
Performance comparison between the SRP and DFP

synchronization protocols in MaRTE OS

Marina Gutiérrez Alan Burns

Universidad de Cantabria University of York

gutierrezlm@unican.es alan.burns@york.ac.uk

Mario Aldea Michael González

Universidad de Cantabria Universidad de Cantabria

aldeam@unican.es mgh@unican.es

January 17, 2013

Abstract

The Deadline Floor Protocol (DFP) is a mutual exclusion synchronization protocol de-
signed as an alternative to the Baker's Stack Resource Protocol (SRP) to access shared re-
sources in a system scheduled under the Earliest Deadline First (EDF) policy. We have
implemented both protocols in the real-time operating system MaRTE OS and we have com-
pared their performance. Overall, DFP is easier to implement and performs better than SRP
for the same data structure, a doubly-linked list (DLL). More signi�cantly, there is a more
e�cient data structure (the binary heap) that cannot be used with SRP and outperforms the
DLL with both protocols.

1 Introduction

The Earliest Deadline First (EDF) is the most widely studied optimal dynamic scheduling algo-
rithm for uniprocessor real-time systems [1]. For realistic programs, tasks must be allowed to
exchange data by sharing resources that must be accessed under mutual exclusion.

With EDF scheduled systems, access to such resources is usually controlled by the use of
Baker's Stack Resource Protocol (SRP) [2] [3], but recently Burns [4] introduced a new protocol
called Deadline Floor Protocol (DFP). The DFP has all the key properties of SRP and leads to
the same worst-case blocking. Both protocols are brie�y reviewed in Section 2. The purpose of
this work is to compare their performance.

MaRTE OS [5] is a real-time operating system developed by the Computers and Real-time
group at the University of Cantabria. Most of its code is written in Ada [6] with some C and
assembler parts. MaRTE OS provides support for Ada and C/C++ concurrent applications. In
the case of C/C++ applications, they can make use of the POSIX/C interface provided by MaRTE
OS [7].

MaRTE OS supports many advanced real-time features to be used by Ada or C applications,
not present in the POSIX standard. In particular, it implements the EDF scheduling policy along
with the Baker's Stack Resource Protocol.

In the work presented in this report, we have added to MaRTE OS support for the Deadline
Floor Protocol in order to perform a fair comparison in the same system between both protocols
(EDF and SRP) when used by POSIX/C applications.

1



Details of the implementation of both protocols can be found in Sections 3 and 4. In Section 5
we have made a comparative analysis between the SRP and DFP implementations and conclusions
are contained in Section 6.

2 Resource Sharing Policies

2.1 System Model

Our model of a hard real-time system comprises a set of n real-time tasks {τ1, τ2, ..., τn} executing
on a uniprocessor, each task consists of a potentially unbounded stream of jobs which must be
completed before their deadlines. Let τi indicate any given task of the system, and let ji indicate
any given job of τi.

When tasks are periodic all their jobs have a regular inter-arrival time Ti , we call Ti the period
of τi . If a job for a periodic task arrives at time t, then the next job of τi must arrive at t + Ti.
For sporadic tasks each task has a minimum interarrival time that is also called Ti, so the next job
of τi must arrive not earlier than t+ Ti.

Each job of task τi has an execution time that is bounded by the task's worst-case execution
time, Ci . Each job of τi has the same relative deadline which equals the task's relative deadline
Di.

If a job of τi arrives at time t, the required worst-case execution time Ci must be completed
within Di time units, and the absolute deadline of this job is di = t+Di. The term deadline refers
to an absolute deadline of some job in the system.

Contained within the system are m shared resources (r1, ..., rm). Tasks may access (under
mutual exclusion) these resources, but we make no assumption as to when each job accesses these
shared resources during its execution. We do assume however that tasks do not self-suspend whilst
accessing a resource. Resources can make use of other resources and hence nested relationships are
possible, however, resources must be used in a strictly nested way.

