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1
Introduction

In statistics, sampling is the selection of a subset of individuals samples from within a target population
to estimate characteristics of the whole population. Bias and variance are the two sources of error in
estimation, therefore the purpose of sampling methods is to obtain unbiased and precise estimators.
Geometric sampling in stereology aims at estimating quantitative properties of spatial objects, such as
volume, surface area, length or number of particles (cells or other structures). It is particularly useful
when a direct measurement is not possible due to technical or economical reasons.

The sample is the intersection between the object and a geometric probe of know size and shape
endowed with a well defined mechanism of randomness relative to the object. A geometric probe (or test
system) is usually a regular arrangement of test points, lines, planes, or slabs.

In practice sampling is usually performed with imaging techniques such as for instance microscopy.
Advanced computing and image processing are becoming increasingly important for testing theoretical

results coming from stereology and also for practical implementations of its principles. The second
and third chapters of this thesis focus on Monte Carlo resampling to check the performance of error
variance prediction for two di�erent stereological estimators, namely the Bu�on-Steinhaus curve length
estimator and the CountEm particle number estimator for planar images. This chapters are based on
the manuscripts Gómez et al. (2016); Gómez and Cruz (2018).

Advances in imaging techniques have provided large data sets of images. For instance, exploratory
pharmacology experiments aim at quantifying the pharmacological response of hundreds of di�erent drugs
by analysing microscopy images. The large amount of images requires an automated image analysis
algorithm such as the � ≠ m algorithm proposed in the fourth chapter and it is based on the manuscript
Gómez et al. (2018).

Statistical models are useful to characterize the behavior from a large number of samples with high
variability. They can be applied to generate true random numbers, being of special interest when the
physical source of randomness is available in electronic circuits. Modern implementations of true random
number generators include a stochastic model to mathematically assess the performance. In the fifth
chapter a stochastic model for extracting entropy from electronic noise associated to logic circuits is
studied, which depends on the sampling schema assumed. Based in the manuscript Gómez (2018).

The sixth chapter summarizes the conclusions and open problems. Finally, the final chapter contains
a summary of the main results in Spanish.

1.1 Variance Prediction in Stereology
The purpose of stereology is to estimate quantitative geometric properties such as volume, area, connec-
tivity, length or the number of objects in a 3D structure, usually from sections or projections (Cruz-Orive,
2017). Its principles are based on geometric sampling, where the sample is constituted by the intersection

7



8 CHAPTER 1. INTRODUCTION

between the target object and a geometric test probe of known size and shape. Geometrical probability
and integral geometry constitute the mathematical background of stereology.

Here we focus on design based stereology, where the object is assumed to be fixed and bounded, which
is the typical case for objects studied in biomedical sciences. This requires the sampling to be performed
with test probes that incorporate randomness. In model based stereology the randomness is already
incorporated into the structure, by means of a usually stationary or ‘homogeneous’ random set model.
Model based stereology is mainly used in material sciences where the object of interest is bounded, like in
a piece of steel, but can be regarded as part of an infinite and homogeneous object. The probe sampling
is simplified, but may lead to biased methods in general, given that no model shapes may be assumed.

Design-based stereology can be divided based on the type of probe into global and local. Global
stereology deals with total quantities within a region (i.e total number of neurons in a specific cerebral
compartment) while local stereology uses probes containing a fixed point, or a fixed axis, in space.

The application of a stereological estimator requires the placement of a test system, such as a regular
arrangement of points, lines, and planes on the object with a well defined mechanism of randomness
relative to the object. The result is an estimate of the true value, that is usually unknown. In practical
applications of design based stereology, the estimators are usually unbiased, Howard and Reed (2005).
Therefore the error is only due to variance. Several methods have been proposed to predict the variance
of a stereological estimator

The most commonly used stereological sampling techniques are simple random and systematic sam-
pling. In the latter, “a sample is obtained by randomly selecting one element from the first k elements
in the frame and every kth element thereafter is called a 1 in k systematic sample with a random start”
(Chea�er et al., 1996). In stereology it is usually referenced as systematic uniform random sampling and
is more appropriate for non-random population distribution, as it unbiased and it can reduce the number
of samples to achieve the desired precision on the estimation over the simple random sampling.

For a discrete, finite population, the variance of the unbiased estimator of the population total under
simple random sampling is known, (See Eq. 2.13 from Cochran (1977), or Chea�er et al. (1996)). Under
systematic sampling, however, the problem is non trivial because for most cases the sampled items are
correlated to unknown degrees depending on the population pattern, being the exception if the population
is a random permutation itself.

Sterological methods are usually based on systematic sampling, which is often more e�cient than
simple random sampling. However variance prediction under systematic sampling is a non trivial problem
because the observations will be dependent in general. Here no variance estimator exists which is always
unbiased.

The Bu�on-Steinhaus method to estimate curve length in the plane is an example of systematic
sampling on the semicircle and on the plane. Curve length is estimated by counting the number of
intersections with an isotropic and uniform random superimposition of a square grid of test lines and
multiplying by fi/2 times the constant of the grid, that is given by the area of test system per unit
length (Baddeley and Jensen, 2005; Howard and Reed, 2005). Its roots can be found in the classical
Bu�on’s needle problem that has been widely studied in the field of geometric probability, just to provide
a estimation of fi (Perlman and Wichura, 1975; Wood and Robertson, 1998) or to measure the length of
a planar curve (Steinhaus, 1930).

Moran (1966) gives an exact variance expression when Y is a straight line segment. For a general
curve, he gives an approximation for the variance component due to the grid position, but not for the
one due to orientation – see also Cruz-Orive (1989b). The variance under systematic sampling on the
circle was studied in Cruz-Orive and Gual-Arnau (2002), that proposed a predictor to exploit the global
symmetric model of the covariogram for the Bu�on-Steinhaus method (See Eq. 8.10). We checked this
variance predictor by Monte Carlo replications for a example set that consisted in nine curvilinear features
(flattened DNA molecule projections) the results can be found in chapter 2.

Variance estimation in particle number estimation is analyzed in Chapter 3. We focus on the number
estimation of a population of particles on a planar surface, in which the particles may be any distinguish-
able object such as people or animals.

Human crowds are often estimated with the traditional density method (Jacobs, 1967; Watson and
Yip, 2011). However, it is based on visual estimation and therefore has high and unpredictable errors and
is often not verifiable. Frequently, bird censuses also rely on visual estimation (Sebastián-González and
Green, 2016; Zhao et al., 2016; Hagy et al., 2017; Kingsford et al., 2017) or exhaustive manual counting
(Chabot et al., 2015; McEvoy et al., 2016) that is slow, laborious and di�cult to verify.
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Several computer vision methods have been proposed in the particular case of human crowd sizing on
still images (see for instance Lempitsky and Zisserman (2010); Rodriguez et al. (2011); Idrees et al. (2013);
Zhang et al. (2015); Botta et al. (2015)). Unfortunately their performance decreases with population size
and there is still a ten fold improvement to be made before reaching human-based performance (Zhang
et al., 2016). In addition spefic remodelling is needed in order to apply them to other particles such as
birds (Lempitsky and Zisserman, 2010; Descamps et al., 2011; Rodriguez et al., 2011; Idrees et al., 2013;
Botta et al., 2015; Torney et al., 2016; Chabot and Francis, 2016). Automatic computer vision methods
are biased in general. The bias is image dependent and can be high in cases with irregular, overlapping
particles in non-homogeneous backgrounds.

Cruz et al. (2015) proposed a design unbiased population size estimator based on geometric sampling.
They proposed a variance estimator based on G. Matheron’s transitive theory (Matheron, 1971). Here
we propose an alternative variance estimator and check their performance by automatic Monte Carlo
resampling for a Crowd Counting dataset including 26 images, in Chapter 3.

1.2 Image Analysis in Fluorescence Microscopy
Fluorescence microscopy techniques allow us to observe biological process with high spatial and temporal
resolution. Here, we focus on the formation of endocytic vesicles or endosomes and their subsequent
internalisation within intracellular compartments, when the endocytosis process is initiated by a particular
drug. The pharmacological response may be evaluated by estimating the number of endosomes per cell
and their characteristics (brightness, size,...) on time series of images. Automated image analysis methods
are needed due to the large number of experiments and also due to the requirement of expertise to identify
what constitutes an endosome.

Image analysis methods extract quantitative measurements that are justified by the nature of the
experiment and the facts of image formation. Interesting image structures are frequently called objects
(or sometimes connected components) and it is usual that image processing techniques are required for
improving the quality of the image, reduce the noise or for contrast compensation to detect the objects
of interest.

The description of the image can be made in the form of a two-dimensional, ordered matrix of integers.
Stated more formally, a digital image I is a two- dimensional function of integer coordinates that maps to
a range of possible image (pixel) values , such that I(x̨) œ P and x̨ = (x, y) œ (N x N). The information
within a image element depends on the data type used to represent it. Pixel values are practically always
binary words of length k, where k is denominated the bit depth of the image, meaning that a pixel can
represent any of 2k values.

Filters are useful to suppress or to emphasize certain features of the image in image processing. In
the spatial domain, filtering is a neighborhood operation in which each pixel in an image is assigned a
new value depending upon the values of other pixels within some defined region of a given size. Gaussian
filters are part of the linear filters family, useful in most cases to reduce the noise and smooth the image.
There are characterized by a scale parameter that sets the structure size, above that the structure will
be filtered.

For linear filters the neigbourhood operation is called linear convolution and for a image I is defined
as

I Õ(x̨) =
Œÿ

i=≠Œ

Œÿ

j=≠Œ
I(x̨ + (i, j)) · H(i, j)

and it is abbreviated as by I Õ = I úH, where the filter matrix H(i, j), in which the coe�cients are di�erent
from zero, are referred as the filter kernel. See Burger and Burge (2009) for further reading on filtering.

The Laplacian of Gaussian (LoG) are filters that enhance structures with similar size to a given scale
parameter. It can be written as

Ò2(f ú g) = f ú Ò2g

where f is the image and g the Gaussian kernel.
The Ricker wavelet or Mexican hat operator are identical to the LoG, up to scaling and normalization.

A wavelet is a member of a family of oscillatory scalable functions which have a finite support (i.e., are
nonzero within a limited spatial regime), and have an average value of zero; they can be used to define
a set of basis functions that act as highly localized filters in both the spatial and frequency domains,
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and provides a good mean to detect and characterize gaussian like structures. Besides there have been
extensively applied in astronomy to detect point sources at di�erent scales (Sanz et al., 2001; Freeman
et al., 2002).

Most applications in image analysis focus on separate the image in two components: Objects of
interest and background image. This operation is usually called image segmentation and allows to study
and measure of an object of interest. The di�culty of the task heavily depends on the image so there
is a wide variety of algorithms, as the are usually application oriented, but usually share some common
steps:

1. Preprocessing, i.e. use a filter to enhance the interesting features or reduce the noise, subtract
the background.

2. Detection, i.e. apply a threshold to the image, refine the detection.

3. Measurement, i.e. count pixels to determine areas or volumes, quantify pixel values.

A pixel is a point sample, that can be reconstructed to a continuous entity from the discrete values
using an appropriate reconstruction filter for representation purposes (Smith, 1995). Here, we focus on
fluorescence microscopy in which every pixel represent the light emitted by a biological sample, that is
being detected by the microscope. The distinction between data (pixel values) and display (coloured
squares) is particularly important here. The microscope images are measurements of the light being
emitted by a sample. From these we can make comparisons and quantitative measurements, related to
the experiment i.e. more light may indicate the presence of a particular structure or substance.

Images in fluorescence microscopy are formed by detecting how many photons were emitted from any
particular point. The number of photons detected is an indirect measure of biological interpretations,
that depends on the design and details of the experiments, i.e. on cells, stains and other substances
involved. The process to acquire a fluorescence image may be summarized in three main steps:

• Fluorophore excitation. The biological sample is illuminated with a lamp or a laser with the
appropriate wavelength for the fluorescent molecules, that absorb the photons.

• Photon emission and detection. After excitation, each fluorophore may emit a photon with a
longer wavelength that the absorbed photon. A proportion of the emitted light enters the objective
lens of the microscope and is focused towards a photonic detector, that transforms it in electrons.

• Quantification and storage. After fixed time intervals, the charges of the electrons are quantified
and pixels values are determined based on the sensibility of the detector.

There are three main sources of imprecision depending on the microscopy technique that may limit the
quality of the images provided by fluorescence microscopy and therefore the precision of the measurements
depending on the object of interest being quantified. First, blur is the side e�ect of the dispersion of light,
it can be approximated by a convolution with the microscope Point Spread Function (PSF), that depends
on both light’s wavelength and the numerical aperture (N.A.) of the objective lens of the microscope.
It is related with the spatial resolution of the images, that is limited by the airy disk size that may be
calculated as rairy = 0.61⁄/N.A, where ⁄ is the wavelength of the illuminating light. Second, noise, that
is independent random at each pixel with a particular probability distribution and ultimately depends
on the number of photons detected. Last, temporal resolution, that is dependent on the speed at which
the microscope can record images.

In this work, we focus on widefield microscopy images where the entire sample is illuminated, so most
of the fluorophores throughout the sample are excited and emit photons simultaneously. This leads to
most of the light to be detected and contribute to the acquired image. The images capture the sum of
light from the in-focus plane, and every other out-of-focus plane. Therefore images tend to include a high
number of photons, which overcomes the noise, but spatial information is limited, thus harder to detect
small structures in thick samples as the out-of-focus light is essentially background.

In chapter 4, we propose automated image analysis method –the �m algorithm– to quantify a phar-
macological response with data obtained from fluorescence microscopy experiments. This algorithm does
not require individual object detection and computes the relative increment of the third order moment
in fluorescence microscopy images after filtering with the Laplacian of Gaussian function. It was im-
plemented in “Fiji”, an open-source image analysis framework based in ImageJ (Schindelin et al., 2012;
Bankhead, 2014).
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1.3 Assessment of True Random Number Generators
Random number generation is important for many applications such as Monte Carlo methods, simulations,
etc,... Random number generators has been divided in three broad categories:

• Deterministic or pseudorandom number generators (PRNGs) require an random seed, then a known
algorithm produce a sequence with good random properties. It will always produce the same
sequence when initialized with the same initial seed, the period of a PRNG is defined the length of
the repetition sequence. The period is bounded by the number of the states but it is easy to build
PRNGs with periods long enough for many practical applications. The designs are fast and have
good statistical properties but are predictable.

• Physical or true random number generators (TRNGs) use physical processes to generate random
numbers. It usually digitizes or samples an analogue signal for further processing. This postpro-
cessing improves the probability distribution of random sequence that is generated but it is not
always required if the quality of the raw random sequence is good enough. For a TRNG to be
considered robust, the underlying physical process must not be possible to control. Finally, the
final speed of TRNGs is limited by the spectrum of the underlying physical phenomenon and by
the principle used to extract entropy from it.

• Hybrid random number generators (HRNGs) are the combination of a (fast and good quality)
deterministic RNG seeded repeatedly by a (slow but unpredictable) physical RNG. A compromise
between the speed and unpredictability, which can be adjusted depending on the application.

Cryptographic systems employ random number generation for authentication protocols, key genera-
tion, padding and other encryption schemes, the security of this applications dependent on the quality
of the source of randomness and how the entropy from this source is extracted. For a TRNGs to be used
in practice certain requirements have to be met to be implemented in a cryptographic device. A security
evaluation process includes the validation of the principle and its implementation inside a cryptographic
module, being the methodology AIS 31 (Killmann and Schindler, 2011) the most well known. It intro-
duces functionality classes (PTG1,PTG2, PTG3) to rank the TRNGs, depending on the security level
achieved by the design. For PTG1, the assessment of a physical random number generator is essentially
based on statistical tests, while class PTG3 requires a theoretical stochastic model, online random tests
to raise an alarm if the entropy of the output is below a threshold and a arithmetic post-processing block
to increase the entropy.

The stochastic model estimates a lower entropy bound, that should be used in the design of the
arithmetic post-processing block to determine the compression ratio necessary. Also It can be used for
testing the entropy of the generated random bits in real time (online tests). The set of parameters
associated to the design are the source of randomness, method of randomness extraction, post-processing
algorithms, output bit rate and its stability (Fischer, 2012).

We note that there random numbers can be generated by measuring any random process, then validate
the randomness of the output without knowing the design by Bell Theorem (Massar et al., 2010), similar
techniques has been proposed in Colbeck and Renner (2012). These designs can reach an output bit
rate of 300 Gbit/sec (Braun et al., 2014; Fürst et al., 2010) but implementations are still far from being
commercially feasible.

