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Abstract—The proliferation of non-linear loads and the
increasing penetration of Distributed Energy Resources
(DER) in Medium-Voltage (MV) and Low-Voltage (LV) distri-
bution grids, make it more difficult to maintain the power
quality levels in residential electrical grids, especially in
the case of weak grids. Most household appliances con-
tain a conventional Power Factor Corrector (PFC) rectifier,
which maximizes the load Power Factor (PF) but does
not contribute to the regulation of the voltage Total Har-
monic Distortion (THDV ) in residential electrical grids.
This manuscript proposes a modification for PFC con-
trollers by adapting the operation mode depending on the
measured THDV . As a result, the PFCs operate either in a
low current Total Harmonic Distortion (THDI ) mode or in
the conventional resistor emulator mode and contribute to
the regulation of the THDV and the PF at the distribution
feeders. To prove the concept, the modification is applied
to a current sensorless Non-Linear Controller (NLC) applied
to a single-phase Boost rectifier. Experimental results show
its performance in a PFC front-end stage operating in Con-
tinuous Conduction Mode (CCM) connected to the grid with
different THDV .

Index Terms—Harmonic distortion, Non-linear carrier
control, Power factor correction.

I. INTRODUCTION

HARMONIC limits in AC electrical grids are established
by international standards and grid codes in order to

ensure an efficient and proper operation of the subsystems
and equipment connected to the grid, i.e. generators, loads
and storage systems. The IEEE 519-2014 recommended prac-
tice and requirements for harmonic control in electric power
systems [1] defines the limits on specific harmonics as well
as on the current Total Harmonic Distortion (THDI ) and the
current Total Demand Distortion (TDD). Voltage and current
harmonic distortion levels in electrical distribution systems
are closely related, and the recommended THDV limits in
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distribution feeder tap points are likely exceeded if highly
nonlinear loads are connected [2]. Exceeding voltage or cur-
rent harmonic limits reduces the overall efficiency and might
produce critical faults in weak or critical Electrical Power
Systems (EPS). Among others, harmonic distortion causes
heating of induction motors [3], accelerated aging of insulation
[4] and harmonic resonances in capacitors for reactive power
compensation [5]. Moreover, the harmonic distortion might
affect the normal operation of medical equipment [6], [7]
and distribution transformers in residential areas might suffer
excessive loading, contributing to accelerate their aging [8].

The voltage harmonic distortion is mainly due to back-
ground harmonic sources, but residential loads contribute
to increase the THDV , especially at 3rd, 11th and 13th

harmonics [9]. The effects of harmonics in residential areas are
attenuated applying local or wide area mitigation approaches.
Local ones are employed at the load or Distributed Energy
Resource (DER) side, i.e. distributed generation and storage
active front-ends, operated as adjustable harmonic impedances
[10], [11] or including active power filter functionalities [12].
Wide area mitigation strategies are based on the coordination
of local solutions, i.e. assigning compensation priorities to
DERs [13]. The THDV is improved by means of a droop-
based approach [14], adjusting the equivalent DER admittance
[15] or the deployment of distributed low-power low-voltage
equipment for current harmonic filtering [16]. The integration
of mitigation equipment at distribution feeder level, i.e. hybrid
active power filters, also contributes to increasing the PF
and mitigating the effect of voltage disturbances on house-
hold appliances [17]–[19]. The compensation capability and
availability using DERs is limited by their nominal rating, i.e.
the LCL filter characteristics [20], and the operation mode,
i.e. reactive power compensation [21], respectively. Dedicated
local filtering solutions require the integration of additional
equipment, increasing the overall cost, and involve a previous
analysis of their impact on the grid [16], e.g. resonances
in passive filters. Moreover, coordination of local solutions
would require communications that increase the deployment
complexity. In contrast, this manuscript proposes a local load
side approach, with no extra hardware cost, achieved by
extending the functionality of available PFCs.

PFC is widely employed in household appliances as an
active front-end AC/DC converter imposing unity power fac-
tor and supplying the load with the required constant DC
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voltage, while ensuring a high efficiency [22]. PFC stages
have traditionally been utilized to improve the electrical power
quality of EPS by emulating an input resistance for all system
frequencies, so that in the case of a sinusoidal grid voltage
the input current is sinusoidal with very high-frequency har-
monic distortion, linked to the switching ripple. However, this
resistor emulator behavior will result in line current harmonics
in the case of harmonically distorted grid voltages, which
would contribute to maintain THDV levels at the Point of
Common Coupling (PCC). A digitally controlled boost PFC
with variable input impedance is proposed in [23]. The resistor
emulator behavior is adjusted at different harmonic frequencies
to contribute to the improvement of the grid stability.

