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Abstract 

This paper provides a methodology for the prediction of fracture loads in notched 

materials that combines the Equivalent Material Concept with the Theory of Critical 

Distances. The latter has a linear-elastic nature, and requires material (critical distance) 

calibration in those cases where the non-linear material behaviour is significant. The 

calibration may be performed by fracture testing on notched specimens, finite elements 

modelling or a combination of fracture and simulation. In any case, it may constitute a 

major issue when applying the Theory of Critical Distances on an industrial level. The 

proposed methodology sets out to define an equivalent linear-elastic material on which 

the Theory of Critical Distances may be applied through its basic formulation and 

without any previous calibration of the corresponding critical distance. It has been 

applied to PMMA Single Edge Notch Bending specimens, providing accurate 

predictions of fracture loads. 

Keywords: notch, fracture load, Polymethyl-methacrylate 

1. Introduction 

The analysis of fracture processes on materials and structural components containing 

notches is the subject of an extensive pool of research work
1-41

. Understanding notches 

as any kind of macroscopic stress risers in the material, these may be responsible for 

structural failures caused by static fracture-plastic collapse processes, or the initiators of 

fatigue processes which may cause a crack to initiate, propagate, and eventually lead to 

failure. In other words, there are many practical situations where the defects responsible 

for structural failures are not necessarily crack-like defects. In such cases, if the defects 

are blunt, it is generally over-conservative to proceed on the assumption that the defects 
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behave like sharp cracks, given that notched components develop a load-bearing 

capacity that is greater than that developed by cracked components. 

Consequently, the particular nature of notches makes it necessary to develop specific 

approaches for the fracture analysis of this type of defects. In this sense, the analysis of 

the fracture behaviour of notches can be performed using different criteria, some of 

these being related to each other. Some examples are the different methodologies 

included within the Theory of Critical Distances (TCD)
1-8

, the Global Criterion
9,10

, 

Cohesive Zone models
11-15

, statistical models
16-17

, mechanistic models
18

, the Strain 

Energy Density (SED) criterion
19-36

, etc. The TCD methodologies have been 

successfully applied to different failure mechanisms (e.g., fracture, fatigue) and 

materials, and are particularly simple to implement in structural integrity assessments
7, 

37-41
. The TCD is based on linear-elastic assumptions, although it has been successfully 

applied to elastic-plastic situations, either through the direct consideration of elastic-

plastic stress fields
2
, or through the assumption of linear-elastic behaviour (stress field) 

and the corresponding calibration of the inherent strength (see section 2)
4,5

. In any case, 

when the material behaviour is not completely linear-elastic, the application of the TCD 

requires the fracture testing of notched specimens, finite elements modelling, or both, in 

order to calibrate the material parameters involved (the critical distance -L-, and the 

inherent strength, σ0). This complicates the application of the TCD on an industrial 

level. 

At the same time, when analysing an elastic-plastic material, Torabi
42,43

 has proposed 

the use of the Equivalent Material Concept (EMC) to define an equivalent linear-elastic 

material that develops the same fracture behaviour. This proposal has been combined 

with the TCD
44-50

 or the Strain Energy Density (SED)
51-55

, providing accurate analyses 

of the fracture behaviour of different materials, such as Al 6061-T6 and Al 7075-T6. 

This paper analyses the fracture behaviour of Polymethyl-methacrylate (PMMA) Single 

Edge Notched Bending (SENB) fracture specimens containing U-notches. The fracture 

behaviour of PMMA in notched conditions is well known, and has been previously 

analysed through different methodologies
4,5,14,23

, all of them having significant 

complexity for common engineering practice. This work provides additional analyses of 

the fracture behaviour of this material, and verifies whether or not the straightforward 

combination of EMC and TCD (from now on, the EMC-TCD criterion), provides 

fracture assessment results with comparable accuracy to that provided by other 

methodologies (e.g., TCD, SED criterion, Cohesive Zone models, etc). 