From a practical point of view, the design to extract randomness should explote the available resources
of a system. In general, two main approachs may be considered: sampling random signals at periodic
time intervals or sampling periodic signals at random time intervals. Usually the first is preferred as it
can guarantee a constant rate of samples. In logic devices, the operation of logic gates can be used as
source of randomness, therefore analog physical phenomena (like thermal, shot and flicker noise) are good
candidates for entropy extraction. However these are undesirable to the implementation of stable digital
designs, thus vendors of logic devices tend to minimize these causes. As a consequence, the TRNG design
have to take into account the evolution of the underlying technology.

FPGA and CPLD represent a good platform for the implementation of digital logic design, because
of this fact several designs have been proposed and tested using this devices. The majority of the designs
aim to exploit the random deviation of a periodic physical function, for example a clock signal, that is
denominated jitter noise. Jitter is a phenomenon proper to any electronic circuit involving a switching
digital signal, that is the sum of several contributions such as thermal noise, shot noise, power supply
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noise, environmental fluctuation,... Given that it is not influenced by external perturbations, it is hard
to predict and manipulate, therefore can be robust against cryptographic attacks but on the other hand
sampling the jitter is not an easy task due to its random nature and small magnitude. Other designs
have been focused on exploiting the metastability, the ability of a digital electronics system to persist for
an unbounded time in an unstable equilibrium or metastable state.

Optimization on area occupied by the circuit, size and energy e�ciency are important for a TRNG
design to be implemented as a digital circuits. Petura et al. (2016) a�rm that, to the date, no imple-
mentations of random number generators are independent from the FPGA model, but the principles of
the designs are general enough to be adapted. The two main families are based on two architectures:

• Standard ring oscillators (Kohlbrenner and Gaj, 2004; Sunar et al., 2007)

• Multievent ring oscillators (Varchola and Drutarovsky, 2010; Cherkaoui et al., 2013b)

Correctly modellng the entropy that depends on the principle for extracting entropy is important to
correctly evaluate the performance of any TRNG design. Incorrectly choosing the model lead to incorrect
assumptions and weakness of the design. For the design found by Sunar et al. (2007), the urn poll model
they proposed was proven to be inaccurate by Dichtl and GoliÊ (2007). By simulations they showed that
the design passes FIPS and NIST statistical tests without incorporating jitter in their simulations.

In Chapter 4, the theoretical stochastic model from Cherkaoui et al. (2013a) is studied to evaluate
the entropy of a random number generator designed to exploit the jitter of events propagating on a self
timed ring (STR) and extends it by adding two random variables to model the external clock jitter and
the metaestability of the flip flops outputs. The binary entropy is computed for this theoretical model
and the practical use of the model is discussed when a parity filter is used as a arithmetic post-processing
block to estimate entropy of the resulting output bit sequence.



2
On the Precision of Curve Length Estimation on the

Plane

2.1 Introduction
Consider a bounded, planar, piecewise smooth curve Y µ R2 of finite length B, which is the target
parameter. The Bu�on-Steinhaus unbiased estimator of B is based on intersection counting with a
square grid of test lines which is IUR relative to Y , namely,

‚B = fi

4 · T · I, (2.1)

(Steinhaus, 1930 – for references see Baddeley and Jensen, 2005) where T is the gap length between
test lines and I the total number of intersections. The abbreviation ‘IUR’, introduced in Miles and
Davy (1976), means ‘isotropic uniform random’ – details are given below. In this chapter we address
the problem of predicting the variance Var( ‚B ) from a single grid superimposition. The interest in the
problem is old. Moran (1966) gives an exact variance expression when Y is a straight line segment. For
a general curve, he gives an approximation for the variance component due to the grid position, but
not for the one due to orientation – see also Cruz-Orive (1989a). To our knowledge the only estimators
hitherto available for both variance components were given in Cruz-Orive and Gual-Arnau (2002). Such
estimators are generally not unbiased – they are only theoretical approximations. Our purpose is to check
the performance of such approximations by means of Monte Carlo simulations.

Often Y is a model for profile boundary (hence the notation ‘B’ for its length), namely the boundary
of the intersection between a closed surface (e.g. a cell membrane, or a grain boundary) and a sectioning
plane. A planar curve may also be the orthogonal projection of a spatial curve onto an observation plane,
or even a flexible linear feature in space flattened onto a planar surface, in which case the real and the
observed lengths should approximately coincide. This is the case for the material used in this chapter,
namely DNA molecules which appear as open linear features on the observation plane (Podestà et al.,
2004). Fig. 1a below, kindly provided in ti� format by Professor Alessandro Podestà, is Fig. 1(A) from
the latter paper.

The laborious steps leading to the conversion of the ti� image features into polygonal curves in
vector graphics (Section Processing of the curve images), which constitute necessary prerequisites to
perform automatic measurements, suggest that the intersection counting method to estimate feature
length directly on the original images is an attractive option – first because it is fast, design unbiased and
e�cient, second because the error variance can be predicted and last, but not least, because the processed
curve lengths will seldom coincide with the lengths of the original projections (automatic measurements
are generally biased by a wide variety of artifacts depending on curve shape, image resolution, etc.).

13
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Figure 2.1: (a) The linear features, used as model curves in this chapter, represent flattened projections
of DNA molecules onto the observation plane. Redrawn from Podestà et al. (2004), with permission from
John Wiley and Sons. (b) Raster bitmap image version of the linear features. (c) Vector graphics image
with polygonal approximations of the original curves, ready for automatic Monte Carlo experiment. The
two curves marked in red were selected for the results shown in Figs. 2.3, 2.4.

2.2 Curve model and length estimation
2.2.1 Curve model
Each of the selected curvilinear features shown in Fig. 2.1, namely each of the selected DNA molecules,
was converted from ti� format into a polygonal curve in vector graphics following the steps described in
the section Processing of the curve images. A fixed polygonal curve Y , henceforth called a ‘curve’, for
short, may be represented as follows,

Y =
N€

i=1
yi, (2.2)

where yi denotes the ith straight line segment or ‘link’ of Y , and N is the finite total number of links.
The total length of Y is

B =
Nÿ

i=1
bi (2.3)

where bi, denotes the length of yi.
Fix a rectangular frame Ox1x2 in the plane of the curve. The position and orientation of the curve

is determined by a unit vector (x, Ê) rigidly attached to the curve, emanating from a point x œ R2, and
making an angle Ê œ [0, 2fi) with Ox1. The point x = (x1, x2) is called the associated point (AP) of Y ,
(Miles, 1974, see also Baddeley and Jensen, 2005) and the vector (x, Ê) is called the associated vector
(AV). The choice of the AV is arbitrary, but once it is chosen it must remain rigidly attached to the
curve. When the AV is at its initial position (x = 0, Ê = 0), then the corresponding initial position of
the curve is denoted by Y0,0, so that the AP of Y0,0 is at the origin O. Here this AP was the lower left
corner of the smallest rectangle (with its sides parallel to the reference axes) enclosing Y0,0, see Fig. 2a.
Under a rigid motion defined by the vector (x, Ê), (namely a rotation Ê about the origin followed by a
translation x, or equivalently a translation x followed by a rotation Ê about the point x) the curve Y0,0
is transformed into the curve Yx,Ê see Fig. 2b. The triplet (x1, x2, Ê) constitute the ‘coordinates’ of the
curve.

The generation of a IUR curve in the plane requires the use of the motion invariant density associated
with the coordinates of the curve. This density is called the kinematic density (Santaló, 1976), namely,

dYx,Ê = dx dÊ, (2.4)
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where dx = dx1dx2 is the area element in the plane and dÊ is the arc element in the unit circle. In
practice, the preceding concept implies that the AP of the curve must be uniform random (UR) in any
bounded region of the plane, whereas the orientation of the AV must be isotropic random (IR) namely
UR in the unit circle, and independent from the position of the AP.

O

AP

Y0,0

AP x

ω

Yx,ω

O
a b

c

x

O

J 0

Λ0

2

1

1 1

T

T

Figure 2.2: (a) Curve number 6 from Fig. 1c, with its rigidly attached associated point (AP) and
associated vector (arrow). Each of the straight line link segments constituting the curve (indistinguishable
by eye) share the same AP and the same associated vector. (b) Result of applying a rigid motion to
the curve, namely a translation of the AP to the point x followed by a rotation Ê about x. (c) A IUR
superimposition of the curve onto a square grid �0. The AP is UR in the fundamental tile J0 of the grid,
whereas the rotation angle Ê is independent and UR in the interval [0, 2fi) . Here the relevant intersection
counts read: I11 = 1, I12 = 1, I21 = 1, I22 = 2. The procedure was programmed in Python to generate
automatic replications.

2.2.2 Cauchy (one stage) estimation of curve length
A special case of Cauchy’s projection formula (Santaló, 1976) expresses the length B of the curve Y0,Ê in
terms of its total orthogonal projected length l(Ê) onto Ox1, with all points counted in their multiplicity,
see Cruz-Orive (1989a, Fig. 1), or Cruz-Orive and Gual-Arnau (2002, Fig. 4a). Let {–1, –2, ..., –N }
denote the fixed angles of the oriented links of Y0,0 with Ox1. Then,

l(Ê) =
Nÿ

i=1
bi| cos(–i ≠ Ê)| (2.5)

Integration from Ê = 0 to Ê = 2fi yields Cauchy’s formula,

B = 1
4

⁄ 2fi

0
l(Ê)dÊ. (2.6)

Suppose that the angle Ê is UR in the interval [0, 2fi), with probability element,

P(dÊ) = dÊ

2fi
, Ê œ [0, 2fi), (2.7)

and suppose also that l(Ê) can be measured exactly. Then, by Cauchy’s formula

B = fi

2 E{l(Ê)}, (2.8)
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and therefore,
ÂB(Ê) = fi

2 l(Ê) (2.9)

is an unbiased estimator (UE) of B. Here Ê may alternatively be UR in the interval [0, fi), i.e. Ê ≥
UR[0, fi), because l(Ê) = l(Ê + fi) for all Ê. Estimation precision may be gained by measuring also the
projected length l(Ê + fi/2) of Y0,Ê onto the Ox2 axis, whereby,

‚B(Ê) = fi

4
#
l(Ê) + l(Ê + fi/2)

$
, (2.10)

is also unbiased for B, and it can be expected to be more precise than ÂB(Ê). Note that here we may take
Ê ≥ UR[0, fi/2) because ‚B(Ê) = ‚B(Ê + fi/2).

The estimator ‚B(Ê) is based on n = 2 systematic observations from the measurement function l(Ê) in
the interval [0, fi), i.e. with period fi/2, in the unit semicircle. A predictor of Var( ‚B ) is available from
Eq. 4.4 of Cruz-Orive and Gual-Arnau (2002) with r = fi, n = 2 and m = 1. Here m is a parameter
of the global model adopted for the covariogram of the measurement function l(Ê). In principle, the
smoother l(Ê), the more appropriate should be the choice m = 1. The local error is ‚v2 = 0 because l(Ê)
is measured without error. Further, C0 ≠ C1 = [l(Ê) ≠ l(Ê + fi/2)]2/4. Thus,

var
) ‚B(Ê)

*
= fi2

240 · [l(Ê) ≠ l(Ê + fi/2)]2. (2.11)

In the following sections a true variance is denoted by Var(·), whereas the corresponding predictor or
estimator is denoted by var(·).

2.2.3 Bu�on-Steinhaus (two stage) estimation of curve length
For a given orientation Ê of the curve, the total orthogonal projected length l(Ê) and l(Ê + fi/2) can be
estimated without bias at a second stage by intersection counting with a square grid of test lines. More
precisely:

1. Fix a square grid �0 of test lines parallel to the Ox1x2 axes, with gap length T > 0. It is convenient
to fix the origin O at a central vertex of the grid. The adopted fundamental tile of the grid is the
square J0 = [0, T )2, see Fig. 2c).

2. Rotate the curve Y0,0 (with its AP at O) isotropically about O into Y0,Ê, where Ê ≥ UR[0, 2fi).
Next, shift the AP of Y0,Ê into a point x ≥ UR(J0), thus translating the curve together into Yx,Ê,
(Fig. 2c).

3. Score the intersections counts
)

I1j(Ê, x), j = 1, 2, ..., n1
*

between the curve and the vertical lines of
the grid in an ordered sequence, where I11(Ê, x), I1n1(Ê, x) denote the first, and the last non zero
counts, respectively. Score similarly the intersection counts {I2j(Ê + fi/2, x), j = 1, 2, .., n2} with
the horizontal lines.

The Bu�on-Steinhaus estimator ‚B(Ê, x) of the curve length B is the result of replacing the projection
lengths in the right hand side of Eq. 2.10, (i.e of the Cauchy estimator), with the corresponding Cavalieri
type estimators (Eqs. 2.12b, 2.12c below) based on the intersection counts, namely,

‚B(Ê, x) = fi

4

5
‚l(Ê, x) + ‚l(Ê + fi/2, x)

6
, (2.12a)

‚l(Ê, x) = T
n1ÿ

j=1
I1j(Ê, x), (2.12b)

‚l(Ê + fi/2, x) = T
n2ÿ

j=1
I2j(Ê + fi/2, x), (2.12c)

The estimator ‚B(Ê, x) is therefore a two stage UE of B. The fist stage design is the Cauchy de-
sign generating two mutually perpendicular, total projections of the curve, whereas the second stage



2.2. CURVE MODEL AND LENGTH ESTIMATION 17

incorporates Cavalieri sampling to estimate the lengths of these projections by intersection counting. By
the unbiasedness of the Cavalieri design, for each Ê œ [0, 2fi) the conditional mean of the second stage
estimator is equal to the fist stage (Cauchy) estimator, namely,

Ex

) ‚B(Ê, x)|Ê
*

= ‚B(Ê). (2.13)

Because the Cauchy estimator is unbiased, namely because EÊ

) ‚B(Ê)
*

= B, it follows that E
) ‚B(Ê, x)

*
=

EÊEx

) ‚B(Ê, x)|Ê
*

= B, which verifies the unbiasedness of ‚B(Ê, x).
The exact variance of ‚B(Ê, x) may be represented using the standard variance decomposition formula.

For simplicity set,
‚B1 = ‚B(Ê),
‚B2 = ‚B(Ê, x).

(2.14)

Then,
Var( ‚B2) = VarÊ

)
Ex

! ‚B2
--Ê)

*
+ EÊ

)
Varx

! ‚B2
--Ê)

*

= Var
! ‚B1

"
+ EÊ

)
Varx

! ‚B2
--Ê)

* (2.15)

The first term in the right hand side of the preceding identity represents variance component due to
orientations, whereas the second term represents the component due to intersection counting, averaged
over orientations. The latter component, also called the nugget, or local error component, may be
predicted using the standard Matheron’s formula for systematic sampling along an axis (generally called
Cavalieri sampling). For each Ê œ [0, 2fi) set

‡2
1 = Varx

;
‚l(Ê, x)|Ê

<
,

‡2
2 = Varx

;
‚l(Ê + fi/2, x)|Ê

<
,

(2.16)

namely the local error variances due to intersection counting with the vertical and the horizontal test
lines of the grid, respectively. Then, the second term in the right hand side of Eq. 2.15 is estimated as
follows,

var
! ‚B2|Ê

"
=

3
fi

4

42
(‚‡2

1 + ‚‡2
2) (2.17a)

‚‡2
i = T 2

12 · (3C0i ≠ 4C1i + C2i), i = 1, 2, ni Ø 3, (2.17b)

‚‡2
i = T 2

6 · (C0i ≠ C1i), i = 1, 2, ni = 2, (2.17c)

Cki =
ni≠kÿ

j=1
IijIi,j+k, k = 0, 1, 2; i = 1, 2 (2.17d)

where,
I1j = I1j(Ê, x)
I2j = I2j(Ê + fi/2, x)

(2.18)

On the other hand, the first term in the right hand side of Eq. 2.15, namely the orientations or Cauchy
component, cannot be estimated with Eq. 2.11 directly because the curve projections are no longer
measured exactly. Instead,

var2
! ‚B1

"
= fi2

240 ·
)#‚l(Ê, x) ≠ ‚l(Ê + fi/2, x)

$2

≠ (‚‡2
1 + ‚‡2

2)
*

,
(2.19)

where the subscript ‘2’ in var2(·) indicates that the estimator is computed from the two stage data,
namely from the intersection counts. Thus the total variance predictor of the two stage estimator is
(Cruz-Orive and Gual-Arnau, 2002)

var
! ‚B2

"
= var2

! ‚B1
"

+ var
! ‚B2|Ê

"
. (2.20)
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2.2.4 Remarks
1. Provided that the curve Y0,Ê is connected, its orthogonal projection onto Ox1 will be a bounded in-

terval Y Õ
Ê, say. Define the integer valued measurement function IY Õ

Ê
(z) as the number of intersection

between Y0,Ê and the vertical straight line x1 = z. Then its integral

l(Ê) =
⁄

R
IY Õ

Ê
(z)dz (2.21)

is the total orthogonal projected length defined above, and Eq. 2.12b is the standard Cavalieri
estimator of it. Moreover, because the measurement function IY Õ

Ê
(z) is integer valued it will exhibit

jumps, and therefore its smoothness constant will be q = 0 (Kiêu et al., 1999; García-Fiñana and
Cruz-Orive, 2004). In consequence, the ‚‡2

i are computed with q = 0.