Diverse works on PFC, impressing sinusoidal input currents
(sinPFC), have previously been published. In [24], [25], a sine
wave generator is employed within the current loop to generate
the appropriate reference current in single-phase systems. The
sine wave generator can be replaced by a Phase-Locked Loop
(PLL), as in [26], to generate the reference signal. Predic-
tive controllers with a current sensor, showing immunity to
input voltage distortion are utilized in [27]. These approaches
are also employed in three-phase PFC in [28] and [29],
respectively. The accurate synchronization of the modulation
signals with the grid, the harmonics injected to compensate the
distortion effect and the implementation of adaptive controllers
to find the best response under distorted or non-distorted
grid voltage motivate the utilization of digital controllers. The
adoption of a sensorless solutions represents a step forward in
terms of simplicity and reliability. As long as the resulting
power factor is satisfactory, the elimination of the current
sensor also eliminates the circuitry associated to the adoption
of a reference for the current measurement, signal conditioning
circuits and an analog-to-digital converter, in the case of a the
controller implementation in a digital circuit. Since the current
signal is not affected by the sensor size, the resulting controller
covers a wider power rate. Several sensorless approaches have
been presented recently. A voltage sensorless controller with
adjustable power factor is proposed in [30] for a three-phase
three-switch Vienna rectifier. A current sensorless technique
with an artificial input voltage, stored in a Look-Up Table
(LUT) to gain immunity under distorted input voltage, is
presented in [31]. A more sophisticated technique, which pre-
calculates the duty-cycle sequence, extending the load range
of application with no input voltage or current acquisition,
assuming that the reference is sinusoidal is presented in [32].
In [33], [34], a current sensorless technique is extended for
multiphase current interleaved topologies. Since the actual
current shape depends on the volt-seconds across the input
inductor, the distortion of the AC input voltage produces input
current distortion when the resistor emulator technique is used.

This paper proposes to improve the PF at the PCC by
applying an adaptive PFC controller to the grid-connected
AC/DC converters of a residential grid, introducing the con-
cept of Power Quality Enhancer (PQE) (Fig. 1). This PQE
adapts the AC/DC converter current depending on the grid
distortion. In this way, the PFC controller can operate in both
resistor emulator and sinusoidal input current modes, allowing
the THDV minimization in residential electrical grids while

maintaining maximum PF at the PCC. The proposed PQE PFC
helps to reach advanced specifications required in residential
smartgrids, such as peak load reduction [35] and energy
management [36]. The paper is organized as follows. The
main contributions are presented in Section II and III. Section
II introduces the definitions of electrical power quantities
and the effect of THDI on the PF measured at the PCC
and presents the PQE’s operation principles. Details of the
controller selected to develop the proof of concept [37] and
the experimental results with the controller modified by the
PQE are presented in Section III and IV respectively.

II. EFFECT OF THE PROPOSED CONTROLLER ON THE
ELECTRICAL POWER QUALITY OF RESIDENTIAL GRIDS

The proposed PQE PFC consists of a conventional PFC
stage with an enhanced digital controller, which adjusts the
operation mode to maximize the PF while contributing to
reduce the THDV at the PCC. The proposed controller
modification is shown in Fig. 1, where the local THDV mea-
surement is employed to adjust the PFC operation mode. For
analysis purposes, as depicted in Fig. 1, the Low-Voltage (LV)
residential grid and household appliances are modeled through
their Thévenin and Norton equivalents respectively. In [38],
an individual residential house is modeled by its equivalent
impedance and a current source, representing the linear and
non-linear loads respectively. Considering that most of the
Conventional Household Appliances (CHA) are connected to
the grid through unidirectional AC/DC converters, the house
impedance is approximated by a pure resistor, RCHA, and a
current source, corresponding to the sum of N − 1 current
harmonics i′CHA. Therefore, i′CHA is given by (1), where
N represents the maximum harmonic order, n, of the CHA
current:

i′CHA(t) =

N∑

n 6=1

i′CHA,n(t) (1)

Similarly, PQE PFC based household appliances are modeled
through an equivalent resistor Req and the harmonically dis-
torted current i′PQE ,

i′PQE(t) = −k vPCC(t)− vPCC,1(t)

Req
= −k

M∑

n 6=1

vn(t)

Req
= −k vPCC,H(t)

Req
, (2)

calculated with the difference between the PCC voltage
(vPCC) and its fundamental frequency component (vPCC,1),
with M representing the maximum harmonic order of vPCC .
The factor k is selected depending on the PCC THDV .
By applying k = 0, the PQE PFC behaves as a resistor
emulator and with k = 1, a sinusoidal input current is
achieved. Moreover, it must be considered that, behaving as a
front-end converter and assuming a resistive load (RDC) fed
by the stationary voltage (VDC) imposed by the PQE PFC
outer voltage controller (Fig. 1), the input power of the PQE
PFC (P in

PQE) is imposed by the PFC output power, with no
dependence on the operation mode selected through k. The
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Fig. 1. Residential LV grid with household appliances feed through conventional AC/DC stages (without the proposed operation mode selector)
and the proposed PQE controller.

