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Abstract: The structural integrity assessment of components containing notch-type defects has been
the subject of extensive research in the last few decades. The assumption that notches behave as
cracks is generally too conservative, making it necessary to develop assessment methodologies that
consider the specific nature of notches, providing accurate safe predictions of failure loads or defect
sizes. Among the different theories or models that have been developed to address this issue the
Theory of Critical Distances (TCD) is one of the most widely applied and extended. This theory
is actually a group of methodologies that have in common the use of the material toughness and
a length parameter that depends on the material (the critical distance; L). This length parameter
requires calibration in those situations where there is a certain non-linear behavior on the micro or
the macro scale. This calibration process constitutes the main practical barrier for an extensive use of
the TCD in structural steels. The main purpose of this paper is to provide, through a set of proposed
default values, a simple methodology to accurately estimate both the critical distance of structural
steels and the corresponding apparent fracture toughness predictions derived from the TCD.

Keywords: fracture; critical distance; structural steel; notch

1. Introduction

There are numerous situations where the defects responsible for structural failure are not cracks
(i.e., sharp defects whose tip radius tends to zero). If defects are blunt (e.g., notches), it may be overly
conservative to assume that they behave like sharp cracks and, thus, to apply sharp crack analysis
methodologies generally based on Fracture Mechanics. The reason is that notched components develop
a load-bearing capacity that is greater than that developed by cracked components.

For brittle failure situations in cracked components, in which linear-elastic behavior is dominant,
fracture mechanics establishes that fracture occurs when the applied stress intensity factor (K) is equal
to the material fracture toughness (Kmat):

K= Kmat (1)

Nevertheless, notches subject components to less severe stress fields at the defect tip, resulting
in an apparent higher material fracture resistance (often referred to as apparent fracture toughness).
If this is not taken into account in the analysis, Equation (1) often proves to be overly conservative.
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Consequently, the specific nature of notches, and their consequences on the material behavior,
has required the development of specific approaches for the fracture analysis of materials containing
this type of defect. In this sense, the analysis of the fracture behavior of notches can already be
performed using different criteria: The Theory of Critical Distances (TCD) [1-3], the Global Criterion [4,
5], Process Zone models (e.g., [6,7]), statistical models (e.g., [8,9]), mechanistic models (e.g., [10]),
the Strain Energy Density (SED) criterion (e.g., [11,12]), etc. Some of them are related to each other,
so it is not straightforward to establish the boundaries between them. In any case, the TCD has been
successfully applied to different failure mechanisms (e.g., fracture, fatigue) and materials, and is
particularly simple to implement in structural integrity assessments (e.g., [1-3]). For these reasons, this
work focuses on this particular approach.

2. The Theory of Critical Distances

The Theory of Critical Distances (TCD) comprises a set of methodologies with the common
characteristic that they all use a characteristic material length parameter (the critical distance)
when performing fracture assessments [1]. The origins of the TCD date back to the middle of the
twentieth century [13,14], but it has been in the last two decades that this theory has seen an extensive
development, providing answers to different scientific and engineering problems (e.g., [1-3,15-17]).

The above-mentioned length parameter is generally referred to as the critical distance, L, and in
fracture analyses it follows Equation (2) [1]:

2
I — 1 (Kmat> (2)

us 0o

where Kinat is the material fracture toughness (derived in cracked conditions) and oy is a characteristic
strength parameter, known as the inherent strength, which is generally higher than the ultimate tensile
strength (o) and requires calibration. When the material behavior is fully linear-elastic, oy is equal
to oy, and obtaining L is straightforward once the material fracture toughness and ultimate tensile
strength are known.

Among the methodologies that comprise the TCD, the Point Method (PM) and the Line Method
(LM) stand out both for their simplicity and their applicability.