The inclusion of shared resources in the system model implies that tasks may su�er blocking �
which must be taken into account in the scheduling analysis.

According to the EDF scheduling algorithm, in the absence of blocking, the job with the earliest
absolute deadline has the highest priority and will be executed on the processor. If more than one
job has the same deadline then they are scheduled in FIFO order; the one that has been in the
system the longest time will execute �rst. At any time, a released job with an earlier absolute
deadline will preempt the execution of a job with a later absolute deadline. When a job completes
its execution the system chooses, for execution, the oldest pending (released) job with the earliest
deadline.

2.2 Stack Resource Policy (SRP)

Given an application de�ned by a set of tasks (τ1, τ2, ..., τn ), a set of resources (r1, r2, ..., rm) and
a task-resource access relation, A the SRP [2] [3] is de�ned as follows:

1. Each task τi is assigned a preemption level πi. Under EDF scheduling, the preemption level
of a task correlates inversely to its relative deadline, ie. πi < πj ⇔ Di > Dj .

2. Each resource, rj , is assigned a ceiling preemption level denoted as Πj which is set equal to
the maximum preemption level of any task that may access it.

Πj = max{πj : τj ∈ A(ri)}.

2



3. When a task τi accesses resource r
j the task's preemption level is compared with resource's

preemption level. If the resource's preemption level is higher than task's preemption level,
then the task inherits the resource's preemption level; that is πi ← max{πi,Πj}.

4. When this task frees the resource its preemption level immediately returns to the value that
it had before entering the resource.

5. A task can only be chosen to execute if its preemption level is strictly higher than the
maximum of the preemption level of the running task and the preemption levels of the
resources currently held in the system.

2.3 Deadline Floor Inheritance Protocol (DFP)

Given an application de�ned by a set of tasks (τ1, τ2, ..., τn ), a set of resources (r1, r2, ..., rm) and
the task-resource access relation, A the DFP [4] is de�ned as follows:

1. Each resource, ri, has a relative deadline Di given by:

Di = min{Dj : τj ∈ A(ri)}

2. When a task τj released at time s accesses resource ri at time t (so s < t) its relative deadline
is immediately reduced to Di, and as a result its active absolute deadline is also (potentially)
reduced; that is dj ← min{t+Di, di}.

3. When this task frees the resource its deadline immediately returns to the value that it had
before entering the resource.

The scheduling rules remain the same as in any other EDF scheduled system: a task can only
be chosen to execute if its absolute deadline is strictly earlier than the current absolute deadline
of the running task.

3 SRP Implementation in MaRTE OS

3.1 Basic EDF Implementation

MaRTE OS uses a hierarchical scheduler with two levels. The base scheduler uses �xed priorities
as de�ned in the POSIX standard. Each task (called thread in POSIX) is assigned an integer called
the priority that is used as the primary criterion for scheduling. A higher priority task will always
preempt a lower priority task. Within each priority level POSIX allows di�erent behaviours (such
as FIFO or round-robin ordering). MaRTE OS adds a new secondary scheduler that uses the EDF
policy for tasks of the same priority. This hierarchical scheduling model is also supported in Ada
2005 for speci�c priority bands [8].

In this work we focus on a comparison of the SRP and DPF protocols for EDF scheduling, so
all our experiments and task model assume that all the tasks share the same base priority and are
scheduled just according to plain EDF rules.

The main data structure managed by the MaRTE scheduler is the ready queue. The ready
queue is an array of queues implemented with doubly-linked lists, a queue for each system priority.
Each queue holds the set of tasks of the same priority and for tasks with an EDF scheduler this
set is where the EDF rules apply.

The doubly-linked list (DLL) is a linked data structure that consists of a set of sequentially
linked nodes. Each node contains two links, that are references to the previous and to the next

3



node in the sequence of nodes. General insert and remove operations are O(n). Removing the
head or the tail is O(1).

