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Abstract 

In this work, a comprehensive analysis of PVDF-HFP/BMImBF4/AgBF4 facilitated 

transport membranes for olefin/paraffin separation is presented. Previous works of our 

research group have reported high flux and propylene selectivity under dry conditions 

and using synthetic gas mixtures, highlighting the promising potential of these 

membranes for industrial applications. This work advances in the understanding of the 

phenomena involved in membrane performance and moves one step forward in the 

knowledge of the industrial viability of this membrane system. First, the internal 

interactions between the silver cations and the polymer backbone, the silver salt 

dissociation and the silver degradation have been studied using FTIR, Raman and XPS 

spectroscopic techniques. Secondly, the experimental membrane performance during 

110 days and working at changing relative humidity conditions in the feed gas has been 

assessed. Thermogravimetric techniques helped determining the water uptake capability 

of the facilitated transport membrane. Thirdly, real gas mixtures from a fluid catalytic 

cracking unit were provided by the industry and used in permeation experiments to 

check the membrane behavior under industrial-like conditions. The results provide 
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experimental evidence for the previously theorized facilitated transport mechanisms and 

reveal a major influence of feed gas humidity on membrane performance. On the other 

hand, the industrial gas mixture produces no deviation from synthetic feed conditions 

due to trace contaminants. Finally, the carrier deactivation in long-term permeation has 

been quantified through a mathematical expression.  

 

Keywords 

Propylene, membrane, facilitated transport, humidity, real gas mixture, silver 

degradation. 

 

1. Introduction 

The separation of propane/propylene mixtures is one of the most costly processes in the 

petrochemical industry, caused by the similar physicochemical properties of both 

species, which requires the use of energy intensive cryogenic or high pressure 

distillation [1]. Among the most promising alternatives to traditional distillation, 

membrane technology offers a compact, modular and simple operation, allowing for 

process intensification [2]. In the last years, facilitated transport membranes have 

demonstrated exceptional separation performance in terms of permeability and 

selectivity [3]. These membranes make use of transition metal cations, typically silver, 

that can selectively and reversibly react with the olefin according to the Dewar-Chatt-

Duncanson model [4,5]. This principle has been implemented in different 

configurations in recent times. The most basic approach consists in filling the pores of a 

polymeric support with a liquid solution of the carrier salt. However, this supported 

liquid membranes (SLM) lack from stability due to solvent evaporation and dragging 

[6–9]. Although the use of novel ionic liquids has overcome the solvent evaporation 

problems, the expelling out of solvent from the pores due to the transmembrane 
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pressure is still a major drawback [10–13]. Proper mechanical stability and separation 

performance can be achieved combining the properties of dense membranes with 

facilitated transport through the synthesis of polymer/salt systems. In these systems, the 

silver salt is dissolved along with the polymer and the membrane is then fabricated 

through solvent casting [14], which results in a dense facilitated transport membrane 

usually described as a polymer electrolyte [15–17]. The internal structure and 

olefin/paraffin separation performance of these systems have been studied rather 

extensively in oxygen-containing polar polymers such as poly(2-oxazoline) POZ, 

poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) [18–20]. Additionally, 

several studies have assessed the potential of these electrolytes for energy applications 

using fluoropolymers and lithium salt blends [21,22]. However, deeper knowledge on 

fluoropolymer-silver salt interactions is required in order to fully understand its gas 

separation potential. 

In this regard, recent works of our research group have demonstrated the promising 

performance of fluoropolymer/silver salt membranes containing imidazolium based 

ionic liquids [23–25]. The presence of the ionic liquid, a non-volatile additive, serves 

two purposes: it helps stabilizing the silver cations, partially mitigating the carrier 

deactivation issues [5,26,27], and it acts as a fluid medium that enables mobile carrier 

transport. In these works, 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) 

ionic liquid is used for its affinity to olefinic compounds and for having the same anion 

as the silver salt, which reduces the system complexity [28]. Poly(vinylidene fluoride-

co-hexafluoropropylene) PVDF-HFP is selected for its high thermal, chemical and 

mechanical stability. In addition, it contains fluorine atoms that are likely to form weak 

interactions with the Ag
+
 cations according to the Pearson’s Hard-Soft–Acid-Base 