Of these, the Point Method is the simplest methodology, and it affirms that fracture takes place
when the stress at a distance of L/2 from the notch tip is equal to the inherent strength [1]. The resultant
fracture criterion is, therefore:

) (;) = 0y 3)

The Line Method, meanwhile, assumes that fracture occurs when the average stress along a
certain distance, 2L, reaches the inherent strength [1]. Consequently, the LM follows:

% jOZL o(r)dr = oy (4)

Furthermore, both the PM and the LM provide expressions for the apparent fracture toughness
(KN_,) exhibited by materials containing U-notches when combined with the linear-elastic stress
distribution at the notch tip provided by Creager and Paris [18]. The latter is equal to that ahead of the
crack tip, but displaced a distance equal to p/2 along the x-axis (which is located in the notch midplane
and has its origin at the crack tip [18]):

K 2(r+p)

o(r) = — 5
M= Trg o] ®)

where K is the stress intensity factor for a crack with the same size as the notch, p is the notch radius,
and 7 is the distance from the notch tip to the point being assessed. In order to keep in mind the
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validity range of the equations derived below, it should be noted that Equation (5) was derived for
long thin notches (i.e., notch depth >> notch radius) and is only valid for small distances from the
notch tip (r << notch depth).

If the PM is applied, Equation (3) can be combined with Equation (5), providing [1]:

TN (6)
(9

This equation allows the apparent fracture toughness (KJ_,) of a given material containing
a U-shaped notch to be estimated from the material fracture toughness (Kmat, derived in cracked
conditions), the notch radius (p), and the material critical distance (L). Analogously, when considering
the LM (Equation (4)), together with Creager-Paris stress distribution (Equation (5)), the result is an
even simpler equation [1]:

Krl;ljat = Kmaty/1+ ﬁ ()

These equations have implications from a practical point of view, given that with any of them the
fracture analysis of a notched component is reduced to an equivalent situation of a cracked component,
with only the particularity of considering KX, instead of Kmat. Accordingly, fracture takes place when:

K = KNy (8)

Moreover, Equations (6) and (7) provide similar K, predictions. For this reason, the analysis
shown below is focused on the LM predictions of KN, (Equation (7)), although similar results would
be derived from the PM (Equation (6)).

In addjition, it should be noted that the authors have demonstrated [2,19] that notches may be
analyzed by using Failure Assessment Diagrams (FADs) [20] and substituting Kmat with K, in the
definition of the K, coordinate of the assessment point. This coordinate is defined as the ratio between
the applied stress intensity factor (Kj) and the material fracture resistance (Kmat for cracks and KX, for
notches) [20-22]. This work is not focused on the FAD approach, but the application of the K., values

generated here to FAD analyses would be straightforward.

3. Materials and Methods

The authors have published a number of papers showing the application of the TCD to a
wide range of structural steels: S275]JR, S355]J2, S460M and S690Q (e.g., [22,23]). These steels
were tested at 3 different temperatures of their corresponding Ductile-to-Brittle Transition Zone
(DBTZ) and, in the case of steels S275]R and 5355]2, at temperatures equal to their Lower Shelf (LS).
Hence, the resultant experimental program collected here includes 15 different mechanical behaviors,
which are summarized in Table 1 [23,24]. Notch radii varied between 0 mm (crack-like defects) up to
2.0 mm in all cases.
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Table 1. Summary of the experimental results analyzed in this paper. LS: Lower Shelf; DBTZ: Ductile-
to-Brittle Transition Zone [23,24].