LV electrical grid, from the point of view of the household
appliances, is modeled through the impedance Zg and vg:

vg(t) = vg,1(t) +

L∑

n6=1

vg,n(t), (3)

where vg,1 is the fundamental component of the grid voltage
(vg), vg,n its nth harmonic component, and L the maximum
harmonic order of vg , with L ≤M < N .

Assuming the approach in IEEE Std. 1459 [39], where the
electrical power quantities under sinusoidal, non-sinusoidal,
balanced and unbalanced conditions are defined, the instanta-
neous input power of the PQE PFC in Fig. 1 is written as

pinPQE(t) = vPCC(t)iPQE(t) = vPCC(t)
(

vPCC(t)
Req

+ i′PQE(t)
)

(4)

Averaging pinPQE over a grid period T results in the active
power of the PQE PFC (P in

PQE):

P in
PQE(t) = 1

T

∫ t

t−T
pinPQE(τ)dτ =

V 2
PCC,1

Req
+

(1− k)

Req

M∑

n 6=1

V 2
PCC,n =

P out
PQE(t)

η
(5)

where it has been assumed that the PCC voltage and Req

change slowly enough, η is the PQE PFC efficiency and
P out
PQE its output power, which, being employed as a front-end

converter, means P out
PQE =

V 2
DC

RDC
(Fig. 1). Hence, the equivalent

resistance of the PQE PFC is

Req =
η/100

P out
PQE

V 2
PCC,1

(
1 + (1− k)THD2

V

)
, (6)

which, having P out
PQE imposed by the PFC outer voltage

control loop, depends on the PCC voltage and the selected
operation mode (k). As a consequence, in the resistive em-
ulator mode (k = 0) Req increases with the THDV . For
simplicity’s sake, it will be assumed that η = 100% in the
subsequent analysis.

A. PF at the PCC with the PQE PFC controller in both
operation modes

As will be proved in this subsection, the PF at the PCC can
be improved by the PQE PFC in household appliances. The
PF is evaluated through the definition in IEEE Std. 1459 [39]
and both operation modes (k = 1 and k = 0) are considered.
From Fig. 1:

PF =
P in
PQE + P in

CHA

VPCCIg
=
P out
PQE +

V 2
PCC,1(1 + THD2

V )

RCHA
+ Pharm

√
V 2
PCC,1(1 + THD2

V )
√
I2g

(7)

and Pharm =

M∑

n 6=1

VPCC,nI
′
CHA,n cos θn, (8)

where P in
CHA is the active power due to the CHA and the

term Pharm corresponds to the active power transferred by
the harmonic current components due to the conventional load
nonlinearities and the harmonic distortion of the PCC voltage.

The overall household appliance current (ig) can be obtained
from Kirchhoff’s Current Law (KCL) at the PCC:

ig(t) = iPQE(t) + iCHA(t)

= i′PQE(t) + i′CHA(t) +
Req+RCHA

ReqRCHA
vPCC(t)

(9)
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and, then, the squared rms value of the overall household
appliance current is evaluated using (10):

I2g = 1
T

∫ t

t−T
i2g(τ)dτ =

(
1 + (1− k)2THD2

V

)
(P out

PQE)2

V 2
PCC,1 (1 + (1− k)THD2

V )
2

+
2P out

PQE(1− k)Pharm

V 2
PCC,1 (1 + (1− k)THD2

V )
+

2P out
PQE

RCHA

+
V 2
PCC,1

R2
CHA

THD2
I′
CHA

+
2Pharm

RCHA
+ (1 + THD2

V )
V 2
PCC,1

R2
CHA

(10)

Substituting (10) into (7), the PF at the PCC is obtained:

PF =
P out
PQE +

V 2
PCC,1(1 + THD2

V )

RCHA
+ Pharm

√
S2
0 + S2

k

, (11)

where S2
0 and S2

k are given in (12) and (13) respectively:

S2
0 =

2V 2
PCC,1(1 + THD2

V )