(HSAB) theory [29], which gives rise to fixed site carrier transport. AgBF4 is used as 
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carrier precursor because the lattice energy of BF4
-
 anion is low enough to allow the 

olefin-silver complexation [30]. However, the internal interactions caused by the 

complexity of this membrane system and its responses to changes in the feed humidity 

conditions are still unclear. Furthermore, few studies assess the performance of silver-

containing membranes in the long-term, and what is more important, there is a lack of 

information regarding permeation of real gas mixtures provided by the industry, which 

is especially critical given the instability issues caused by silver reduction. 

In this work, the internal structure of the PVDF-HFP/BMImBF4/AgBF4 membrane is 

assessed implementing various spectroscopic techniques. Moreover, the long-term 

membrane stability is studied performing a 110 days-long permeation experiment, and 

the influence of the feed relative humidity on the membrane performance is explored 

and quantified by modifying the feed humidification conditions. Finally, the behavior of 

these membranes under real conditions is studied permeating a FCC refinery gas 

mixture provided by the industry. 

 

2. Experimental 

2.1 Chemicals 

Propylene and propane were supplied by Praxair with a purity of 99.5%. 

Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was purchased from 

Sigma Aldrich. 1-Butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) with a 

minimum purity of 99% and halide content of less than 500 ppm was supplied by 

Iolitec. Silver tetrafluoroborate (AgBF4) with a minimum purity of 99% was supplied 

by Apollo Scientific Ltd. Tetrahydrofuran (THF) purchased from Panreac was used as 

solvent for membrane synthesis. The industrial propane/propylene gas mixture was 
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kindly provided by Petronor S.A. All chemicals were used as received without further 

purification. 

2.2 Membrane synthesis 

The facilitated transport membranes studied in this work have been synthesized using 

the solvent casting method described in previous works [24,25]. The resulting 

membrane thickness is roughly 100 μm. The real thickness of each specific membrane 

has been measured with a Mitutoyo Digimatic MDC-25SX (accuracy ± 0.001 mm) 

digital micrometer and used for calculation purposes. The membrane composition of the 

studied membranes consist of 0.8g of PVDF-HFP, 0.2g of BMImBF4 and 0.6g of 

AgBF4. In the polymer/salt membranes the ionic liquid addition has been omitted.  

2.3 Gas permeation experiments 

A continuous-flow permeation technique has been used for the permeation experiments. 

A detailed description of this technique and the experimental apparatus can be found in 

previous works [23]. Briefly, mass flow controllers are used to generate a feed mixture 

that is further introduced in the upper chamber of a permeation cell where the 

membrane is located. Nitrogen is used as sweeping gas in the lower chamber and the 

permeate and retentate streams are then analyzed using gas chromatography to 

determine the transmembrane flux of each species. However, for humidified feed testing 

the experimental apparatus has been modified with the set-up depicted in Figure 1, 

which allows generating any desired relative humidity in the feed stream by controlling 

the ratio of dry to humidified feed. 
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Figure 1. Set-up for relative humidity control. 

 

The permeation experiments where conducted at the experimental conditions shown in 

Table 1. 

Table 1. Experimental conditions 

Experimental condition Value 

T (K) 298 

Permeation area (cm
2
) 53 

N2 flow (mL min
-1

) 20-40 

C3H6 flow (mL min
-1

) 20 

C3H8 flow (mL min
-1

) 20 

C3H8 /C3H6 feed gas ratio 50:50 

Feed side pressure (bar) 1.2 

Permeate side pressure (bar) 1 

 

GAS A

GAS B

To 
permeation 

cell

Mass flow controllers

Gas bubbler
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2.4 Membrane characterization techniques 

Different characterization techniques were implemented to assess the internal structure, 

water uptake capability and carrier degradation of the facilitated transport membranes. 