Steel Number of Tests Kmat (MPa-m2) L (mm) oy (MPa) oy (MPa)

S275]JR (—120 °C, LS) 23 48.80 0.0137 614 7438

S275]R (—90 °C, LS) 24 62.72 0.0062 597 14,211
S275]R (=50 °C, DBTZ) 24 80.60 0.0049 565 20,543
S275]R (—30 °C, DBTZ) 24 100.70 0.0061 549 23,003
S275]R (—10 °C, DBTZ) 34 122.80 0.0083 536 24,048

S355]2 (=196 °C, LS) 24 31.27 0.0198 923 3965
S355]2 (—150 °C, DBTZ) 21 60.56 0.0084 758 11,789
S355J2 (—120 °C, DBTZ) 22 146.60 0.0168 672 20,179
S355]2 (—100 °C, DBTZ) 35 157.40 0.0140 647 23,734
S460M (—140 °C, DBTZ) 24 45.60 0.0028 795 15,375
S460M (—120 °C, DBTZ) 24 88.29 0.0075 759 18,189
S460M (—100 °C, DBTZ) 33 88.58 0.0053 727 21,708
S690Q (—140 °C, DBTZ) 24 69.11 0.0069 1112 14,844
S690Q (—120 °C, DBTZ) 24 103.80 0.0131 1061 16,180
S690Q (—100 °C, DBTZ) 34 125.40 0.0170 1016 17,159

The fracture toughness tests (in cracked specimens) and the apparent fracture toughness tests
(in notched specimens) were performed following ASTM1820 standard [25]; alternative experimental
approaches can be found in literature (e.g., [26-30]), whereas the L values of the four steels at the
different temperatures (see Table 1) were calibrated by a least squares fitting of the experimental results.
Figure 1 [23,24] shows an example corresponding to steel S275]R tested at —120 °C. o values were
directly obtained from Equation (2) once Kyt and L were known. The total number of tests is 394,
with L values varying from 0.0028 mm up to 0.0198 mm. Thus, the experimental results collected here
represent a wide range of situations.

$275JR, -1202C

700

600 LM best fit (eq. {7)). e
S00 L =0.0137 mm

400 ’ &

K (MPam©)

00 02 04 06 08 10 12 14 16
£°5 (mm®3)

— LM fitting ¢ experimental results

Figure 1. Experimental notch fracture toughness results, Line Method (LM) fitting and derivation of
the corresponding critical distance. Steel S275]R at —120 °C.

4. Derivation of Default Values of L and Apparent Fracture Toughness Estimations

Once the experimental (best fit calibrated) values of L have been defined, and the corresponding
values of 0y have been derived (through Equation (2)), and provided that oy, values are known for
each material condition, it is proposed to establish the (non-dimensional) relation between the inherent
strength (o) and the ultimate tensile strength (oy):

00
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For each structural steel and testing temperature a conservative value of m may be obtained.
This value of m, combined with the ultimate tensile strength of the material (oy,), may substitute the
inherent strength (o) in Equation (2), resulting in a default (conservative) critical distance (L;) that
does not need to be calibrated and allows the TCD to be applied safely:

2
L=+ (Kmf) (10)

T\ M- 0y

This methodology was presented by the authors [31], providing default conservative values for
different types of materials: steels, aluminum alloys, polymers, ceramic and rocks, and composites.
This work was based on a vast database of experimental results obtained on notched fracture specimens.
The present work, however, particularizes the analysis to structural steels, providing more accurate
(yet conservative) default values of L for structural steels.

Figures 2 and 3 show the experimental value of m for each material analyzed. It can be observed
that Figure 2 includes additional data taken from the literature [32,33]. The values have to be analyzed
separately in two different groups, attending to their different fracture behavior and mechanical
properties: structural steels operating in LS conditions, and structural steels operating in the DBTZ.

In the LS regime, with the structural steels having brittle behavior, the resulting lower bound
value of m gathered in [31] is 1.6, as can be seen in Figure 2. However, some of the values may be
much higher, close to 25, although most of them are below 5.0. For this reason, a fitting curve has been
developed with the aim of improving the accuracy of the results (when compared to those provided
by a single value of m), yet providing conservative values (o, in MPa):

1.3-04
_ 1
M e — 490 (1)

0 500 1000 1500
o, {(MPa)
o Mild steel (-1702C) [25,26] ¢ Mild steel {-1962C) [25,26]
O S2751R (-902C) ® S2751R (-1202C)
A $355J2 (-1962C) m, equation (11)
- «=m=1.6

Figure 2. m values versus tensile strength for structural steels operating at the Lower Shelf.