RCHA

(
P out
PQE + Pharm +

V 2
PCC,1

2RCHA

(
1 + THD2

V + THD2
I′
CHA

))
(12)

S2
k =

1 + THD2
V

1 + (1− k)THD2
V

(
1 + (1− k)2THD2

V

1 + (1− k)THD2
V

(P out
PQE)2 + 2(1− k)P out

PQEPharm

)
(13)

Eq. (12) does not depend on k while S2
k depends on the

selected operation mode. Considering that k ∈ [0, 1] and
Pharm + P out

PQE > 0, the value of k required to maximize
the PF is obtained from (11) by minimizing the denominator,
resulting in

k =
Pharm(1 + THD2

V )(
Pharm + P out

PQE

)
THD2

V

=
1 + 1

THD2
V

1 +
P out

PQE

Pharm

. (14)

Identification of the optimal continuous value of k ∈ [0, 1]
requires Pharm to be known. In the following analysis only
k = 0 or k = 1 values are allowed. Then, depending on
the selected operating mode for the PQE PFC, the overall PF
becomes

PF =





P out
PQE +

V 2
PCC,1(1 + THD2

V )

RCHA
+ Pharm

√
S2
0 + (1 + THD2

V )(P out
PQE)2

,
k = 1
(sinusoidal)

P out
PQE +

V 2
PCC,1(1 + THD2

V )

RCHA
+ Pharm

√
S2
0 + (P out

PQE)2 + 2P out
PQEPharm

,
k = 0
(resistive)

(15)

where P out
PQE only depends on the DC load of the PQE PFC,

being independent on the selected k. Under the same grid and
load conditions, a change in k results in a different PF at the
PCC. The operation in a sinusoidal line current mode is the
most beneficial if the following relationship is fulfilled

(1 + THD2
V )(P out

PQE)2 < (P out
PQE)2 + 2P out

PQEPharm (16)

because this mode results in higher PF at the PCC than the
resistive emulator mode. This condition can also be expressed
as

THDV <
√

2

√
Pharm

P out
PQE

(17)
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Fig. 2. Operation region of the PQE PFC resulting in a higher PF
(Pharm > 0).

Therefore, the active power ratio
P out

PQE

Pharm
, which depends on

the nonlinear household appliances, and the measured THDV

at the PCC are used to select the most appropriate k. It must
be considered that in the case of Pharm ≤ 0, (16) cannot be
verified and the resistive emulator mode is the most beneficial.
Condition (16) is depicted in Fig. 2, showing the operation
mode that results in a better PF at the PCC depending on
the THDV and the

P out
PQE

Pharm
ratio. By increasing the power

processed through the proposed PQE PFCs, the overall PF
will benefit from the resistor emulator mode (k = 0) or the
sinusoidal current mode (k = 1) depending on the measured
THDV at the PCC. In the case of highly non-linear loads
as CHA, the most beneficial operation mode in residential
EPS (with relatively low THDV ) is the sinusoidal current
one (k = 1). If the power processed through the PQE PFCs is
high enough, the resistor emulator mode (k = 0) would be the
most beneficial one. As an illustrative example, given a certain
P out

PQE

Pharm
, for instance 5000, the threshold value provided by eq.

(17) is 2 %. Below this THDV value, the PQE must operate
in sinusoidal current mode to maximize the overall PF.

The overall system conditions allowing the operation in a
sinusoidal line current mode are evaluated below. As has been
established before, this operation mode requires

Pharm =
∑

n 6=1

1

2
<e
{
~vpcc(nω)×~i′∗CHA(nω)

}
> 0, (18)

where ~vpcc and ~i′CHA are the phasor representation of the
PCC voltage and the harmonic current due to the conventional
loads in Fig. 1. By applying the superposition principle, and
replacing Zg in Fig. 1 by Rg + jLg , the condition (18), in
terms of IEEE Std. 1459 definitions and considering the PQE
PFC operation mode through k, can be rewritten as

Pharm = PA(k)− PB(k) > 0→ PA(k) > PB(k) (19)

where the term PA(k), given in (20), corresponds to the power
term resulting from the interaction of conventional non-linear
loads and the grid voltage harmonics while PB(k), the power
term which is consequence of the voltage across the grid
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Fig. 3. Operation surface of the PQE PFC resulting in a higher PF
(RCHA ≈ Req , Rg << RCHA, Lg << Rg).

impedances due to the harmonics caused by the non-linear
loads, is directly computed by (21).

