, H.; Wu, Z.; Wang, L. Recent Progress on Photo-Electrocatalytic Reduction of Carbon Dioxide. Part. Part. Syst. Charact. **2018**, 35, 1700371, 10.1002/ppsc.201700371.

(31) Chen, D.; Sivakumar, M.; Ray, A.K. Heterogeneous Photocatalysis in Environmental Remediation. Dev. Chem. Eng. Mineral Process. 2000, 8(5/6), 505-550, 10.1002/apj.5500080507.

(32) Ampelli, C.; Passalacqua, R.; Perathoner, S.; Centi, G. Nano-engineered materials for H₂ production by water photo-electrolysis. Chem. Eng. Trans. **2009**, 17, 1011-1016, 10.3303/CET0917169.

(33) Ola, O.; Maroto-Valer, M.M. Review of material design and reactor engineering on TiO₂ photocatalysis for CO₂ reduction. J. Photochem. Photobiol C: Photochem. Rev. 2015, 24, 16-42, 10.1016/j.jphotochemrev.2015.06.001.

(34) Szaniawsk, E.; Bienkowskia, K.; Rutkowsk, I.A.; Kulesza, P.J.; Solarsk, R. Enhanced photoelectrochemical CO₂-reduction system based on mixed Cu₂O-nonstoichiometric TiO₂ photocathode. Catal. Today **2018**, 300, 145-151, 10.1016/j.cattod.2017.05.099.

(35) Chu, S.; Fan, S.; Wang, Y.; Rossouw, D.; Wang, Y.; Botton, G.A.; Mi, Z. Tunable Syngas Production from CO₂ and H₂O in an Aqueous Photoelectrochemical Cell. Angew. Chem. Int. Ed. **2016**, 55, 1-6, 10.1002/anie.201606424.

(36) Li, K.; Peng, B.; Peng, T. Recent Advances in Heterogeneous Photocatalytic CO₂
Conversion to Solar Fuels. ACS Catal. 2016, 6, 7485-7527, 10.1021/acscatal.6b02089.
(37) Ampelli, C.; Centi, G.; Passalacqua, R.; Perathoner, S. Synthesis of solar fuels by a novel photoelectrocatalytic approach. Energy Environ. Sci. 2010, 3, 292-301, 10.1039/B925470F.

(38) Sato, S.; Arai, T.; Morikawa, T.; Uemura, K.; Suzuki, M.; Tanaka, H.; Kajino, T. Selective CO₂ Conversion to Formate Conjugated with H₂O Oxidation Utilizing Semiconductor/Complex Hybrid Photocatalysts. J. Am. Chem. Soc. **2011**, 133, 15240-15243, 10.1021/ja204881d.

(39) Alenezi, K.; Ibrahim, K.; Li, P.; Pickett, J. Solar Fuels: Photoelectrosynthesis of CO from CO₂ at *p*-Type Si using Fe Porphyrin Electrocatalysts. Chem. Rev. **2010**, 110, 6446-6473, 10.1002/chem.201300764.

(40) Li, F.; Zhang, L.; Tong, J.; Liu, Y.; Xu, S.; Cao, Y.; Cao, S. Photocatalytic CO₂ conversion to methanol by Cu₂O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor. Nano energy **2016**, 27, 320-329, 10.1016/j.nanoen.2016.06.056.

(41) Cheng, J.; Zhang, M.; Wu, G.; Wang, X.; Zhou, J.; Cen, K. Photoelectrocatalytic Reduction of CO₂ into Chemicals Using Pt-Modified Reduced Graphene Oxide Combined with Pt-Modified TiO₂ Nanotubes. Environ. Sci. Technol. **2014**, 48, 7076-7084, 10.1021/es500364g.

(42) Urbain, F.; Tang, P.; Carretero, N. M.; Andreu, T.; Gerling, L. G.; Voz, C.; Arbiol,
J.; Morante, J. R. A prototype reactor for highly selective solar-driven CO₂ reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics. Energy Environ. Sci. 2017, 10, 2256, 10.1039/C7EE01747B.

(43) Schreier, M.; Héroguel, F.; Steier, L.; Ahmad, S.; Luterbacher, J. S.; Mayer, M. T.; Luo, J.; Grätzel, M. Solar conversion of CO₂ to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nature Energy **2017**, *2*, 17087, 10.1038/nenergy.2017.87.

(44) Ong, W.J.; Putri, L.K.; Tan, Y.C.; Tan, L.L.; Li, N.; Ng, Y.H.; Wen, X.; Chai, S. P. Unravelling charge carrier dynamics in protonated g-C₃N₄ interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO₂ reduction: A combined experimental and first-principles DFT study. Nano Res. **2017**, 10(5), 1673-1696, 10.1007/s12274-016-1391-4.

