
 
 
 
 
 

University of Technology, Sydney 
Faculty of Engineering and Information Technology 

 
 

ARTIFICIAL INTELLIGENCE FOR CANCER 
TREATMENT AND DIAGNOSIS 

 

By 

Juan Martinez de la Pedraja Garcia 

 

Student Number: 12973525 

Project Number: SU-031 

Major: Mechatronic 

 

 

Supervisor: Dr Paul Kennedy 

 

 

A 6 Credit Point Project submitted in partial fulfilment of the requirement 
for the Degree of Bachelor of Engineering 

 

 

18 June 2018 

 



2 
 

 



3 
 

ABSTRACT 

Currently, according to some estimates diagnostic errors contribute to approximately 10 

percent of patient deaths, which explains the interest in incorporating new technologies 

into this process. With the significant developments made in the last decades, Artificial 

Intelligence (AI) has arguably become a good candidate for this task. Specifically, our 

project involves using Machine Learning (a subfield of AI) to improve childhood cancer 

treatment and diagnosis.  

We will focus on Acute Lymphoblastic Leukemia (ALL), the most common type of 

pediatric cancer with around 300 yearly diagnoses in Australia.  In ALL, relapse decreases 

the chances of survival as standard chemotherapy becomes ineffective. Thus, modified 

therapy is needed for patients with high risk of relapse. In this project, we explore the use 

of Machine Learning to accurately predict relapse, which would ultimately result in better 

treatment. This study will be based on a dataset containing genetic information, which 

will be the basis for predictions, and cancer outcome (relapse/mortality) of about 150 

patients. 

The low number of samples, combined with the high proportion of non-relapse cases, 

means there are very few relapse examples, which complicates finding meaningful 

patterns to make accurate predictions. Furthermore, high dimensionality creates 

difficulties when trying to achieve generalizable solutions. To address these challenges, 

we explore the use of biased classifiers, particularly sparse linear methods; dimensionality 

reduction techniques both supervised (univariate feature selection, LDA) and 

unsupervised (PCA, Autoencoders); ensemble approaches, especially bagging and 

undersampling/oversampling methods (ENN).  

 

 

 

 

 

 

 



4 
 

LIST OF CONTENTS 

  

STATEMENT OF ORIGINALITY .................................................................................. 2 

ABSTRACT ...................................................................................................................... 3 

LIST OF CONTENTS ....................................................................................................... 4 

LIST OF FIGURES ........................................................................................................... 7 

LIST OF TABLES ............................................................................................................ 8 

NOMENCLATURE ........................................................................................................ 10 

1. BACKGROUND ................................................................................................. 11 

1.1    Introducing Machine Learning ................................................................... 11 

1.2    The Importance of Better Medical Diagnosis and Treatment .................... 11 

1.3    Several Examples of Recent Research ....................................................... 12 

2. PROJECT OVERVIEW ...................................................................................... 14 

2.1    Scope and Objective ................................................................................... 14 

2.2    ALL and the Importance of Relapse........................................................... 14 

3. METHODOLOGY .............................................................................................. 15 

3.1    Machine Learning Methodology: An Empirical Iterative Process ............. 15 

3.2    A Framework for Machine Learning Methodology: The Bias-Variance 

Trade-Off ............................................................................................................. 16 

3.3    Ensuring Validity of Results ...................................................................... 18 

3.4    Evaluating Performance: Metrics ............................................................... 20 

3.5    Resources .................................................................................................... 21 

4. PRELIMINARY ANALYSIS AND DISCUSSION OF GENE EXPRESSION 

DATA .................................................................................................................. 22 

4.1    Brief Summary of Dataset Characteristics ................................................. 22 



5 
 

4.2    The Challenge of Low Number of Samples ............................................... 22 

4.3    The Challenge of Class Imbalance ............................................................. 23 

4.4    The Challenge of High Dimensionality ...................................................... 25 

4.5    Changing Perspective: A Quick Look from the Bias-Variance  Viewpoint

 ............................................................................................................................. 26 

5. EXPLORATORY PHASE .................................................................................. 26 

5.1    Brief Assessment of Several Model’s Performance ................................... 26 

5.2    Brief Analysis of Results ............................................................................ 32 

5.3    Analysis of the Logistic Regression Model ................................................ 33 

5.4    Conclusion .................................................................................................. 38 

6. DIMENSIONALITY REDUCTION ................................................................... 38 

6.1    Establishing a Target Number of Dimensions ............................................ 38 

6.2    Supervised vs Unsupervised Dimensionality Reduction ............................ 38 

6.3    Supervised Dimensionality Reduction ....................................................... 39 

    6.3.1    Decision Tree Based Methods: Feature Importance............................ 39 

    6.3.2    Linear Discriminant Analysis .............................................................. 39 

    6.3.3    F-test Based Feature Selection ............................................................ 40 

6.4    Unsupervised Dimensionality Reduction ................................................... 44 

    6.4.1    Dimensionality Reduction Based on Linear Dependency ................... 44 

    6.4.2    Principal Component Analysis ............................................................ 48 

    6.4.3    Autoencoders ....................................................................................... 50 

    6.4.4    Manifold Learning ............................................................................... 53 

7. OTHER STRATEGIES FOR VARIANCE REDUCTION ................................ 54 

7.1    Outlier Removal ......................................................................................... 54 

7.2    Bagging ....................................................................................................... 55 



6 
 

8. RESULTS ............................................................................................................ 56 

8.1    Genes Selected by L1 Penalty .................................................................... 56 

8.2    Baseline Model ........................................................................................... 56 

8.3    Bagging, Feature Selection and Outlier Removal Combined..................... 59 

9. CONCLUSION ................................................................................................... 59 

10. REFERENCES .................................................................................................... 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

LIST OF FIGURES 

 

Figure 3.1: Bias-Variance Trade-Off, Overfitting and Underfitting (Halls-Moore 2015)

 ......................................................................................................................................... 17 

Figure 3.2: 4-Fold Cross Validation (Flöck 2016) .......................................................... 20 

Figure 4.1: The Effect of Irrelevant Features on Distance Based Methods .................... 24 

Figure 5.1: Frequency of Selected Genes in 10-Fold Cross Validation .......................... 34 

Figure 5.2: Correlation Matrix of Selected Genes in 10-Fold Cross Validation ............. 35 

Figure 5.3: Frequency of Selected Genes in 100 Iterations of 10-Fold Cross Validation

 ......................................................................................................................................... 36 

Figure 6.1: F-Statistics of All Genes in the Dataset ........................................................ 41 

Figure 6.2: F-Statistics of the 2000 Most Relevant Genes .............................................. 41 

Figure 6.3: F-Statistics of the 500 Most Relevant Genes ................................................ 42 

Figure 6.4: Correlation Matrix of the 50 Most Relevant Genes According to the F-Test

 ......................................................................................................................................... 43 

Figure 6.5: An Example of a Plot of Cumulative Variance (Géron 2017) ...................... 49 

Figure 6.6: Cumulative Variance of the Features ............................................................ 50 

Figure 6.7: Evolution of the Training and Validation Loss of an Autoencoder .............. 51 

 

 
 

 

 

 

 

 



8 
 

LIST OF TABLES 

 

Table 5.1 Naïve Bayes Training and Validation Performance ........................................ 29 