With all this, section 2 provides a theoretical overview of the Equivalent Material 

Concept (EMC), the Theory of Critical Distances (TCD) and the EMC-TCD criterion, 

section 3 describes the experimental programme, section 4 provides the fracture load 

predictions obtained by using the EMC-TCD criterion and the corresponding 

discussion, and section 5 gathers the main conclusions. 
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2. Theoretical background 

2.1. The Theory of Critical Distances 

The Theory of Critical Distances (TCD) is in essence a set of methodologies, all of 

which use a material length parameter (the critical distance, L) when performing 

fracture or fatigue assessments
1
. The origin of the TCD is located in the works of 

Neuber
56

 and Peterson
57

, but it has been in the last two decades that this theory has been 

thoroughly developed for the analysis of different types of materials, failure processes 

and conditions (e.g., linear-elastic vs. elastoplastic)
1
.  

The aforementioned critical distance is generally referred to as L and its expression, in 

fracture analyses, is:   

2

0

1








=

σπ
cK

L          (1) 

Kc being the material fracture toughness and σ0 being a material strength parameter 

usually referred to as the inherent strength. This parameter is usually larger than the 

ultimate tensile strength (σu), in case it requires calibration. Only in certain materials 

where there is a linear-elastic behaviour at both the micro and the macro scale (e.g., 

fracture of ceramics) does σ0 coincide with σu. In such cases, the application of the TCD 

does not require calibration, given that L is directly obtained from equation (1), the 

material fracture toughness and the material ultimate tensile strength. 

Two of the methodologies included within the TCD are especially simple to apply: the 

Point Method (PM) and the Line Method (LM).  Both of them are based on the stress 

field at the defect tip and, as stated by Taylor
1
, the corresponding predictions are very 

similar.  

The PM is the simplest methodology, and it proposes that fracture takes place when the 

stress at a distance of L/2 from the defect tip reaches the inherent strength (σ0): 

0
2

σσ =






 L
         (2) 

On the other hand, the LM proposes that fracture takes place when the average stress 

along a distance equal to 2L (starting from the defect tip) reaches the inherent strength 

σ0:  

( )∫ =
L

drr
L

2

0

0
2

1
σσ         (3) 

The TCD (and therefore, both the PM and the LM) allows the fracture assessment of 

components containing notches to be performed. However, for those materials on which 

σ0 does not coincide with σu (e.g., most polymers, metals, etc), the former parameter 

requires calibration. This may be performed by undertaking an experimental programme 
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on notched specimens with different notch radii, and defining L as that value providing 

the best fit to the experimental results
1,5

, by finite elements simulation of specimens 

with different notch radii (the superposition of the corresponding stress fields at failure 

directly provides L and σ0, see Figure 1)
1,5,6

, or by a combination of experimental 

programme and finite elements modelling. In any case, the calibration process 

constitutes a major issue when applying the TCD methodologies and it is a clear 

obstacle to their extensive application in industrial practice. 

2.2. The Equivalent Material Concept 

In this subsection, the Equivalent Material Concept (EMC) proposed originally by 

Torabi
42

 is presented with the aim of equating a real ductile material with elastic-plastic 

behaviour to a virtual brittle material with perfectly elastic behaviour. A summary of the 

concept is presented in the following. 

The famous power-law equation indicating the tensile stress-strain relationship in the 

plastic region can be found in equation (4) in which the parameters σ, εP, K, and n are 

the true stress, the true plastic strain, the strain-hardening coefficient, and the strain-

hardening exponent, respectively. 

n

PKεσ =          (4) 

As seen in figure 2, which is the typical engineering stress-strain curve for a ductile 

material, the Strain Energy Density (SED) is the area under the curve until the 

beginning of the necking (peak point). Considering the total SED as the summation of 

the SEDs in elastic and plastic regions, one can write 

PYYpetot

P

Y
P

dSEDSEDSED εσεσ
ε

ε
∫+=+=

2

1
)()()( .     (5) 

where σY, εY, and ε
Y

P are the yield strength, the elastic strain at yield point, and the true 

plastic strain at yield point, respectively. 

By substituting equation (4) into equation (5) and considering Hooke’s Law (σY=EεY), 

we get 

])()[(
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)( 11
22
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   (6) 

Assuming that the offset yield point is equal to 0.2% (i.e. ε
Y

P=0.002), then 

])002.0()[(
12

)( 11
2

.