From (19), having a grid voltage harmonically distorted
above a given rate, the PFC operation in sinusoidal input
current mode improves the PF. Otherwise, the resistor emulator
mode results in better PF. Under the assumption of RCHA ≈
Req , Rg << RCHA, Lg << Rg and considering that I ′CHA,n

decreases while increasing n, (19) can be approximated by

∑

n 6=1

Vg,nI
′
CHA,n cos θn > Rg

∑

n 6=1

I
′2
CHA,n (22)

where the contribution of the grid voltage harmonics to the
active power must be greater than the effect of the harmonic
currents through the grid impedance.

By substituting (22) into (17), under the previous assump-
tions, the following relationship must be accomplished in order
to improve the overall PF by operating in sinusoidal input
current mode

THDV <
√

2

√
Pharm,grid

P out
PQE

− Pharm,Rg

P out
PQE

≈
√

2

√√√√√

∑

n 6=1

Vg,nI
′
CHA,n cos θn

P out
PQE

−
Rg

∑

n 6=1

I
′2
CHA,n

P out
PQE

(23)

Condition (23) is depicted in Fig. 3. The sinusoidal input
current mode leads to a higher PF between the depicted surface
and the THDV = 0 % plane, i.e. underneath the surface.

B. PQE PFC concept simulations

The PQE PFC concept has been tested with simulations
considering a typical feeder in a distribution grid. A scenario
with 20 houses connected to the feeder, where the house and
grid parameters have been obtained from [40]–[42], and CHA
are a combination of Compact Fluorescent Lights (CFL) and
Personal Computers (PC) adjusted to a nominal house power
of 2.2 kW and a 230 V 50 Hz feeder voltage with harmonic
distortion levels due to 5th and 7th harmonics, Lg = 0.08
mH , Rg = 60 mΩ. The simulations are carried out changing
the number of conventional non-linear loads and PFCs (P

in
PFC

PPCC
),

while maintaining the overall active power at the PCC (PPCC),
and measuring the overall PF at the PCC according to the
scheme depicted in Fig. 1. The simulations have been carried
out in MatLab/Simulink and show the applicability of the PQE
PFC concept in residential EPS.

Fig. 4 shows the PF at the PCC due to the PQE PFC. The
PQE controller selects the most beneficial operation mode
(k = 1 or k = 0) following the approach in Section II.A.
The alternative operation mode, discarded by the PQE, is also
plotted for comparison purposes. As it is shown, the PCC
PF increases by replacing conventional loads with PFCs but,
at low grid THDV (due to vg in Fig. 1), k = 1 performs
better than k = 0 mode and the PQE controller assumes
this operation mode to maximize the PF at the PCC. With
PQE applying k = 1, and k = 0 discarded, the maximum
difference between modes arises at pure sinusoidal grid voltage
and P in

PFC

PPCC
= 50%, where the PQE increases the PF from

0.988 to 0.989, meaning 120 VA. If all the power is processed
through PQE PFCs and the grid THDV reaches 8%, then
k = 0 increases the PF with respect the k = 1 case, from
PF = 0.995 up to virtually unity, reducing the reactive
component by 4.17 kVA. The worst PF corresponds to only
CHA loads, with PF = 0.955.

III. IMPLEMENTATION OF THE PQE CONTROLLER

According to the previous discussion, a sinusoidal line cur-
rent contributes to increasing the efficiency and performance
of the residential EPS within the conditions depicted in Fig.
2. The PQE can be included in any PFC controller. Without
losing generality, this section describes the proposed single-
phase sensorless controller for PFC achieving this behavior.
The proposed approach extends the performance of the digital
sensorless Non-Linear Controller (NLC) in PFC [37], [43]–
[46] by including a new term, which depends on the measured
voltage harmonic distortion and the DC load. This term
achieves low THDI current impression regardless of the line
voltage distortion.

PA(k) =
∑

n 6=1

Vg,nI
′
CHA,n

(RgReq + (1− k)RgRCHA +RCHAReq) cos θn + nωLg (Req + (1− k)RCHA) sin θn

(RgReq + (1− k)RgRCHA +RCHAReq)
2

+ n2ω2L2
g (Req + (1− k)RCHA)

2 (20)

PB(k) =
∑

n 6=1

I
′2
CHA,n

Rg (RgReq + (1− k)RgRCHA +RCHAReq) + n2ω2L2
g (Req + (1− k)RCHA)

(RgReq + (1− k)RgRCHA +RCHAReq)
2

+ n2ω2L2
g (Req + (1− k)RCHA)