Table 5.2 Support Vector Machines (No Class Weights, Sigmoid Kernel, Gamma=0.001, 

C=10) Training and Validation Performance .................................................................. 29 

Table 5.3 Logistic Regression (Balanced Class Weights, L1 Penalty, C=0.1) Training and 

Validation Performance ................................................................................................... 30 

Table 5.4 Stochastic Gradient Descent Classifier (Log Loss, Balanced Class Weights, 

L1_Ratio = 0.5, Alpha = 2) ............................................................................................. 30 

Table 5.5 Decision Tree (Balanced Class Weights, Entropy Criterion, 0.2 Minimum 

Weighted Fraction at Leaf) .............................................................................................. 30 

Table 5.6 Random Forests (Balanced Class Weights, Entropy Criterion, 0.2 Minimum 

Weighted Fraction at Leaf, 10 Estimators, 0.01 Number of Features, No Boostrapping) 

Training and Validation Performance. ............................................................................ 31 

Table 5.7 Extremely Randomized Trees (Balanced Class Weights, Gini Criterion, 0.1 

Minimum Weighted Fraction at Leaf, 10 Estimators, 0.1 Number of Features, No 

Boostrapping) Training and Validation Performance.  ................................................... 31 

Table 5.8 Adaboost (Balanced Class Weights, Entropy Criterion, 0.15 Minimum 

Weighted Fraction at Leaf, 10 Estimators, 1 Learning Rate) Training and Validation    

 ......................................................................................................................................... 31 

Table 5.9 Baseline Model: Logistic Regression (Balanced Class Weights, L1 Penalty, C 

= 0.1). ............................................................................................................................... 33 

Table 5.10 Baseline Model with L2 Penalty: Logistic Regression (Balanced Class 

Weights, L2 Penalty, C = 0.1). ........................................................................................ 33 

Table 5.11 10 Most Frequently Selected Genes by the Baseline Model.  ....................... 37 

Table 5.12 Logistic Regression Model (Balanced Class Weights, L2 Penalty, C = 30) 

With 10 Selected Genes.  ................................................................................................. 37 

Table 6.1 Linear Discriminant Analysis Training and Validation Performance. ............ 40 



9 
 

Table 6.2: Logistic Regression (Balanced Class Weights, L2 Penalty, C= 30) with 50 

Genes Selected by ANOVA. ........................................................................................... 43 

Table 6.3: 10 Most Relevant Genes According to ANOVA. .......................................... 44 

Table 6.4: Unregularized Logistic Regression (Balanced Class Weights, L2 Penalty, C = 

1000) with PCA. .............................................................................................................. 48 

Table 6.5: Neural Network (Two Layers of 10 Neurons, 0.3 Dropout Rate and 0.4 L2 

Regularization on Second Layer) .................................................................................... 48 

Table 7.1 Logistic Regression (Balanced Class Weights, L2 Penalty, C = 30) Combined 

with ANOVA Feature Selection and ENN Outlier Removal. ......................................... 54 

Table 7.2 Bagging Ensemble of Logistic Regression Models (Balanced Class Weights, 

L2 Penalty, C = 30) Combined with ANOVA Feature Selection and ENN Outlier 

Removal. .......................................................................................................................... 55 

Table 8.1 Test Results of Logistic Regression Model (Balanced Class Weights, L2 

Penalty, C=30) Based on 10 Genes Selected by L1 Penalty. .......................................... 56 

Table 8.2: Test Results of the Baseline Model (Logistic Regression with Balanced Class 

Weights, L1 Penalty and C=0.1). .................................................................................... 57 

Table 8.3: Comparison of Cross Validation and Test Results for Different Train/Test 

Splits. Logistic Regression with Default Parameters (L2 Penalty, C=1) and Balanced 

Class Weights. ................................................................................................................. 58 

Table 8.4 Bagging Ensemble of Logistic Regression Models (Balanced Class Weights, 

L2 Penalty, C = 30) Combined with ANOVA Feature Selection and ENN Outlier 

Removal. .......................................................................................................................... 59 

 

 

 

 

 

 



10 
 

NOMENCLATURE 

 

ADASYN: Adaptive Synthetic Sampling 

AI: Artificial Intelligence 

ALL: Acute Lymphoblastic Leukemia 

ANOVA: Analysis of Variance 

AUC: Area Under the Curve  

CNN: Convolutional Neural Network 

FFNN: Feed Forward Neural Network 

FN: False Negative 

FP: False Positive 

LDA: Linear Discriminant Analysis 

PCA: Principal Component Analysis 

SDAE: Stacked Denoising Autoencoder 

SGD: Stochastic Gradient Descent 

SMOTE: Synthetic Minority Oversampling Technique 

SNP: Single Nucleotide Polymorphism 

TP: True Positive 

TPR: True Positive Rate 

 

 

 

 

 

 



11 
 

1. BACKGROUND 

1.1 INTRODUCING MACHINE LEARNING 

Artificial Intelligence (AI) is not as recent as it may seem as it dates back to the 50’s. 

However, with the exponential development of technology and its consequent increase in 

computational power, AI is becoming an increasingly central subject in our societies that 

is thought to lead to dramatic changes (Harari 2017). However, at this given point in time, 

we are still at an early stage of development where it is only feasible to attempt low level 

tasks, such as pattern recognition. This is precisely one of the foundations of Machine 

Learning, upon which this project is based. 

Machine learning can be described in several forms, a common and broad definition states 

that it consists in making machines learn from data (Buduma 2017; Géron 2017). 

Traditional solving problem approaches were based on deduction: starting from one or 

more mathematical/logical principles, a set of precise programmable instructions that lead 

to a solution were derived. On the other hand, machine learning is based on induction: 

using given examples, a model that fits the data is proposed, hoping that it will generalise 

to future cases (Kirk 2015). This becomes especially useful for problems which we know 

are governed by an underlying pattern, but this cannot be effectively described 

mathematically or logically (Abu-Mostafa et al. 2012). Some examples are: image/speech 

recognition, fraud detection, product recommendation, online search, financial trading 

and some medical applications such as drug and vaccines discovery, epidemic outbreak 

prediction or medical treatment and diagnosis, the latter being the subject of this project, 

specifically applied to childhood cancer.  

 

1.2 THE IMPORTANCE OF BETTER MEDICAL DIAGNOSIS AND TREATMENT 

According to a report made by the Institute of Medicine from the National Academies of 

Science, Engineering and Medicine (2015, p.2): ‘diagnostic errors contribute to 

approximately 10 percent of patient deaths, and medical record reviews suggest that they 

account for 6 to 17 percent of adverse events in hospitals’. It is estimated that between 40 

000 and 80 000 people die each year as a result of misdiagnosis and that 10% of all 

hospital deaths had a major diagnostic error (Winters et al. 2012). In the case of cancer, 

early diagnosis is critical and the best guarantee of survivability. For instance, according 

to Cancer Research UK (2015):  



12 
 

‘more than 90% of women diagnosed with breast cancer at the earliest stage 

survive their disease for at least 5 years compared to around 15% of women 

diagnosed with the most advanced stage of disease (…), around 70% of lung 

cancer patients will survive for at least a year if diagnosed at the earliest stage 

compared to around 14% for people diagnosed with the most advanced stage of 

disease’. 