Figure 2 reveals the limitations of the lower bound value proposed in [31]. Although it provides a
safe estimate of m (and then, also of L and KL,), it is still clearly over-conservative for structural steels
with relatively low ultimate tensile strengths (e.g., 500-800 MPa), which is a very typical situation in
practice. The benefits of using Equation (11) instead of the lower bound value proposed in [31] are,
thus, evident.
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Figure 3. m values versus tensile strength for structural steels operating at the Ductile-to-Brittle
Transition Zone. Derivation of a safe estimation (m = 13.0).

For structural steels operating in the DBTZ the lower bound value of m proposed in Reference [31]
was 13, as shown in Figure 3. This much higher correction is associated with a more non-linear behavior
of the structural steels within the DBTZ when compared to the behavior of the same steels within the LS.
Again, a fitting curve is provided with the aim of improving the accuracy of the predictions (o, in MPa):

8.0y
m= P—Ty (12)

When comparing the lower bound value proposed in [31] (m = 13) with Equation (12),
the conclusions are analogous to those derived in LS situations. The lower bound value looks accurate
for high ultimate tensile strengths (e.g., higher than 1000 MPa), but it is clearly over-conservative for
steels with ultimate tensile strength ranges between approximately 500 MPa and 800 MPa.

Here, it should be noted that the validity range of all these proposed m values is limited to the
steel grades covered by this work. With all this, the LM KX, estimations can be easily derived through
the following equation:

KN, = Kuaty /1 + & (13)

Figures 4-7 show the predictions for the 394 tests. It can be observed that, in order to perform a
homogeneous analysis, both the apparent fracture toughness values and the notch radii values have
been normalized by the fracture toughness obtained in cracked conditions and by the corresponding
critical distance, in a (KX, /Kmat) against (0/Ly)!/? plot.

The two lines on each figure correspond to two different values of K4t considered in the analysis
to be introduced in Equation (13): the average value of the experimental results (Kmat) for each
particular steel and testing temperature, and Kpat 095, which is associated to a 95% confidence
level. The latter has been derived assuming a normal distribution of the experimental results
obtained in cracked conditions (Kmat), and would be the prediction required for structural integrity
assessment purposes, whereas the former is the prediction that should better capture the physics of
the phenomenon being analyzed. The above referred confidence level is, therefore, limited for the
fracture results obtained in cracked conditions (p = 0 mm). For notched conditions (i.e., for the rest of
the curve), using Kt 095 provides a more conservative estimation of the apparent fracture toughness
than that obtained with the average value of the fracture toughness (Kmat), but the corresponding
predictions are not necessarily associated to a 95% confidence level.
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Figure 4. Apparent fracture toughness predictions (m derived from Equation (11)) and comparison
with the experimental results. Structural steels operating at Lower Shelf temperatures.
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Figure 5. Apparent fracture toughness predictions (m = 1.6) and comparison with the experimental
results. Structural steels operating at Lower Shelf temperatures.
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Figure 6. Apparent fracture toughness predictions (m derived from Equation (12)) and comparison
with the experimental results. Structural steels operating at the DBTZ.
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Figure 7. Apparent fracture toughness predictions (m = 13.0) and comparison with the experimental
results. Structural steels operating at the DBTZ.

From the results shown in Figures 4-7, the following observations can be made:

1. The LM predictions derived from the proposed default values of the material critical distance
(Ly) capture a significant part of the physics of the notch effect, given that the LM prediction
adequately follows the tendency of the experimental results, which have been obtained for a
wide variety of structural steels and conditions. The results are particularly accurate considering
fitting Equations (11) and (12) and the average value of the material fracture toughness (Kmat)
for each particular steel and working temperature. These fitting equations significantly reduce
the conservatism obtained from the lower bound values proposed in [31].