2 (21)
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The NLC has been selected to connect this proposal with
recent research work [47]. It shows a better dynamic perfor-
mance compared to the linear controllers based on current
averaging, especially for high-frequency grids. The main draw-
back is its poor noise immunity, overcome with the sensorless
approach. A typical bandwidth of the linear current control
loop recommended for utility line frequencies (50−60 Hz) is
units of kHz, with switching frequencies close to 100 kHz. If
the line frequency increases, the typical distortion around the
line zero-crossing makes it impossible to fulfill the harmonic
limits. This issue is addressed in detail in [48] and [49].
Nonlinear controllers solve this problem, achieving responses
as fast as the switching cycle [50]. The NLC sensorless
controller represents a solution suitable for universal voltage
(85 to 250 Vrms and grid frequencies up to 400 Hz), being
attractive to prove the contribution of this paper.

The NLC is defined for the Boost converter switching at
constant frequency, fsw = 1/Tsw, and with Pulse-Width
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Fig. 5. Block diagram of the basic current rebuilding algorithm.

 

Vm

vm

off - on
ton

Tsw

t

iavi0

<iPQE>Tsw

ireb

Fig. 6. Representation of the NLC variables.

Modulation (PWM). A variable iav(t) is calculated during
each switching period, 0 ≤ t ≤ Tsw, from ireb(t), which
is the output of the current rebuilding algorithm [51] shown
in Fig. 5 and i0, which is the current at the beginning of the
switching period. The carrier signal, vm, and iav are compared
to set the duty cycle, d.

iav(t) =
ireb(t) + i0

2
, (24)

It is assumed that iav(dTsw) represents the average current
over the switching period when the estimation errors are
properly compensated i.e.

iav(dTsw) = 〈iPQE〉Tsw
(25)

To derive the sinPFC NLC for the PQE PFC, 〈iPQE〉Tsw

is firstly assumed sinusoidal, so that

〈iPQE〉Tsw
=

P in
PQE

VPCC,1

√
2 sin(ωt) (26)

The controller with k = 0 results in an input current iPQE ,
i.e. 〈iPQE〉Tsw

, proportional to vPCC using the NLC technique
as shown in Fig. 6 and summarized with the expression

〈iPQE〉Tsw
=
VDC

Req
(1− d), (27)

with the duty cycle d = ton/Tsw and the carrier signal vm,
whose amplitude, Vm, is proportional to the input power,
P in
PQE , and also represents the inverse of the emulated re-

sistance Req .

vm = Vm

(
1− t

Tsw

)
, 0 ≤ t ≤ Tsw (28)

with
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Vm = Rs
VDC

Req
= Rs

VDC

V 2
PCC,1

P in
PQE , (29)

where Rs is a fictitious sensing resistance, which gives consis-
tency to the units of the variables in the rebuilding algorithm.

Considering a distorted AC line voltage at the PCC accord-
ing to (3), (26) can be rewritten as a function of vPCC,1

〈iPQE〉Tsw
=
vPCC,1

R
=
vPCC − vPCC,H

R
(30)

where R provides proportionality between the input current
iPQE and the fundamental component of the voltage v1.

Assuming that the converter operates in the Continuous
Conduction Mode (CCM), the ideal quasi-static conversion
characteristic of the PWM-controlled Boost converter with
duty cycle d is given by

vPCC = VDC(1− d) (31)

and introducing (31) into (30) results in

〈iPQE〉Tsw
=

1− d
R

VDC −
k

R
vPCC,H (32)

Around the AC line zero crossing, where the converter
operates in the Discontinuous Conduction Mode (DCM), a
little distortion in the input current occurs as is explained in
detail in [34] for the traditional NLC controller, affecting this
low THDI controller in the same way. In CCM, the NLC
control achieves power factor correction through a comparison
of signals (Fig. 6) that finds an easy implementation in a digital
circuit.

The output voltage is approximated in (31) and (32) by its
DC value (small ripple approximation) at the specified refer-
ence level VDC = V ref

DC . The first term in (32), VDC(1−d)/R,
is similar to the NLC control law shown in [34] or the Linear
Peak Current-Mode (LPCM) control in [52]. The second term,
vPCC,H/R, corresponds to line harmonic voltage distortion
and factor k allows the THDV to be considered. The duty
cycle command is obtained by comparing the digitized signals
iav(t) and a leading-edge saw-tooth carrier signal vm(t),
redefined as

vm(t) = Vm

(
1− t

Tsw

)
− k vPCC,H

R Rs, 0 ≤ t ≤ Tsw (33)

where Vm = RsVDC/R. For the current sensorless applica-
tion, Rs = 1 Ω is arbitrarily adopted, where the value R
changes with the load and is set by the outer voltage loop with
Vm [43]. The second term in (33), kRsvPCC,H/R, offsets
the carrier signal in each switching period, meaning a low-
frequency harmonic content in the carrier signal. With the
factor k defined in the previous section, the operation mode
of the PFC is selected. Fig. 7 shows the waveforms defined
in (33) and the lowest harmonics over a half line cycle, for
an input voltage with a THDV = 6 % with harmonics
vPCC,3 = 0.05