++ −
+

+= nn

P
Y

tot
n

K

E
SED ε

σ
     (7) 

The crack initiation in the ductile material will take place just when the ultimate load is 

reached. Therefore, the total SED (the area under the curve) should be calculated until 
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this point, which is called the necking instance. Consequently, the εP is substituted by 

εu,True (true plastic strain at maximum load) in the following equation: 

])002.0()[(
12

)( 11

,

2
++ −

+
+= nn

Trueu
Y

necking
n

K

E
SED ε

σ
    (8) 

A common stress-strain curve for the virtual brittle material is illustrated in Figure 3. As 

shown in this figure, the total strain energy absorbed until fracture is computed as 

σf
*
εf

*
/2, where σf

*
 and εf

*
 are the tensile stress and the strain at crack initiation for the 

virtual brittle material, respectively. Since the main assumption of EMC is to have the 

same Young modulus and K-based fracture toughness (KIc or Kc) for both ductile and 

virtual brittle materials, one can write 

E
SED

f

EM
2

)(

2*σ
=         (9) 

where E is the Young modulus for both the original ductile and the virtual brittle 

materials. 

As mentioned above, the Equivalent Material Concept (EMC) equates a ductile material 

having valid K-based fracture toughness and elastic modulus to a virtual brittle material 

having the same values but with a different tensile strength. Therefore, setting equations 

8 and 9 to be equal leads to: 

])002.0()[(
122

11

,

2
2*

++ −
+

+= nn

Trueu
Yf

n

K

EE
ε

σσ
     (10) 

Finally, the following equation is proposed by EMC for calculating the σf
*
: 

])002.0()[(
1

2 11

,

2* ++ −
+

+= nn

TrueuYf
n

EK
εσσ      (11) 

where εu,True (the true plastic strain at peak point) can be calculated from the εu 

(engineering plastic strain) by the following expression: εu,True=ln(1+εu). 

The σf
* 

calculated by equation (11) and a valid fracture toughness can be used 

conveniently in different brittle fracture criteria, e.g. TCD, to predict the crack initiation 

in ductile components containing a notch.  

In the following sections, the experimental programme is presented and the 

corresponding results are utilized to verify the validity of the EMC-TCD criterion. 

 

3. Experimental programme 
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The experimental programme covers the definition of the stress-strain tensile curve of 

the material (following ASTM D638
58

), which is necessary for the application of the 

EMC method, and the fracture tests performed on SENB specimens containing U-

shaped notches (see Figure 4). These fracture tests (32 in total) were performed 

following ASTM D5045
59

, with the notch radii varying between 0 mm (crack-like 

defect) and 2.5 mm. Details on the experimental procedures are gathered in Cicero et 

al.
5
.   

Figure 5 shows the obtained stress-strain curve (engineering variables) used in this 

work, revealing a clear non-linear behaviour. The main material parameters are gathered 

in Table 1, E being the Young´s modulus, σ0.2 being the 0.2% proof strength, σu the 

ultimate tensile strength and emax the maximum strain. This curve is used in Section 4 to 

derive σf
*
 and, thus, the tensile behaviour of the equivalent linear-elastic material. 

Concerning the fracture tests, a total of eight sets of tests were performed, 

corresponding to eight different notch radii (from 0 mm up to 2.5 mm), each set being 

tentatively composed of five tests. The notches were performed by machining, except 

for those whose notch radius was close to zero, which were generated by sawing a razor 

blade across an initial notch root. Table 2 gathers the different tests with the 

corresponding geometries and the resulting fracture loads. Some of the sets do not 

include the initial five intended tests, given that some of the specimens were incorrectly 

machined. Details of the experimental procedure and the obtained load-displacement 

curves may be consulted in Cicero et al.
5
, with some examples of the above being 

shown in Figure 6. 

The results of the fracture tests reveal that there are sets in which there is significant 

scatter in the fracture loads (e.g., specimens with 0.50 mm radius). It can also be 

observed that there is an evident loss of linearity in the load-displacement curves 

obtained in specimens with higher radii, although such losses are noticeably less 

pronounced than that observed in the tensile test. 