(45) Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P. Photocatalytic
Process for CO₂ Emission Reduction from Industrial Flue Gas Streams. Ind. Eng. Chem.
Res. 2006, 45, 2558-2568, 10.1021/ie0505763.

(46) Nguyen, T.V.; Yu, J.C.S. Photoreduction of CO₂ in an optical-fiber photoreactor:
Effects of metals addition and catalyst carrier. Appl. Catal., A 2008, 335, 112-120, 10.1016/j.apcata.2007.11.022.

(47) Du, P.; Carneiro, J.T.; Moulijn, J.A.; Mul, G. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis. Appl. Catal., A **2008**, 334, 119-128, 10.1016/j.apcata.2007.09.045.

(48) Perego, C.; Peratello, S. Experimental methods in catalytic kinetics. Catal. Today1999, 52, 133-145, 10.1016/S0920-5861(99)00071-1.

(49) Mukherjee, P. S.; Ray, A. K. Major Challenges in the Design of a Large-Scale Photocatalytic Reactor for Water Treatment. Chem. Eng. Technol. 1999, 22 (3), 253-260, 10.1002/(SICI)1521-4125(199903)22:3<253::AID-CEAT253>3.0.CO;2-X.

(50) Gerven, T.V.; Mul, G.; Moulijn, J.; Stankiewicz, A. A review of intensification of photocatalytic processes. Chem. Eng. Prog. **2007**, 46, 781-789, 10.1016/j.cep.2007.05.012.

(51) Lin, H.; Valsaraj, K.T. An Optical Fiber Monolith Reactor for Photocatalytic Wastewater Treatment. AIChE J. **2006**, 52 (6), 2271-2280, 10.1002/aic.10823.

(52) Sun, R.; Nakajima, A.; Watanabe, I.; Watanabe, T.; Hashimoto, K. TiO₂-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds. J. Photochem. Photobiol. A: Chemistry **2000**, 136, 111-116, 10.1016/S1010-6030(00)00330-0.

(53) Kondratenko, E.V.; Mul, G.; Baltrusaitis, J.; Larrazábalc, G. O.; Pérez-Ramírez, J. Status and perspectives of CO₂ conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 2013, 6:3,112-3135, 10.1039/C3EE41272E.

(54) Merino-Garcia, I.; Alvarez-Guerra, E.; Albo, J.; Irabien, A. Electrochemical membrane reactors for the utilization of carbon dioxide. Chem. Eng. J. **2016**, 305, 104-120, 10.1016/j.cej.2016.05.032.

(55) Delacourt, C.; Ridgway, P.L.; Kerr, J.B.; Newman, J. Design of an electrochemical cell making syngas (CO + H₂) from CO₂ and H₂O reduction at room temperature. J. Electrochem. Soc. **2008**, 155, B42-B49, 10.1149/1.2801871.

(56) Currao, A. Photoelectrochemical Water Splitting. Chimia 2007, 61, 815-819, 10.2533/chimia.2007.815.

(57) Genovese, C.; Ampelli, C.; Perathoner, S.; Centi, G. Electrocatalytic conversion of CO₂ to liquid fuels using nanocarbon-based electrodes. J. Energ. Chem. **2013**, 22, 202-213, 10.1016/S2095-4956(13)60026-1.

(58) Singh, M. R.; Clark, E. L.; Alexis T. Bell, A. T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys.Chem.Chem.Phys. **2015**, 17, 18924-18936, 10.1039/C5CP03283K.

(59) Ba, X.; Yan, L.; Huang, S.; Yu, J.; Xia, X.; Yu, Y. New Way for CO₂ Reduction under Visible Light by a Combination of a Cu Electrode and Semiconductor Thin Film:
Cu₂O Conduction Type and Morphology Effect. J. Phys. Chem. C 2014, 118, 24467-24478, 10.1021/jp5063397.

(60) Kim, B.; Hillman, F.; Ariyoshi, M.; Fujikawa, S.; Kenis, P. J. A. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO_2 to CO. J. Power Sources **2016**, 312, 192-198, 10.1016/j.jpowsour.2016.02.043.

(61) Del Castillo, A.; Alvarez-Guerra, M.; Irabien, A. Continuous Electroreduction of CO₂ to Formate Using Sn Gas Diffusion Electrodes. AIChE Journal **2014**, 60, 3557-3564, 10.1002/aic.14544.