2. While l(Ê) = l(Ê + fi) for all Ê, the corresponding Cavalieri estimators, see Eqs. 2.12b, 2.12c, will
in general be di�erent for each Ê. This justifies the choice of the range [0, 2fi) for Ê in step 2 of the
preceding subsection.

2.3 Processing of the curve images
Here we describe the steps involved in the conversion of each original ti� curve image (Fig. 1a) into a
polygonal curve in Scalar Vector Graphics (SVG, Fig. 1c) which can be imported into a programming
environment to perform automatic Monte Carlo experiments. Preference was given to free, GPL licensed
software.

Step 1. The original ti� image (containing all the relevant curves) was edited using Gimp. The image
was desaturated and converted into a black-and-white (B/W) one. Brightness, contrast and B/W colour
threshold were set at ≠46, +6 and 108, respectively. The resulting image was a raster (or ‘bitmap’) image
consisting of pixels which were coloured in black (Fig. 1b). Each curve, or group of nearly adjacent curves,
was selected and recorded separately into a jpg output file, which was submitted to the next step.

Step 2. Each of the preceding (bitmap) jpg images was submitted to Autotrace to transform it into
vector graphics. A ‘centerline’ option was used whereby a pixelized curve was approximated by a ‘spine’
curve consisting of the union of Bèzier arcs. The output files were exported as SVG files.

Step 3. The preceding SVG files were edited manually with the aid of Inkscape to remove background
noise, and to eventually adjust the curve arcs properly.

Step 4. The result (Fig. 1c) was imported into Blender - a 3D modelling and rendering package
to convert it into a connected polygonal of small linear segments or ‘links’ with known endpoint XY
coordinates. The number of links ranged between 180 and 416, depending on the local curvatures of the
original curves.

With the final polygonal curves a script in Python was written to compute curve length (Eq. 2.3),
to rotate and shift the curves as prescribed in the preceding section, and to perform the Monte Carlo
procedures described in the next section.

2.4 Monte Carlo experiment to test the performance of the vari-
ance predictors

2.4.1 Purposes
From the curvilinear features (DNA molecules) shown in Fig. 1a, the two SVG curves numbered 5 and
6 in Fig. 1c were selected to illustrate the results. The choice was based on the fact that, qualitatively,
these two curves give the visual impression of being ‘fairly isotropic’ and ‘fairly anisotropic’, respectively.
For each curve the following aspects were studied.

1. Behaviour of the Cauchy estimator ÂB(Ê) as a function of the angle Ê œ [0, fi). In polar coordinates
the graph of l(Ê) is the rose of total orthogonal projected lengths of the curve, (i.e. the ‘rose of
projections’, for short).

2. Behaviour of the Cauchy estimator ‚B(Ê) based on two mutually orthogonal projections.
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3. Replicates of the Bu�on-Steinhaus estimator ‚B(Ê, x), which is based on intersection counts with a
square grid, as a function of the mean total number of intersections E(I).

4. Comparison of the variance predictor var
) ‚B(Ê)

*
of the Cauchy estimator, see Eq. 2.11, against

the empirical variance Vare

) ‚B(Ê)
*

.

5. Comparison of the variance predictor var
) ‚B(Ê, x)

*
of the Bu�on-Steinhaus estimator, and of the

two variance component predictors in the right hand side of Eq. 2.20, against the corresponding
empirical variances.

In the corresponding graphs, each empirical error variance was divided by the square of the true curve
length in order to represent the square coe�cient of error. For instance,

CE2
e

) ‚B(Ê)
*

=
Vare

) ‚B(Ê)
*

B2 . (2.22)

For convenience the corresponding variance predictors were normalized in the same way, e.g.,

ce2) ‚B(Ê)
*

=
var

) ‚B(Ê)
*

B2 . (2.23)

If the interest was focused on the sample coe�cient of error itself, however, then B2 should be replaced
with its sample version ‚B2(Ê) in the denominator of the preceding expression.

2.4.2 Cauchy estimator
For each of the selected curves, the Cauchy estimator ‚B(Ê) was computed according to Eq. 2.10 at each
of M = 322 = 1024 values of Ê in the interval [0, fi/2), namely

{Êk = (U + k ≠ 1) fi

2M
, k = 1, 2, ..., M},

U ≥ UR[0, 1).
(2.24)

From the corresponding M replicates of ‚B(Ê), the empirical mean and the error variance of the estimator
were computed respectively as follows,

Ee

) ‚B(Ê)
*

= 1
M

Mÿ

k=1

‚B(Êk), (2.25a)

Vare

) ‚B(Ê)
*

= 1
M

Mÿ

k=1

5
‚B(Êk) ≠ Ee

) ‚B(Ê)
*62

. (2.25b)

On the other hand the corresponding M replicates
)

var{ ‚B(Êk)}, k = 1, 2, ...., M
*

of the variance
predictor given by Eq. 2.11 were computed for comparison against the empirical variance.

The Cauchy estimator ÂB(Ê) was also computed in a similar way at M = 1024 points in the interval
[0, fi). Here, however, no variance predictor exists because the estimator is based on a single projection.

2.4.3 Bu�on-Steinhaus estimator
For a given curve Y0,0 and a fixed square grid �0 of test lines of gap T > 0, a total of M = K2 = 322 = 1024
replicates of the Bu�on-Steinhaus estimator ‚B(Ê, x) were computed from Eq. 2.12 by means of M
superimpositions of the curve onto the grid, (Fig. 2c), according to a systematic design as follows. Recall
that the AP of the curve is UR in the fundamental square of the grid, namely x œ J0 = [0, T )2,whereas
Ê is UR in [0, 2fi) . The Cartesian coordinates of the M = K2 positions of the AP, e.g.

{(x1i, x2j), i, j = 1, 2, ...., K}, (2.26)
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were the vertices of a fine systematic square grid of gap T/K generated within the fundamental square
J0, namely,

x1i = (U1 + i ≠ 1) · T/K,

x2j = (U2 + j ≠ 1) · T/K,
(2.27)

where U1, U2 are two independent UR numbers in the interval [0,1). Renumber the resulting sequence
of M associated points as {x1, x2, ..., xM } in any convenient way. Next, generate M systematic rotation
angles in the interval [0, 2fi), namely,

;
(U3 + i ≠ 1)2fi

M
, i = 1, 2, ..., M

<
, (2.28)

where U3 is a third UR number in the interval [0, 1), independent from U1, U2. Now, generate a random
permutation of the preceding set of M systematic angles, and denote it by {Ê1, Ê2, ..., ÊM } . Then, the
curve coordinates of the M superimpositions of the curve onto the grid are

{(xk, Êk), k = 1, 2, ..., M}. (2.29)

Note that the angle permutations avoid any correlation between curve location (xk) and orientation (Êk).
Di�erent values of the gap T of the grid were chosen so that the expected total number E(I) of

intersections did not exceed about 130. With the abbreviation defined in Eq. 2.14, and bearing in mind
that E( ‚B2) = B, for a desired value of E(I) the gap was computed by the following formula,

T = 4B/(fiE(I)). (2.30)

For each curve and each value of T , the M replicates
;

‚B(Êk, xk), k = 1, 2, .., M

<
, (2.31)

were obtained as described above, and the empirical mean and variance of the Bu�on-Steinhaus estimator
were thereby computed similarly as in Eqs. 2.25a, 2.25b namely,

Ee

) ‚B(Ê, x)
*

= 1
M

Mÿ

k=1

‚B(Êk, xk), (2.32a)

Vare

) ‚B(Ê, x)
*

(2.32b)

= 1
M

Mÿ

k=1

5
‚B(Êk, xk) ≠ Ee

) ‚B(Ê, x)
*62

.

From Eqs. 2.15, 2.25b, the empirical value of the Cavalieri (intersection counting) contribution was
computed as follows,

EeVar{ ‚B(Ê, x)|Ê} = Vare{ ‚B(Ê, x)} ≠ Vare{ ‚B(Ê)}. (2.33)

Further, for each pair (Êk, xk) the predictors of the Cavalieri and the Cauchy error variance components
were computed from Eq. 2.17 and 2.19, respectively, as well as the total error variance predictor given
by their sum (Eq. 2.20).

2.5 Results
2.5.1 Cauchy estimator
Each of the two curves studied, and their corresponding roses of projections, are shown at the top of
Fig. 3

The graph of the single projection estimator ÂB(Ê) is displayed for each curve in Fig. 3a,b, whereas
those for the double projection estimator ‚B(Ê) are displayed in Fig. 3c,d. For either curve the superior
precision of ‚B(Ê) is apparent.
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The more flattened the rose of projections, the more anisotropic is the curve. This is visually reflected
by the di�erent degrees of accuracy of each of the two Cauchy estimators for each of the two curves.

The empirical CE2
e{ ‚B(Ê)} , (Fig. 3e,f, pink straight lines), computed via Eq. 2.25b, is negligible for

the first curve (3.86 · 10≠5), and rather small for the second (5.06 · 10≠4). The graph of the predictor
ce2{ ‚B(Ê)}, see Eq. 2.11, is also displayed for each curve in Fig.3e,f, (red oscillating curves). The
corresponding means (6.00 · 10≠4 and 1.30 · 10≠3, respectively) are shown as red dotted lines. The biases
are small in absolute terms (5.62 · 10≠4 and 7.99 · 10≠4 respectively), but very large in relative terms
(14.56 and 1.58 respectively) because the actual empirical errors are small.

2.5.2 Bu�on-Steinhaus estimator
For each of the two curves considered (see top of Fig. 4), the M = 1024 Monte Carlo replicates of the
Bu�on-Steinhaus estimator ‚B(Ê, x) , see Eq. 2.12a, are displayed in Fig. 4a, b, respectively, at each of
10 values of the mean total number of intersections E(I). As a check of the Monte Carlo procedure, the
corresponding means (red dots), computed via Eq. 2.32a, visually coincide with the known value of B in
each case, as expected by unbiasedness. Approximate confidence bands of 95% (coloured in grey), and
of 100%, are also displayed for the individual realizations of ‚B(Ê, x).

The empirical CE2{ ‚B(Ê, x) was computed for each curve, via Eq. 2.32b, at each of the 10 values of
E(I) and joined by a polygonal line (thick black line in Fig. 4c, d).

The individual realizations of the corresponding predictor ce2{ ‚B(Ê, x)} (computed via Eq. 2.20) are
also displayed in Fig. 4c, d. The corresponding 10 group means of the predictors were joined by a
polygonal curve (thick red line). Approximate 95% (coloured in grey), and 100% confidence bands are
displayed together. It is seen that, in the range of E(I) considered, the empirical curve is always captured
by the 95% confidence band. For E(I) ¥ 50 the empirical CE{ ‚B(Ê, x)} is about 5% for either curve
(horizontal, blue broken line). Such degree of accuracy is however unnecessary if the target quantity is
the mean length of a population of curves. For a simple random sample of n curves, the stereological
contribution to the total square coe�cient of error of the population mean length estimate would be
reduced to CE2{ ‚B(Ê, x)}/n.

The graph of the empirical Cavalieri component EeCE2{ ‚B(Ê, x)|Ê}, computed via Eq. 2.33, is shown
for each curve in Fig. 4e, f, respectively (thick blue polygonal), together with its mean predictor com-
puted via Eq. 2.10, (broken blue line). On the other hand, the corresponding Cauchy components are
represented in pink and in red (broken line), respectively.

As anticipated in Fig. 3 for the Cauchy estimator, the predictor of the Cauchy (orientations) compo-
nent shows a relatively poor accuracy, due in part to the fact that the true value of such component was
very small relative to the total error variance. Thus, the total error variance practically coincides with
the Cavalieri component in either case. Conditional on a given orientation Ê, the measurement function
IY Õ

Ê
(z), see Eq. 2.21, exhibits jumps because it is an intersection count, namely an integer. For this reason

the smoothness constant used to obtain Eq. 2.17b was q = 0. Theory establishes that, under certain
conditions, the trend or ‘extension term’ of the variance of a Cavalieri estimator is of order O(T 2q+2),
(Kiêu et al., 1999; García-Fiñana and Cruz-Orive, 2004). In the present study the expected trend of
CE2{ ‚B(Ê, x)} should therefore be approximately of O(E(I)≠(2q+2)) = O(E(I)≠2). A linear regression
of log CE2{ ‚B(Ê, x)} versus logE(I) yielded slope values of ≠1.90 and ≠1.49 for curves 5 and 6 respec-
tively. Direct non linear least squares fitting of a exponential curve yielded exponent values of ≠2.45 and
≠2.13 respectively. For the Cavalieri components (Fig. 4e, f) the corresponding exponent estimates were
≠1.93 and ≠2.14 with the linear log-log regression, and ≠2.45,≠2.22 with the non linear (exponential)
regression, respectively. As a reference, a straight line segment corresponding to an exponent of ≠2 is
represented in Fig. 4c-f.

2.6 Case of a population of curves
2.6.1 Data
For the sake of illustration suppose that Fig. 1a is a UR quadrat from a large observation region of the
plane containing the curves of interest. For instance, this quadrat could be one from an extensive grid of
systematic quadrats encompassing the whole population. The curves analyzed from a properly sampled
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Figure 2.3: Top: curves numbered 5 (with corresponding results (a, c, e)) and 6 (with corresponding
results (b, d, f)), from Fig. 1c, respectively, with their corresponding roses of total projected length. (a)
(b) Cauchy curve length estimates from a single total projected length (red curves) as a function of the
orientation of the projection axis. (c), (d) Idem for the two projection Cauchy estimates. Note the drastic
increase in precision with respect to the single projection estimates. (e, f) The red wavy curves represent
the model based predictors of the square coe�cient of error of the two projection Cauchy estimator (Eq.
2.11).
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Figure 2.4: (a), (b) Empirical Monte Carlo replicates of the intersection counting curve length estimates
with 10 square grids of di�erent sizes (ranging from T = 25 nm to the left, to T = 4 nm to the right end
of the horizontal axis). A total of 1024 replications were generated in each case. The red dots represent
the empirical means, which approximately coincide with the true curve length in all cases (as expected
because the estimator is unbiased). The grey region is a 95% confidence band, that is, it encloses 95% of
the replications; the outer line bounds enclose 100% of them. (c, d) The grey region is a 95% confidence
band for the 1024 Monte Carlo replications of the model based predictor given by Eq. 2.20. The outer
limits enclose all the replications. It is seen that the 95% confidence band always contains the empirical
(i.e, the nearly true) CE2, (black polygonal line) for the entire range considered, and for each of the
two curves. (e, f) Empirical (continuous curves) and corresponding model based means (dotted) squared
coe�cient of error components. The Cauchy components are in pink and in red colour, respectively,
whereas the Cavalieri components are in blue.
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Table 2.1: Data corresponding to the curves labelled 1–9 in Fig. 1c. B: curve length computed via Eq.
2.3. ‚B: curve length estimate, based on intersection counting, computed via Eq. 2.12a-c with a square
grid of gap length T = 25 nm. varw( ‚B|B) : error variance of ‚B computed by Eq. 2.20 via Eq. 2.16–2.19.
ce( ‚B|B) = 100 · {varw( ‚B|B)}1/2/ ‚B.

Curve B, nm ‚B, nm varw( ‚B|B) ce( ‚B|B)%
1 404 438 2615 11.7
2 397 430 2156 10.8
3 385 399 1254 8.9
4 399 339 2558 14.9
5 393 333 1484 11.6
6 392 351 1532 11.2
7 427 402 1081 8.2
8 417 354 2114 13.0
9 389 385 951 8.0

Mean 400.3 381.2 1749.44 -
Variance 187.75 1515.94 - -

quadrat should be chosen according to some unbiased rule, such as the unbiased frame (also called the
forbidden line) rule (Gundersen, 1977, see also Howard and Reed, 2005, or Baddeley and Jensen, 2005).
An unbiased counting — or sampling — rule, combined with UR quadrat sampling, warrants a UR
sample of items because all the items in the population will have identical a priori probabilities of being
included in the sample. A guard area should also be uniquely defined for all quadrats, to warrant that any
curve that is sampled can be entirely observed for measurement. This means that the e�ective quadrat
analysed (not shown in Fig. 1a) will generally be smaller than the raw photograph. Suppose that the 9
curves numbered in Fig. 1c constitute a proper UR sample from the relevant population. The curve next
to curve number 1 is apparently the union of two curves that could not be separated, and it has been
removed as convenient for the present illustration. Imagine a horizontal line sweeping the quadrat from
top to bottom. The curves tagged 1, 2, ..., 9 were the 1st, 2nd, ..., 9th met by such line. (Actually, the
sweeping line rule — see for instance Howard and Reed, 2005, Fig. 5.4 — is also unbiased for sampling,
or counting, bounded objects in a bounded region).