TGA analysis were performed using a TG-DTA 60H Shimadzu thermobalance and 

Fourier transform infrared (FTIR) spectra were recorded using a Perkin Elmer Spectrum 

Two spectrometer. Additionally, Raman spectroscopy was carried out using a Horiba 

T64000 triple spectrometer equipped with a confocal microscope and a Jobin Yvon 

Symphony CCD detector cooled with liquid nitrogen. A 488 nm beam from a Kr-Ar ion 

laser was focused through a 100x objective, using 2 mW laser power in all 

measurements. The spectral curves were fitted using Lorentzian functions. Finally, XPS 

spectra were acquired using an SPECS (Berlin, Germany) X-ray photoelectron 

spectrometer. The samples were analyzed using an Mg anode operated at 225 W 

(E=1253.6 eV, 13 kV, 17.5 mA). The carbon (C 1s) line at 284.8 eV was used as the 

reference in our determinations of the binding energies of the silver. A scanning interval 

of 0.1 eV was used for the final spectrum acquisition. 

 

3. Results 

3.1 Thermogravimetric analysis 

The thermal analysis has been performed to assess the potential water uptake of the 

studied membranes. Figure 2 displays the thermogravimetric curves of PVDF-HFP, 

PVDF-HFP/AgBF4 and PVDF-HFP/BMImBF4/AgBF4 membranes. 
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Figure 2. TGA curves of the studied membranes. 

 The membrane samples were vacuum dried at 30 mbar and 298 K for 24 hours after 

casting to completely remove the remaining solvent. Prior to testing the samples were 

exposed to ambient moisture (~80% RH at room temperature) for 24 hours. In this 

manner, any water loss appearing at the beginning of the temperature ramp can be 

attributed to water evaporation. According to Figure 2, the pure polymer membrane 

exhibits no weight loss until it reaches its degradation temperature around 680 K, which 

reveals no water uptake. This is in good agreement with the hydrophobic nature of the 

fluoropolymer [31]. However, Figure 2 shows prominent mass losses of the silver-

containing membranes in the 300-436 K temperature range. Thus, it can be concluded 

that the addition of the AgBF4 salt to the membrane composition dramatically changes 

the nature of the facilitated transport membranes due to its high hygroscopicity, which 

results in water uptakes of around 25 wt% when exposed to moist conditions. The 

PVDF-HFP/BMImBF4/AgBF4 membrane starts degrading at 625 K, slightly below the 
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pristine PVDF-HFP and PVDF-HFP/AgBF4 membranes. This is caused by the influence 

of the ionic liquid on the polymer structure, which yields a multistep decomposition 

mechanism, as reported by Shalu et al. [32]. 

3.2 Fourier transform infrared spectroscopy (FTIR) 

The interaction between the Ag
+
 cations and the fluorine atoms of the polymer chains 

can be studied through infrared spectroscopy analyzing the polymer CF2 symmetrical 

stretching mode and comparing that of the pure polymer with the silver-containing 

membranes, see Figure 3.  

 

Figure 3. FTIR spectra of the studied membranes. 

The CF2 peak of the pure polymer appears in the 1178 cm
-1

 band. After incorporation of 

the silver salt, the stretching band shifted to 1174 and 1172 cm
-1

 in the PVDF-

HFP/AgBF4 and PVDF-HFP/BMImBF4/AgBF4 respectively. Previous works on PVDF-

HFP/HBF4 and POZ/AgBF4 polymer electrolytes found that this shift to lower 
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wavenumber indicates a weakening of the polymer heteroatom bonding (i.e. C-F and 

C=O, respectively), which is caused by the interaction between these heteroatoms and 

the cations (i.e. H
+
 and Ag

+
, respectively) [18,33]. According to these findings it can be 

concluded that the wavenumber shift observed in this work for the CF2 groups is also 

related to the weakening of the C-F bond caused by the interaction of silver cations with 

the fluorine atoms of the PVDF-HFP, which is the basis of the fixed site carrier 

transport mechanism. 