(62) Salvatore, D. A.; Weekes, D. M.; He, J.; Dettelbach, K. E.; Li, Y. C.; Mallouk, T.
E.; Berlinguette, C. P. Electrolysis of Gaseous CO₂ to CO in a Flow Cell with a Bipolar Membrane. ACS Energy Lett. 2018, 3, 149–154, 10.1021/acsenergylett.7b01017.

(63) Merino-Garcia, I.; Albo, J.; Irabien, A. Tailoring gas-phase CO₂ electroreduction selectivity to hydrocarbons at Cu nanoparticles. Nanotech. **2018**, 29, 014001, 10.1088/1361-6528/aa994e.

(64) Chang, X.; Wang, T.; Gong, J. CO₂ Photo-reduction: Insights into CO₂ Activation and Reaction on Surfaces of Photocatalysts. Energy Environ. Sci. **2016**, 9, 2177-2196, 10.1039/C6EE00383D.

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
24 25	
35	
36	
37	
38	
39	
40	
41	
42	
ד∠ ⊿ס	
43 44	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
50	

60

(65) Zhang, M.; Cheng, J.; Xuan, X.; Zhou, J.; Cen, K. CO₂ Synergistic Reduction in a Photoanode-Driven Photoelectrochemical Cell with a Pt-Modified TiO₂ Nanotube Photoanode and a Pt Reduced Graphene Oxide Electrocathode. ACS Sustain. Chem. Eng. 2016, 4, 6344-6354, 10.1021/acssuschemeng.6b00909.

(66) Huang, X.; Shen, Q.; Liu, J.; Yang, N.; Zhao, G. CO₂ adsorption-enhanced semiconductor/metal-complex hybrid photoelectrocatalytic interface for efficient formate production. Energy Environ. Sci. **2016**, *9*, 3161-3171, 10.1039/C6EE00968A.

(67) Kutz, R. B.; Chen, Q.; Yang, H.; Sajjad, S. D.; Liu, Z.; Masel, I. R. Sustainion Imidazolium-Functionalized Polymers for Carbon Dioxide Electrolysis. Energy Technol.
2017, 5, 929-936, 10.1002/ente.201600636.

(68) Li, Y. C.; Zhou, D.; Yan, Z.; Gonçalves, R. H.; Salvatore, D. A.; Berlinguette, C. P.;
Mallouk, T. E. Electrolysis of CO₂ to Syngas in Bipolar Membrane-Based
Electrochemical Cells. ACS Energy Lett. 2016, 1, 1149-1153, 10.1021/acsenergylett.6b00475.

(69) Zhou, X.; Liu, R.; Sun, K.; Chen, Y.; Verlage, E.; Francis, S. A.; Lewis, N. S.; Xiang,
C. Solar-Driven Reduction of 1 atm of CO₂ to Formate at 10% Energy-Conversion
Efficiency by Use of a TiO₂-Protected III–V Tandem Photoanode in Conjunction with a
Bipolar Membrane and a Pd/C Cathode. ACS Energy Lett. 2016, 1, 764-770, 10.1021/acsenergylett.6b00317.

(70) Albo, J.; Sáez, A.; Solla-Gullón, J.; Montiel, V.; Irabien, A. Production of methanol from CO₂ electroreduction at Cu₂O and Cu₂O/ZnO-based electrodes in aqueous solution.
Appl. Catal., B 2015, 176-177, 709-717, 10.1016/j.apcatb.2015.04.055.

(71) Albo, J.; Vallejo, D.; Beobide, G.; Castillo, O.; Castaño, P.; Irabien, A. Copper-Based Metal–Organic Porous Materials for CO₂ Electrocatalytic Reduction to Alcohols.
Chem. Sus. Chem. 2016, 9, 1-11, 10.1002/cssc.201600693.

(72) Endrodi, B.; Bencsik, G.; Darvas, F.; Jones, R.; Rajeshwar, K.; Janáky, C.
Continuous-flow electroreduction of carbon dioxide. Prog. Energy Combust. Sci. 2017, 62, 133-154, 10.1016/j.pecs.2017.05.005.

(73) Homayoni, H.; Chanmanee, W.; Tacconi, R.; Dennis, H.; Rajeshwar, K. Continuous
Flow Photoelectrochemical Reactor for Solar Conversion of Carbon Dioxide to Alcohols.
J. Electrochem. Soc. 2015, 162 (8), 115-122, 10.1149/2.0331508jes.

(74) Xia, S.; Meng, Y.; Zhou, X.; Xue, J.; Pan, G.; Ni, Z. Ti/ZnO–Fe₂O₃ composite: Synthesis, characterization and applicationas a highly efficient photoelectrocatalyst for methanol from CO₂ reduction. Appl. Catal., B **2016**, 187, 122-133, 10.1016/j.apcatb.2016.01.027.