When a task becomes ready, it must be added to the queue that corresponds to its priority.
The particular position occupied by the task in the queue depends on its scheduling policy and
parameters. For example, a just activated �xed priority FIFO task will occupy the tail of the queue
that corresponds to its priority.

Besides the priority, EDF tasks in MaRTE OS have two new scheduling parameters to imple-
ment the EDF policy: the relative and absolute task deadlines.

At each activation, an EDF task is assigned a new absolute deadline. EDF tasks are sorted
in the queue that corresponds to its priority according to their absolute deadlines, more urgent
deadlines �rst.

As it will be described in Section 3.2, when SRP is in use the ordering of EDF tasks gets more
complex, being based not only on their absolute deadlines but also on their preemption levels.

3.2 EDF scheduling in presence of SRP

As explained in 2.2 a new scheduling restriction is added by SRP to the basic EDF scheduling:
"a task can only be chosen to execute if its preemption level is strictly higher than the maximum
of the preemption level of the running task and the preemption levels of the resources currently
locked in the system".

In fact this restriction forces a deep change in the ordering criterion of the ready queue. While
in plain EDF, tasks with the same priority are ordered in their queue according to their absolute
deadlines, when using SRP two tasks (τa and τb) in the ready queue must be order according to
this order relation:

τa ≤ τb ⇔
{
da ≤ db if τb has no resources held
da ≤ db and πa ≥ πb if τb has some resources held

(1)

Consequently, looking for the right place of a task in the ready queue is more complex with SRP
than when using a plain EDF scheduling. With SRP, to �nd the correct place of a newly activated
task in the queue that corresponds to its priority we must start from tail to head comparing the
new task's absolute deadline and preemption level with the parameters of the other tasks in the
queue according to expression (1). The new task will be placed just before the �rst task τ that
does not verify τnew < τ . The search of the new task's position is an O(n) operation. A example
of task ordering in the ready queue can be found in Appendix A.

At this point it is necessary to introduce the concept of "Total order". An order relation ≤ is
a total order if it veri�es the properties [9]:

if a ≤ b and b ≤ a⇒ a = b (antisymmetry)
if a ≤ b and b ≤ c⇒ a ≤ c (transitivity)
a ≤ b or b ≤ a (totality)

(2)

One interesting behaviour of a total order relation is that it leads to a unique linear ordering
among the elements added to an ordered set. This order is always the same independently of the
order in which the elements had been added to the set.

The order criterion in (1) produces a �non-total order� as can be seen in the following counter
example. Consider tasks τa and τb with active jobs with deadlines da = 11 and db = 6, preemption
levels π(τa) = 4 and π(τb) = 3 and where the only tasks with resources locked is τa. Using the
order criterion in (1) we have τa ≤ τb → false and τb ≤ τa → false what does not verify the
totality property showed in (2).

4



The fact that SRP leads to a non-total order has a big relevance as it will be shown in Section
4.1.

3.3 Accessing a resource with SRP

Like in any other POSIX operating system, access to shared resources in MaRTE OS is implemented
with a mutex interface. So from now on, we will use the mutex terminology to refer to shared
resources.

Procedures Running_Task_Locks_Mutex and Task_Unlocks_Mutex provide the basic kernel
support for the implementation of POSIX mutexes. Mutual exclusion among Ada tasks accessing
protected objects also relays on the Ada Run-Time System invoking these two procedures.

Figure 1 shows the details of the SRP implementation on MaRTE OS. We now describe the
full process of accessing and freeing a resource with this protocol.

The ready queue must be ordered according to the rules of an EDF scheduled system with SRP
exposed in (1). This comparison is performed using the function < operating on two tasks.