To give an idea of the importance of these figures, cancer is the second leading cause of 

death globally, and it is estimated that new cases will rise by 70% over the next two 

decades (World Health Organization 2017). According to Cancer Council Australia 

(2018), ‘approximately two in three Australians will be diagnosed with skin cancer by the 

time they are 70’; for melanoma skin cancer (the most dangerous form of skin cancer) the 

10-year survival rate is around 95% when detected in its earliest stage and drops to 10%-

15% when detected in the latest one (American Cancer Society, 2016).  

With these numbers in mind, it is not hard to imagine the impact that successful 

implementations of machine learning for medical treatment and diagnosis could cause. 

However, it might be harder to imagine how machine learning applications can be used 

in the immediate future. To illustrate what is the current state of the field, some examples 

might help. 

 

1.3 SEVERAL EXAMPLES OF RECENT RESEARCH 

A group of researchers from the Stanford Artificial Intelligence Laboratory lead by 

Sebastian Thrun (2017) decided to use machine learning to diagnose skin cancer. Since 

skin cancer is visible to the naked eye, it is usually detected by a simple inspection (then 

tests are carried out to confirm suspicions). The aim of Thrun’s team was to create an 

image recognition algorithm that was able to identify skin cancer as a dermatologist 

would.  

For this purpose, they turned to deep learning, an area of machine learning that uses deep 

artificial neural networks to process complex data, being able to recognise faces or 

handwritten letters. A dataset of almost 130,000 images was used to train a Convolutional 

Neural Network (CNN). The result was impressive, the algorithm matched the 

performance of the 21 dermatologists that took part in the study. As it is pointed out in 

the paper, mobile devices could be equipped with this algorithm in a near future, 



13 
 

providing a low-cost high-quality tool to make early diagnoses. Furthermore, similar 

models could be used in the same way to detect other illnesses that have visible although 

hard to identify indicators, such as some rare diseases that cause facial dysmorphic 

features.  

A research team from Harvard Medical School and Beth Israel Deaconess Medical Centre 

followed a similar approach when designing an algorithm to diagnose breast cancer. They 

also used deep CNNs, trained with images of healthy and cancerous lymph nodes, 

achieving an AUC score of around 92%, just slightly below the 96% achieved by 

pathologists. However, what researchers point out is that when combining the 

pathologists and neural network’s analysis the AUC score rises to 99.5%, which suggests 

that human-machine collaboration might be the most effective (Wang et al. 2016). In 

another study, using similar lymph nodes tissue images, the aim was to localize the 

tumour regions within the images. In this case, the convolutional neural network used 

was able to detect 92.4% of the tumours, outperforming pathologists who achieved a 

73.2% (Liu et al. 2017).  

Deep neural networks have also been successfully used for brain tumour segmentation 

using magnetic resonance images. In this case, a model made of a Stacked Denoising 

Autoencoder (SDAE) along with a Feed Forward Neural Network (FFNN) was able to 

achieve an average MP score (which is defined in the paper as the percentage of correct 

match between segmentation results and ground truth) of 96% as well as 98% of average 

classification accuracy (Xiao et al. 2016). 

Not all the models are based on image recognition. The Oregon State University carried 

out a study using gene expression data to detect cancer. Using a Stacked Denoising 

Autoencoder (SDAE) followed by a single layer neural network provided best results in 

terms of sensitivity (percentage of correctly identified cancer cases) with a score of 

98.73% while still achieving high accuracy (96.95%) (Danaee et al. 2016). The advantage 

of using gene expressions as predictors is that it later allows to identify with genes are 

related with cancer, which is an enormously valuable information. Using gene expression 

data is precisely the approach of this project. 

 

 

 



14 
 

2. PROJECT OVERVIEW 

2.1 SCOPE AND OBJECTIVE 

The basis of the project is a dataset containing clinical information of leukemia patients 

obtained thanks a to a long-term collaboration between the Bio Group at UTS led by Paul 

Kennedy and the Children’s Hospital at Westmead. The obtained data contains the 

outcome (relapse and mortality) and the level of expression of 11k genes (Affymetrix 

data) of 157 patients; it also includes almost 18k gene variances (SNP data) of 117 of 

these patients. With this genetic data, a machine learning model that is able predict relapse 

and mortality for new patients can be built. 

However, after a preliminary analysis that showed the difficulties this task entails, we 

decided to focus our efforts on working exclusively with the gene expression data 

(Affymetrix) and only for relapse prediction purposes. The reason for this is that the 

Affymetrix data contains more samples than SNP, and there are more cases of relapse 

than of deceased patients; meaning that there is more information available which 

increases the chances of obtaining successful predictive models. 

In summary, the objective of this project will be to build a machine learning model that 

is able to identify patterns in the levels of gene expression of Acute Lymphoblastic 

Leukemia (ALL) patients, upon which we can effectively predict relapse. In machine 

learning terms, this is a supervised classification problem, as we have to classify each 

sample (patient) according to an output label (relapse or no relapse). 

 

2.2 ALL AND THE IMPORTANCE OF RELAPSE 

ALL is the most common type of pediatric cancer. It affects the bone marrow, which is 

responsible for making blood cells, and is characterized by an overproduction of 

immature white blood cells called lymphoblasts. As a result, normal blood cells, namely 

white blood cells, which fight infection and disease; red blood cells, which transport 

oxygen to all tissues in the body; and platelets, which form blood clots to stop bleeding, 

are crowded out. This leads to greater risk of infection, anaemia and easy bleeding 

(National Cancer Institute, 2018). 

 



15 
 

The main treatment for ALL is based on chemotherapy, but this becomes ineffective when 

cancer relapses resulting in poor prognosis (low chances of survival). Consequently, 

doctors estimate the risk of relapse based on age, certain blood tests, early response to 

chemotherapy, etc. and give more intensive treatment to those with higher chances, in 

order to induce complete remission and prevent the cancer from coming back (Teachey 

& Hunger 2013). This stratification is needed because chemotherapy is already a very 

aggressive treatment with strong side immediate side effects that can have long-term 

consequences (Cancer Research UK 2015), thus intensive treatment should be avoided 

when it is unnecessary.  

To conclude, relapse prediction plays a central role in ALL treatment and diagnosis. This 

project attempts to find an alternative method to the one currently used by doctors that 

improves the accuracy of these predictions. 

 

3. METHODOLOGY 

3.1 MACHINE LEARNING METHODOLOGY: AN EMPIRICAL ITERATIVE PROCESS 

Machine learning is mainly an empirical discipline and thus relies heavily on data. It was 

mentioned before that machine learning algorithms are applied for problems that we 

cannot effectively resolve mathematically or logically and where we know a pattern 

exists; here a third and critical requirement is missing: the availability of data. Indeed, we 

can build an algorithm without meeting the first two requirements: if there is an analytical 

solution, machine learning will probably be less accurate and provide less information, 

but it will still do the job; if there is no pattern, we can still try to model it and confirm 

the lack of any correlation. However, without data, it is not possible to build a model in 

the first place, since the essence of machine learning is precisely learning from data (Abu-

Mostafa et al. 2012). 