(75) Wood, J.; Summers, H.; Clark, A.; Kaeffer, N.; Braeutigam, M.; Carbone, L.;
D'Amario, L.; Fan, K.; Farre, Y.; Narbey, S.; Oswald, F.; Stevens, A.; Parmenter, D.J.;
Fay, W.; La Torre, A. A comprehensive comparison of dye-sensitized NiO photocathodes
for solar energy conversion. Phys. Chem. Chem. Phys **2016**, 18, 10727-10738, 10.1039/C5CP05326A.

(76) Qin, G.; Zhang, Y.; Keb, X.; Tong, X.; Sun, Z.; Liang, M.; Xue, S. Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dyesensitized TiO₂ film. Appl. Catal., B **2013**, 129, 599-605, 10.1016/j.apcatb.2012.10.012.
(77) Kaneco, S.; Katsumata, H.; Suzuki, T.; Ohta, K. Photoelectrocatalytic reduction of CO₂ in LiOH/methanol at metal-modified p-InP electrodes. Appl. Catal. B **2006**, 64, 139-145, 10.1016/j.apcatb.2005.11.012.

(78) Cheng, J.; Zhang, M.; Liu, J.; Zhou, J.; Cen, K. Cu foam cathode used as Pt-RGO catalyst matrix to improve CO₂ reduction in a photoelectrocatalytic cell with TiO₂ photoanode, J. Mater. Chem. A **2015**, *3*, 12947-12957, 10.1039/C5TA03026A.

(79) Chang, X.; Wang, T.; Zhang, P.; Wei, Y.; Zhao, J.; Gong, J. Stable Aqueous Photoelectrochemical CO₂ Reduction by a Cu₂O Dark Cathode with Improved Selectivity for Carbonaceous Products. Angew. Chem. Int. Ed. **2016**, 55, 1-6, 10.1002/anie.201602973.

(80) La Tempa, T. J.; Rani, S.; Bao, N.; Grimes, C.A. Generation of fuel from CO₂ saturated liquids using a p-Si nanowire // *n*-TiO₂ nanotube array photoelectrochemical cell. Nanoscale **2012**, 4, 2245-2250, 10.1039/c2nr00052k.

(81) Jacobsson, T. J.; Fjällström, V.; Edoffb, M.; Edvinsson, T.. Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ. Sci., **2014**, 7, 2056, 10.1039/C4EE00754A.

(82) Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.;
Behranginia, A.; Cerrato, J. M.; Haasch, R.; Zapol, P.; Kumar, B.; Klie, R. F.; Abiade, J.;
Curtiss, L. A.; Salehi-Khojin, A.. Nanostructured transition metal dichalcogenide
electrocatalysts for CO₂ reduction in ionic liquid. Science **2016**, 353, 467-470, 10.1126/science.aaf4767.

(83) White, J. L.; Herb, J. T.; Kaczur, J. J.; Majsztrik, P. W.; Bocarsly, A. B. Photons to formate: Efficient electrochemical solar energy conversion via reduction of carbon dioxide. J. CO₂ Util. **2014**, 7, 1-5, 10.1016/j.jcou.2014.05.002.

(84) Li, K.; Ana, X.; Parka, K.H.; Khraishehb, M.; Tanga, J. A critical review of CO₂
photoconversion: Catalysts and reactors. Catal. Today 2014, 224, 3-12, 10.1016/j.cattod.2013.12.006.

(85) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature **1979**, 277, 637-638, 10.1038/277637a0.

(86) Sekiya, T.; Ichimura, K.; Igarashi, M.; Kurita, S. Absorption spectra of anatase TiO₂ single crystals heat-treated under oxygen atmosphere. J. Phys. Chem. Solids **2000**, 61, 1237-1242, 10.1016/S0022-3697(99)00424-2.

(87) Liu, L.; Zhao, H.; Andino, J.M.; Li, Y. Photocatalytic CO₂ Reduction with H₂O on TiO₂ Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catal. **2012**, 2(8), 1817-1828, 10.1021/cs300273q.

(88) Wang, T.; Meng, X.; Li, P.; Ouyang, S.; Chang, K.; Liu, G.; Meia, Z.; Ye, J. Photoreduction of CO_2 over the well-crystallized ordered mesoporous TiO₂ with the confined space effect. Nano Energy **2014**, 9, 50-60, 10.1016/j.nanoen.2014.06.027.