When a task accesses a mutex the procedure Running_Task_Locks_Mutex is executed. First
we increase the Num_Mutex_Owned by the task, and we store the task's current preemption level in
the Owner_Preemption_Level �eld of the mutex. Then, if the mutex's preemption level is higher
than task's preemption level, the task's preemption level is set equal to the mutex's preemption
level. Although the scheduling parameters of the task may have changed, possibly making the task
even more urgent, the task is currently the most urgent one, i.e., the �rst one in the ready queue,
so there is no need to reorder the ready queue.

When this task frees the mutex the procedure Task_Unlock_Mutex is executed. First we de-
crease the Num_Mutes_Owned by the task and restore the task's previous preemption level which was
stored in Owner_Preemption_Level. At this time the task's scheduling parameters could change,
possibly making it less urgent, and therefore the ready queue must be reordered. The procedure
Reorder_And_Dispatch reorders the task in the ready queue and, in the case the task is no longer
at the head of the queue, this procedure performs a context switch preempting the task that has
just unlocked the mutex.

In order to �nd the right place in the ready queue, procedure Reorder_And_Dispatch compares
the task's scheduling parameters (absolute deadline and preemption level) with the parameters
of the other tasks in the queue corresponding to its priority. As explained in Section 3.2, this
comparison is performed from the tail to the head of the queue to �nd the correct place for the
task obeying the scheduling rules of SRP. The comparison of the task parameters is done by
function < shown in Figure 1.

3.4 SRP Interface

Although EDF nor SRP are in the POSIX standard, both are included in MaRTE OS as extensions
to the POSIX standard. A POSIX-like interface is provided to applications to manage the SRP
speci�c scheduling parameters.

The details of the interface can be seen in Figure 2. All functions return an integer as an error
code, but it has been omitted for simplicity. Functions Pthread_Mutexattr_Setpreemptionlevel
and Pthread_Mutexattr_Getpreemptionlevel and Pthread_Attr_Setpreemptionlevel and
Pthread_Attr_Getpreemptionlevel set and get the preemption level statically through the at-
tributes object used to create mutexes or threads/tasks respectively. Functions Pthread_Mutex_
Setpreemptionlevel and Pthread_Mutex_Getpreemptionlevel and Pthread_

Setpreemptionlevel and Pthread_Getpreemptionlevel dynamically set and get the preemp-
tion level of mutexes and threads/task, respectively.

5



SRP Implementation

type Task_Preemption_Level; −− Integer Type
HIGHEST_CEILING_PRIORITY := constant Locking_Policy;

type Mutex is new Mutex.Element with record

...

Preemption_Level : Task_Preemption_Level : = First;

Owner_Preemption_Level : Task_Preemption_Level : = First;

end record;

type TCB is new Task_Control_Block.Element with record

...

Deadline : HWTime : = 0; −− Not SRP speci�c
Preemption_Level : Task_Preemption_Level : = First;

end record;

procedure Running_Task_Locks_Mutex (Mutex) is

...

Task.Num_Mutex_Owned ++;

Mutex.Owner_Preemption_Level : = Task.Preemption_Level;

if Task.Preemption_Level < Mutex.Preemption_Level then

Task.Preemption_Level := Mutex.Preemption_Level;

end if;

...

end Running_Task_Locks_Mutex;

procedure Task_Unlocks_Mutex (Task, Mutex) is

...

Task.Num_Mutex_Owned --;

Task.Preemption_Level := Mutex.Owner_Preemption_Level;

Reorder_and_Dispatch (Task);

...

end Task_Unlocks_Mutex;

function < (Left_Task, Right_Task) return Boolean is

...

return Left_Task.Deadline < Right_Task.Deadline

and then (not Mutexes_Owned or else

Left_Task.Preemption_Level > Right_Task.Preemption_Level);

end <;

Figure 1: SRP Implementation in MaRTE OS.