 

 

3.3 RAMAN spectroscopy 

Better insight on the AgBF4 dissociation behavior can be achieved using Raman 

spectroscopy to analyze the regions of the BF4
-
 stretching bands in the pure AgBF4, and 

the silver-containing membranes. Figure 4 shows the BF4
-
 stretching band region of 

PVDF-HFP/AgBF4 and PVDF-HFP/BMImBF4/AgBF4 membranes. The symmetric 

stretching mode of BF4
-
 has been previously reported at 774 cm

-1
 in the pure AgBF4 

[34] and in the pure BMImBF4 [35]. However, the spectra in Figure 4 shows a 

 a en m er shi t to  767 cm
-1

 in both membranes. According to previous studies, this 

wavenumber corresponds to BF4
-
 free ions [20,35], which means that this change in the 

Raman spectra is due to an effective AgBF4 dissociation [36].  
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Figure 4. Raman spectra of PVDF-HFP /AgBF4 and PVDF-HFP/BMImBF4/AgBF4 

membranes.  

These evidences provided by the Raman spectroscopy support the FTIR results on 

polymer-silver interactions and suggest that the silver salt dissolution in the ionic liquid-

containing membrane is caused not only by the polymer backbone but also by the non-

complexed ionic liquid [23], which explains the existence of silver cations with certain 

mobility to act as mobile carriers. 

3.4 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy has been used to expand the knowledge on membrane 

structure and degradation. The Ag 3d regions of the XPS spectra can confirm the 

interactions between the silver cations and the polymer fluorine atoms. Figure 5 shows 

the XPS spectra of a PVDF-HFP/BMImBF4/AgBF4 composite membrane after a long 

term permeation experiment (110 days). Table 2 summarizes the two silver species 
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observable after signal deconvolution. The Ag 3d5/2 band of pure AgBF4 has been 

previously reported at 369.2 eV. However, in the composite membrane, the binding 

energy has shifted to 368.47 eV. This reduction in the photoelectron binding energy is 

caused by the coordination between the silver atoms and the polymer backbone as 

demonstrated by Kim et al (2012), who found the same phenomenon for several 

AgBF4/polymer blends [37]. Additionally, a second silver species (Ag 3d5/2=368.26 Ag 

3d3/2=374.25) is associated with the presence of metallic silver [38], presumably due to 

the silver reduction caused by the long term permeation test.  

Table 2. XPS regions of PVDF-HFP/BMImBF4/AgBF4 membrane after permeation test. 

 

Region Position 

Species A 

Ag 3d 5/2 368.47 

Ag 3d 3/2 374.54 

Species B 

Ag 3d 5/2 368.26 

Ag 3d 3/2 374.25 
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Figure 5. XPS spectra of the PVDF-HFP/BMImBF4/AgBF4 membrane after permeation 

test. 

3.5 Long-term permeation under humid conditions 

Figure 6 shows a 110 days long-term permeation test on a PVDF-

HFP/BMImBF4/AgBF4 facilitated transport composite membrane. The feed gas 

consisted of an equimolar propane/propylene mixture at 1.2 bar total pressure. The main 

goal of this experiment is to determine the separation behavior of a composite 

membrane over an extended period of time, assessing both the feed gas relative 

humidity effect and the possible loss of performance due to carrier deactivation. Figure 

6 is divided into five sections (I-V) accounting for the relative humidity conditions and 

following the sequence of the experimental runs. A characteristic feature of this 

facilitated transport membranes under dry conditions is a sharp decrease of the 
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permeation flux in the first operating hours ostensibly caused by the rapid loss of water 

and residual solvent by evaporation, Figure 7 (section II). At the beginning of the test 

(section I) the humidity was kept at saturation and no flux decay was observed during 

the first 5 days, which confirms that the characteristic curve observed under dry gas 

conditions is due to solvent and water moisture evaporation. From day 5 to day 27 some 

instability in membrane performance occurred due to controlled changes in the 

temperature and pressure conditions within the experiments. In Figure 6 this is more 

evident for the propane flux due to the semi-logarithmic scale. 

 

Figure 6. Long term permeation experiment of PVDF-HFP/BMImBF4/AgBF4 composite 

membrane at 298 K and 1.2 bar feed pressure (C3H8/C3H6 50:50) under different 

relative humidity conditions. 