(89) Zhao, H.; Pan, F.; Li, Y. A review on the effects of TiO_2 surface point defects on CO_2 photoreduction with H_2O . J Materiomics **2017**, 3, 17-32, 10.1016/j.jmat.2016.12.001.

(90) Barton, E.; Rampulla, M.; Bocarsly, B. Selective Solar-Driven Reduction of CO₂ to Methanol Using a Catalyzed *p*-GaP Based Photoelectrochemical Cell. J. Am. Chem. Soc.
2008, 130, 6342-6344, 10.1021/ja0776327.

(91) Yu, Y.; Zhang, Z.; Yin, X.; Kvit, A.; Liao, Q.; Kang, Z.; Yan, X.; Zhang, Y.; Wang, X. Enhanced photoelectrochemical efficiency and stability using a conformal TiO₂ film on a black silicon photoanode. Nature Energy 2017, 156-157, 134-140, 10.1038/nenergy.2017.45.

(92) Magesh, G.; Kim, E.S.; Kang, H.J.; Banu, M.; Kim, J.Y.; Kim, J.H.; Lee, J.S. A versatile photoanode-driven photoelectrochemical system for conversion of CO₂ to fuels with high faradaic efficiencies at low bias potentials. J. Mater. Chem. A **2014**, 2, 2044-2049, 10.1039/C3TA14408A.

2
3
4
5
6
7
/
8
9
10
11
11
12
13
14
15
16
17
17
18
19
20
21
22
22
23
24
25
26
27
27
28
29
30
31
32
33
31
25
35
36
37
38
39
10
40
41
42
43
44
45
16
40
4/
48
49
50
51
52
52
22
54
55
56
57
58
50
53
00

(93) Song, J. T.; Ryoo, H.; Cho, M.; Kim, J.; Kim, J. G.; Chung, S. Y.; Oh, J. Nanoporous
Au Thin Films on Si Photoelectrodes for Selective and Efficient Photoelectrochemical
CO₂ Reduction. Adv. Energy Mater. 2017, 7, 1601103, 10.1002/aenm.201601103.

(94) Morikawa, T.; Sato, S.; Arai, T.; Uemura, K.; Yamanaka, K.I.; Suzuki, T.M.; Kajino, T.; Motohiro, T. Selective CO₂ Reduction Conjugated with H₂O Oxidation Utilizing Semiconductor/Metal-Complex Hybrid Photocatalysts. AIP Conference Proceedings **2013**, 1568:1, 11-15, 10.1021/ja204881d.

(95) Sahara, G.; Kumagai, H.; Maeda, K.; Kaeffer, N.; Artero, V.; Higashi, M., Abe, R.; Ishitani, O. Photoelectrochemical Reduction of CO₂ Coupled to Water Oxidation Using a Photocathode With a Ru(II)–Re(I) Complex Photocatalyst and a CoO_x/TaON Photoanode. J. Am. Chem. Soc. **2016**, 138, 14152-14158, 10.1021/jacs.6b09212.

(96) Hu, B.; Guild, C.; Suib, S.L. Thermal, electrochemical, and photochemical conversion of CO₂ to fuels and value-added products. J. CO₂ Util. **2013**, 1, 18-27, 10.1016/j.jcou.2013.03.004.

(97) Petit J.P.; Chartier, P.; Beley, M.; Deville, J.P. Molecular catalysts in photoelectrochemical cells Study of an efficient system for the selective photoelectroreduction of CO₂: *p*-GaI or *p*-GaAs / Ni(cyclam) $^{2+}$, aqueous medium. J. Electroanal. Chem., **1989**, 269, 267-281, 10.1016/0022-0728(89)85137-X.

(98) Hirota, K.; Tryk, A.; Yamamoto, T.; Hashimoto, K.; Okawa, M.; Fujishima, A. Photoelectrochemical reduction of CO_2 in a high-pressure CO_2 + methanol medium at *p*type semiconductor electrodes. J. Phys. Chem. B **1998**, 102, 9834-9843, 10.1021/jp9822945.

(99) Kumar, B.; Smieja, J.M.; Kubiak, C.P. Photoreduction of CO₂ on *p*-type Silicon Using Re(bipy-But)(CO)₃Cl: Photovoltages Exceeding 600 mV for the Selective Reduction of CO₂ to CO. J. Phys. Chem. C **2010**, 114, 14220-14223, 10.1021/jp105171b.

(100) Yang, K.D.; Ha, Y.; Sim, U.; An, J.; Lee, C.W.; Jin, K.; Kim, Y.; Park, J.; Hong, J.S.; Lee, J.H.; Lee, H-E.; Jeong, H.-Y.; Kim, H.; Nam, K.T. Graphene Quantum Sheet Catalyzed Silicon Photocathode for Selective CO₂ Conversion to CO. Adv. Funct. Mater. **2016**, 26, 233-242, 10.1002/adfm.201502751.