6



SRP Interface

function Pthread_Mutexattr_Setpreemptionlevel

(Attr: access Mutex_Attributes; Level : in Task_Preemption_Level)

function Pthread_Mutexattr_Getpreemptionlevel

(Attr: access Mutex_Attributes; Level : access Task_Preemption_Level)

function Pthread_Mutex_Setpreemptionlevel

(M: access Mutex; Level : in Task_Preemption_Level)

function Pthread_Mutex_Getpreemptionlevel

(M: access Mutex; Level : access Task_Preemption_Level)

function Pthread_Attr_Setpreemptionlevel

(Attr: access Pthread_Attributes; Level : in Task_Preemption_Level)

function Pthread_Attr_Getpreemptionlevel

(Attr: access Pthread_Attributes; Level : access Task_Preemption_Level)

function Pthread_Setpreemptionlevel

(Id: in Task_Id; New_Level : in Task_Preemption_Level)

function Pthread_Getpreemptionlevel

(Id: in Task_Id; Level : access Task_Preemption_Level)

Figure 2: SRP interface in MaRTE OS.

4 DFP Implementation in MaRTE OS

4.1 EDF Scheduling in Presence of DFP

As it is said in 2.2, DFP doesn't introduce new scheduling rules to an EDF scheduled system, so
the ordering criterion of the ready queue remains the same as in any other EDF system, that is:
tasks with the same priority are ordered in their queue according just to their absolute deadline.
So when using DFP, two tasks (τa and τb) in the ready queue must be ordered according to:

τa ≤ τb ⇔ da ≤ db (3)

Unlike with SRP (1), this order criterion verify the rules of a total order relation (2). One of
the advantages of this is that we can use the binary heap to implement the queues in the ready
queue.

The binary heap (Figure 3) is a heap data structure created using a binary tree, with two
additional constraints: all levels of the tree, except possibly the last one (deepest) are fully �lled,
and each node is less than or equal to each of its children according to a comparison predicate
de�ned for the data structure.

The binary heap is an e�cient implementation of an ordered queue that requires a total order
relation. Insert and remove operations take O(log(n)) time, while peeking the head takes constant
time O(1). Consequently, insert and remove operations are more much e�cient on the binary
heap than on the doubly-linked list used with SRP (general insert and remove operations on a
doubly-linked list are O(n)).

7



Figure 3: Binary Heap

4.2 Accessing a resource with DFP

In order to implement the DFP in MaRTE OS, we need to add some parameters and modify the
functions that are used every time a task locks and unlocks a mutex so that the ready queue is
ordered according to the task's absolute deadline. Those changes can be seen in Figure 4.

We have de�ned a new locking policy for the DFP and the Deadlinefloor parameter is added
to the attributes of the mutex. We have also added a parameter to the mutex where the task's
original deadline can be stored.

We now describe the full process of accessing and freeing a resource with this protocol.

When a task accesses a mutex the procedure Running_Task_Locks_Mutex is executed. First
we store the task's current absolute deadline in a �eld of the mutex. Then we calculate the
Heir_Deadline, which is the mutex access time (Now) plus the mutex deadline �oor. This is the
absolute deadline that the task may inherit from the mutex. Notice that this operation requires
reading the clock. Then if the Heir_Deadline is shorter/sooner than the task's current absolute
deadline, the task reduces its absolute deadline to the Heir_Deadline. Although the scheduling
parameters of the task may have changed, making the task even more urgent, the task is currently
the most urgent one, i.e., the �rst in the ready queue, so there is no need to reorder the ready
queue.

When this task frees the mutex the procedure Task_Unlock_Mutex is executed. First we restore
the task's previous absolute deadline. The task's scheduling parameters could have changed again,
this time making it less urgent, and therefore the ready queue must be reordered. The procedure
Reorder_And_Dispatch reorders the task in the ready queue and, in the case the task is no longer
at the head of the queue, this procedure performs a context switch to preempt the task that has
just unlocked the mutex.

The procedure Reorder_And_Dispatch removes the task from the head of the queue corre-
sponding to its priority (a binary heap) and inserts it again into the same queue. The binary heap
uses the function < to �nd the new place of the task in the data structure.