2. The most conservative results have been obtained in Lower Shelf conditions when using the
lower bound value of m (m = 1.6). Even under such circumstances, the resulting apparent fracture
toughness estimations may be significantly higher than the corresponding fracture toughness
obtained in cracked conditions, so the potential reduction of conservatism is still important.

3.  If the LM evaluations are to be used in structural integrity assessments, although the use of Kpat
(average value of the material fracture toughness obtained in cracked conditions) captures most
of the notch effect adequately, it may be unsafe on many occasions due to the high scatter of the
fracture processes. This means that it sometimes provides apparent fracture toughness values higher
than those measured experimentally (see Figures 4 and 6). In order to provide a fracture analysis
tool to be used in structural integrity assessments, it is necessary to propose a methodology that is
capable of providing safe predictions of the apparent fracture toughness. With this purpose, it is
proposed to use a 95% confidence level value of the fracture toughness (Kmnat0.95)-

4. Thus, the most accurate, yet conservative, methodology for the apparent fracture toughness
estimation arises from the combination of Kpat 095 (as the material fracture toughness) and the m
values derived from Equations (11) and (12), for LS and DBTZ conditions respectively.

5. Summary

The aim of this paper has been to provide a simple accurate methodology to estimate both the
critical distance of structural steels and the corresponding apparent fracture toughness predictions
derived from the Theory of Critical Distances, and, particularly, from the Line Method. This has been
done through a set of proposed factors (m values) that multiply the material ultimate tensile strength,
avoid any need for previous calibration, and allow default values of the critical distance (L;) to be
obtained. The m factors have been provided as fitting curves depending exclusively on the material
ultimate tensile strength. Results are also shown when using previously proposed m lower bound
values, which provide more conservative estimations of the material apparent fracture toughness.
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The methodology has been applied to four structural steels (5275]R, S355]2, S460M, and S690Q)
tested on notched conditions (U-shaped notches) and operating at both the Lower Shelf and the
Ductile-to-Brittle Transition Zone. The experimental values of the apparent fracture toughness (KL ,,)
and the notch radii values have been normalized by the corresponding fracture toughness (Kmat or
Kmat,0.95) obtained in cracked conditions and by the default values derived for the critical distance (L;)
respectively, representing the 394 tests in (KXY, /Kmat) — (0/Lg)!/? plots.

The results demonstrate the capacity of the proposed methodology to provide safe estimations
of the apparent fracture toughness whilst capturing a significant part of the notch effect and, thus,

reducing the conservatism associated with the assumption that notches behave as cracks.

Author Contributions: S.C. and V.M. conceived and designed the experiments; V.M., ].D.E. and LP. performed the
experiments; all the authors analyzed the data; S.C. wrote the paper.

Funding: This research received no external funding.

Acknowledgments: The authors of this work would like to express their gratitude to the Spanish Ministry of
Science and Innovation for the financial support of the Project MAT2014-58443-P: “Analisis del comportamiento
en fractura de componentes estructurales con defectos en condiciones de bajo confinamiento tensional”, on the
results of which this paper is based.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Taylor, D. The Theory of Critical Distances: A New Perspective in Fracture Mechanics; Elsevier: Oxford, UK, 2007;
ISBN 978-008044478-9.

2. Cicero, S.; Madrazo, V.; Carrascal, I.A ; Cicero, R. Assessment of notched structural components using failure
assessment diagrams and the theory of critical distances. Eng. Fract. Mech. 2011, 78, 2809-2825. [CrossRef]

3.  Cicero, S.; Madrazo, V.; Carrascal, .A. Analysis of notch effect in PMMA using the theory of critical distances.
Eng. Fract. Mech. 2012, 86, 56-72. [CrossRef]

4. Niu, L.S.; Chehimi, C.; Pluvinage, G. Stress field near a large blunted V notch and application of the concept
of notch stress intensity factor to the fracture of very brittle materials. Eng. Fract. Mech. 1994, 49, 325-335.