The data pertinent to the 9 tagged curves in Fig. 1c are collected in Table 2.1. The ‘exact’ length B
of each curve was computed from Eq. 2.3. The Bu�on-Steinhaus estimator ‚B(Ê, x) of B was computed
in all cases from a single, computer generated IUR superimposition of the curve onto a fixed square grid
of gap length T = 25 nm. This gap length was approximated from Eq. 2.30 to warrant E(I) ¥ 20
intersections, with B replaced with the sample mean of the 9 true lengths, namely 400.3 nm. Further, a
single predictor var{ ‚B(Ê, x)|B} was computed for each curve via Eq. 2.20 using the automatically scored
intersection counts.

2.6.2 Assessment of the model error variance predictor
The data in Table 2.1 allows an indirect assessment of the quality of the stereological error variance
predictor proposed in this chapter (Eq. 2.20).

The variance varb( ‚B) of the unbiased length estimator ‚B = ‚B(Ê, x) between curves (hence the sub-
script ‘b’) may be decomposed as follows,

Varb( ‚B) = Varb(B) + EbVarw( ‚B|B), (2.34)

where Varw( ‚B|B) represents the stereological error variance within a curve (hence the subscript ‘w’).
The sample version of the preceding decomposition reads,

varb( ‚B) = varb(B) + meanb

)
varw( ‚B|B)

*
. (2.35)

From the data displayed in Table 2.1 we obtain varb( ‚B) = 1515.94 and varb(B) = 187.75, whereby Eq.
2.35 yields the indirect, model free estimate,

meanb

)
varw( ‚B|B)

*
= 1515.94 ≠ 187.75
= 1328.19.

(2.36)
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Note that the preceding estimate is model free because Eq. 2.34 is universally valid provided that ‚B is
unbiased, namely that E( ‚B|B) = B. On the other hand, from the fourth column of Table 2.1 the direct
sample mean of the individual model based variance predictors is,

meanb

)
varw( ‚B|B)

*
= 1749.44, (2.37)

which deviates from the model free estimate by a reasonable 32%.

2.6.3 Estimation of the population mean curve length
Often, the target parameter is the mean length of a population of curves such as the DNA molecules in
Fig. 1a. Let E(B) represent the population mean curve length. If the curves were digitized and measured
automatically, then E(B) could be estimated by

B = 400.3 nm,

ce( B )% = 100 ·


187.75/9
400.3 = 1.14%.

(2.38)

On the other hand, if curve length was estimated from about 20 intersections each, then E(B) would be
estimated by

‚B = 381.2 nm,

ce( ‚B )% = 100 ·


1515.94/9
381.2 = 3.40%.

(2.39)

The preceding result would be similar if the intersections were counted directly by hand on the original
images, with no image processing. Apart from time and e�ort, biases arising in the digitization procedure
would be avoided.

Note that the within curve error variance estimates varw( ‚B|B) do not enter in the preceding calcula-
tions. Their knowledge, however, may be used to design the sampling protocol. The required coe�cient
of error of the mean depends on the purposes of the experiment — see Section 8.4 How many animals?
from Cruz-Orive et al. (2004) for details, (here the latter title should better read How many curves?).
For the present purposes we simplify the situation as follows. Suppose that we want to count a total of
400 intersections. If we count 20 intersections in each of 20 curves, then we might expect,

ce( B )% = 100 ·


1515.94/20
381.2 = 2.28%. (2.40)

On the other hand, if we rather want to count 40 intersections in each of 10 curves, then Varw( ‚B|B) may
be expected to be reduced by a factor of about 4, because the latter variance is roughly proportional to
(EI)≠2, (Fig. 4), and we are doubling the number of intersections per curve. Thus, in this case,

meanb

)
varw( ‚B|B)

*
= 1328.19/4 = 332.05 (2.41a)

varb( ‚B) = 187.75 + 332.05 = 519.80, (2.41b)

ce( ‚B )% = 100 ·


519.80/10
381.2 = 1.89% (2.41c)

The predicted precision of the mean is therefore of about 2% in either case. The former option (i.e.
working less in more curves) should generally be the better one (Gundersen and Østerby, 1981). First,
counting too many intersections per curve is tedious. Second, the foregoing formulae for the coe�cient
of error of the mean require independence between curve estimates. Sampling a few curves in a relatively
small region is likely to violate this condition.

It is worth mentioning that, if the target parameter is E(B), then it is not necessary to measure
individual curve lengths, as above. A more convenient (and probably more e�cient) design consists in
superimposing — on the (extensive) field of interest, see for instance Fig. 1 of Podestà et al. (2004) —
systematic quadrats combined with test lines. The upper edge of each quadrat, for instance, could be
adopted as a test line, although the test lines may be placed outside the quadrats. The superimpositions
should be IUR relative to the curves, or just UR if the test lines consisted of half circles. Let l/a cm≠1
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denote the known test line length per quadrat area. Further, let Qi denote the number of individual
curves counted in the ith quadrat according to the unbiased frame rule, say. Also, let Ii denote the
corresponding number of intersections scored with test lines associated with the ith quadrat, and let n
represent the total number of quadrats. Then, a ratio unbiased estimator of E(B) is,

B = fi

2 · a

l
·

nÿ

i=1
Ii

? nÿ

i=1
Qi cm. (2.42)

In this case Var(B) may be predicted by Cochran’s formula (Cochran, 1977; Howard and Reed, 2005,
p.158), provided that the distance between quadrats is large enough to assume independence between the
n data pairs {(Ii, Qi)}. Similar designs are illustrated in Chapter 12 of the latter book. Note that: (a)
If a quadrat does not lie entirely inside the reference area, then we count curve(s) just in the available
quadrat area anyway, always respecting the unbiased rule adopted. (b) The intersections are counted on
any curve that is intersected by any test line, whether it was counted in the quadrats, or not. In other
words, there will generally be counted curves that do not contribute any intersections, and curves that
do contribute intersections but are not counted.

2.7 Discussion
The main purpose of this paper was to check the accuracy of a previously published error variance
prediction formula for curve length estimation by intersection counting with a square grid. Each of nine
finite linear features (namely flattened DNA molecule images, see Fig. 1a) was repeatedly superimposed
with isotropic uniform randomness onto fixed square grids of various sizes. The subsequent replicates of
the variance predictors were thereby compared against the empirical (i.e. close to true) error variance.
The overall performance of the prediction formula was satisfactory — the results corresponding to two
of the curves (namely a fairly isotropic and a fairly anisotropic one) are displayed in Fig. 4c, d.

The error variance has a rotation (Cauchy) and a translation (Cavalieri) component. The prediction
of the former (Eq. 2.11) was relatively poor, whereas the one of the latter was satisfactory (Fig. 4e, f).
Because the Cauchy contribution was relatively very low, however, the overall prediction was satisfactory.

It may be didactic to consider the extreme case in which the target curve is a straight line segment of
length B. Here the Cauchy estimator based on two mutually orthogonal projections (Eq. 2.10) reads,

‚B(Ê) = fi

4 B · (cos Ê + sin Ê),

P(dÊ) = 2
fi

dÊ, (0 Æ Ê < fi/2),
(2.43)

and its exact square coe�cient of error is,

CE2{ ‚B(Ê)} = fi2 + 2fi

16 ≠ 1, (2.44)

so that CE{ ‚B(Ê)}% ¥ 9.77%, which is non negligible. As soon as the curve is not too anisotropic,
however, the preceding CE decreases rapidly. On the other hand, for a straight line segment the Cauchy
error variance predictor given by Eq. 2.11 reads

var{ ‚B(Ê)} = fi2

240B2 · (cos Ê ≠ sin Ê)2, (2.45)

and its relative bias is,
EÊvar{ ‚B(Ê)}
Var{ ‚B(Ê)}

≠ 1 = 1
15 · fi2 ≠ 2fi

fi2 + 2fi ≠ 16 ≠ 1

¥ 0.56,

(2.46)

namely 56%. It should be borne in mind, however, that ‚B(Ê) is based on only two observations.
The Monte Carlo experiment involved 1024 automatic IUR superimpositions of each curve onto each

fixed grid. To do this each curve was approximated as described in Section Processing of the curve images
by a polygonal curve with known vertex coordinates. The procedure involved the successive use of four
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software packages (with some manual editing at the later stages) and took about 10–15 min per curve
on average. Moreover, the manipulations will introduce some bias in the curve length. On the contrary,
intersection counting estimation can be implemented directly on each original curve in less than 20s, and
the only bias present may be due to the possible di�erence between the length of a ‘free’ DNA molecule,
and its flattened projection onto the observation plane. It is in fact pausible that all the DNA molecules
considered here had the same length, and that the di�erent lengths reported in the first column of Table
2.1 were due to the sum of two biases, namely the flattening bias plus the image processing one. This is
impossible to ascertain: the best way to handle bias is to avoid it. Note also that the curves themselves
might not be separable automatically — see for instance the curve lying between curves 1 and 2 in Fig.
1c. A human, however, will soon realize that this curve must be the union of two. Thus, apart from the
possibility of performing automatic experiments to investigate higher order properties, as illustrated in
this study, automatic image processing cannot be recommended if the only purpose is to estimate mean
curve length in a not too extensive case study.

The present study is relatively academic, in the sense that it is restricted to a single bounded curve.
Our main concern was the prediction of the within curve error variance Varw( ‚B|B). Often, however, the
target quantity may be the population mean curve length (Subsection Estimation of the population mean
curve length).

On the other hand, only the square grid was considered here. In practice, grids consisting of separate
straight line segments, half circles, etc., can be more e�cient than the square grid (which often tends
to yield too many intersections). In addition, test systems consisting of half circles, such as the Merz
grid (Weibel, 1979; Howard and Reed, 2005) may be convenient because they do not require a random
orientation relative to the curve. Unfortunately, to our knowledge no general error variance prediction
formula exists for a general grid. It is worth mentioning, however, that the ‘fakir predictor’ proposed for a
test grid of wavy cycloids in Cruz-Orive et al. (2014, Eq. 42) proved to be satisfactory for digitized brain
sections (Fig. 5 of that study). The formula could be tried also for separate, systematically arranged
test segments, half circles, or more general bounded test curves. The formula requires recording the
intersection counts separately for each fundamental test curve, and arranging them into a rectangular
matrix (p. 132 of the latter paper). The problem, however, remains basically open.

In short, the intersection counting method is highly recommended to estimate curve length because
it is direct (i.e. it does not require image processing as long as the intersection points can be scored
unambiguously in the original images), design unbiased, and rather e�cient. Also, if a square grid is
used, then this study shows that the error variance may be predicted fairly reliably from a single grid
superimposition on the target curves considered. Semiautomatic stereological devices (several brands
of which are available on the market) may be of considerable help here because they will generate the
desired test grid automatically on the computer screen, with IUR position relative to the target curve
images. The intersection counts are then recorded manually, and may be exported for instance into the
free software R (http://www.r-project.org) to compute the estimates.
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3
Variance prediction in population size estimation

3.1 Introduction
Population size estimation is a longstanding problem which is essential for instance in ecology and social
sciences. A population of size N , is a finite set Y = {y1, y2, . . . , yN }, where yi œ Y is the ith particle of
the population. A particle is a compact set separated from other particles, for instance a bird, a human
or any other bounded object.

A design unbiased population size estimation method (hereafter CountEm method) was recently
proposed (Cruz et al., 2015; Cruz and González-Villa, 2018b,a). It is based on well known principles
of geometric sampling for stereology (Howard and Reed, 2005; Cruz-Orive, 2017) and can be applied to
any population, provided that the particles are unambiguously distinguishable for counting in an image.
An error variance estimator, varCav( ‚N), using the Cavalieri slices design was presented in Cruz et al.
(2015). The estimator has a between stripes contribution, and a within stripes contribution which is
calculated by splitting the sample into two subsamples. Here we propose a new, alternative estimator,
varSplit( ‚N), for which the estimation of either contribution is based on a splitting design. The performance
of the estimators is assessed by comparing to the empirical variance, Var( ‚N), computed by Monte Carlo
resampling on 26 crowd images covering a variety of patterns.

3.2 CountEm Method
The main idea of the method is to perform systematic sampling superimposing a uniform random (UR)
test grid of quadrats on the image. Optionally, the grid might be tilted at will a given, fixed angle in
order to avoid alignments of quadrat and particle rows which would increase the variance (Gundersen
et al., 1999).

The sample size, is the number of particles, Q, captured by the quadrats and has to be counted
manually. The sampling grid is defined by two parameters, namely the separation, T > 0, between
quadrat centers and the quadrat side length t, (0 < t Æ T < Œ) (see Fig. 3.1).

The population size estimator, ‚N , is sample size, Q, times the sampling period T 2/t2:

‚N = T 2

t2 · Q. (3.1)

Note that in practice, the forbidden line rule should be used to avoid edge e�ects leading to biased
counting (Gundersen, 1977).

Cruz and González-Villa (2018a) showed that sample size, Q & 100, and number of nonempty
quadrats, n & 30, usually yield coe�cients of error below 10%. A more intuitive parametrization of
the grid helps choosing a suitable grid to obtain the desired values of Q and n:

29
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Figure 3.1: (A): Spectators in a football match (R. Cancio, 1966). (B): Corresponding associated points,
as used in our Monte Carlo automatic resampling. A test grid of quadrats has been superimposed on
them.

• f : Sampling fraction, f = t2/T 2.

• n0: Initial number of quadrats, n0 = BxBy/T 2 where Bx, By represent image width and height in
pixels, respectively.

Variance estimators
3.2.1 Cavalieri estimator
The Cavalieri variance predictor, varCav

1
‚N

2
, was proposed in Cruz et al. (2015). It contemplates

quadrat dependence based on G. Matheron’s transitive theory (Matheron, 1971). First a variance pre-
dictor was derived for volume estimation (Gual Arnau and Cruz-Orive, 1998). Later the estimator was
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extended to the case of particle number estimation (Cruz-Orive, 2004, 2006; Cruz-Orive and Geiser,
2004). The idea is to regard the quadrat sample as a two stage sample. The first stage involves planar
Cavalieri stripes of thickness t > 0 a constant distance T > t apart (e.g. columns numbered from 1 to 6
in Fig. 3.1). In the second stage, each stripe is subsampled in turn by a perpendicular series of Cavalieri
stripes with the same parameters t, T (e.g. even and odd rows labeled e and o respectively in Fig. 3.1).
The result is equivalent to a grid of systematic quadrats with the latter parameters.

Next we define the necessary notation:
• · = t/T œ (0, 1], stripe sampling fraction.

• n: number of stripes encompassing the particle population, (n > 2).

• ni: number of quadrats subsampled within the ith stripe, i = 1, 2, . . . , n.

• qij : number of particles captured by the jth quadrat within the ith stripe, j = 1, 2, . . . , ni.

• Qoi, Qei: total numbers of particles captured by the odd numbered, and by the even numbered
quadrats, respectively, within the ith stripe.

• Qi =
qni

j=1 qij , total number of particles sampled in the ith stripe. Note that Qi = Qoi + Qei.

• Qo =
q

i odd Qi, Qe =
q

i even Qi, total number of particles on the odd numbered stripes and on
the even numbered stripes, respectively.

• Q =
qn

i=1, total number of sampled particles.
The Cavalieri variance predictor (Eq. 3 of Cruz et al. (2015)) is:

varCav

1
‚N

2
= 1

6 · (1 ≠ ·)2

·4(2 ≠ ·) · [3(C0 ≠ ‹n) ≠ 4C1 + C2] + ‹n

·4 , (3.2)

Ck =
n≠kÿ

j=1
QjQj+k, k = 0, 1, 2. (3.3)

The first term in the right hand side of Eq.(3.2) estimates the between stripes variance contribution,
whereas ·≠4‹n estimates the within stripes contribution. The latter contribution can be estimated by
splitting in two subsamples (Cruz-Orive, 2004). The relevant within stripes variance term is obtained
from Eq.(4.1) of the latter paper setting ‚‹2 = 0, namely:

‹n = c(·)
nÿ

i=1
(Qoi ≠ Qei)2. (3.4)

c(·) = (1 ≠ ·)2

3 ≠ 2·

3.2.2 Split estimator
In the Split variance predictor, varSplit

1
‚N

2
we consider again the two sampling stages described above.

Here, the samples of both stages are splitted in two subsamples:

varSplit
1

‚N
2

= c(·)
·4 [(Qo ≠ Qe)2 ≠ ‹n] + ‹n

·4 . (3.5)

Crowd counting dataset
The performance of the varCav( ‚N) and varSplit( ‚N) estimators is checked by Monte Carlo resampling on
a crowd counting dataset in the next section.