Since DFP does not impose any new rule to the basic EDF scheduling, there is no need to
account for the number of mutexes locked by a task.

4.3 DFP Interface

There is a new interface for the DFP in MaRTE OS. The details of the interface can be seen in
Figure 5. All functions return an integer as an error code, but it has been omitted for simplicity.
Functions Pthread_Mutexattr_Setdeadlinefloor and Pthread_Mutexattr_Getdeadlinefloor

8



DFP Implementation

DEADLINE_FLOOR := constant Locking_Policy

type Mutex is new Mutex.Element with record

...

Deadlinefloor : HWTime := 0;

Task_Deadline : HWTime := 0;

end record;

procedure Running_Task_Locks_Mutex (Mutex) is

...

Mutex.Owner_Deadline := Task.Deadline;

Heir_Deadline := Now + Mutex.Deadlinefloor;

if Task.Deadline > Heir_Deadline then

Task.Deadline := Heir_Deadline;

end if;

...

end Running_Task_Locks_Mutex;

procedure Task_Unlocks_Mutex (Task, Mutex) is

...

Task.Deadline := Mutex.Owner_Deadline;

Reorder_and_Dispatch (Task);

...

end Task_Unlocks_Mutex;

function < (Left_Task, Right_Task) return Boolean is

...

return Left_Task.Deadline < Right_Task.Deadline;

end <;

Figure 4: DFP implementation in MaRTE OS.

9



and Pthread_Mutex_Setdeadlinefloor and Pthread_Mutex_Getdeadlinefloor set and get the
deadline �oor of the mutex statically and dynamically, respectively. There is no need to add
functions to change the deadline of a task since that is a general EDF feature that it is already
available in MaRTE OS.

DFP Interface

function Pthread_Mutexattr_Setdeadlinefloor

(Attr: access Mutex_Attributes, New_Deadlinefloor: access Timespec)

function Pthread_Mutexattr_Getdeadlinefloor

(Attr: access Mutex_Attributes, Deadlinefloor: access Timespec)

function Pthread_Mutex_Setdeadlinefloor

(M: access Mutex, New_Deadlinefloor: access Timespec)

function Pthread_Mutex_Getdeadlinefloor

(M: access Mutex, Deadlinefloor: access Timespec)

Figure 5: DFP interface in MaRTE OS.

5 Comparative Analysis

5.1 Implementation Complexity/Size

To measure the complexity of implementing SRP and DFP we count the number of attributes and
operations needed for their implementation. Common attributes and operations for both protocols
(such as data structures) are not taken into account.

In Table 1 we can see those numbers as well as the total code lines. The implementation of
DFP is simpler than the one for SRP.

SRP DFP

Mutex Fields 2 2
Mutex Operations 4 4
Task Fields 1 0
Task Operations 4 0
Code Lines 54 34

Table 1: SRP and DFP implementation summary.

5.2 Tests Description

The following tests will be used to compare the performance of SRP and DFP. All tests are executed
in a 800 MHz Pentium III.

• Test A. One resource, several tasks. One task with short relative deadline executes once
accessing the resource a million times in a loop. The other tasks have longer relative deadline
and they don't access the resource. We measure the short relative deadline task execution
time which allows us to calculate the average time required to lock and unlock the resource.

• Test B. One resource, several tasks. One task with short relative deadline executes once
accessing the resource a million times in a loop. The other tasks have longer relative deadline
and they don't access the resource. This is like Test A except that we measure only the short
relative deadline task unlock time.

10



• Test C. No resources, several tasks. One task with short relative deadline, several task with
long relative deadline. The most urgent task is released periodically and we measure the
di�erence between the theoretical and the actual activation time of this task, i.e., if the
task's �rst activation is at t the next theoretical activation will be at atheor = t+T , however
the task won't be able to execute its �rst instruction until its actual activation, a, that will
be later than atheor. So, we measure a− atheor which gives an indication of the time needed
to perform the context switch.