5. Pluvinage, G. Fatigue and fracture emanating from notch; the use of the notch stress intensity factor.
Nucl. Eng. Des. 1998, 185, 173-184. [CrossRef]

6. Dugdale, D.S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 1960, 8, 100-108. [CrossRef]

7. Goémez, EJ.; Elices, M.; Valiente, A. Cracking in PMMA containing U-shaped notches. Fat. Frac. Eng.
Mat. Struct. 2000, 23, 795-803. [CrossRef]

8. Weibull, W. The phenomenon of rupture in solids. Proc. R. Swed. Inst. Eng. Res. 1939, 153, 1-55.

9.  Beremin, EM,; Pineau, A.; Mudry, F,; Devaux, J.C.; D’Escatha, Y.; Ledermann, P. A local criterion for cleavage
fracture of a nuclear pressure vessel steel. Metall. Trans. A 1983, 14A, 2277-2287. [CrossRef]

10. Ritchie, R.O.; Knott, J.E; Rice, ].R. On the relationship between critical tensile stress and fracture toughness
in mild steel. . Mech. Phys. Solids 1973, 21, 395-410. [CrossRef]

11.  Sih, G.C. Strain-energy-density factor applied to mixed mode crack problems. Int. ]. Fract. 1974, 10, 305-321.
[CrossRef]

12.  Berto, E; Lazzarin, P. Recent developments in brittle and quasi-brittle failure assessment of engineering
materials by means of local approaches. Mater. Sci. Eng. R 2014, 75, 1-48. [CrossRef]

13.  Neuber, H. Theory of Notch Stresses: Principles for Exact Calculation of Strength with Reference to Structural form
and Material; Springer: Berlin, Germany, 1958.

14. Peterson, R.E. Notch sensitivity. In Metal Fatigue; McGraw Hill: New York, NY, USA, 1959; pp. 293-306.

15.  Susmel, L.; Taylor, D. On the use of the Theory of Critical Distances to predict failures in ductile metallic
materials containing different geometrical features. Eng. Fract. Mech. 2008, 75, 4410-4421. [CrossRef]

16. Susmel, L.; Taylor, D. An elasto-plastic reformulation of the Theory of Critical Distances to estimate lifetime
of notched components failing in the low/medium-cycle fatigue regime. |. Eng. Mater. Technol. 2010,
132, 0210021-0210028. [CrossRef]


http://dx.doi.org/10.1016/j.engfracmech.2011.08.009
http://dx.doi.org/10.1016/j.engfracmech.2012.02.015
http://dx.doi.org/10.1016/S0029-5493(98)00183-6
http://dx.doi.org/10.1016/0022-5096(60)90013-2
http://dx.doi.org/10.1046/j.1460-2695.2000.00264.x
http://dx.doi.org/10.1007/BF02663302
http://dx.doi.org/10.1016/0022-5096(73)90008-2
http://dx.doi.org/10.1007/BF00035493
http://dx.doi.org/10.1016/j.mser.2013.11.001
http://dx.doi.org/10.1016/j.engfracmech.2008.04.018
http://dx.doi.org/10.1115/1.4000667

Metals 2018, 8, 871 10 of 10

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Taylor, D. A mechanistic approach to critical-distance methods in notch fatigue. Fatig. Fract. Eng.
Mater. Struct. 2001, 24, 215-224. [CrossRef]

Creager, M.; Paris, P.C. Elastic field equations for blunt cracks with reference to stress corrosion cracking.
Int. J. Fract. 1967, 3, 247-252. [CrossRef]

Madrazo, V.; Cicero, S.; Garcia, T. Assessment of notched structural steel components using failure assessment
diagrams and the theory of critical distances. Eng. Fail. Anal. 2014, 36, 104-120. [CrossRef]

Anderson, T.L. Fracture Mechanics: Fundamentals and Applications, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2005.
BS 7910. Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures; British Standards
Institution: London, UK, 2013.