(101) Kaneco, S.; Katsumata, H.; Suzuki, T.; Ohta, K. Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and *p*-type indium phosphide electrodes in methanol. Chem. Eng. J. **2006**, 116, 227-231, 10.1016/j.cej.2005.12.014.

(102) Lin, X.; Gao, Y.; Jiang, M.; Zhang, Y.; Hou, Y.; Dai, W.; Wang, S.; Ding, Z.
Photocatalytic CO₂ reduction promoted by uniform perovskite hydroxide CoSn(OH)₆
nanocubes. Appl. Catal., B 2018, 224, 1009-1016, 10.1016/j.apcatb.2017.11.035.

(103) Sahara, G.; Abe, R.; Higashi, M.; Morikawa, T.; Maeda, K.; Ueda, Y.; Ishitani, O. Photoelectrochemical CO₂ reduction using a Ru(II)-Re(I) multinuclear metal complex on a p-type semiconducting NiO electrode. Chem. Commun. **2015**, 51, 10722-10725, 10.1039/C5CC02403J.

(104) Kaneco, S.; Ueno, Y.; Katsumata, H.; Suzuki, T.; Ohta, K. Photoelectrochemical reduction of CO₂ at *p*-InP electrode in copper particle-suspended methanol. Chem. Eng. J. 2009, 148, 57-62, 10.1016/j.cej.2008.07.038.

(105) Song, J.; Ryoo, H.; Cho, M.; Kim, J.; Kim, J.G.; Chung, S.; Oh, J. Nanoporous Au Thin Films on Si Photoelectrodes for Selective and Efficient Photoelectrochemical CO₂ Reduction. Adv. Energy Mater. **2016**, 1601103, 10.1002/aenm.201601103.

(106) Weng, B.; Wei, W.; Yiliguma; Wu, H.; Alenizi, A.M.; Zheng, G. Bifunctional CoP and CoN Porous Nanocatalysts Derived from ZIF-67 In Situ Grown on Nanowire Photoelectrodes for Efficient Photoelectrochemical Water Splitting and CO₂ Reduction. J. Mater. Chem. A **2016**, 4, 15353-1536, 10.1039/C6TA06841C.

з
1
4 7
5
6
7
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
25
22
30
37
38
39
40
41
42
43
44
15
45
40
4/
48
49
50
51
52
53
54
55
55
56
57
58
59
60

(107) Jiang, M.; Wu, H.; Li, Z.; Ji, D.; Li, W.; Liu, Y., Yuan, D.; Wang, B.; Zhang, Z.
Highly selective photoelectrochemical conversion of carbon dioxide to formic acid. ACS
Sustainable Chem. Eng. 2018, 6(1), 82-87, 10.1021/acssuschemeng.7b03272.

(108) Gu, J.; Wuttig, A.; Krizan, J.W.; Hu, Y.; Detweiler, Z.M.; Cava, R.J.; Bocarsly,
A.B. Mg-Doped CuFeO₂ Photocathodes for Photoelectrochemical Reduction of Carbon
Dioxide. J. Phys. Chem. C 2013, 117, 12415-12422, 10.1021/jp402007z.

(109) Shen, Q.; Chen, Z.; Xiaofeng, H.; Liu, M.; Zhao, G. High-yield and Selective Photoelectrocatalytic Reduction of CO₂ to Formate by Metallic Copper Decorated Co₃O₄ Nanotube Arrays. Environ. Sci. Technol. **2015**, 49, 5828-5835, 10.1021/acs.est.5b00066. (110) Irtem, E.; Hernández-Alonso, M.D.; Parra, A.; Fàbrega, C.; Penelas-Pérez, G.; Morante, J.R.; Andreu, T. A photoelectrochemical flow cell design for the efficient CO₂ conversion to fuels. Electrochim. Acta **2017**, 240, 225-230, 10.1016/j.electacta.2017.04.072.

(111) Irtem, E.; Andreu, T.; Parra, A.; Hernandez-Alonso, M.D.; García-Rodríguez, S.;
Riesco-García, J.M.; Penelas-Pérez, G.; Morante, J.R.. Low-energy formate production
from CO₂ electroreduction using electrodeposited tin on GDE. J. Mater. Chem. A, **2016**,
4, 13582-13588, 10.1039/C6TA04432H.