5.3 Tests Analysis

Tests A and B use the same scenario: a short deadline task accesses a resource while a number of
long deadline tasks remain active in the ready queue. The only di�erence between these two tests
is that the test A measures the lock+unlock time while the test B only measures the unlock time.

2 3 4 5 6 7 8 9 10
1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600
DFP & Heap
DFP & DLL
SRP & DLL

number of tasks

tim
e

 (
n

s)

10 20 30 40 50 60 70 80 90 100
1600

3600

5600

7600

9600

11600 DFP & Heap
DFP & DLL
SRP & DLL

number of tasks

tim
e

 (
n

s)

Figure 6: Test A experimental results. Left: Up to 10 tasks. Right: From 10 to 100 tasks.

2 3 4 5 6 7 8 9 10
1100

1300

1500

1700

1900

2100

2300
DFP & Heap
DFP & DLL
SRP & DLL

number of tasks

tim
e

 (
n

s)

10 20 30 40 50 60 70 80 90 100
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000
DFP & Heap
DFP & DLL
SRP & DLL

number of tasks

tim
e

 (
n

s)

Figure 7: Test B experimental results. Left: Up to 10 tasks. Right: From 10 to 100 tasks.

This di�erence between tests A and B can be seen in Figures 6 and 7, for the case with less
than 10 tasks in the ready queue (left charts on the �gures) or with more than 10 (right charts).
In Figure 7 we can see how the SRP & DLL has the worst performance, while the DFP & DLL
and the DFP & Heap are more or less the same until we have more than �ve tasks, where the
logarithmic behaviour of the heap starts to show its bene�ts.

11



In Figure 6 the measured times are higher than in Figure 7 because we are measuring both lock
and unlock time, but it is clear that the lock operation is slower in the DFP as we can see how
both DFP & Heap and DFP & DLL have worsened more than SRP & DLL. This is an expected
outcome, since the locking operation in the DFP requires reading the clock (as it can be seen in
Figure 4). But this disadvantage of DFP is quickly overcome as we increase the number of tasks,
and for more than three tasks we can see how DFP performs better than SRP.

Now let us focus on the right charts of Figures 6 and 7 where the behaviour of tests A and B for
medium/large number of tasks is represented. The logarithmic time of DFP using a heap (DFP &
Heap) clearly outperforms the SRP using a doubly linked list (SRP & DLL). DFP using a doubly
linked list (DFP & DLL) also behaves better than SRP & DLL. The di�erence between them is
proportional to the number of threads. This is due to the simpler comparison function used by
DFP. This result is an indication that DFP will outperform SRP with any data structure we could
try to use. That means that it is very probable that, even if somebody �nds a data structure more
e�cient than the heap that could be used by both DFP and SRP, it looks very probable that DFP
will beat SRP.

2 3 4 5 6 7 8 9 10
2200

2300

2400

2500

2600

2700

2800

2900

3000

3100
DFP & Heap
DFP & DLL
SRP & DLL

number of tasks

tim
e

 (
n

s)

10 20 30 40 50 60 70 80 90 100
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

DFP & Heap
DFP & DLL
SRP & DLL

number of tasks

tim
e

 (
n

s)

Figure 8: Test C experimental results. Left: Up to 10 tasks. Right: From 10 to 100 tasks.

Test C is similar to tests A and B but without any resource in the system: a short deadline task
is released periodically while a number of long deadline tasks remain active in the ready queue.
Therefore we can measure the time required to place the task in the ready queue and make the
context switch.

In Figure 8 we can see the results of test C. The behaviour is basically the same as what we have
seen in tests A and B with a resource being used. That means that the major factor that causes
the di�erence between DFP & DLL and SRP & DLL is the simpler way of ordering the ready
queue in the DFP, where tasks are just ordered by their absolute deadline. Even without resources
locked in the system, an SRP implementation must check the value of the boolean Mutexes_Owned

every step in the enqueing operation, as it can be seen in Figure 3.