After 27 days, during section II, the feed was changed to dry gases, which resulted in a 

major propane and propylene transmembrane flux decrease as water evaporation 
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occurred within the membrane. A detailed depiction of the drying curve is shown in 

Figure 7.  

 

Figure 7. Propylene transmembrane flux decrease in section II. 

When the humidified gas mixture was fed again into the system (section III), the flux 

increase of both gaseous species was almost immediate, reaching the flux values 

attained prior to drying. This abrupt increase, noted with red arrows in Figure 6, reveals 

the exceptional capability of these membranes to absorb water from the environment. 

During sections III, IV and V a feed gas relative humidity of 100, 50 and 25% was 

used, respectively. These variations in the humidity conditions resulted in moderate 

changes in the propylene transmembrane flux while the propane flux remained almost 

constant at its highest level.  

However, it should be noted that, apart from the humidity influence, the propylene 

transmembrane flux undergoes a continuous slight decrease, evidenced by a constant 
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slope in Figure 6. On the contrary, the propane flux does not suffer such decrease, 

which suggests that this phenomenon is caused by carrier deactivation. Furthermore, it 

was possible to quantify the deactivation rate by fitting the data for each section (I-V), 

to an exponential curve, which yielded the following expression:  

     
         

                       (1) 

where      
     is the initial propylene transmembrane flux at a given temperature, 

pressure and relative humidity conditions and the time t is introduced in days. This 

expression allows for membrane lifetime calculation if a minimum required 

performance is established. 

This carrier deactivation prevents from fitting a mathematical expression for the 

propylene flux dependency on relative humidity because each experimental section has 

been obtained at different times and, consequently, the propylene flux is not only 

affected by the relative humidity but also by the elapsed time from the start of the 

experiment. However, using Equation 1, it was possible to project the propylene flux 

values to a common initial point. Finally, combining a mathematical expression for the 

drying curve (Figure 7) with the propylene flux at each relative humidity, it was 

possible to obtain a fitting curve for the propylene transmembrane flux as a function of 

the relative humidity (Eq. 2), Figure 8. 

     
                            (2) 

Figure 8 evidences a sharp increase in the propylene flux with the relative humidity for 

RH<10% and a smooth increase after that value (dash line in Figure 8); this finding 

supports the fact that even with a low relative humidity in the gaseous feed stream it is 

possible to produce severe enhancements of the propylene transmembrane flux. A 
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similar trend has been reported by Catalano et al. (2012) for oxygen and nitrogen 

permeation in PFSI membranes [39].  

 

Figure 8. Experimental data and mathematical regression for the dependency of the 

propylene transmembrane flux on the relative humidity. 

Finally, Table 3 displays the permeability and selectivity values of the facilitated 

transport membrane for each relative humidity condition. The humidification of the feed 

gases produces major changes in the membrane performance, reducing the selectivity 

and increasing the permeability of both the olefin and the paraffin. This is a 

characteristic effect of water vapor-induced swelling [40,41]. The enlargement of the 

polymer free volume caused by the water uptake increases the diffusivity of the gaseous 

species and the propylene-silver complex, which leads to notable permeability values 

but at the expense of membrane selectivity. 
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Table 3. Average permeability and selectivity values of the PVDF-

HFP/BMImBF4/AgBF4 membrane for each relative humidity during the long-term 

permeation test. 

RH 

(%) 
P C3H8 (Barrer)

a
 P C3H6 (Barrer)

 a
 α C3H6/C3H8  (-) 

0 1.2 172 144 

25 97.3 1032 11 

50 107.6 1666 16 

100 106.5 2555 24 

 
a 
1 Barrer = 10

−10
 cm

3
 (STP) cm cm

−2
 s
−1

 cmHg
−1

. 

 

Although membrane swelling is usually responsible for lowering the polymeric 

membranes selectivity below the industrially required values, in this case, the selectivity 

remains high enough to consider humid operation as a useful tool to tailor the 

permeability-selectivity trade-off. Thus, wet gas could be implemented as a controlling 

agent when productivity is preferred over product purity. In this way, multistage 

membrane processes performing a refining separation after a bulk concentration could 

modulate the purity-productivity trade-off in each stage by controlling the feed gas 

relative humidity [42]. 