The dataset consists of 26 crowd images and their corresponding manually labelled crowd position
point patterns (see Fig. 3.2). One image is the spectators image ( countem.unican.es) which was
already analyzed in Cruz et al. (2015). The 25 remaining images are borrowed from the UCF dataset
(Idrees et al., 2013). The original UCF dataset consists of 50 images, but we have selected those with
N > 1000 since these are the population sizes CountEm is more useful. The images have been ordered
by increasing N and numbered from 1 to 26.

countem.unican.es
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Figure 3.2: Six of the point patterns contained in the Crowd Counting Dataset. Each point corresponds
to a human head in the images, as in Fig. 3.1.

3.3 Empirical assessment of the variance estimators by Monte
Carlo resampling

The empirical variance of ‚N and the performances of varCav

1
‚N

2
and varSplit

1
‚N

2
were checked by

Monte Carlo resampling on the set of 26 point patterns of the crowd counting dataset.
As in Cruz and González-Villa (2018a) the sampling fraction was selected a posteriori as f = Q/N ,

with Q = 100 and N the number of manually annotated points in each image. The initial number of
quadrats was set to n0 = 50, 100.

The corresponding values of {t, T} for the chosen parameters {f, n0} were calculated as follows (Cruz
and González-Villa, 2018a):

T =
Ú

BxBy

n0
, (3.6)

t = T


f.

The resulting grid was tilted an arbitrary fixed angle of 30¶ with respect to the x axis, before applying
the resampling procedure. Next we recall the necessary notation to describe the resampling procedure:

• Y = {y1, y2, . . . , yN }: finite set of N point particles in a bounded area. We studied 26 such sets
(Fig, 3.2) .

• yi œ Y : ith point particle of the set.

• J0: fundamental square tile or box of side length T .

• z œ J0: UR point in the fundamental tile.

• �z: UR systematic grid of quadrats, generated by shifting the lower left corner of a quadrat from an
arbitrary initial position in J0 into the UR point z, thus dragging the whole quadrat grid together.

• Q = Q (Y fl �z): random sample size, namely the total number of particles captured by the
quadrats.

For each pair {t, T} a total of K2 = 322 = 1024 replicated superimpositions of the grid �z onto Y were
generated, corresponding to K2 systematic replications {zk, k = 1, 2, . . . , K2} of the point z within J0.
These K2 positions were arranged in a random subgrid within J0 which should be expected to be more
e�cient than independent random replications (Cruz et al., 2015). For each k, the corresponding sample
total,

Qk = Q(Y fl �zk ), (3.7)
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was computed automatically using the spatstat package (Baddeley et al., 2015). From Eq. 3.1 we obtain:

‚Nk = (T/t)2 · Qk. (3.8)

The empirical mean, variance and square coe�cient of error of ‚N were computed respectively as follows,

Ee

1
‚N

2
= K≠2

K2ÿ

k=1

‚Nk, (3.9)

Vare

1
‚N

2
= K≠2

K2ÿ

k=1

Ë
‚Nk ≠ Ee

1
‚N

2È2
, (3.10)

CE2
e

1
‚N

2
= Vare

1
‚N

2
/N2. (3.11)

We also computed the corresponding K2 replicates
Ó

varCav

1
‚Nk

2Ô
,

Ó
varSplit

1
‚Nk

2Ô
, and the empir-

ical square coe�cient of errors:

ce2
(·)

1
‚N

2
= 1

N2K2

K2ÿ

k=1
var(·)

1
„Nk

2
, (3.12)

where (·) stands for (Cav) or (Split).
We define the empirical relative mean square error, MSEe( ‚N) as:

MSEe( ‚N) =
Vare

1
‚N

2
+ Biase

2
1

‚N
2

N2 , (3.13)

Biase = Ee

1
‚N ≠ N

2
. (3.14)

CountEm estimator ‚N is design unbiased, therefore MSEe( ‚N) ¥ CE2
e

1
‚N

2
. However, the two considered

variance estimators are not unbiased. In the next section we compare the values of MSEe

Ë
varCav( ‚N)

È

and MSEe

Ë
varSplit( ‚N)

È
computed for the Crowd Counting Dataset.

3.4 Results
The estimated coe�cients of error ce2

Cav

1
‚N

2
, ce2

Split

1
‚N

2
and empirical values, CE2

e

1
‚N

2
for the 26 point

patterns of the dataset, are shown in Fig. 3.3. Sample size and initial number of quadrats were set to
Q = 100 and n0 = 100 respectively in Fig. 3.3A,B. This choice yields empirical errors below 10% but is
not optimal for variance estimators, since they underestimate the empirical variance in most of the 26
images.

Reducing the number of quadrats to n0 = 50 for the same sample size Q = 100, improves variance
estimation but increases the empirical coe�cient of error as can be seen in Fig. 3.3C, D.

In both cases, the ce2
Split

1
‚N

2
estimator show higher variance than ce2

Cav

1
‚N

2
. In Fig. 3.4 we show

the following quantities:

�MSEe = MSEe

Ë
varCav( ‚N)

È
≠ MSEe

Ë
varSplit( ‚N)

È
, (3.15)

�Vare =
Vare

Ë
varSplit( ‚N)

È
≠ Vare

Ë
varCav( ‚N)

È

Var2
e

1
‚N

2 , (3.16)

�Bias2
e =

Bias2
e

Ë
varSplit( ‚N)

È
≠ Bias2

e

Ë
varCav( ‚N)

È

Var2
e

1
‚N

2 , (3.17)
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Figure 3.3: (A): Empirical coe�cient of error (black line) computed for 1024 Monte Carlo replications
on 26 point patterns, using sample size Q = 100 and initial number of quadrats n0 = 50. The median
(red line) and 95% confidence bands of the Cavalieri estimator are also shown. (B): Same as (A) but for
the Split estimator and blue color. (C) and (D) are the same as (A) and (B) but setting n0 = 100.
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in order to numerically compare the performance of the estimators. The Cavalieri estimator performs
better as it has a lower mean squared error for most of the images, i.e �MSEe > 0 in Fig 3.4A, C. The
di�erence in the variance contribution �Vare is usually higher than the di�erence in the bias contribution
�Bias2

e as can be seen in Fig. 3.4B, D.

Figure 3.4: (A): �MSEe computed for 1024 Monte Carlo replications on 26 point patterns, using sample
size Q = 100 and initial number of quadrats n0 = 50. (B): Variance, �Vare (red line) and bias, �Bias2

e

contributions for n0 = 50. (C), (D): Same as (A), (B) setting n0 = 100.

3.5 Conclusions
A new variance estimator, varSplit( ‚N), for the CountEm population size estimation method has been
proposed. Its performance has been tested against the Cavalieri estimator, varSplit( ‚N), on a dataset of
26 images with their corresponding population point patterns.

The Cavalieri estimator performs better for the considered dataset, as it presents a lower variance.
Both estimators underestimate the empirical variance when considering a high initial number of quadrats,
n0 = 100. We believe that this is due to the fact that a low number of particles per quadrat implies almost
independent quadrat counts. The performance improves by reducing the initial number of quadrats to
n0 = 50 and therefore increasing the number of particles per quadrat.

Note that both estimators rely on modeling quadrat count dependence using G. Matheron’s transitive
theory, therefore the estimators are less accurate with low quadrat counts.
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4
Pharmacological Response Evaluation on Fluorescence

Microscopy

Recent advances in microscopy technologies have made possible to acquire large numbers of images that
require new data analysis methodologies to gain insight on complex biological processes. In this sense,
automatic image analysis methods aim to provide quantitative measurements from acquired images with
minimal human supervision. They are of greatest interest either for drug discovery processes to quantify
biochemical and/or cellular e�ects produced by a given compound (Smith, 2002) as in other applications
such as diagnosis, morphology studies or gene function (Usaj et al., 2016).

Here we focus on drugs inducing the formation of endosomes, which are internalizing vesicles from
the cell membrane to the cytoplasm. This process can be observed in fluorescence microscopy images
of living cells as a result of G-protein coupled receptors (GPCR) activation by agonist compounds. In
pharmacology the capacity of an agonist to promote a response through a given receptor in a specific
tissue is known as e�cacy. Therefore, quantifying this response might be useful to evaluate and compare
the pharmacological properties of di�erent drugs, i.e. a�nity to bind to a specific site and/or potency and
e�cacy to evoke a biological response. Nevertheless, there is a lack of quantitative methods to accurately
evaluate the agonist e�cacy to promote endocytosis based on fluorescence microscopy imaging. ArrayScan
technology (Ghosh et al., 2000; Conway et al., 1999) was formerly proposed to quantitatively evaluate
GPCR endocytosis by analysing the appearance and intensity of fluorescent receptor aggregates inside
the cell. However, it was based on “Top Hat” filter which do not give truly satisfactory results with
biological images (Olivo-Marin, 2002). Other reports were proposed to analyse the time course of the
process (Arnauld et al., 2011) but at the expense of using sensitive imaging technology that required
highly complex acquisition conditions.

Current fluorescence microscopy technologies permit to observe this cellular process with high spatial
and temporal resolution. This pharmacological response can be characterised by di�erent parameters
related to the generation of endosomes including their number, the intensity of the associated fluorescence
signal or the distribution of their sizes as suitable options to evaluate the pharmacological properties of
a drug.

Several methods have been proposed for spot detection in fluorescence microscopy images (Ruusuvuori
et al., 2010; Smal et al., 2010; Basset et al., 2015; Campa et al., 2015). In the latter work, the Q-endosomes
algorithm was proposed to quantify the number of endosomes generated upon activation of the mu opioid
(MOP) receptor in images from living cells obtained by epifluorescence microscopy Campa et al. (2015).
The algorithm consisted on several steps including Gaussian filtering, local maxima identification above
a given local background threshold, ‹ = 90%, and correlation of the selected maxima with a 2D-Gaussian
function of a given standard deviation, ‡ = 2.30. Finally, the local maxima with correlation above a
given threshold, fl = 0.75, were counted as endosomes. The obtained experimental data resulted in some
significant di�erences in terms of number of endosomes per cell depending on the drug used to initiate

37
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receptor endocytosis. However, this algorithm presents room for improvement as we have observed ill-
conditioned behaviour with respect to the three manually set parameters, i.e. ‹, ‡ and fl. Furthermore,
the algorithm is not fully automated as it requires manual or independent cell counting that may be
biased. Finally, only the number of endosomes and not their brightness is quantified. The Q-endosomes
algorithm assumes that the endosomes have a Gaussian-like shape in the images and that their average
size is constant over time.

Here we propose a new algorithm to quantify pharmacological responses based on receptor endocytosis
taking into account both, the number of endosomes and their brightness. The algorithm, hereafter the
�m algorithm, might be applied to a set of time-course images. It provides a global dimensionless
quantification for the entire image which can be used to compare among di�erent experiments. Moreover
it allows to detect and discard experiments with systematic artifacts. It is fast and relies only on a
single parameter namely the mean endosome size in pixels. This parameter has to be set manually and
is assumed to be constant over time as it was in the Q-Endosomes algorithm. However the results do not
strongly depend on this assumption nor on small variations of the size parameter. The new algorithm
is presented and justified in section Outline of the �m Algorithm. It is tested on simulated images in
section Algorithm evaluation with simulated endosomes, and in section Application to real experiments
on real images. The discussion is presented in section Discussion.

4.1 The � m algorithm
4.1.1 Definitions and Notation
We define the following notation

• x̨ = (x, y): Position vector on the image plane. The z-axis is perpendicular to the image plane.

• t: Time at which the image is taken in minutes. The agonist compound is added at time t = 0.

• It(x̨): a set of nt time-course images, abbreviated as {It} = {I0, I1, ..., Int≠1}.

• Bt: Region of interest for image It.

• Fi(x, y): Fluorescence signal at position (x, y) from the ith endosome of size “i centered at (xi, yi).
We assume that it can be modeled as a 2D-Gaussian function:

Fi(x, y) = A exp
3

≠ (x ≠ xi)2 + (y ≠ yi)2

2“2
i

4
. (4.1)

• “: Average endosome size parameter, “ > 0. In our images “ ¥ 2 pixels.

• A: Amplitude (or intensity parameter) A > 0,

• s: Standard deviation computed for I0 in region B0.

• I Õ
t(x̨): Image It(x̨) after convolving with the LoG filter. To lighten the notation we use the abbre-

viation I Õ
t.

• R: scale parameter R > 0 of the Laplacian of Gaussian (LoG) filter.

• AÕ: Amplitude of a filtered endosome

• sÕ: Standard deviation computed for I Õ
0 in region B0.

• ⁄: Amplification,

⁄ = AÕ/sÕ

A/s
. (4.2)

• Ropt: LoG-filter scale maximizing the amplification, ⁄ in the region of interest B0.

• mt: Third order moment in region Bt of image I Õ
t.
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4.1.2 Outline of the �m Algorithm
The basic steps of this algorithm are:

1. Find the region of interest, Bt, for each image of the set {It} (see Fig. 4.1 A, C). Empty regions
with no cells are excluded as explained in section Segmentation of the Region of Interest.

2. Choose or estimate the average endosome size “.

3. Find the optimal LoG scale Ropt for a given average endosome size “. The scale is selected max-
imizing the amplification, ⁄, in the region of interest B0 (see section Scale parameter selection:
Endosome amplification).

4. Convolve the images {It} with the LoG filter at scale Ropt, obtaining a set of filtered images {I Õ
t}

(see Fig. 4.1 B, D).

5. Calculate the third order moment, mt, of the npix pixels in region Bt of each image I Õ
t:

mt = 1
npix

ÿ

x̨œBt

1
I Õ

t(x̨) ≠ I Õ
t

23
, I Õ

t = 1
npix

ÿ

x̨œBt

I Õ
t(x̨), (4.3)

�mt = mt ≠ m0
m0

. (4.4)

A set of {�mt} values is obtained for each experiment which is used to quantify the pharmacological
response.

4.1.3 Justification of the algorithm
The Q-endosomes algorithm (Campa et al., 2015) filtered the images with a 2D-Gaussian in order to
reduce instrumental noise. The �m algorithm instead uses the LoG filter, since Sanz et al. (2001)
showed that the LoG filter is the optimal pseudo-filter used to detect 2D-Gaussian shaped objects for a
wide range background images. It is therefore widely used in spot detection (Huertas and Medioni, 1986;
Basset et al., 2015). It amplifies spots with central symmetry reducing the background noise if the scale
is appropriately chosen. In addition, constants and gradients are cancelled out after convolution with the
LoG filter since it is compensated, i.e. the integral below the curve is zero.

The main di�erence between images It and I0 is the fluorescence signal produced by the endosomes
that are present at time t but not at t = 0. This fluorescence signal generates an increment in the
asymmetry of the histogram of It with respect to I0 which can be measured comparing the second, third
and fourth order moments of images It and I0. Hence, the relative increment of these three moments
are potential candidates to quantify the pharmacological response. Checking their performance with
the simulated images of section Algorithm evaluation with simulated endosomes the third order moment
showed slightly better results than the fourth order moment and considerably better results than the
second order moment.

The �m algorithm quantifies the pharmacological response of the living cells in each image It through
one single value, �mt. The regions without cells (see for instance Fig. 4.1) can a�ect the third order
moment calculation, blurring the desired quantification. Therefore, �mt is computed considering only
pixels in region of interest Bt.

The algorithm only depends on a single parameter, namely average endosome size, “, which we set
to “ = 2 pixels in the considered experiments. This was the value given in the Supplemental Data of
Campa et al. (2015) based on manual measurements of 150 endosomes. We checked that small variations
in “ do not significantly a�ect our results (see Algorithm evaluation with simulated endosomes).

4.1.4 Segmentation of the Region of Interest
A segmentation method is needed to identify the region of interest Bt. A simple global, histogram-derived
thresholding method was used in which the threshold was automatically calculated using the minimum
algorithm (Prewitt and Mendelsohn, 1966).
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The images considered here (see section Application to real experiments) were previously blurred with
a gaussian filter of radius equal to 3 pixels, that performed well in most of the image sets. In cases where
no solution was obtained for the threshold, the blur radius was iteratively increased by one pixel until a
maximum of 10 pixels. The region of interest Bt was defined by the pixels above the obtained threshold,
and additionally it was required to contain at least 50% of the pixels of the image, otherwise it was
rejected. In the few cases where no segmentation was found, Bt was set equal to the entire image.
For each set {It}, the corresponding minimum area region of interest, Bmin of the set {Bt} was selected.
To avoid noticeable variations due to segmentation inconsistencies, Bt which di�er from Bmin in more
than 5% of the total pixels of the image were set to Bmin.

Figure 4.1: Fluorescence microscopy images corresponding to cells treated with DAMGO (10µM) 4
(A) and 12 minutes (C) before picture acquisition. Region of interest segmentation was performed using
a simple thresholding method combined with a gaussian blur filter (See Segmentation of the Region of
Interest). (B) and (D) show the same images as in (A) and (C) respectively, after convolution with a
LoG filter of scale R = 1.75 pixels.