Empirical disciplines usually base their methodology on an inductive process in which a 

hypothesis is proposed based on some preliminary evidence, then an experiment is carried 

out to test this hypothesis, if results do not validate it, another hypothesis is proposed 

incorporating this new information and the process is repeated until results are 

satisfactory. In this process, preliminary information usually defines the accuracy of the 

initial hypothesis. In machine learning, this preliminary information tends to be scarce, 

and so the first hypothesis is usually the starting point of a long iteration process. This is 



16 
 

the approach of many machine learning algorithms based on optimization such as neural 

networks, where training starts with a random hypothesis (defined by set of model 

parameters) that is tested and then results are used to update the hypothesis iteratively.  

Nonetheless, more importantly, this is the approach of machine learning practitioners. In 

this case, engineers do not start blindfolded, a proper understanding of machine learning 

theory and the dataset in hands provide a good basis for an initial hypothesis. 

Nevertheless, even in the best-case scenario were every aspect is considered, this 

knowledge will only give guidelines in qualitative terms lacking quantitative information. 

This is a fundamental limitation since in machine learning most techniques and 

algorithms are regulated by some numerical hyperparameters (called ‘hyper’ to 

distinguish them from the internal parameters that are controlled by the algorithm itself). 

Frequently, we will implement a certain technique based on its qualitative effect, for 

instance we may want to reduce the complexity of our model; however, we cannot exactly 

quantify to what extent this technique will lower complexity, and so we have to propose 

an initial hypothesis with a default set of hyperparameters and then iterate according to 

results.  

In conclusion, the data provided by an analysis of the dataset is not enough to build a 

model with satisfactory performance, so more information has to be gathered using tests. 

How to interpret test results and incorporate this information into our current hypothesis 

(model) is what we will discuss below.  

 

3.2 A FRAMEWORK FOR MACHINE LEARNING METHODOLOGY: THE BIAS-

VARIANCE TRADE-OFF 

The bias-variance trade-off is a fundamental aspect of machine learning methodology. In 

each iteration step, it is crucial to understand where the current model is standing with 

regards to bias-variance so that the proper techniques can be chosen in order to improve 

performance; therefore, this concept is not only a tool for interpreting current results, but 

it also guides future action.  

Bias refers to the error due to the assumptions or simplifications that are made when we 

try to represent a real-life problem through a model, whereas variance is the error caused 

by high sensitivity to small variations in the training examples (Gareth et al. 2013; Géron 

2017). Why is there often a trade-off between these two errors? If we increase the 



17 
 

complexity of the algorithm, we will reduce the number of assumptions and 

simplifications lowering the bias. However, it will be more likely to overfit the training 

data, meaning that it fits any minor variation among the training examples instead of the 

general pattern or trend that they follow, resulting in high variance. This causes the model 

to be very effective with the training set, but having a poor performance when 

generalising to new cases, which is what we are really interested in. On the other hand, a 

simpler model will focus on the overall trend of the data, disregarding random 

fluctuations (sometimes regarded as noise) and lowering the variance. Nevertheless, a 

very simple model might be too basic to capture the complexity of the problem it is 

dealing with, it will underfit the data resulting in a high bias.  

 

Figure 3.1 (Halls-Moore 2015): Data (blue dots) simulated by adding random noise 
to a sinusoidal function. Several models are proposed to fit the data: the linear model 
(green) is too simple, incurring in high bias or underfitting; the 20th order polynomial 
is too complex, incurring in high variance or overfitting; finally the 3rd order 
polynomial contains the right level of complexity, resulting in both low bias and 
variance. 

 

The upper graph clearly illustrates the different cases explained. The blue dots represent 

the data we want to fit, which have been generated by adding random values to the black 

curve to make it look like real data (which always have some degree of random 



18 
 

variability). The green line is too simple and so it fails to accurately fit the data points, it 

suffers from high bias or underfitting. On the contrary, the red curve is overly complex 

and is adjusting to the random variations, which are casual and are not related with the 

structure of the data, thus, variance is high. Finally, the blue line is nor too simple nor 

excessively complex, fitting the overall pattern within the dataset and therefore getting 

close to the true function (the black line, which is unknown in real cases) that underlies 

the data; in other words, it is an optimal solution as it achieves low bias and variance. 

In real life problems it is not feasible to draw graphs since there are too many variables 

involved, therefore we test the performance of the model in the training set (used to train 

the algorithm) and the validation set (a new set that the algorithm has not ‘seen’ yet). If 

the performance score is low in the training set, the model is underfitting so bias needs to 

be reduced to achieve better results. Once performance in the training set is satisfactory, 

we can estimate how well our model generalises to new data by looking at performance 

on the validation set. If the result is not close to that of the training set that means variance 

is too high. Of course, reducing variance may increase the bias and vice versa, thus an 

iterative process starts in which bias and variance are lowered alternatively (without 

trying to affect the other) until an optimal solution is reached. 

 

3.3 ENSURING VALIDITY OF RESULTS 

As we have just explained, a validation set that the model has not seen during training is 

used to obtain an estimate of how well this model generalizes. A useful analogy might be 

to think of an exam (validation) in which the problems (data) presented should be 

different than those shown in class (training); otherwise, a student may obtain good grades 

just by memorizing the solutions to those specific exercises, without being able to solve 

anything slightly different.  

However, in machine learning we will be going through an iterative process in which we 

are constantly modifying our model according to results in the validation set. As a result, 

although the model itself is not directly seeing the validation data, the changes we are 

making implicitly give information about the validation set. In other words, both training 

and validation data (the former to a much lesser extent) constitute the information upon 

which we have based our hypothesis, so we need another set of data to obtain reliable 

estimates of generalization performance. This set is known as the test set and must be 



19 
 

used only once, to guarantee that none of the information it contains is filtered into our 

model.  

Nonetheless, ensuring validity of results does not come at no cost: as we reserve data for 

the validation and the test set, we are reducing the amount of data in the training set. As 

in any empirical study, lowering the amount of information used to build a hypothesis 

undermines its accuracy; therefore, a trade-off exists between the size of the training, 

validation and test sets. In the end, the split will depend on the size of the dataset and the 

priorities of the project.  

In our case, we will reserve 25% of the dataset (40 samples) for the test set, leaving the 

remaining 75% (117 samples) for both training and validation set. This split is made in 

such a way that the proportion of relapse cases is preserved in both subsets. Given that 

our dataset is rather small, rather than further splitting the 117 samples into a training and 

validation set we use leave one out cross validation. This consists in training the model 

on 116 samples and testing it on the one that is left, this process is repeated 117 times 

until every sample has been used to test the model. This way, the same data is used for 

training and validation, but the model is always tested on samples it did not see during 

training. The disadvantage of this method is that it is computationally expensive, as it 

requires repeating the training process 117 times. For this reason, in intermediate phases 

of the project in which we need to validate multiple models we will recur to 10 or 20 fold 

cross validation, which instead of using 1 sample for testing over 117 iteration use 10% 

or 20% of samples over 10 or 20 iterations.  

 

 

 



20 
 

 

Figure 3.2 (Flöck 2016): An example of 4-fold cross validation in which 25% (1/4) of the data 

constitutes the validation set in each iteration. Each time, a different validation fold is used so 

that at the end of the 4 iterations every sample has been used once for testing and three times 

for training. 