It is interesting to notice an e�ect caused by the heap in Figures 6, 7 and 8 when there are less
than ten tasks in the ready queue (left chart). We can see how the time increases abruptly from 3
to 4 tasks and the same increase happens from 7 to 8 tasks in the system. These steps are caused
by the levels of the heap structure, as it can be seen in Figure 3. When there are up to 3 tasks
in the system, we only have two levels of the heap occupied. From 4 to 7 tasks there are three
levels occupied. The following changes of level are not so noticeable because the increase in time
is proportionally less signi�cant.

12



6 Conclusion

In this paper we have explained the details of the implementation of SRP and DFP in MaRTE
OS. We have shown that, unlike SRP, DFP doesn't need to add more parameters to the tasks
besides the ones necessary for any EDF scheduled system. In addition, DFP doesn't modify the
scheduling rules. This also guarantees a total order relation between the tasks in the ready queue,
which allows us to use the binary heap data structure to implement the MaRTE OS ready queue.

The possibility of using a heap with the DFP makes this protocol much more e�cient than
SRP and also, thanks to the simpler comparison function used by DFP this protocol also performs
better than SRP even in the case the same data structure is used for both.

A Example: Ordering Tasks in SRP

This example shows how the order criterion imposed by SRP leads to a non-total order relation
between the tasks in the ready queue. Figure 9 shows the expected execution of a system of three
tasks (TA, TB and TC) and one resource (R1), where just one of the tasks accesses the resource.

Figure 9: Expected timeline of three tasks and one resource using EDF+SRP.

In Figure 10 we can see the status of the ready queue as the time goes by. The head of the
queue, with the highest priority element, is shown at the left of the �gure, while the tail of the
queue is at the right. The key point here is to realize that to �nd the correct place for TC in the
queue at t=4 (when TC is activated) we must start looking from the tail of the queue towards
the head. Going from tail to head, we start comparing TC with TB and we �nd TB < TC and,
consequently, TC can not overtake TB in the queue.

Figure 10: Ready queue status.

If we had started from the head of the queue, we would have found TC < TA and then TC
would have been placed at the head of the queue, producing a priority inversion with respect to TB,

13



which is waiting for the resource and has a sorter deadline than TC. Here we can notice that the
transitive property is NOT veri�ed with the EDF+SRP rules: TC<TA and TA<TB but TB<TC.

References

[1] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-Time
Environment. JACM, 20(1):46�61, 1973.

[2] T.P. Baker. A Stack-Based Resource Allocation Policy for Realtime Processes. In Proceedings
IEEE Real-Time Systems Symposium (RTSS), pages 191�200, 1990.

[3] T.P. Baker. Stack-Based Scheduling of Realtime Processes. Journal of Real-Time Systems,
3(1), March 1991.

[4] Alan Burns. A Deadline-Floor Inheritance Protocol for EDF Scheduled Real-Time Systems
with Resource Sharing. Technical Report YCS-2012-476, Department of Computer Science,
University of York, UK, 2012.

[5] M. Aldea Rivas and M. González Harbour. MaRTE OS: An Ada kernel for real-time embedded
applications. In Reliable Software Technologies, Proceedings of the Ada Europe Conference,
Leuven. Springer Verlag, LNCS 2043, 2001.

[6] ISO/IEC 8652:2012(E). Ada 2012 Reference Manual.

[7] POSIX: IEEE 1003.1-2008. Standard for Information Technology - Portable Operating System
Interface (POSIX) Base Speci�cations, Issue 7.

[8] ISO/IEC 8652:2007(E). Ada 2005 Reference Manual.

[9] Roberto Tamassia Michael T. Goodrich. Data Structures & Algorithms in JAVA, chapter 8,
pages 320�321. John Wiley & Sons, Inc, 2006.

14