Finally, the results obtained in the three cracked specimens have been used to derive the 

material fracture toughness (Kc)
59

. The fracture toughness is easily derived from the 

critical load and both the specimen and crack geometries (SENB specimen): 







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  (12) 

 

The average value of Kc derived from the three tests is 2.04 MPa·m
1/2

 (see Table 1). 

4. EMC-TCD fracture load predictions 

4.1. Calibration of the Equivalent Material 
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The tensile curve shown in Figure 5 has been used to define the equivalent linear-elastic 

material following the Equivalent Material Concept formulation gathered in Subsection 

2.2. The equivalent material maintains the same elastic modulus as that observed in the 

real material (3.40 GPa, see Table 1), but the tensile strength of the equivalent material 

(σf
*
) is 129.4 MPa, which is significantly higher (1.73 times higher) than that observed 

experimentally. These two parameters (E and σf
*
) are sufficient to define the tensile 

behaviour of the equivalent material, and allow the fracture behaviour of the real (non-

linear) material to be determined based on linear-elastic assumptions. 

4.2. Derivation of fracture load predictions 

Once the material properties of the equivalent linear-elastic material are known, the 

linear elastic formulation of the TCD can be directly applied. Assuming a perfectly 

linear-elastic behaviour implies that the value of the critical distance (L) can be directly 

obtained from equation (1) and considering that the inherent strength (σ0) is equal to the 

tensile strength of the equivalent material (σf
*
). Thus, the calibration process required to 

define L (and σ0) in the real material is avoided. In this case, L is 0.079 mm, which is 

slightly lower that that obtained by Cicero et al.
5
 (L = 0.105 mm) through finite 

elements calibration. 

As mentioned above, one of the main purposes of this work is to provide a simple 

methodology for the assessment of notched components. For this reason, instead of 

using finite elements modelling to determine the fracture load predictions, the use of 

well known accurate analytical solutions is proposed. In the case of U-shaped notches, 

the Creager-Paris solution
60

 for the stress field at the notch tip is widely accepted
1
.  

Creager and Paris state that the stress field ahead of the notch tip is equal to that ahead 

of the crack tip but displaced a distance equal to ρ/2 along the x-axis: 

 

( ) ( )
( ) 2

3

2

2

ρ

ρ
π

σ
+

+
=

r

rK
r I         (13) 

 

where KI is the mode I stress intensity factor in cracked conditions, ρ is the notch radius 

and r is the distance existing from the notch tip to the point being assessed. Equation 

(13) may be used to derive the estimations of the critical loads through the TCD. 

If the PM is considered, the corresponding fracture condition for a particular notch 

radius (ρ) would be: 

( ) ( )
( )

∗=
+

+
= f

I

L

LK
L σ

ρ

ρ
π

σ
2

3

  2/2
2/       (14) 

Thus, equation (14) allows the value of KI at fracture to be obtained. Finally, the 

estimation of the critical load (����
��) is easily derived from: 
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If the LM is considered, it is necessary to determine the average stress (σav) over the 

distance r = 0 to 2L, giving
1
: 
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Establishing the fracture condition proposed by the LM, KI is easily derived from 

equation (17) for any given notch radius: 
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Once KI is obtained, the estimations of the fracture loads (����
��) are straightforward: 
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Here, it is important to notice that the whole process only requires the calibration of the 

equivalent material, which is easily completed from a tensile test, with no need for finite 

elements modelling and/or calibration fracture tests. 