 

3.4 EVALUATING PERFORMANCE: METRICS 

In order to compare the performance of different models between iterations we need to 

quantify it by using metrics. The most commonly used metric in classification tasks is 

accuracy, which measures the percentage of correct predictions. However, in our case 

where the dataset is imbalanced (relapse occurred in 22% of the patients, leaving a 78% 

of no relapse cases) this is not an appropriate metric. For instance, in an extreme case 

where relapse did not occur in 95% of cases, a predictive model that always predicted no 

relapse would achieve 95% accuracy, a very high score in spite of being a useless model. 

Furthermore, accuracy presumes that a mistake is equally worth in both cases, which is 

hardly the case in medical applications. For us, mistakenly predicting relapse will result 

in stronger chemotherapy, which is certainly undesirable as it has negative side effects; 

nevertheless, erroneously predicting no relapse can result in the death of the patient due 

to inadequate treatment. For these reasons we will opt for other metrics that provide a 

better insight.  

In these scenarios, precision and recall are often preferred as they are more informative 

metrics. Recall, also known as true positive rate (TPR), is the percentage of positive 

instances that are correctly identified as such; i.e., the percentage of relapse cases that our 

model is able to predict.  



21 
 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Where TP refers to true positives (accurate relapse predictions) and FN to false negatives 

(relapses missed by the model), therefore the sum of TP and FN constitutes the total 

number of positive instances (relapses). 

On the other hand, precision is the percentage of accurate predictions for the positive 

class; i.e., the percentage of predicted relapses that were actually a relapse. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Where FP refers to false positive (wrong predictions of relapse), therefore the sum of TP 

and FP constitutes the total number of relapse predictions. 

In summary, recall shows the proportion of relapses that our model is able to predict, and 

precision shows the accuracy of these predictions. These two metrics are combined in a 

single one called f1 which is the harmonic mean of both: 

𝐹1 =  
2 · 𝑅𝑒𝑐𝑎𝑙𝑙 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

This type of mean penalises values of recall and precision that are too far from each other, 

leading to higher scores when both values are more similar. Translating precision and 

recall into a single metric allows to compare models more easily, and so we will use f1 

when we have to compare tens or hundreds of models. However, there is a significant 

information loss since, as we said, there is an important different between failing to 

predict relapse (low recall) and wrongly predicting relapse (low precision). For this 

reason, whenever we present results we will show precision and recall along with the f1 

score. Furthermore, we will assess more positively those models with higher recall over 

those with higher precision. 

 

 

 

 

 

 

 



22 
 

3.5 RESOURCES 

The models and techniques used in this project have been implemented using python, 

which contains many helpful libraries for data science and machine learning. We have 

used pandas, for data handling; numpy, for computing vectors and matrices operations, 

matplotlib for data visualization, scikit-learn, which contains already implemented 

machine learning models and methods for data pre-processing, dimensionality reduction 

and model evaluation; imbalanced-learn, which uses the same interface as scikit-learn, 

and provides different techniques to deal with imbalanced data; TensorFlow, a low level 

deep learning framework; and Keras, built on top of TensorFlow to create a more 

accessible and higher level framework. 

 

4. PRELIMINARY ANALYSIS AND DISCUSSION OF GENE EXPRESSION 
DATA 

4.1 BRIEF SUMMARY OF DATASET CHARACTERISTICS 

Here we restate some of the characteristic of our dataset that we have already mentioned, 

as we are about to discuss the challenges that these entail. First, the dataset is composed 

of 157 samples, which is a rather low number compared to most machine learning 

applications where at least thousands (sometimes up to millions) of samples are used. At 

the same time this is a common problem in biological datasets, where it is much more 

difficult to gather data; for instance, Golub et al. (1999), a reference study that worked on 

distinguishing ALL from AML (another type of leukemia) used only 72 samples.  

A second frequent feature of these datasets is class imbalance, in our case 78% of patients 

do not experience relapse against a 22% who do; in the case of Golub et al. there was a 

65% of AML patients and 35% of ALL. Finally, we have 11288 gene expressions of 

every patient (Golub et al. had 7129), which means we have almost 100 times more 

features than samples; this is known as high dimensionality (features can be though of as 

dimensions) and it is common to studies based on genetic information.  

 

4.2 THE CHALLENGE OF LOW NUMBER OF SAMPLES 

As we have previously discussed, machine learning being an empirical discipline means 

it relies very heavily on the available amount of data. Having more data results in a dataset 

that is more likely to be representative of the whole population. In other words, noise 



23 
 

(random fluctuations in features’ values) and outliers (samples that are outside usual 

boundaries due to measurement errors or very unlikely events) become less impactful and 

it is easier to recognise the overall pattern in the data.  

 

4.3 THE CHALLENGE OF CLASS IMBALANCE 

Class imbalance alone is not usually a big obstacle for achieving good performance. 

When there is enough data, just by adding class weights we can give more importance to 

prediction errors in the minority class, effectively making the model converge towards a 

more balanced solution. Other possibilities such as resampling techniques are also worth 

trying and can significantly improve performance in the minority class.  

However, in our case there is a considerable limitation, namely, the lack of data addressed 

in the above section. This means that not only the minority class is underrepresented in 

the dataset, but also that there are so few minority class samples that it becomes extremely 

difficult to find a pattern within them. In other words, class imbalance, rather than being 

a challenge of its own, is exacerbating an already existing one: the scarcity of information 

to build a predictive model. We can add class weights to balance our loss function (and 

we will probably have to) but this will not add any new information about the minority 

class. We can also try oversampling techniques such as SMOTE (Chawla et al. 2002) or 

ADASYN (He et al. 2008), which generate synthetic samples of the minority class based 

on existing ones, hoping this will result in clearer patterns or boundaries between classes. 

However, these techniques work by picking a sample and applying linear interpolation 

between its same class nearest neighbours and itself to generate new samples; in a high 

dimensional space such as ours, samples are very sparsely distributed with large distances 

among them which usually leads to poor performance of nearest neighbours algorithms 

as well as poor accuracy of linear interpolation. An intuitive explanation can be given 

through a simple example of a balanced dataset with four samples and two features, one 

of which is absolutely unrelated to the output.  

 



24 
 

 

Figure 4.1: A balanced dataset of 4 samples with 2 features, one of them being 

unrelated to the output. Closest distance among same class samples (3 units) is larger 

than closest distance among opposite samples (1 unit) leading to poor performance 

of distance based methods such as nearest neighbours.  

 

The purpose of this example is to visualize how irrelevant features equally contribute to 

determine the distance among samples, which in this case is leading to nearest neighbours 

belonging to opposite classes (note the different scales in the axes). If we go back to our 

high dimensional dataset where most of the features are almost certainly going to be 

irrelevant, we can clearly understand why nearest neighbours or linear interpolation are 

likely to yield poor results.  

In summary, class imbalance exacerbates the lack of information about the minority class, 

complicating the job of finding clear patterns or boundaries. Using synthetic 

oversampling techniques, we can attempt to add more information about the minority 

class by including slightly modified versions of the original samples. However, these 

methods are distance-based and thus unlikely to perform well in a high dimensional 

dataset.  