√
2 sin(3ωt), vPCC,5 = 0.03

√
2 sin(5ωt + π)

and vPCC,7 = 0.01
√

2 sin(7ωt). For clarification purposes,
Tsw has been depicted much longer than the actual imple-
mented switching period.
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Fig. 7. Carrier and vPCC,H in an example of input voltage with
THDV = 6%.

In order to obtain the second term in (33), an Analog-to-
Digital Converter (ADC) digitizes the input voltage, vPCC ,
and a sinusoidal pattern is synchronized with the utility line-to-
neutral voltage using a digital Zero-Crossing Detector (ZCD).
An input voltage peak detector is used to approximate the
value of vPCC,1 to vPCC,1 ≈ VPCC,peak sin(ωt). Different
approaches, such as the zero-phase detector circuit in [53] or
PLLs can be applied here, the last one being the preferred
approach to achieve immunity to input voltage distortion [54],
[55], as is included in certain PFC proposals [56], [57]. Hence,
(30) is rewritten as

〈iPQE〉Tsw
=
VPCC,peak

R
sin(ωt), (34)

where ω is evaluated on a period-to-period basis and, assuming
slow harmonic variations, their effect on ω are negligible.
Estimation errors occur due to the phase displacement of
sin(ωt) and the fundamental in vPCC , which are caused by
the relative phase and magnitude of the voltage harmonics
in vPCC . Replacing the ZCD by a PLL avoids such effects,
however, it must be considered that the THDV in residential
feeders is usually in the range (1%,3%) [58], which limits the
potential phase errors to less than a maximum 3.3 degrees. The
effects of the voltage harmonic distortion on the estimation of
VPCC,peak are mitigated by the outer voltage control loop of
the PQE, which adjusts the amplitude of iPQE .

If iPQE , which is purely sinusoidal according to (30), is
initially different to the one required by the load, then the
outer voltage loop modifies Vm, and therefore R, to set the
input current according to the required power.

A block diagram of the Boost rectifier with the low THDI

controller and its connection to the operation mode selector
is shown in Fig. 1. The proposed circuit obtains a signal
that represents the input voltage distortion with |vPCC,H | ≈
|vPCC | − vPCC,peak |sin(ωt)|.

The calculation of the voltage distortion can be improved
using a specific algorithm implemented in a digital device,
i.e. a microcontroller or an Field Programmable Gate Array
(FPGA), the Fast Fourier Transforms (FFT) is a good choice
to obtain the harmonic content of a variable, with dedicated
blocks to compute this, like in [59], [60], but this requires
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Fig. 8. Experimental results of PQE PFC at 50 Hz. Voltage and current
waveforms in a) resistor emulator mode (k = 0), b) sinusoidal current
mode (k = 1) and c) measured spectra in both operation modes.

lots of resources. On the other hand, the outer loop makes
an accurate calculation of the distortion term unnecessary and
the value of each harmonic voltage is not needed, so the total
harmonic voltage vPCC,H is computed, with the outer voltage
loop setting the value of Vm. In steady-state, R automatically
defines the amplitude < iPQE >Tsw

[46].
Note that with the PQE controller, the load viewed by the

grid, Req , is now a function of the input voltage phase. In
steady state, and for a defined input power P in

PQE , the input
current in (26), and (34) yields an expression for R

R =
VPCC,peakVPCC,1

P in
PQE

√
2

(35)

From (35), it is possible to obtain the expression for the
equivalent resistance Req

Req = R
vPCC,1

vPCC
(36)

IV. EXPERIMENTAL RESULTS

With the addition of the proposed modification to the NLC
controller, the parameter k selects the preferred behavior
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Fig. 9. Experimental results of PQE PFC at 60 Hz. Voltage and current
waveforms in a) resistor emulator mode (k = 0), b) sinusoidal current
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depending on the application, either resistor emulator or low
THDI .