4.3. Results and discussion 

Table 2 shows the fracture load predictions obtained through the application of the 

EMC and the TCD (both the PM and the LM methodologies). Figure 7 shows the same 

results graphically. It can be observed that the predictions provided when using the 

Point Method are very accurate, with a maximum deviation (when compared to the 

average fracture load for each notch radius) of -11.7%, which is obtained for a notch 

radius of 1.0 mm. It can be observed that, when using the PM, there is not a clear 

tendency of overestimation or underestimation of the fracture loads, with the points in 

Figure 7 being located indistinctly over and below the 1/1 line. Overall, the average 

error is +3.3%. The predictions are good even for the higher radii, for which the 

Creager-Paris equation validity range is questionable (the Creager-Paris equation is 

defined for narrow defects, on which ρ << a). 
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When using the LM, the error of the predictions is still reasonable, considering the high 

scatter of the experimental results, but there is a clear tendency towards the 

overestimation of the fracture loads. The maximum deviation regarding the average 

experimental fracture load for a particular notch radius is +23.1%, the average value 

being +11.7%. Again, the results for higher radii do not seem less accurate than those 

obtained for notch radii for which the Creager-Paris assumptions are completely 

fulfilled. 

In order to determine the type of failure regime for the tested notched PMMA 

specimens, i.e. the small-scale yielding (SSY), moderate-scale yielding (MSY), or 

large-scale yielding (LSY), a set of elastic-plastic finite element (FE) analyses were 

performed on the SENB specimen, shown in figure 4, in ABAQUS software under 

plane-strain conditions. As with the material properties, the true tensile stress-strain 

curve of the tested PMMA was given to the FE software point-by-point. Meanwhile, to 

reach the size of the plastic region around the notch at the onset of crack initiation from 

the notch tip, the mean experimentally obtained maximum load (i.e. average of the four 

values presented in 4
th

 column of Table 2) was applied to each FE model. The FE 

models were meshed by quad shaped elements (see figure 8) and the distribution of 

Von-Mises stress around the U-notch tip at the onset of crack initiation is illustrated in 

Figure 9. The results for two cases with different notch radii (one for near-crack 

condition (0.25 mm) and the other for higher radius (2.5 mm)) indicate that the size of 

the plastic zone increases as the radius of the U-notch increases (see Figure 9). This can 

be attributed to the stress gradient near the notch tip. For the lower notch radius, the 

stress gradient at the notch neighbourhood is significantly higher and hence, the plastic 

zone is more localized and its size is relatively small. In contrast, for the higher notch 

radius, the stress gradient at the notch tip vicinity is lower, meaning a larger plastic zone 

size. For the notch radii equal to 0.25 mm and 2.5 mm, about 8% and 25% of the 

ligaments experience plastic deformations at failure, respectively, meaning that the 

small notch radius fails by the SSY regime, while the large notch radius by the MSY 

regime. The results of the elastic-plastic FE analyses presented in Figure 9 strongly 

confirm the experimentally obtained load-displacement curves presented in Figure 6, in 

which the curves for the small radius are almost linear while those for the large radius 

exhibit a moderate nonlinear portion as a result of the moderate plastic deformations 

around the notch tip.  

5. Conclusions 

This paper provides a methodology for the predictions of fracture loads in PMMA 

containing U-shaped notches. This material has no fully linear-elastic material, neither 

on its tensile curve nor on the fracture specimens with higher radii. This means that a 

calibration process is required when analysing fracture processes using the Theory of 

Critical Distances (TCD). This calibration requires finite elements modelling, fracture 

tests on specimens with different notch radii, or a combination of finite elements with 

fracture testing. In order to avoid such a calibration, it is proposed to combine the TCD 

with the Equivalent Material Concept (EMC), on which the non-linear material is 
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substituted by a perfectly linear-elastic material. This leads to the EMC-TCD criterion, 

with fully linear-elastic formulation and without any need for calibration processes 

beyond the equivalent material itself which, in any case, is a straightforward calibration 

performed from the material stress-strain tensile curve. Moreover, in order to avoid any 

finite elements modelling for the estimation of fracture loads, analytical stress fields are 

used (Creager-Paris, in this case).  

Under all these assumptions, and considering the scatter associated to the fracture 

processes being analysed, the obtained predictions of fracture loads have been 

noticeably accurate, especially when using the Point Method (PM) as the TCD 

methodology. In such a case, the average deviation between the predicted fracture load 

and the corresponding average experimental fracture load has been +3.3 %, with a 

maximum deviation of -11.7%. When using the Line Method (LM), the average 

deviation has been +11.7%, with a maximum of +23.1%.  