 



25 
 

4.4 THE CHALLENGE OF HIGH DIMENSIONALITY 

The main problem high dimensionality brings is the tendency to overfit. We can get an 

intuition of this issue by considering linear models, which are generally recommended 

for these types of datasets since they are less likely to overfit due to their simplicity. 

Recalling that we have 157 samples and 11288 features, we can consider each feature as 

a 157-dimensional vector. Given this, at most we will have 157 independent features, 

being the remaining 11131 features linear combinations of them (note that this linear 

relationship is ‘forced’ by the saturation of the 157-dimensional space, rather than being 

due to a real link among gene expressions). Having as many independent features as 

samples means we are guaranteed to have a solution for our classification problem 

regardless of the target function; but not only that, we can change freely the weights of 

any of the other 11131 features while maintaining the same output provided we make the 

necessary adjustments to the independent features’ weights. In summary, there is a 11131-

dimensional space completely filled with solutions yielding perfect fits (we are not even 

considering approximated fits). Given the nature of the real problem we are trying to 

solve, we only expect an extremely tiny fraction of that space to contain actual solutions. 

Note that we are not looking for a unique solution since some variables might be 

correlated and we are aiming at good enough approximations, not perfect fits (there is 

hardly such thing as a perfect fit for real life problems); still, there is a gigantic haystack 

of possibilities that fit our training data but do not generalise hiding the few needles we 

are trying to find.  

We can illustrate this by using a simple model such as logistic regression which is unlikely 

to overfit in common scenarios. Leaving the default parameters we obtain a perfect fit in 

the training set and a poor performance (0.37 f1 score) on cross validation; following the 

previous analogy we could say we have just encountered some hay (solutions that do not 

generalise). All of this suggests that dimensionality reduction (which could be thought of 

as hay removal) might play a key role in designing a successful model. 

 

 

 

 



26 
 

4.5 CHANGING PERSPECTIVE: A QUICK LOOK FROM THE BIAS-VARIANCE 

VIEWPOINT 

As a side note that highlights the centrality of the bias-variance trade-off in machine 

learning, we can make a brief summary of the previous discussion from the bias-variance 

perspective. From this viewpoint, the problem of high dimensionality translates into a 

problem of complexity. A model with an extremely high number of features is ultimately 

a model with an extremely high complexity, resulting in low bias at the expense of very 

high variance, in other words, overfitting. The impact of the lack of data (which as already 

commented becomes exacerbated by class imbalance) can also be interpreted in similar 

terms. The lower the number of samples, the more impactful each individual sample is; 

therefore, the model will vary in higher degree when different samples are 

excluded/included from/in the model and training performance will be less representative 

of test performance, this is to say variance is high.  

In conclusion, the three main challenges of this dataset contribute to increase variance 

resulting in very high probabilities of overfitting. Therefore, our aim will be to obtain 

very simple models as they are more likely to generalise. In this regard, we have seen that 

even the simplest models are prone to overfitting in such a high dimensional dataset; thus, 

high dimensionality can be considered as the main source of complexity in our model. 

Furthermore, distance based methods that could be used to deal with the class imbalance 

challenge are not suitable for high dimensional problems, which further stresses the 

importance of reducing dimensionality.  Consequently, we will place special emphasis on 

dimensionality reduction. 

 

5. EXPLORATORY PHASE 

5.1 BRIEF ASSESMENT OF SEVERAL MODEL’S PERFORMANCE 

Before starting working on dimensionality reduction and making models, it is always a 

good idea to do some tests on several out of the box models (a very brief description is 

given along with a reference for more rigorous explanations) from scikit-learn; this can 

give us an intuition of what seems to work best but also provides a baseline to which we 

can compare our further more elaborate models. We will use a grid search to explore 

different parameter settings for every model although we do not intend to be entirely 

exhaustive in this preliminary phase. Since we will have to train many different models 



27 
 

we will employ 10-fold cross validation to speed up the process. Every model is tested 

with equal and balanced class weights except Naïve Bayes, also standardization is used 

except on tree-based methods:  

 Naïve Bayes : assumes that the values of every feature for every class follow 

a Gaussian distribution, which allows to obtain a probability distribution that 

provides the likelihoods of these features. As a result, for any given value of 

a feature the likelihood can be obtained and used to calculate the probability 

of each class with the Bayes theorem. This algorithm does not have any 

hyperparameters to set (technically the priors could be altered but we will not 

do so). 

 Support Vector Machines (Cortes & Vapnik 1995): is a linear classifier that 

attempts to establish a boundary that maximizes the distance between the 

boundary itself (a hyperplane) and the closest samples from both classes. To 

obtain a non-linear classifier, we can use a kernel function that maps the 

original dimensional space to a higher dimensional space in which a 

hyperplane leads to a non-linear boundary back in the original dimensional 

space. We use the following hyperparameters: 

o Kernels: control whether the decision boundary is linear or non-linear. 

There are three different kernels to obtain non-linear boundaries: sigmoid, 

rbf and polynomial. We will try all three as well as the linear option. 

o  C: regulates the complexity of the model, lower values resulting in 

simpler models. The default value is 1, we will try values ranging from 

0.01 to 100  

o Gamma: only used for non-linear kernels. It is another form of regulating 

the complexity of the model, with lower values resulting in simpler 

models. By default, it is set to 1/n where n is the number of features. We 

will use values range from 1e-5 to 1e-3. 

 Logistic regression (Cox 1958): assigns weights to every feature and sums all 

these contributions adding a bias term. This result is used as the input of a 

sigmoid function, which maps every real number into a number between 0 and 

1, which can be thought of as the probability of a sample belonging to a certain 

class. During training, the logistic regression model modifies the weights and 

bias in such a way that the probabilities of each sample belonging to a class 

are closest to the actual label. We use the following hyperparameters: 



28 
 

o Penalty: can be set to l1 or l2 (these terms will be explained in section 5.3) 

but they cannot be combined. We will use both. 

o C: same as in support vector machines. We will try values ranging from 

0.01 to 100. 

 Stochastic Gradient Descent Classifier (SGD) (Zhang 2004): uses an 

optimization procedure known as stochastic gradient descent for minimizing 

the prediction error of different classifiers. In our case, we set the ‘Loss’ 

hyperparameter to ‘log’, resulting in a logistic regression model. The reason 

we do this is that this implementation of logistic regression allows to combine 

l1 and l2 penalty as in Elastic Net through the ‘L1_ratio’ hyperparameter.  

o L1_ratio: Values range from 0 (just l2 penalty) to 1 (just l1 penalty). The 

limit cases 0 and 1 are not included as it would be redundant with the other 

implementation of logistic regression. 

o Alpha: controls complexity in the same way as C. Values are set ranging 

from 0.1 to 20.  

 Decision Tree (Breiman et al. 1984): the decision tree starts with a node 

containing all samples and iteratively splits each parent node into two child 

nodes, attempting to separate samples from different classes, until every leaf 

(final node) contains same class samples. We use the following 

hyperparameters: 

o Information criterion: determines the criterion used to decide what split 

best separates the samples we try both gini and entropy. 

o Minimum weighted fraction: this parameter regulates tree pruning, i.e., 

avoids growing full trees. When the weighted sum of samples in a node 

falls below this fraction (fraction of the total weighted sum of samples) no 

more splits are made. Therefore, this parameter, unlike the commonly used 

maximum depth, takes into account class weights. We will use values 

ranging from 0.01 to 0.2. 