4.1.5 Scale parameter selection: Endosome amplification
The LoG filter of scale parameter R, can be expressed as follows,

Â(x, y) = 1
2fiR4

3
2 ≠ x2 + y2

R2

4
exp

5
≠ (x2 + y2)

2R2

6
. (4.5)

In this work, we use a Fiji plugin with a kernel adapted from Sage et al. (2005) by increasing the size to
int(4R) ◊ 2 + 1 pixel.

The �m algorithm selects the scale parameter R maximizing amplification ⁄ defined by Eq. 4.2.
Consider a background image I0 of a time-course experiment {It}. The calculation of standard deviations,
s and sÕ are straightforward. The amplitude ratio AÕ/A can be calculated using the following equation
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(eq. 9 of González-Nuevo et al. (2006)):

AÕ

A
= ≠2“2

(“2 + R2)2 . (4.6)

Ropt can be estimated by calculating ⁄ for a set of scales {R}, selecting the one that yields a maximum
⁄.

For the experiments considered in this paper (see section Application to real experiments), we set
“ = 2 pixels, which was the value given in Campa et al. (2015) based on manual measurements of 150
endosomes. Then, ⁄ was calculated for the sequence of scales {R1 = 1, R2 = 1.05, R3 = 1.10, ...} stopping
after three consecutive decreasing ⁄ values.

4.2 Algorithm evaluation with simulated endosomes

Here we test the performance of our algorithm on simulated endosomes added to 17 background images,
{I0}, (see Fig. 4.2 and section Application to real experiments for details). The endosomes are added
based on the following approximation:

Let N be the number of endosomes in image It. The time-lapse images {It} can be approximated
as the sum of a constant background equal to I0 plus the sum of the contribution of the N endosomes.
Note that no endosomes are present at t = 0 since the drug has not been added yet.

It ¥ I0 + Et, (4.7a)

Et =
Nÿ

i=1
Fi, (4.7b)

where the image Fi, corresponding to the i-th endosome centered at a arbitrary position inside Bt, is
obtained by evaluating Eq. 4.1 for all the pixels in Bt.

We considered n = {5, 10, 15, 20} endosomes per cell and the number of cells, nc in each of the 17
regions of interest {B0} was manually counted. Hence, N = n · nc endosomes were simulated at random
in each B0.
We assumed a uniform random spatial distribution of the endosomes in each B0, which is not realistic
since in real images they appear to be clustered in the latter acquisition times. However, this should be
a reasonable assumption for testing our algorithm since �m is a global variable that does not take into
account the spatial distribution of the endosomes.
The endosomes were modeled using Eq. 4.1 with “ ≥ N(2, 0.5) as estimated in the Supplemental Data of
Campa et al. (2015). Three amplitude values were considered, namely A = k · s with k = {1, 2, 3}, where
s is the standard deviation of I0 in the region of interest B0. Combining the four considered values of
n and the three of A, we obtained a total of 12 sets of 17 simulated images In,A each. Since the total
fluorescence of the image should be constant, we normalized each simulated image:

In,A =
Ò

1 ≠ s2
E ◊ I0 ≠ I0

s2 + En,A ≠ En,A, (4.8)

En,A =
n·ncÿ

i=1
Fi(A), (4.9)

where (·) is the sample mean in region B0 and s2
E sample variance of En,A in B0.

The algorithm was applied to simulated images In,A in an analogous way as we describe in Eq. 4.4
for real images It. Each image In,A was convolved with the LoG filter at optimal scale Ropt, obtaining
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the convolved image I Õ
n,A. �mn,A was then computed for all the simulated images:

�mn,A = mn,A ≠ m0,0
m0,0

, (4.10)

mn,A = 1
npix

ÿ

x̨œBt

!
I Õ

n,A(x̨) ≠ Ên,A

"3
, (4.11)

Ên,A = 1
npix

ÿ

x̨œBt

I Õ
n,A(x̨), (4.12)

where m0,0 = m0 is the value for the background image with no simulated endosomes. The results are
represented in Figure 4.3.

Figure 4.2: (A): Background image taken from the same experiment as in Fig. 4.1 at t = 0. (B,C,D):
Background image (A) plus simulated endosomes with n = 5, A = 2s, (B); n = 15, A = 2s, (C); and
n = 10, A = 3s, (D).

Given the same number of endosomes per cell (Fig. 4.3A), the values of �m were found to be
significantly di�erent for the three amplitude values A = 1, A = 2 and A = 3 (t-test, p < 0.05). In
the case of simulated endosomes with the same amplitudes but di�erent n (Fig. 4.3B), we found that
�m was significantly di�erent comparing n = 5 with n = 10 and n = 10 with n = 20 (t-test p < 0.05).
However, �m is not significantly di�erent considering n = 15 versus n = 20 and n = 10 versus n = 15
endosomes per cell (t-test p > 0.05).

The simulated images with n = 10, and A = 2s, 3s were also used to compare the discrimination
power of third and fourth order moment. �m was significantly di�erent for both of them, but the p-
value using the third order moment was significantly lower compared to the one obtained with the fourth
order moment (6 · 10≠6 and 2 · 10≠4 respectively). The robustness of �m versus variations in the scale
parameter R was also checked for this case. The p-value remained almost constant (3 · 10≠6 < p-value
< 9 · 10≠6) for 1 < R < 2.5 pixels confirming the robustness versus small variations in “ or Ropt.
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Figure 4.3: (A): �m variation with respect to the number of endosomes per cell, n for three fixed
amplitude values, A = s (red), A = 2s (black) and A = 3s (blue). (B): �m variation with respect to A,
for two fixed n values n = 5 (black) and n = 15 (red). 17 di�erent background images were considered
in each set of values {n, A}.

4.3 Application to real experiments
The experiments performed in Campa et al. (2015) are used as a proof of concept to test the algorithm.
Drugs diluted in physiological saline solution were perfused into the microscope chamber for internal-
ization experiments in real time. Then, images were acquired in an inverted epifluorescence microscope.
The initial image stacks consisted of nz = 9 planes of 0.49µm z-step size and nt = 15 at a rate of 1 frame
per minute. The 16-bit resulting images had a resolution of 1004 ◊ 1002 pixels (0.13µm pixel size). The
maximum intensity z-projection was performed by selecting for each pixel i the maximum value across
the nz z-planes. Thus, the stack is reduced to a set of nt time-course images {It} = {I0, I1, ..., Int≠1}.
Materials, receptor fusions with fluorescent proteins, generation of stable Flp-In T-REx HEK293 cell
lines, cell transfection and living cell epifluorescence microscopy are detailed in Campa et al. (2015).

The �m algorithm was applied to two sets of experiments, which we call -DOX and +DOX as in
Campa et al. (2015). Mu opioid (MOP) receptor was tagged at the carboxy-terminus with yellow fluores-
cent protein (YFP) and permanently expressed in Flp-In T-Rex HEK293 cells. The +DOX experiments
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were conducted in cells pre-treated with doxycycline (0.01µg/ml) for 24 hours prior to microscope ob-
servation, in order to induce the expression of c-myc-5 ≠ HT2C-Cerulean receptors together with MOP
receptors. In total 19 experiments were considered in the -DOX condition,they consisted of four di�erent
treatments, namely morphine (10µ M), methadone (10µM), sufentanyl (1µM) and DAMGO (H-Tyr-D-
Ala-Gly-N-MePhe-Gly-OH, 10µ M). The +DOX set consisted of 20 independent experiments with one
additional drug combination, morphine (10µ M) + serotonin (5HT, 10µ M).

�mt was calculated with Eq. 4.4. Two possible time responses of �mt were expected, namely a
sigmoid response in drugs inducing endocytosis and a flat, linear response for drugs unable to induce
endocytosis such as for instance morphine. Therefore two regressions were performed on each �mt,
namely a linear fit and a sigmoid function fit. The following sigmoid function was used:

µt = µ0 + Emax

1 + exp
#
– · (t1/2 ≠ t)

$ , (4.13)

where Emax is the maximum response or e�cacy, – the slope, and t1/2 the time needed to reach 50% of
the maximum response.

The goodness of fit was evaluated using the standard coe�cient of determination, r2
lin, in the linear

case, and coe�cient of determination, r2
sig, in the sigmoid function fit:

r2
sig = 1 ≠ SSres/SStotal, (4.14)

SSres =
ÿ

(�mt ≠ µt)2, (4.15)

SStotal =
ÿ !

�mt ≠ �m
"2

, (4.16)

where the summations run from t = 0 to t = 15 minutes. In order to exclude experiments with important
systematic artifacts, only experiments with r2

lin > 0.5 or r2
sig > 0.5 were considered. Two experiments

in each set, -DOX and +DOX, were discarded. The presence of systematic artifacts was confirmed by
visual inspection. For the rest of experiments the obtained results can be seen in Fig. 4.4. The results
show that �mt has a sigmoid dependence with time, with the exception of the morphine experiments,
where a flat response is observed, as expected from the results in Campa et al. (2015).

A multivariate ANOVA (MANOVA) was carried out with R. The vector of variables (Emax, t1/2, –) was
considered for the experiments with r2

sig > 0.5. The type of drug (DAMGO, sufentanyl, morphine+5HT
or methadone) and treatment with doxycycline (-DOX or +DOX) were considered as non-random factors.
The analysis revealed a significant di�erence only for the drug factor (p-value < 0.01). No significant
di�erences were detected for factor doxycycline (p-value > 0.1). Separate ANOVA analyses indicated
that the method di�erence was due to Emax and – (p-value < 0.01), whereas no significant di�erences
were found in t1/2 (p-value > 0.1).

The mean ± Standard Error of the Mean (SEM) values of variables (Emax, t1/2, –) are summarized
in Table 4.1. Morphine experiments are not listed since they failed to fit a sigmoid curve. The values
in the table were calculated for -DOX and +DOX experiments together, since the DOX factor did not
present significant di�erences.

Table 4.1: Sigmoid curve fitting parameters for the experiments

Emax t1/2, min –
DAMGO (10) 16.1 ± 3.1 10.4 ± 0.6 0.53 ± 0.06
Sufentanyl (9) 11.1 ± 2.5 9.1 ± 0.3 0.62 ± 0.05
Methadone (6) 3.3 ± 1.3 9.7 ± 0.7 0.84 ± 0.11
Morphine+5HT (4) 1.8 ± 0.7 9.7 ± 1.0 1.32 ± 0.37

Obtained for the data plotted in Fig. 4.4. Mean values ± SEM of (n) independent experiments are
listed. Only experiments with r2

sig > 0.5 were considered.
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Figure 4.4: (A): Evolution of �m through time after treatment with DAMGO (black), sufentanyl (red),
morphine (blue) and methadone (green) (-DOX Condition). The number of experiments per drug was 5,
5, 3 and 4 respectively. Each point represents the mean ± SEM. (B): Corresponding results from +DOX
Condition, including morphine+5HT (orange). The number of experiments per drug was 5, 4, 3, 4 and
2 respectively.
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4.4 Discussion
In this chapter we propose a new algorithm to quantify pharmacological responses in fluorescence mi-
croscopy images by calculating the third order moment increment over time after convolution with a
Laplacian of Gaussian filter at optimal scale. Receptor endocytosis stimulated by agonist drugs (Campa
et al., 2015) has been used as a proof of concept to validate this methodology.

Data obtained with the algorithm from simulated images resulted in a significant statistical di�erence,
and show that it is possible to discriminate on both, number of endosomes per cell and endosome fluo-
rescence intensity. It has been usually observed in real data that an increase in the number of endosomes
is accompanied by an increase of endosome fluorescence intensity across the experiment.

Significant di�erences in the pharmacological response of drugs used as agonist compounds were ob-
served after applying the algorithm to real data. Morphine was unable to promote MOP receptor endo-
cytosis and its response fits to a flat line, whereas DAMGO, sufentanyl, methadone and the combination
of morphine plus 5-HT showed a sigmoid time response curve.

A vector of parameters (Emax, t1/2, –) was obtained for each experiment through a sigmoid curve fit.
A multivariate ANOVA detected a statistically significant di�erence in the parameter vector attending
to the drug factor, whereas no significant di�erences were found for the factor doxycycline. This was
to be expected since the treatment with doxycycline only activates the inducible expression of c-myc-
5 ≠ HT2C-Cerulean receptors and should not a�ect MOP receptor endocytosis from a pharmacological
point of view. Individual one-way ANOVA subsequent tests indicated that the di�erence among drugs
was due to Emax and – parameters.

The proposed method does not rely on the manual annotation of images nor on a manual characteri-
zation, both of which are slow, tedious and could introduce bias. Moreover, it improves the Q-endosomes
algorithm (Campa et al., 2015) since the results do not depend strongly on parameters that have to be
set manually and it provides information attending to the intensity of the endosomes, not only on their
number.

The above qualities make this algorithm suitable for drug screening with exploratory purposes in
automatic microscopy, but the same principle can be easily extended to similar problems where the high
number of experiments requires fast and non supervised methods and segmentation algorithms do not
carry a complete solution for detecting the objects of interest.

Future studies could be focused on analysing the variation of size and spatial distribution of endosomes
depending on the evaluated drug. In the present work the spatial distribution is irrelevant and the
endosome size is assumed to be independent regarding the agonist drug used.



5
Entropy Assessment in True Random Number

Generators

5.1 Introduction
Random Number Generators (RNG) are basic blocks of cryptographic systems that aim to provide random
sequences with good statistical properties and high unpredictability. Physical or true random number
generators (TRNGs) constitutes a subset of RNGs where physical processes are used to generate random
numbers. For high end security systems implemented in a single chip (cryptographic system-on-chip), the
generation of cryptographic keys requires embedded random number generators, therefore many designs
have been proposed to exploit analog physical phenomena (like thermal, shot and flicker noise) associated
to the operation of the logic gates.

There are three basic challenges in modern embedded TRNG design: (i) finding a good quality
source of randomness (available in the digital technology); (ii) finding an e�cient and robust principle of
randomness extraction; (iii) guaranteeing the security (e.g. by a robust design or by an e�cient online
testing). For further reading, see Fischer (2012).

TRNGs allow a mathematical assessment of the security: the designs must be based on a stochastic
model of the random process and the entropy extraction to compute a lower bound of entropy per output
bit. If the minimal entropy per output bit approaches 1, then the TRNG is not manipulable and it can
be assimilated to an ideal RNG.

In Cherkaoui et al. (2013a,b) a TRNG design was proposed which exploits the jitter of events prop-
agating in a self-timed ring, together with a stochastic model to estimate a lower bound on the entropy
per output bit of the design. In our work, we incorporate several sources of noise that were regarded as
ideal in the stochastic model presented in the latter work. We focus in modeling the metastability of the
output flip-flops and jitter noise in the clock signal may lead to a better lower bound of entropy as was
suggested in that work.

Metastability has been exploited as a source of randomness in other designs. It can be defined as
metastable conditions that apply when certain time restrictions in the digital circuit are violated, the
output transition to a defined high or low state is delayed. The time necessary to return to a stable state
depends on the process technology and the operating conditions (Stephenson, 2009). A TRNG based on
the thermal agitation around a Flip-Flop metastable state was proposed in Danger et al. (2007). The
results on their design showed good performance in the NIST test but did not propose a theoretical
stochastic model. Also their experiments showed a possible limitation with this source of randomness, as
they fail to observe metastable states in their output data. The reason for this may be that metastability
is well controlled in current FPGA technologies. Majzoobi et al. (2011) propose a di�erent design and
proposed a model for the probability distribution of the output of a flip-flop when time restrictions are
violated.

47
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Section ’Practical Use of the model’ from Cherkaoui et al. (2013b) contains a proposal to increase the
entropy per output bit by a nth-order parity filter, that combines n successive input bits into one output
bit using a XOR function, assuming the probability for each bit to be independent for the previous bit (See
Equation 10). For the practical use of the model, the probability of successive bits may be approximated
as sampled at independent times, but the sampling points are not independent in time as being given
by a regular clock signal. Interestingly, our analysis showed that certain clock frequencies increase the
entropy per bit. Therefore, this suggest the distance between sampling points has a strong correlation
with n.

This chapter is divides as follows, The first section STRNG Principle summarizes this theoretical
model and then extends it by adding two random variables to model the external clock jitter and the
metastability of the flip-flop outputs in section Extended Stochastic Model. The bit entropy is computed
for the theoretical models and the results are presented in Results. In Practical use: nth-order parity
filter we study the practical use of the model when a parity filter is used to enhance the entropy and show
results for two particular set of parameters that suggest that a desired lower bound of entropy may be
reached with a lower n, reaching a lower compression rate. Finally Discussion summarizes the findings
and discusses further work.

5.2 STRNG Principle
As mentioned, the design of Cherkaoui et al. (2013a) is based on a Self Timed Ring (STR) with L stages
(see Fig. 5.1). Quoting the article, Â�if the number of events N is coprime to L, the STR exhibits a
number of equidistant phases between events that is equal to the number of stages L’. Then, the phase
resolution (mean time between events) can be expressed as:

�„ = T

2L
(5.1)

where T is the oscillation period of the STR.