Kocak, M.; Webster, S.; Janosch, J.J.; Ainsworth, R.A.; Koers, R. (Eds.) FITNET Fitness-for-Service (FFS)
Procedure—Volume 1; GKSS Forschungzscentrum: Geesthacht, Germany, 2008.

Cicero, S.; Madrazo, V.; Garcia, T. Analysis of notch effect in the apparent fracture toughness and the
fracture micromechanisms of ferritic-pearlitic steels operating within their lower shelf. Eng. Fail. Anal. 2014,
36, 322-342. [CrossRef]

Cicero, S.; Garcia, T.; Madrazo, V. Application and validation of the Notch Master Curve in medium and
high strength structural steels. J. Mech. Sci. Tech. 2015, 29, 4129-4142. [CrossRef]

ASTM E1820-09el. Standard Test Method for Measurement of Fracture Toughness;, American Society for Testing
and Materials: Philadelphia, PA, USA, 2009.

Quinn, G.D.; Bradt, R.C. On the Vickers Indentation Fracture Test. J. Am. Ceram. Soc. 2007, 90, 673—680.
[CrossRef]

Akono, A.T;; Randall, N.X.; Ulm, EJ. Experimental determination of the fracture toughness via microscratch
tests: Application to polymers, ceramics, and metals. |. Mater. Res. 2012, 27, 485-493. [CrossRef]

Akono, A.T.; Alm, FJ. An improved technique for characterizing the fracture toughness via scratch test
experiments. Wear 2014, 313, 117-124. [CrossRef]

Sola, R.; Giovanardi, R.; Parigi, G.; Varonesi, P. A Novel Method for Fracture Toughness Evaluation of Tool
Steels with Post-Tempering Cryogenic Treatment. Metals 2017, 7, 75. [CrossRef]

Lacalle, R.; Alvarez, J.A.; Gutiérrez-Solana, F. Use of Small Punch Notched Specimens in the Determination
of Fracture Toughness. ASME Press. Vessels Pip. Conf. 2008, 6, 1363-1369. [CrossRef]

Fuentes, J.D.; Cicero, S.; Procopio, I. Some default values to estimate the critical distance and their effect on
structural integrity assessments. Theor. Appl. Fract. Mech. 2017, 90, 204-212. [CrossRef]

Taylor, D.; Cornetti, P.; Pugno, N. The fracture mechanics of finite crack extension. Eng. Fract. Mech. 2005,
72,1021-1038. [CrossRef]

Susmel, L.; Taylor, D. The Theory of Critical Distances as an alternative experimental strategy for the
determination of KIC and AKth. Eng. Fract. Mech. 2010, 77, 1492-1501. [CrossRef]

® © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1046/j.1460-2695.2001.00401.x
http://dx.doi.org/10.1007/BF00182890
http://dx.doi.org/10.1016/j.engfailanal.2013.09.012
http://dx.doi.org/10.1016/j.engfailanal.2013.10.021
http://dx.doi.org/10.1007/s12206-015-0907-2
http://dx.doi.org/10.1111/j.1551-2916.2006.01482.x
http://dx.doi.org/10.1557/jmr.2011.402
http://dx.doi.org/10.1016/j.wear.2014.02.015
http://dx.doi.org/10.3390/met7030075
http://dx.doi.org/10.1115/PVP2008-61537
http://dx.doi.org/10.1016/j.tafmec.2017.04.015
http://dx.doi.org/10.1016/j.engfracmech.2004.07.001
http://dx.doi.org/10.1016/j.engfracmech.2010.04.016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Theory of Critical Distances 
	Materials and Methods 
	Derivation of Default Values of L and Apparent Fracture Toughness Estimations 
	Summary 
	References