(112) Arai, T.; Sato, S.; Uemura, K.; Morikawa, T.; Kajino, T.; Motohiro, T. Photoelectrochemical reduction of CO_2 in water under visible-light irradiation by a *p*-type InP photocathode modified with an electropolymerized ruthenium complex. Chem. Commun. **2010**, 46, 6944-6946, 10.1039/C0CC02061C.

(113) Arai, T.; Tajima, S.; Sato, S.; Uemura, K.; Morikawa, T.; Kajino, T. Selective CO₂ conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer. Chem. Commun. **2011**, 47, 12664-12666, 10.1039/C1CC16160A.

(114) Zhang, M.; Cheng, J.; Xuan, X.; Zhou, J.; Cen, K. Pt/graphene aerogel deposited in Cu foam as a 3D binder-free cathode for CO₂ reduction into liquid chemicals in a TiO₂ photoanode-driven photoelectrochemical cell. Chem. Eng. J. **2017**, 322, 22-32, 10.1016/j.cej.2017.03.126.

(115) Ferreira de Brito, J.; Alves da Silva, A.; Cavalheiro, A.J.; Zanoni, M.V.B. Evaluation of the Parameters Affecting the Photoelectrocatalytic Reduction of CO₂ to CH₃OH at Cu/Cu₂O Electrode. Int. J. Electrochem. Sci. **2014**, 9, 5961-5973.

(116) Li, P.; Xu, J.; Jing, H.; Wu, C.; Peng, H.; Lu, J.; Yin, H. Wedged N-doped CuO with more negative conductive band and lower over potential for high efficiency photoelectric converting CO₂ to methanol. Appl. Catal., B **2014**, 156-157, 134-140, 10.1016/j.apcatb.2014.03.011.

(117) Ferreira de Brito, J.; Araujo, A.R.; Rajeshwar, K.; Zanoni, M.V.B. Photoelectrochemical reduction of CO₂ on Cu/Cu₂O films: Product distribution and pH effects. Chem. Eng. J. **2015**, 264, 302-309, 10.1016/j.cej.2014.11.081.

(118) Ganesh, I. Conversion of carbon dioxide into methanol – a potential liquid fuel:
Fundamental challenges and opportunities (a review). Renew. Sustain. Energy Rev. 2014,
31, 221-257, 10.1016/j.rser.2013.11.045.

(119) Yuan, J.; Wang, X.; Gu, C.; Sun, J.; Ding, W.; Wei, J.; Zuo X.; Hao. C. Photoelectrocatalytic reduction of carbon dioxide to methanol at cuprous oxide foam cathode. RSC Adv. **2017**, *7*, 24933-24939, 10.1039/C7RA03347H.

(120) Lee, K.; Lee, S.; Cho, H.; Jeong, S.; Kim, W.D.; Lee, S.; Lee, D.C. Cu^+ incorporated TiO₂ overlayer on Cu₂O nanowire photocathodes for enhanced photoelectrochemical conversion of CO₂ to methanol. J. Energy Chem. **2018**, 27, 264-270, 10.1016/j.jechem.2017.04.019.

(121) Yang, Z.; Wang, H.; Song, W.; Wei, W.; Mu, Q.; Kong, B.; Li, P.; Yin, H. One dimensional SnO₂ NRs/Fe₂O₃ NTs with dual synergistic effects for photoelectrocatalytic reduction CO₂ into methanol. J. Colloid Interface Sci. 2017, 486, 232-240, 10.1016/j.jcis.2016.09.055.

(122) Wei, W.; Yang, Z.; Song, W.; Hu, F.; Luan, B.; Li, P.; Yin, H. Different CdSeTe structure determined photoelectrocatalytic reduction performance for carbon dioxide. J. Colloid Interface Sci. 2017, 496, 327-333, 10.1016/j.jcis.2016.11.054.

(123) Thompson, J. F.; Chen, B.; Kubo, M.; Londoño, N.; Minuzzo, J. Artificial photosynthesis device development for CO₂ photoelectrochemical conversion. MRS Adv. **2016**, 1, 447-452, 10.1557/adv.2016.111.

(124) Ampelli, C.; Passalacqua, R.; Genovese, C.; Perathoner, S.; Centi, G. A Novel
Photo-electrochemical Approach for the Chemical Recycling of Carbon Dioxide to Fuels.
Chem. Eng. Trans. 2011, 25, 683-688, 10.3303/CET1125114.

(125) Yuan, J.; Xiao, B.; Hao, C. Photoelectrochemical Reduction of Carbon Dioxide to Ethanol at Cu₂O Foam Cathode. Int. J. Electrochem. Sci. **2017**, 12, 8288-8294, 10.20964/2017.09.36.