Both the load-displacement curves of the SENB PMMA specimens recorded 

experimentally and the plastic zone size determined numerically confirmed the ductile 

failure of the U-notched specimens by considerable plastic deformations around the 

notch tip (particularly for higher notch radii). For such notched components for which 

the plastic zone effects on the fracture behaviour cannot be ignored, the failure criteria 

in the context of strictly linear elastic notch fracture mechanics (LENFM) could not 

accurately be utilised without employing EMC.   
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Tables 

Table 1. Main mechanical (tensile and fracture) properties of the PMMA 

E (GPa) σ0.2(MPa) σu(MPa) emax(%) Kc (MPa·m
1/2

) 

3.40 47.0 74.5 4.7 2.04 
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Table 2. Experimental programme, experimental fracture loads, and fracture load 

estimations: Pest
PM

 (EMC-TCD (PM)), Pest
LM

 (EMC-TCD (LM)). 

Specimen 
Notch length,  

a (mm) 

Notch radius, 

ρ (mm) 

Max. Load, 

Pmax (N) 

Pest
PM

 

(N) 

Error 

(%) 

Pest
LM

 

(N) 

Error 

(%) 

0-1 5.50 

0 

130.0 

- - - - 0-2 4.72 83.0 

0-3 5.32 131.2 

0.25-1 

5 0.25 

124.9 

111.0 -2.6 128.1 +12.4 
0.25-2 119.9 

0.25-3 104.0 

0.25-4 107.1 

0.32-1 

5 0.32 

117.4 

119.4 +8.2 135.8 +23.1 
0.32-2 112.6 

0.32-3 102.5 

0.32-4 108.7 

0.5-1 

5 0.5 

90.0 

139.0 +9.4 153.8 +21.1 
0.5-2 85.2 

0.5-3 170.3 

0.5-5 162.6 

1.0-1 

5 1.0 

212.8 

183.6 -11.7 195.3 -6.1 

1.0-2 213.6 

1.0-3 204.8 

1.0-4 202.8 

1.0-5 202.6 

1.5-2 

5 1.5 

215.5 

219.4 +9.9 229.4 +14.9 
1.5-3 165.9 

1.5-4 219.0 

1.5-5 197.9 

2.0-1 

5 2.0 

258.5 

250.2 -0.9 259.1 +2.6 2.0-2 261.1 

2.0-3 237.8 

2.5-1 

5 2.5 

253.8 

277.7 +10.3 285.7 +13.5 

2.5-2 259.9 

2.5-3 250.4 

2.5-5 251.3 

2.5-6 243.2 
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Figure 1. Obtaining L and 0σ  parameters based on the PM definition. 
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Figure 2. A typical stress-strain curve for a ductile material. 
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Figure 3. Stress-strain curve for the equivalent brittle material. 
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Figure 4. Schematic showing the geometry of the SENB test specimens. Dimensions in 

mm, ρ varying from 0 mm to 2.5 mm. Thickness (B) = 5 mm; Width (W) = 10 mm. 
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 Figure 5. Stress-strain tensile curve of the PMMA being analysed (engineering 

variables). 
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Figure 6. Examples of load-displacement curves obtained in the fracture tests: a) 

specimens with notch radius 0.25 mm; b) specimens with notch radius 2.0 mm. 

a)  

b)  
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Figure 7. Comparison between fracture load predictions and experimental fracture 

loads: a) individual tests; b) average values for each set of tests (notch radius). 
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Nota
It can be observed that the deviation in some cases is pretty higher than 20% and, moreover, it is on the unsafe side. This point must be reported and discussed in detail in the text.
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Figure 8. FEM model for SENB specimen containing a U-notch of 0.2 mm radius. 
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Nota
What is the minimum FE size adopted?
Please report in the figure also the applied loads and constraints.
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a) 

 

b) 

Figure 9. Von-Mises stress distribution around the U-notch: a) notch radius equal to 

0.25 mm subjected to the mean fracture load of 114 N and b) notch radius equal 

to 2.5 mm subjected to the mean fracture load of 252 N. The plastic zone is 

shown by a red curved line in both cases. 
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