3.6 Industrial gas mixture permeation test 

Figure 9 shows the facilitated transport membrane performance when the feed consists 

of a real propane/propylene mixture compared with a synthetic gas mixture. The 

industrial gas mixture is the product stream of a fluid catalytic cracking unit and its 

composition is displayed in Table 4. It mostly consists of a propane/propylene mixture 

(25:75) containing minor quantities of light paraffins and olefins.  

 



19 
 

Table 4. Industrial gas mixture composition. 

Component Concentration (mol% ) 

Methane 0.0034 

Ethane 0.1503 

Ethylene 0.0099 

Propane 24.8837 

Propylene 74.7208 

Isobutane 0.1872 

N-butane 0.0016 

Trans-butene 0.0214 

Iso-butene 0.0218 

Hydrogen sulfide < 0.2 ppm 

Acetylene < 0.2 ppm 

Hydrogen < 0.2 ppm 
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Figure 9. Synthetic and industrial gas mixture permeation experiments on a PVDF-

HFP/BMImBF4/AgBF4 membrane under dry conditions at 298 K and 1.2 bar total feed 

pressure.  

Given that both feeds differ in composition, permeability, which is normalized by the 

partial pressure gradient, has been plotted instead of the transmembrane flux. Both 

permeation experiments have been performed under dry conditions to simulate refinery 

conditions, hence, both suffer the characteristic permeability decrease due to solvent 

and water evaporation in the first hours of operation. Since the propylene 

transmembrane flux is similar in both cases, Figure 9 evidences that the membrane 

performance is not affected by known contaminant trace components potentially present 

in industrial streams (i.e. acetylene, hydrogen sulfide and hydrogen [43]) during the 

experiment extent.  

Focusing on the industrial gas mixture, after 4 days (along the flat section of Figure 9) 

the relative propylene concentration achieved in the permeate side (i.e. subtracting the 

sweep gas concentration) is roughly 99.7 mol.%, which equals the purity obtained with 

synthetic gas mixtures. These results confirm that the prominent separation performance 

of the studied membranes is not restricted to laboratory conditions with synthetic gas 

mixtures and demonstrate the suitability of these composite facilitated transport 

membranes to treat real feed streams.  
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4. Conclusions 

The spectroscopic characterization of PVDF-HFP/BMImBF4/AgBF4 membranes used 

in the separation of propane/propylene mixtures confirm the existence of weak 

interactions between the Ag
+
 cations and the fluorine atoms of the polymeric backbone, 

which along with the addition of ionic liquids result in a hybrid fixed site/mobile carrier 

transport mechanism yielding high olefin permeability and selectivity. The long-term 

permeation experiment carried out under changing feed gas humidity conditions 

revealed a slight permeability decrease due to silver degradation, which is mainly 

associated to silver reduction, supported by XPS spectra of the used membrane; this loss 

of membrane activity was observed to be independent of the experimental conditions. 

Although this degradation is slow enough to allow moderate membrane lifetimes, 

remediation methods can be further studied to achieve even larger operating periods. On 

the other hand, the humidification of the feed gas can severely alter the membrane 

performance, increasing the permeability of the permeant species and decreasing the 

membrane selectivity due to water vapor-induced swelling. In this regard, 

thermogravimetric analysis revealed up to 25 wt% membrane water uptake. Since the 

membrane showed moderate selectivity even at saturation, wet gas could be 

implemented as a controlling agent when productivity is preferred over product purity. 

Finally, permeation under real gas conditions revealed no additional degradation caused 

by minor contaminants that could potentially affect silver stability.   
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Highlights: 

Long term PVDF-HFP/BMImBF4/AgBF4 membrane performance for propylene/propane 

separation. 

 

The effect of feed humidity, carrier degradation and real gas mixtures has been assessed. 

 

The results confirm the remarkable potential of these membrane to replace distillation. 

 

 