 Random Forests (Breiman 2001): use bagging (explained in section 7.2) to 

make an ensemble of decision tree classifiers. Each tree, rather than looking 

at the entire set of features for making splits, only considers a smaller 

randomly chosen subset. We use the following hyperparameters: 

o Same parameters as Decision Tree except for the addition of a 0 minimum 

weighted fraction at leaf option to allow for growing full trees. 



29 
 

o Number of estimators: number of trees employed. We use values ranging 

from 10 to 200  

o Number of features: size of the subsets of features that are given to the 

trees. By default is the square root of the number of features in our dataset. 

We try values ranging from 0.005 and 0.1  

o Bootstrapping: whether or not to use bootstrap samples. We try both. 

 Extremely Randomized Trees (Geurts et al. 2006): work very similarly to 

random forests. The only difference is that when considering the best split, a 

random threshold (instead of the most discriminative one) is given to each 

candidate feature.   

o  Same parameters as Random Forests 

 AdaBoost (Freund & Schapire 1997): fits a sequence of decision trees, each 

time giving more importance to those samples that were misclassified by the 

previous tree. Final predictions are a weighted average of the predictions made 

by each tree. We use the same hyperparameters as random forest except for 

the learning rate: 

o Learning rate: indirectly controls the complexity of the model. We try 

values ranging from 0.1 to 5.  

For every model, now we show those combinations of parameters that resulting in the 
best f1 score along with the 10-fold cross validation results: 

 Naïve Bayes: 

Table 5.1 Naïve Bayes Training and Validation Performance 

Training 10-Fold Cross Validation 

Precision Recall F1 Precision Recall F1 

0.75 0.92 0.83 0.29 0.27 0.28 

 

 Support Vector Machines:  

Table 5.2 Support Vector Machines (No Class Weights, Sigmoid 

Kernel, Gamma=0.001, C=10) Training and Validation Performance 

Training 10-Fold Cross Validation 

Precision Recall F1 Precision Recall F1 

0 0 0 0 0 0 



30 
 

 

 Logistic Regression: balanced class weights, l1 regularisation and C=0.1 

Table 5.3 Logistic Regression (Balanced Class Weights, L1 Penalty, 

C=0.1) Training and Validation Performance 

Training 10-Fold Cross Validation 

Precision Recall F1 Precision Recall F1 

0.63 1 0.78 0.41 0.81 0.55 

 

 Stochastic Gradient Descent Classifier: balanced class weights, l1_ratio=0.5, alpha=2 

Table 5.4 Stochastic Gradient Descent Classifier (Log Loss, 

Balanced Class Weights, L1_Ratio = 0.5, Alpha = 2) 

Training 10-Fold Cross Validation 

Precision Recall F1 Precision Recall F1 

1 1 1 0.33 0.54 0.41 

 

 Decision Tree: balanced class weights, entropy criterion and 0.2 as minimum 

weighted fraction at leaf. 

Table 5.5 Decision Tree (Balanced Class Weights, Entropy 

Criterion, 0.2 Minimum Weighted Fraction at Leaf) 

Training 10-Fold Cross Validation 

Precision Recall F1 Precision Recall F1 

0.78 0.81 0.79 0.23 0.31 0.26 

 

 Random Forests: balanced class weights, entropy criterion, 0.2 as minimum weighted 

fraction at leaf, 10 estimators and using 1% of features per bag without bootstrapping 

samples. 

 



31 
 

Table 5.6 Random Forests (Balanced Class Weights, Entropy Criterion, 

0.2 Minimum Weighted Fraction at Leaf, 10 Estimators, 0.01 Number 

of Features, No Boostrapping) Training and Validation Performance. 

Training 10-Fold Cross Validation 

Precision Recall F1 Precision Recall F1 

0.88 0.85 0.86 0.2 0.15 0.17 

 

 Extremely Randomized Trees: balanced class weights, gini criterion, 0.1 as minimum 

weighted fraction at leaf, 10 estimators and using 10% of features per bag without 

bootstrapping samples. 

Table 5.7 Extremely Randomized Trees (Balanced Class Weights, Gini 

Criterion, 0.1 Minimum Weighted Fraction at Leaf, 10 Estimators, 0.1 

Number of Features, No Boostrapping) Training and Validation Performance.  

Training 10-Fold Cross Validation 

Precision Recall F1 Precision Recall F1 

1 1 1 0.30 0.12 0.17 

 

 AdaBoost: balanced class weights, entropy criterion, 0.15 as minimum weighted 

fraction at leaf, 10 estimators and 1 learning rate.  

Table 5.8 Adaboost (Balanced Class Weights, Entropy Criterion, 

0.15 Minimum Weighted Fraction at Leaf, 10 Estimators, 1 

Learning Rate) Training and Validation. 

Training 10-Fold Cross Validation 

Precision Recall F1 Precision Recall F1 

1 1 1 0.33 0.27 0.30 

 

 

 

 

 

 



32 
 

5.2 BRIEF ANALYSIS OF RESULTS 

The first fact that clearly stands out is the high performance of logistic regression in 

comparison to the rest of the models. This will now become our baseline model and the 

focus of our attention in further analysis but now we will take quick look at the other 

algorithm’s performance. 

After a general overview, we see that all models are strongly overfitting (results are much 

better on the training set than on cross validation) even the simplest ones, which seems to 

back our previous analysis in which we identified variance as the main source of error. 

Looking more closely we see that tree-based methods do not seem to handle this dataset 

well. We cannot be entirely sure of this fact since our search was not completely 

exhaustive, and also their behaviour might improve significantly after dimensionality 

reduction; still, we will not expect high results from these types of algorithms. It is 

interesting how Random Forests and Extremely Randomized Trees are achieving such 

poor performances, worse than AdaBoost and even a single Decision Tree. This is 

surprising because a priori we would expect these algorithms to be suitable for our dataset, 

since they are specifically designed to reduce variance. They mainly achieve this by using 

bagging and by limiting the number of features that each individual tree uses. 

Interestingly enough, in both cases bootstrapping is not preferred; therefore, bagging was 

not being helpful in reducing variance. This might be due to the fact that bootstrap 

samples only contain about 2/3 of the original data, reducing the number of instances used 

for training in an already small dataset; furthermore, since we used cross validation 

instead of out of bag samples for testing, this problem becomes exacerbated. As we have 

mentioned earlier, training sets favour high variance, so the benefits bagging brings may 

be surpassed by the negative effects of reducing the effective size (in terms of number of 

different samples) of the training set. With this said, once again we cannot make these 

conclusions definitive, although we cannot ignore the valuable insights we have gained 

either.   

On another order of things, Stochastic Gradient Descent, which is implementing a slightly 

different version of Logistic Regression is achieving the second-best result, leading us to 

believe that this type of model is the most adequate for this dataset. Finally, the awful 

performance of Support Vector Machines (it is classifying all samples as majority class) 

across a reasonable range of hyperparameters is a surprising outcome that might deserve 

further attention.   