Figure 5.1: STRNG architecture and entropy extraction principle. Figure from Cherkaoui et al. (2013b)

Let us denote by {Ci}L≠1
i=0 the STR output signals at each stage with the same period T and a

minimum phase di�erence �„. Then, there are L events distributed over T/2 and {Ci}L≠1
i=0 are ordered

by its mean time arrival ti = t0 + i · �„, {0 Æ i < L}.
The jitter noise that appears at the output of the STR stage is considered to be independent and local to
each stage and is modeled after a Gaussian probability distribution with standard deviation ‡ (Cherkaoui
et al., 2013b). Then time position of each event can be represented as the realization of a independent
random variable {Xi}L≠1

i=0 that follows a normal distribution centered at ti and with a standard deviation
‡:

Xi≠1 = N(ti≠1, ‡2), Xi = N(ti≠1 + �„, ‡2). (5.2)
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The signals {Ci}L≠1
i=0 are sampled at time t, which is considered to be deterministic in this first

approach. The samples {xi(t)}L≠1
i=0 are combined with a XOR function and the resulting signal denoted

as Â(t) = x0 ü . . . ü xL≠1. For a given t, there exists a subindex j satisfying tj≠1 < t Æ tj . Then signal
Â(t) can be expressed as follows:

Â(t) = Ê(t) ü µ(t), (5.3)
Ê(t) = xj≠1 ü xj , µ(t) = ü{xi}i ”=j≠1,i ”=j (5.4)

The entropy of an output bit of signal Â associated with a sampling time t is

H(Â(t)) = h(P [Â(t) = 1]) = h(P [Â(t) = 0]), (5.5)

where h(q) = ≠q log2(q) ≠ (1 ≠ q) log2(1 ≠ q) is the binary entropy function.

The entropy may be safely approximated as H(Â) ≥ H(Ê), except if �„ π ‡, but this case implies
H(Â) ≥ 1. Assume that µ(t) = u is a deterministic bit value 0 or 1. Then, P [Â(t) = u] = P [Ê(t) = 0]
(and P [Â(t) = u] = P [Ê(t) = 1]), so that

H(Â(t)) = h(P [Ê(t) = 0]) = h(P [Ê(t) = 1]). (5.6)

Let us denote p(t) = P (Xj < t) and pÕ(t) = P (Xj≠1 < t) and we consider the case of the two signal
rising edges. Under this assumption, the calculation of the probability gives

P [xj≠1 ü xj ] = pÕ(t) + p(t) ≠ 2p(t)pÕ(t). (5.7)

equals either P [Ê(t) = 0] or P [Ê(t) = 1], depending on the relative polarity of the edges.
Since the random variables Xi follow the normal distribution, then p(t) and pÕ(t) can be expressed as

functions of t, ‡ and �„:

p(t) = �
3

t ≠ tj≠1 + �„

‡

4
, pÕ(t) = �

3
t ≠ tj≠1

‡

4
,

where �(x) is the cumulative distribution function of the standard normal distribution.
Then, following Eq. 5.7, we can express the entropy of the output bit value of Â at time t

H(Â(t)) = h

3
�

3
t ≠ tj≠1

‡

4
+ �

3
t ≠ tj≠1 + �„

‡

4
≠ 2�

3
t ≠ tj≠1

‡

4
�

3
t ≠ tj≠1 + �„

‡

44
.

5.2.1 Extended Stochastic Model
The previous model implies that the sampling clock is a jitter-free ideal clock, so that the sampling time
t is deterministic. To extend this model for a sampling clock that includes jitter, we suppose a non-
deterministic sampling time that is the realization of a random variable Z ≥ N(ts, ‡2

clk). For the model to
be valid, the following restriction must hold: ‡clk < �„, which implies Eq. 5.6. Then, p(ts) = P [Xj < Z]
and pÕ(ts) = P [Xj≠1 < Z] can be calculated by the following integrals

p(ts) =
⁄ Œ

≠Œ
�

3
t ≠ tj≠1 + �„

‡

4
· fz

3
t ≠ ts

‡clk

4
dt

pÕ(ts) =
⁄ Œ

≠Œ
�

3
t ≠ tj≠1

‡

4
· fz

3
t ≠ ts

‡clk

4
dt

(5.8)

where fz(t) = 1Ô
2fi

e
≠t2

2 is the probability density function of the normal distribution. The entropy may
be approximated by eq. 5.7 as in the previous section.

The input of the flip-flops of the design must be stable for a minimum time before and after a sampling
time t, from now on this interval by k, that are technology dependent. For simplicity, k is a interval
centered around the sampling time t, so if t ≠ k/2 < ti < t + k/2, then metastable conditions apply
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Figure 5.2: Metastability probability model. Figure from Majzoobi et al. (2011)

and the output transition to a defined high or low state is delayed. Majzoobi et al. (2011) propose the
probability distribution to model metastability that can be found in Fig. 5.2. Then, the probability of
the output to settle to a ‘1’ (new data value) is given by the probability distribution

P [xi = 1] = 1 ≠ �
3

|t ≠ ti|
‡meta

4
, (5.9)

where ‡meta is a parameter that depends on the technology and the operating conditions.
We follow this model to add metastability to the model. Then p(t) and pÕ(t) are redefined as:

p(t) =P [Xj < t ≠ k

2 ] + P [xj = 1] · P [t ≠ k

2 < Xj < t + k

2 ]

pÕ(t) =P [Xj≠1 < t ≠ k

2 ] + P [xj = 1] · P [t ≠ k

2 < Xj≠1 < t + k

2 ]
(5.10)

Given that Xj , Xj≠1 follow a normal distribution, then

p(t) =�
3

t ≠ tj≠1 ≠ k/2
‡

4
+

⁄ t+k/2

t≠k/2
fz

3
tÕ ≠ tj≠1

‡

4
·
3

1 ≠ �
3

tÕ ≠ t

‡meta

44
dtÕ
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44
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(5.11)

A complete model, which takes both into account clock jitter and metastability, is given by the following
equations:

p(ts) =
⁄ Œ

≠Œ
�

3
t ≠ tj≠1 ≠ k/2

‡

4
· fz

3
t ≠ ts

‡clk

4
dt

+
⁄ Œ
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fz

3
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‡clk
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6
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(5.12)

5.3 Results
In this section we have performed several simulations taking the same values employed by Cherkaoui
et al. (2013b) [section 3.3]. For comparison purposes we have followed the same notation, being t in the
interval [≠�„/2, �„/2] through a suitable change of variable.
For �„ = 10 time units, several values of ‡, ‡clk, and ‡meta are selected.
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Ideal sampling clock
With ‡clk = 0 and no metastability, the results correspond to the ideal sampling clock and are summarized
in Fig. 5.3 and Table 5.1

Figure 5.3: H(Â(t)) versus t. Blue line represents ‡ = �„/4, red line represents ‡ = �„/2, and green
line corresponds to ‡ = �„.

Table 5.1: Minimum entropy and mean entropy per bit for values of ‡, the standard deviation of the
jitter of the STR signal.

‡ minimum H mean H
�„ 0.9844 0.9918
�„/2 0.8370 0.9187
�„/4 0.2624 0.6325

Sampling clock with jitter
We have computed the entropy for the same values of ‡ that in the previous subsection and for the jitter
of the sampling clock we have selected the values ‡clk = ‡/2, ‡, 2‡. The results are summarized in Fig
5.4 and Table 5.2.

Table 5.2: Minimum entropy and mean entropy per bit for values of ‡, the standard deviation of the
jitter noise of the STR signal and ‡clk, the standard deviation of the clock signal jitter noise.

‡clk = ‡/2 ‡ minimum H mean H
�„ 0.9897 0.9946

�„/2 0.884 0.9416
�„/4 0.3694 0.6910

‡clk = ‡ ‡ minimum H mean H
�„ 0.9957 0.9977

�„/2 0.9463 0.9725
�„/4 0.5970 0.8037

‡clk = 2‡ ‡ minimum H mean H
�„/2 0.9897 0.9946
�„/4 0.8840 0.9416
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Figure 5.4: H(Â(ts)) versus ts with clock jitter. Blue line represents ‡ = �„/4, red line represents
‡ = �„/2, and green line corresponds to ‡ = �„/. Continuous line corresponds to ‡clk = ‡/2, segmented
line to ‡clk = ‡, and (hardly told apart) dotted line corresponds to ‡clk = 2‡.

Metastability
We have computed the entropy for same values of ‡ that those in the previous subsection and for the
metastability we have assumed that k = ‡meta and we have selected the values ‡meta = ‡/2, ‡, 2‡. The
results are summarized in Fig. 5.5 and Table 5.3.

Figure 5.5: H(Â(t)) versus t with metastability. Blue line represents ‡ = �„/4, red line represents
‡ = �„/2, and green line corresponds to ‡ = �„/. Continuous line corresponds to ‡meta = ‡/2,
segmented line to ‡meta = ‡, and dotted line corresponds to ‡meta = ‡.

Sampling clock with jitter and metastability
We have computed the entropy for the same values of ‡ as in the previous subsection and for the
metastability we have assumed that k = ‡meta and we have selected the values ‡meta = ‡ and ‡clk = ‡.
Results are summarized in Fig. 5.6 and Table 5.4.
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Table 5.3: Minimum entropy and mean entropy per bit for values of ‡, the standard deviation of the
STR signal jitter noise and ‡meta, the standard deviation for probability distribution of the flip-flop
metastability.

‡meta = ‡/2 ‡ minimum H mean H
�„ 0.9855 0.9924

�„/2 0.8455 .9228
�„/4 0.2751 0.6399

‡meta = ‡ ‡ minimum H mean H
�„ 0.9886 0.994

�„/2 0.872 0.9357
�„/4 0.3251 0.6685

‡meta = 2‡ ‡ minimum H mean H
�„/2 0.9397 0.9692
�„/4 0.5094 0.7689

Figure 5.6: H(Â(ts)) versus ts. Blue line represents ‡ = �„/4, red line represents ‡ = �„/2, and green
line corresponds to ‡ = �„.

Table 5.4: Minimum entropy and mean entropy per bit for values of ‡, the standard deviation of the
STR signal jitter noise. Equal values are taken for the standard deviation of the clock jitter noise and
metastability

‡ minimum H mean H
�„ 0.9838 0.9967
�„/2 0.9252 0.9614
�„/4 0.5065 0.7596

5.4 Practical use: nth-order parity filter
In Eq. 10 by Cherkaoui et al. (2013b), there is a proposal to increase the entropy per output bit by a
nth-order parity filter, which combines n successive input bits into one output bit using a XOR function.
We denote PÂ(t), the probability associated of the bit sampled at time t to be equal to 1.

The bit probability at the output of parity filter Ppf is calculated

Ppf(t) = 0.5 ≠ 2n≠1(PÂ(t) ≠ 0.5)n. (5.13)

This implies that PÂ(t) remains the same for the successive sampling times given by Tclk, period
of the sampling clock. This will only occur when Tclk is an integer multiple of T or the sampling is
assumed to be independent, otherwise the minimum bound of entropy of several samples will tend to the
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mean entropy in the interval. We have assumed two di�erent cases (labelled 1 and 2) with two di�erent
parameters set.

For the first set of parameters, we have taken the values Fclk = 100 MHz, L=511, Fstr=460.4 MHz.
Then, by Eq. 5.1, �„=2.12 ps and the sampling rate equals to 588161

125 �„, so the period of the sampling
is 125 and the distance between points equals g = 36/�„.

The second set of parameters is Fclk = 100 MHz, L=511, Fstr=302.1 MHz (Table 2, Cherkaoui et al.
(2013b)). Then, by Eq 5.1, �„=3.23 ps and the sampling rate equals to 1543731

500 �„, so the period of the
sampling is 500. In this case the distance between points equals g = 231/�„.

So, the idea is to calculate the minimum entropy between each pair of points for every possible
sampling points configuration in which the distance between points is g. As seen in the figures H(Â) is
�„-periodic, so the sample value shows the same entropy after the sampling period. For example, in the
first case, is equivalent to take 125 samples separated by 36/�„ in the interval [�„/2, �„/2].

For two bits, the probability of independent sampling is given by Eq. 5.13:

Ppf = 2 · PÂ(t = 0) ≠ 2 · (PÂ(t = 0))2. (5.14)

Taking into account the distribution of the sampling points

P Õ
pf = PÂ(t = 0) + PÂ(t = ≠g) ≠ 2 · PÂ(t = 0) · PÂ(t = ≠g). (5.15)

It is trivial to see that Eq. 5.14 gives the minimum entropy, however, for Eq. 5.15 every combination
of two consecutive sampling points for t is checked in order to find the minimum. Results are summarized
in table 5.5 for entropy values in Table 5.1.

Table 5.5: Results for minimum entropy for di�erent assumptions, for a single bit, for two bits under
random sampling, for two bits with distance g = 36/�„ and for two bits with distance g = 231/�„

Minimum entropy
‡ Single bit By Eq. 5.13 Between pairs [Case 1] Between Pairs [Case 2]

�„ 0.9897 0.9994 0.9997 0.9998
�„/2 0.8370 0.9627 0.97749 0.9890
�„/4 0.2624 0.4160 0.6090 0.8015

For the worst case ‡ = �„/4 and case 1, we have calculated how many bits are needed to be xored
to reach a minimum bound of entropy close to 1. In this case, 40 bits for h(Ppf) ¥ 1, while 20 bits for
h(P Õ

pf) ¥ 1. Here the closeness of the approach will be given by the application or the final user.

5.5 Discussion
In this chapter we have studied the theoretical stochastic model, that exploits the jitter noise of the
events propagating on an STR. We have extended the model, adding other sources of randomness in the
design, results show that he output entropy function H(Â(t)) shows a minimum, when sampling time is
at maximum distance �„/2 of the mean time arrival of the two closest events.

The theoretical model depends highly on a good characterization of ‡, as the results on the lower
entropy bound are very dependent on the relation between the values of ‡ and �„. For the added sources
of randomness in this work, the quantification of ‡clk, ‡meta must also be careful measured, either directly
or by modeling it from the FPGA vendor parameters.

The results show that the minimum of the entropy function increases with ‡clk, due to more ran-
domness being introduced to the sampling process. Certain combinations of values of ‡ y ‡clk share the
same H(Â(t)) function. Contrary to what was initially expected, metastability is not always e�ective
in increasing the entropy and certain values of ‡meta slightly worsen the lower entropy in the complete
stochastic model with respect to the results obtained for the model that only adds the jitter noise of the
clock signal. However we have assumed that k < �„ because then H(Â) ≥ H(Ê) (see Eq. 5.3 ). Further
work must be done to accommodate the case where k ∫ �„ as the previous condition does not hold.
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If a nthorder parity filter is used to increase the entropy per bit, the number of bits n required to
achieve a desired entropy decreases when the distance between samples is considered. Initial results based
on pairs of sampling points show better results on the entropy compared to the case of the sampling points
being independent. Therefore there is room for improvement in optimizing the distance between samples
for any given design.

Finally, we have focused on the study of a design where only one oscillator based in a single self-timed
ring. Previously work by Sunar et al. (2007) proposed a design that combine the outputs of several
inverter rings oscillators. The probabilistic model was based in what they denominated the urns model,
that was refuted by Dichtl and GoliÊ (2007). Some of the assumptions of this model can be resolved
improving the characterization of the jitter noise and the use of uniformly distributed sequences theory,
in which the discrepancy of the sequences is studied to provide bounds on the number of points on a given
interval. Lattice points sets (see Wang and Hickernell (2002)) can provide a good probabilistic model to
analise these designs.



56 CHAPTER 5. ENTROPY ASSESSMENT IN TRNGS



6
Conclusions

In this chapter we outline the main results reached in each chapter of the thesis, along with the open
problems for future work. We also comment briefly about the materials and methods used in each chapter
and refer to the correspondent chapter for more details.

6.1 Chapter 2
The estimator of planar curve length based on intersection counting with a square grid, the Bu�on-
Steinhaus estimator is an example of systematic sampling on the semicircle. A predictor proposed in
Cruz-Orive and Gual-Arnau (2002) is checked here by means of repeated Monte Carlo superimpositions
of a curve onto a square grid, with isotropic uniform randomness relative to each other. Nine curvilinear
features (namely flattened DNA molecule projections by Podestà et al. (2004)) were considered, and
complete data are shown for two of them based on the criteria of being the most and less invariant to
rotation. Some considerations were given when the target parameter is the length of a curve population.

Automatization required image processing to transform the original ti� image of each curve into
a polygonal approximation consisting of between 180 and 416 straight line segments or ‘links’ for the
di�erent curves. Image tracing or vectorization, defined as the conversion of raster graphics into vector
graphics, can encode the topological information of the image in mathematical primitives such as lines
and arcs but is a complex problem as the abstraction required for vector representations is higher than
for pixel. Still semiautomatic tracing algorithms are in principle preferable to the manual tracing as the
latter is more prone to introduce bias (Meroni et al., 2018). Therefore the intersection counting method
is highly recommended to estimate curve length because it is direct, design unbiased, and rather e�cient.
Also, if a square grid is used, then this study shows that the error variance may be predicted fairly reliably
from a single grid superimposition on the target curves considered.