To experimentally validate this proposal, the Boost converter
has been tested under two input voltages (120 Vrms and
230 Vrms) and three input frequencies (50 Hz, 60 Hz and
400 Hz), with 12 % harmonic distortion, for two different
power levels (around 330 W and 800 W ), and 96 kHz
switching frequency. These situations have been tested with the
PQE controller in both pure sinusoidal and resistor emulator
behavior modes, and the results are summarized in Table I.
A Pacific 345-AMX AC power source is used to supply the
front-end stage with a distorted voltage. Different templates of
distorted voltages are predefined. The THDI results, which
include all the harmonics required by the standards, are also
provided by the AC power source. Comparing the results
presented in Table I, it can be observed that the highest
power factor values are obtained, as expected, with the resistor
emulator behavior, with a THDI similar to the THDV of the
input voltage; obtaining a power factor similar to the obtained
with pure sinusoidal grid voltage. On the other hand, with the
new proposal, the current harmonics are lower (above all 3rd



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

TABLE I
EXPERIMENTAL RESULTS UNDER DISTORTED LINE VOLTAGE

VPCC IPQE P in
PQE f THD

[V ] [A] [W ] [Hz] VPCC [%] IPQE [%]
Resistance behavior (traditional PFC controller approach)

Fig. 8.a 226.2 3.64 820 50 12 11.5
Fig. 9.a 117.3 2.85 329 60 12 10.8

Fig. 10.a 225.5 3.6 800.9 400 12 11.33
Sinusoidal input current

Fig. 8.b 226.1 3.7 823 50 12 4.2
Fig. 9.b 117.3 2.88 329 60 12 3.4

Fig. 10.b 225.5 3.6 800 400 12 2.93

and 5th harmonics) than the voltage ones and therefore the
THDI is also lower than the THDV .

Fig. 8.a and 8.b show the voltage and current waveforms of
the PQE PFC in resistor emulator and sinusoidal current modes
respectively at 50 Hz. In resistor emulator mode the current
waveform is proportional to the voltage one and, hence, current
harmonics (the blue bars in Fig. 8.c) will generate voltage
harmonics at the PCC due to Zg in Fig. 1. By changing the
operation mode to sinusoidal current one, the THDI reduces
from 11.5 % to 4.2 % and the current waveform in Fig. 8.b
is almost sinusoidal but the zero crossing. Since the EPQ
PFC active power is almost constant (≈ 820 W ) in both
operation modes, the fundamental input current must increase
to compensate for the active power transferred by the current
harmonics in the resistor emulator mode.

The proposed PQE PFC performance has also been evalu-
ated in 60 Hz EPS, as it is shown in Fig. 9.a and 9.b. The
results are similar to the 50 Hz case. Input current ripple is
higher because the DC output voltage is intentionally lower in
these tests to verify that the PQE controller performance does
not depend on the output voltage level. As it is shown in Fig.
9.c, the input current spectra in both operation modes follow
the behavior observed in the 50 Hz case.

Finally, in order to show the applicability of this approach to
airplane EPS, the PQE PFC has been connected to a 400 Hz
grid voltage and the obtained results are shown in Fig. 10.
Again, the performance of the PQE PFC is consistent with
the previous cases (Fig. 10.c). The results of all the cases are
summarized in Table I.

The lower distortion observed as the line frequency in-
creases is a consequence of the applied technique without
current sensor [46]. This technique compensates for the current
estimation errors acquired around the zero line crossing and
therefore the accumulated error during half the line period
becomes lower as the line frequency increases.

V. CONCLUSION

The consequence on the electrical power quality of connect-
ing household appliances to the grid through PFC stages has
been assessed considering different THDV scenarios. As has
been shown in (17) and (23), there are conditions under which
sinusoidal current consumption results in better PF at the PCC
than with resistor emulator behavior, commonly assumed to be
ideal for PFC stages. A modification of the carrier signal of
NLC controllers applied to PFC stages is designed to impress
sinusoidal input current despite the input voltage distortion.
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Fig. 10. Experimental results of PQE PFC at 400 Hz. Voltage and
current waveforms in a) resistor emulator mode (k = 0), b) sinusoidal
current mode (k = 1) and c) measured spectra in both operation modes.

The line current estimation with no interaction with the power
stage implements the NLC with high noise immunity. The dig-
ital implementation of the non-linear controller is appropriate
to define the carrier and to include additional reduction of
the current distortion depending on the application. The PQE
controller can be applied to mitigate the effect of nonlinear
loads within household appliances on residential electrical
grids. The operation mode of the digital controller can be
autonomously adjusted through the locally measured THDV ,
without extra circuitry. The user or a THDV threshold detec-
tion selects the convenient behavior (either resistor emulator
or pure sinusoidal current). Experimental results obtained with
high THDV (above 5 %) confirm the feasibility of the PQE
controller in both sinusoidal current and resistive emulator
modes.
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