(126) Qi, Y.; Xu, Q.; Wang, Y.; Yan, B.; Ren, Y.; Chen, Z. CO₂-Induced Phase Engineering: Protocol for Enhanced Photoelectrocatalytic Performance of 2D MoS₂ Nanosheets. ACS Nano **2016**, 10, 2903-2909, 10.1021/acsnano.6b00001.

(127) Kong, Q.; Kim, D.; Liu, C.; Yu, Y.; Su, Y.; Li, Y.; Yang, P. Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO₂ Reduction. Nano Lett. **2016**, 16, 5675-5680, 10.1021/acs.nanolett.6b02321.

(128) Cheng, J.; Zhang, M.; Wu, G.; Wang, X.; Zhou, J.; Cen, K. Optimizing CO₂ reduction conditions to increase carbon atom conversion using a Pt-RGO||Pt TNT

photoelectrochemical cell. Sol. Energy Mater. Sol. Cells **2015**, 132, 606-614, 10.1016/j.solmat.2014.10.015.

(129) Hasan, M.R.; Hamid, S.B.A.; Basirun, W.J.; Suhaimy, S.H.M.; Mat, A.N.C. A solgel derived, copper-doped, titanium dioxide-reduced graphene oxide nanocomposite electrode for the photoelectrocatalytic reduction of CO₂ to methanol and formic acid. RSC Advances **2015**, 5, 77803-77813, 10.1039/C5RA12525A.

(130) Jang, Y. J.; Jeong, I.; Lee, J.; Lee, J.; Ko, M. J.; Lee, J. S.. Unbiased sunlight-driven artificial photosynthesis of carbon monoxide from CO₂ using a ZnTe-based photocathode and a perovskite solar cell in tandem. ACS Nano **2016**, 10, 6980-6987, 10.1021/acsnano.6b02965.

(131) Wang, Y.; Fan, S.; AlOtaibi, B.; Wang, Y.; Li, L.; Mi, Z. A monolithically integrated gallium nitride nanowire/silicon solar cell photocathode for selective carbon dioxide reduction to methane. Chem. Eur. J. **2016**, 22, 8809-8813, 10.1002/chem.201601642.

(132) Nath, N. C. D.; Choi, S. Y.; Jeong, H. W.; Lee, J. J.; Park, H. Stand-alone photoconversion of carbon dioxide on copper oxide wire arrays powered by tungsten trioxide/dye-sensitized solar cell dual absorbers. Nano Energy **2016**, 25, 51-59, 10.1016/j.nanoen.2016.04.025.

Table of Contents

The PEC technology presents potential for an enhanced CO_2 reduction efficiency under the sun allowing the production of the electrons required and the oxidation/reduction reactions at the same device.

AUTHOR INFORMATION

1 2 3

4 5

6 7

8 9 10

11 12

13 14

15 16

17 18 19

20 21

22 23

24 25 26

27 28

34 35 36

37 38

39 40

41 42

43 44 45

46 47

48 49

50 51 52

53 54

55 56

57 58 59

60

Sergio Castro studied Chemical Engineering at University of Cantabria (2015), where he obtained his Master's (2017) in Chemical Engineering. At present, he is a Predoctoral Researcher in the Department Chemical and Biomolecular of Engineering and member of the DePRO research headed Prof. Irabien group by (http://grupos.unican.es/depro/) in the same university. The primary focus of his research areas are in the field of the electroand

photoelectrocatalytic conversion of CO₂ into valuable products.

Jonathan Albo obtained his MSc in Chemical Engineering (2010) from the University of Cantabria. In 2012, he completed his PhD in Chemical Engineering at the same University, focused on the development of new membranebased processes for CO₂ separation. He next held a JSPS

postdoctoral fellowship (2013) at Hiroshima University and then joined the University of the Basque Country as a Juan de la Cierva researcher (2014-2016). At present, he is Ramón y Cajal senior researcher at the Chemical and Biomolecular Engineering

Department, University of Cantabria. His main research interests are in the field of electro-photoelectro-and-photo-catalytic conversion of CO₂ to value-added chemicals.

Angel Irabien is Full Professor of Chemical Engineering in the Department of Chemical and Biomolecular Engineering at the University of Cantabria (Spain) after his PhD thesis, Associated Professor position in the Basque Country University and Academic Visitor stays in the Kings College (U London, UK), Friedrich Alexander Universität (Germany) and Oxford University (UK). His research interest include the development of carbon capture and utilization processes based on electrochemical reactors and renewable energy and the application of Life

Cycle Thinking to the Chemical and Process Engineering.

82x44mm (96 x 96 DPI)