The performance of the variance prediction formula proved to be satisfactory for practical use (at
least for the curves studied). The error variance has a rotation (Cauchy) and a translation (Cavalieri)
component. The prediction of the former may be subject to improvement in a posterior work as the
results where relatively poor.

In practice, grids consisting of separate straight line segments, half circles, etc., can be more e�cient
than the square grid. The problem on a variance prediction of a general grid remains basically open, still
a predictor for a test grid of wavy cycloids was proposed in Cruz-Orive et al. (2014).

6.2 Chapter 3
Design unbiased population size estimation with stereological methods is an e�cient alternative to au-
tomatic computer vision methods which have image dependent bias. Moreover, stereological methods
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o�er the possibility of estimating the error variance from a single sample. A new variance estimator,
varSplit( ‚N), for the CountEm population size estimation method has been proposed. Its performance
has been tested against the Cavalieri estimator, varSplit( ‚N), on a dataset of 26 images with their corre-
sponding population point patterns.

Results show that the Cavalieri estimator performs better for the considered dataset, as it presents
a lower variance. Both estimators underestimate the empirical variance when considering a high initial
number of quadrats, n0 = 100, probably due to the fact that a low number of particles per quadrat
implies almost independent quadrat counts. The performance improves by reducing the initial number of
quadrats to n0 = 50 and therefore increasing the number of particles per quadrat. Both estimators rely
on modeling quadrat count dependence using G. Matheron’s transitive theory, therefore the estimators
are less accurate with low quadrat counts. However the error in the estimation is higher if the initial
number of quadrats n0 is lower, further work must be done to improve on the variance prediction for
higher number of quadrats.

Combining automatic image analysis and non-uniform sampling may improve the e�ciency following
the idea of Gardi et al. (2008a,b); Keller et al. (2013). On the other hand the information provided by
these methods in terms of spatial density may be useful into optimizing the grid for each image. Work
in that direction has already been done into integrating data from the perspective in the images (Cruz
and González-Villa, 2018b).

6.3 Chapter 4
This chapter presents a simple, fast and automated image analysis method -the �m algorithm- to quantify
a pharmacological response with data obtained from fluorescence microscopy experiments. It is tested on
the case of G-protein coupled receptors (GPCRs), where the e�cacy of a particular drug to initiate the
endocytosis process is related to the formation of endocytic vesicles or endosomes and their subsequent
internalisation within intracellular compartments that can be observed with high spatial and temporal
resolution by fluorescence microscopy techniques. This algorithm does not require individual object
detection and computes the relative increment of the third order moment in fluorescence microscopy
images after filtering with the Laplacian of Gaussian function. It was tested on simulations demonstrating
its ability to discriminate di�erent experimental situations according to the number and the fluorescence
signal intensity of the simulated endosomes. Finally and in order to validate this methodology with real
data, the algorithm was applied to several time-course experiments based on the endocytosis of the mu
opioid receptor (MOP) initiated by di�erent agonist compounds Campa et al. (2015). Each drug displayed
a di�erent �m sigmoid time-response curve and statistically significant di�erences were observed among
drugs in terms of e�cacy and kinetic parameters.

The algorithm does not rely on the manual annotation of images nor on a manual characterization,
besides an approximated value for the expected size of the endosomes. It suitable to be integrated in
drug screening with exploratory purposes in automatic microscopy, but the same principle can be easily
extended to similar problems where the high number of experiments requires fast and non supervised
methods and segmentation algorithms do not carry a complete solution for detecting the objects of
interest. In the present work the spatial distribution is irrelevant and the endosome size is assumed to
be independent regarding the agonist drug used.

Future work may involve automatically estimating the size of the object to be measured, analysing the
variation of size and spatial distribution of endosomes depending on the evaluated drug. Estimating these
quantities may also lead to a more stable individual detection that is not based on manual parameters
like in the previous solutions.

6.4 Chapter 5
This chapter is focused on the stochastic model proposed to evaluate the entropy of a random number
generator designed to exploit the jitter of events propagating on a self timed ring (STR) (Cherkaoui et al.,
2013b) . It summarizes the theoretical model and then extends it by adding two random variables to
model the external clock jitter and the metastability of the flip-flops outputs. The binary entropy function
is computed for several cases and the results show that the lower bound of entropy per bit is improved
and it increases with the jitter magnitude, while the metastability is not as e�ective in improving said
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bound for the present model. Further work must be done to accommodate the cases where the restrictions
assumed by the model do not hold.

Relating to the practical use of the model when a parity filter is used to enhance the entropy, it is
studied under the assumptions of random sampling and systematic sampling, the number of bits required
to be xored to achieve a desired entropy decreases when the distance between samples is considered. Initial
results based on pairs of sampling points configuration shows better results on the entropy over when the
sampling points are considered independent. Therefore there is room for improvement in optimizing the
distance between samples for any given design.

Future work is to study a design with several oscillators following the work by Sunar et al. (2007).
This problem would benefit of applying uniformly distributed sequences theory, in which the discrepancy
of the sequences is studied to provide bounds on the number of points on a given interval. Lattice points
sets (see Wang and Hickernell (2002)) can provide a good probabilistic model to analise these designs.
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7
Resumen en Castellano

En estadística, muestrear se define como la selección de un subconjunto de muestras individuales de una
población objetivo con la intención de estimar características de toda la población. El sesgo y la varianza
son las dos fuentes principales de error en la estimación. Los métodos de muestreo tienen como objetivo
obtener estimaciones precisas e insesgadas. El objetivo del muestreo geométrico es estimar propiedades
cuantitativas de objetos en tres dimensiones, como el volumen, área de la superficie, la longitud o el
número de partículas (celdas u otras estructuras). Es particularmente útil cuando una medida directa no
es posible por razones económicas o técnicas.

Los avances en computación y el procesado de imagen cobran cada vez mayor importancia para
probar resultados teóricos provenientes de la esterología y para la aplicación práctica de sus principios.
El segundo y tercer capítulo de esta tesis están enfocados en generar replicaciones de Monte Carlo para
estudiar el comportamiento de los predictores de varianza para dos estimadores estereológicos, en este
caso el estimador Bu�on-Steinhaus para la estimación de longitud en curvas planas y para el estimador
CountEm para la estimación de número de partículas en imágenes planas.

Como se ha comentado anteriormente, el desarrollo en técnicas de captación de imágenes proporcionan
grandes volúmenes de imágenes. Por ejemplo, los procesos dedicados a experimentos para desarrollar
nuevos fármacos tienen como objetivo cuantificar la respuesta farmacólogica de centenares de compuestos
químicos a través del análisis de imagen. La gran cantidad de imágenes requieren algoritmos automáticos
de análisis de imágen como el algoritmo � ≠ m propuesto en el capítulo cuarto.

Los modelos estadísticos son útiles para caracterizar el comportamiento de un gran número de muestras
con alta variabilidad. Pueden ser aplicados para generar números verdaderamente aleatorios, siendo de
especial interés cuando la fuente física de ruido está disponible en circuitos electrónicos. Las implementa-
ciones modernas de generadores de números verdaderamente aleatorios incluyen un modelo estocástico
para garantizar matemáticamente su funcionamiento. En el capítulo quinto se estudia un modelo es-
tocástico para extraer entropía del ruido electrónico asociado con los circuitos lógicos, que depende on el
método de muestreo asumido.

7.1 Capítulo 2
Este capítulo está dedicado al estimador de Bu�on-Steinhaus, que estima la longitud de curvas planas. La
longitud se estima contando el número de intersecciones con una rejilla cuadrada que ha sido superpuesta
con una translación y rotación aleatorias y multiplicando esta cantidad por fi/2 y por la constante de
la rejilla. Esta última esta dada por el área de la rejilla por unidad de longitud (Baddeley and Jensen,
2005; Howard and Reed, 2005).

Se ha estudiado un predictor de la varianza propuesto en Cruz-Orive and Gual-Arnau (2002), estu-
diando su comportamiento a través de replicaciones de Monte Carlo de una curva sobre la rejilla cuadrada,
con una rotación y traslación aleatorias para cada réplica. Nueve objetos tipo curva fueron considerados,
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que provenian de proyecciones de moléculas de DNA captadas en imágenes por Podestà et al. (2004). Se
estudiaron especialmente los resultados completos para dos de ellas, por el criterio de ser las más y menos
invariantes a la rotación. Asimismo se discutió el caso en el que el parámetro a medir es la longitud
media de una población de curvas. Los experimentos que se realizaron apuntan a que es más conveniente
utilizar una rejilla que combine un diseño de ‘quadrats’ con un sistema de líneas de test. En este caso, se
podrá emplear la fórmula de Cochran (Cochran, 1977), si la distancia entre ’quadrats’ es suficientemente
grande para asumir independencia entre estos.

Otra conclusión es que el funcionamiento de la formula propuesta de predicción de varianza para el
estimador de Bu�on-Steinhaus es suficientemente satisfactorio para el uso práctico (al menos para las
curvas estudiadas). La variancia del error tiene una componente de rotación (Cauchy) y de translación
(Cavalieri). La predicción del primero es relativamente peor, mientras que la predicción de la segunda
componente es satisfactoria, por lo que podría ser mejorada en trabajo posterior.

Para las simulaciones se requirieron métodos de procesado de imagen para transformar la imagen orig-
inal en formato ti� de cada curva en una aproximación basada en polígonos de entre 180 y 416 segmentos
de línea dependiendo de la curva en cuestión. El proceso para trazar una imagen o vectorización, definido
como la conversión desde gráficos tipo ráster a gráficos vectoriales, permite codificar la información de
la topología de la imagen en primitivas matemáticas como líneas o arcos pero es un problema complejo
dado que la abstraction requerida para las representaciones vectoriales es superior a la requerida por un
pixel. Aun así los métodos semi-automaticos de trazado son en principio preferibles antes que la traza
manual dado que esta última es más proclive a introducir sesgos (Meroni et al., 2018). Por estos motivos,
el método de conteo de intersecciones es recomendable para estimar la longitud de la curva porque es
directo, insesgado por diseño, y eficiente. Además si se utiliza la rejilla cuadrada, entonces el estudio
realizado muestra que la predicción del error de una única superimposición de la rejilla sobre la curva es
suficientemente fiable.

En la práctica, las rejillas pueden consistir en lineas separadas de segmentos, semicírculos, etc., y
estas rejillas pueden dar una estimación de la longitud con menos varianza que con la rejilla cuadrada.
Desafortunadamente, el problema de la predicción de varianza para cualquier rejilla en general aún
permanece como un problema abierto, aunque existen resultados para una rejilla formada por cicloides
en Cruz-Orive et al. (2014).

7.2 Capítulo 3

La estimación de población con métodos estereológicos es una alternativa eficiente a los métodos automáti-
cos de visión artificial que presentan sesgo dependiendo de la imagen. Además los métodos estereológicos
ofrecen la posibilidad de estimar el error para una sola muestra. La estimación del número de partículas
se realiza mediante el método CountEm (Cruz et al., 2015)

Un predictor de la varianza varSplit( ‚N) se ha propuesto para el método CountEm de estimación de
tamaño de la población. Se ha estudiado su comportamiento, comparándolo con el estimador de Cavalieri,
varSplit( ‚N), en un conjunto de 26 imágenes anotadas con sus distribuciones espaciales de puntos.

Los resultados muestran que el estimador de Cavalieri ofrece mejores resultados para el conjunto
de datos considerado, porque las estimaciones de la varianza son más precisas. Ambos estimadores
subestiman la varianza empírica cuando se considera un número inicial elevado de ’quadrats’ n0 = 100,
probablemente debido al hecho de que un conteo bajo de partículas por ’quadrat’ implica cierta indepen-
dencia entre estos. Por ello, la predicción mejora si se reduce el número inicial de ’quadrats’ a n0 = 50
y por ello se decrementa el número de quadrats vacios. Dado que un número inicial de quadrats menor
influye en la precisión de la estimación de N , queda como trabajo futuro mejorar la predición de varianza
para un mayor número de quadrats.

Combinar el análisis automático de imagen y muestreo no uniforme puede mejorar la eficiencia sigu-
iendo la idea propuesta en Gardi et al. (2008a,b); Keller et al. (2013). Por otro lado la información que
proveen estos métodos automáticos en términos de estimación de la densidad espacial puede ser útil para
optimizar la rejilla para cada imagen, dando información adicional sobre densidad, perspectiva etc. Una
linea futura puede ser combinar esta información con trabajos previos que adaptan la rejilla usando la
perspectiva (Cruz and González-Villa, 2018b).
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7.3 Capítulo 4
Este capitulo presenta un método automático de análisis de imagen, el algoritmo �m, para cuantificar
la respuesta farmacológica en datos correspondientes a experimentos de microscopía de fluorescencia
Se ha empleado en el caso de GPCRs (G-protein coupled receptors), donde la eficacia de un fármaco
particular para iniciar el proceso de endocitosis está relacionado con la formación de vesículas endocíticas
o endosomas y su posterior internalización en los compartimientos celulares que puede ser observada con
una alta resolución espacial y temporal mediante técnicas de microscopía de fluorescencia.

Este algoritmo no requiere detección individualizada de los objetos y calcula el incremento relativo en
el momento estadístico de tercer orden en las imágenes de microscopía de fluorescencia después de filtrar
con la función ‘Laplacian of Gaussian’. Se probó mediante simulaciones que es posible discriminar entre
diferentes condiciones experimentales dependiendo del número y la intensidad de la señal de fluorescencia
de los endosomas simulados. Finalmente, para validar la metodología con datos reales, se aplicó a una
serie de experimentos temporales basados en la endocitosis del receptor mu opioide (MOP) iniciada por
diferentes compuestos agonistas. Cada fármaco mostró una respuesta diferente que se ajusta a una curva
de respuesta sigmoide y se encontraron diferencias estadísticamente significativas entre los fármacos en
términos de eficacia y de parámetros cinéticos.

El algoritmo �m presenta varias ventajas: no requiere anotación manual de las imágenes ni tampoco
caracterización manual, más allá del valor aproximado del tamaño esperado de los endosomas. Es ade-
cuado para ser integrado en procedimientos de búsqueda de fármacos en microscopía automática, pero
el mismo principio puede ser fácilmente adaptado a problemas similares cuando se requieran métodos
automáticos por el alto número de experimentos y los algoritmos de segmentación no aporten una solu-
ción completa para detectar los objetos de interés. En este trabajo se ha considerado que la distribución
espacial es irrelevante y el tamaño se ha asumido como independiente respecto al compuesto agonista
utilizado.

Futuros trabajos se enfocaran en estimar automáticamente el tamaño del objeto a ser medido, analizar
la variación en tamaño y en distribución espacial de los endosomas dependiendo del fármaco evaluado.
Estimar estas cantidades también es útil para una detección más estable que no este basada en parámetros
manuales como en trabajos previos.

7.4 Capítulo 5
Este capítulo está enfocado en el modelo estocástico propuesto para evaluar la entropía de un generador
de números aleatorios diseñado para sacar partido del ruido jitter asociado a eventos propagándose en un
oscilador STR (Self Timed Ring) (Cherkaoui et al., 2013b). Se sintetiza el modelo teórico y se completa
añadiendo dos variables aleatorias para modelar el ruido jitter del reloj externo y la metaestabilidad de
los flip-flops de salida. Se ha calculado la entropía binaria para varios casos y los resultados muestran que
se mejora la cota mínima de entropía y que aumenta con la magnitud del ruido jitter del reloj, mientras
que los resultados para la metaestabilidad no son tan efectivos en mejorar dicha cota para el modelo en
cuestión. Se debe realizar trabajo adicional para los casos en los que las restricciones asumidas por el
modelo no se cumplen.

En relación al uso práctico del modelo que contiene un filtro de paridad para mejorar la entropía,
se estudia bajo las suposiciones de muestreo aleatorio y muestreo sistemático. En este último caso, el
número de bits sobre los que se debe realizar la operación xor para alcanzar la entropía deseada desciende
cuando se considera la distancia entre muestras. Por esto, hay margen para la mejorar optimizando la
distancia entre muestras para un diseño dado.

Trabajos futuros incluyen estudiar un diseño con varios osciladores siguiendo lo propuesto en Sunar
et al. (2007). Este problema se beneficiaria de la aplicación de la teoría de secuencias uniformemente
distribuidas, donde se estudia la discrepancia de las secuencias para proporcionar cotas al número de
puntos contenidos en un intervalo dado. Las retículas (see Wang and Hickernell (2002)) pueden ser un
buen modelo probabilístico para analizar estos diseños.
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