33 
 

5.3 ANALYSIS OF THE LOGISTIC REGRESSION MODEL 

Now we turn to the Logistic Regression model whose performance clearly stands out in 

comparison to the rest and thus will become our baseline model. What is rather interesting 

is that l1 penalty seems to make a significant difference; indeed, the Stochastic Gradient 

Descent Classifier which is also implementing logistic regression but with different 

penalties has a considerably lower performance. Explaining l1 and l2 regularisation can 

help understanding the reason behind this. 

 Baseline model: Logistic Regression (balanced class weights, l1 penalty and C=0.1): 

Table 5.9 Baseline Model: Logistic Regression (Balanced Class 

Weights, L1 Penalty, C = 0.1). 

Training Leave One Out Cross Validation 

Precision Recall F1 Precision Recall F1 

0.63 1 0.78 0.47 0.81 0.59 

 

 Baseline model with l2 penalty instead of l1: 

Table 5.10 Baseline Model with L2 Penalty: Logistic Regression 

(Balanced Class Weights, L2 Penalty, C = 0.1). 

Training Leave One Out Cross Validation 

Precision Recall F1 Precision Recall F1 

0.86 0.92 0.89 0.30 0.65 0.41 

 

L2 penalty includes the squared values of the weights in the loss function, heavily 

penalising high weights but almost ignoring low values; on the contrary, l1 penalty uses 

the absolute values of weights, meaning that low values will still be considered and 

attempted to minimise, pulling them towards 0. In other words, l1 penalty makes 0 the 

weight of those features that are not meaningful enough, while maintaining those who are 

more valuable for the classification task. In fact, if we look at the coefficients of this 

classifier we see that only 20 of them are not 0. In conclusion, l1 penalty incorporates 

feature selection into the regression model. As we previously mentioned, dimensionality 

reduction is likely to play a crucial role in obtaining a successful model, so it is not 



34 
 

surprising that the only method that incorporates some type of feature selection clearly 

outperforms the rest.  

It should be noted that despite the model simplicity: a regularised linear model using 20 

features, it is still significantly overfitting, which gives us an idea of how difficult it is to 

reduce variance in this dataset. Anyway, feature selection seems to be the key to the good 

model performance, so we will analyse it to gain more insight. First, we would like to 

know whether the same features are being selected every time, which would mean that 

those features are truly the most informative and we could focus on them for future 

models. We can store the selected features in each iteration of 10-fold cross validation, 

and then plot the frequencies with which they appear, obtaining the following result.   

 

Figure 5.1: Number of times each gene is selected over 10 iterations of cross validation. 

 

We can see that a significant number of features are only used by the model in one 

iteration of cross validation. This can be due to two reasons: some of these features are 

highly correlated, meaning that the model is not able to clearly pick one over the other as 

they provide similar information; or these features are only relevant for a particular subset 

of the training set (the one corresponding to that cross-validation iteration), in other 

words, they are the result of overfitting and they lack generalisation. We can quickly 

decide which hypothesis is more accurate by plotting the correlation matrix: 



35 
 

 

Figure 5.2: Plot of the correlation matrix (of the features that are at least selected once) 

where each square represents each of the correlation coefficients in the matrix. Colours 

cover 0.2 intervals in absolute value and allow to display the value of each correlation 

coefficient. There are no white or light blue squares (outside of the main diagonal) 

meaning that all correlation coefficients in absolute value are below 0.6 

 

Correlations among features are not strong, therefore we discard the first 

hypothesis concluding that those features which were used in just a few of the 

cross-validation iterations were selected out of chance and not due to a true 

relationship with our labels. Now that we have seen that a significant number of 

the selected features are not actually relevant two questions arise. First, are those 

features with high frequencies truly informative or where they also chosen out of 

chance? Second, where can we establish the threshold between relevant and 

irrelevant features based on their frequencies? To answer these questions, we can 

run 10-fold cross-validation with random seed 100 times, totalling 1000 trials, 

and plot the results in the same manner as before: 

 



36 
 

 

 

Figure 5.3: Number of times each feature is selected over 1000 trials. There is not enough 

space to make labels readable and we are not interested in identifying any particular 

feature but in the overall picture of frequencies; therefore labels are not shown.  

 

Looking at the above figure we see a similar picture as before but at a higher scale. 

Initially, we could say that we can now be more certain that those features that have high 

frequencies are actually relevant, since they are not only selected for a particular cross 

validation split, but across a wide range of subsets made with 90% of the training data 

(since it is 10-fold cross-validation). However, our second concern (what threshold 

should be used to decide between relevant/irrelevant features) has not been resolved as 

there is no clear gap between high and low frequencies, bringing in another perspective 

that casts doubt about the validity of our results.  

We were expecting that as we run more trials, our model would always select the same 

relevant features while changing in each iteration the chosen irrelevant features. This 

would result in a plot in which a few features clearly stand out, with a significant gap 

separating them from the rest. However, in our figure, instead of a gap, there is continuity 

between low and high frequency values. This means, for instance, that some features are 

relevant for 40% of the subsets but not for the remaining 60%; therefore, they are not 

truly meaningful, they happened to be correlated with the output out of chance for those 

particular subsets. We can now look at features that are selected for 60% or 80% of the 

models and follow the same reasoning. Then, how sure can we be that features selected 



37 
 

100% of the time are actually relevant and did not happened to be correlated with the 

output out of chance?  

Table 5.11 10 Most Frequently Selected Genes by the Baseline Model.  

Probe Set ID 
Gene 

Symbol 
Gene Name Frequency 

205573_s_at SNX7 sorting nexin 7 100% 
204560_at FKBP5 FK506 binding protein 5 100% 
210913_at CDH20 cadherin 20, type 2 96.7% 
220444_at ZNF55 zinc finger protein 557 96.2% 

205013_s_at ADORA2A adenosine A2a receptor 91.4% 
205539_at AVIL advillin 86.7% 

211549_s_at HPGD 
hydroxyprostaglandin dehydrogenase 15-

(NAD) 
83.4% 

204749_at NAP1L3 nucleosome assembly protein 1-like 3 80.1% 
203367_at DUSP14 dual specificity phosphatase 14 75.9% 

213798_s_at CAP1 
CAP, adenylate cyclase-associated protein 

1 (yeast) 
71.6% 

 

Finally, it should be noted that the whole training set has been used to rank features 

according to their relevancy. Thus, cross validation will not give us a good estimate of 

generalization performance. We can use the 10 most frequently selected attributes (we 

choose 10 because those are the genes with a frequency over 70%) to make a logistic 

regression model and after a some tuning we will get the following results:  

Table 5.12 Logistic Regression Model (Balanced Class Weights, L2 

Penalty, C = 30) With 10 Selected Genes.  

Training Leave One Out Cross Validation 

Precision Recall F1 Precision Recall F1 

0.95 0.91 0.93 0.73 0.85 0.79 

 

In spite of overfitting, cross validation results are considerably good but cannot be 

compared against those of the baseline model since the feature selection process was 

made based on the entire training set. As a result, only the results in the test set will be an 

accurate estimate of generalization.  

 

 



38 
 

5.4 CONCLUSION 

Feature selection performed by our baseline model seems to provide good results, 

although the generalization of these results is in question until we reach the testing phase 

and obtain more information. Therefore, we will continue with our initial plan and focus 

on dimensionality reduction. 

 

6. DIMENSIONALITY REDUCTION 

6.1 ESTABLISHING A TARGET NUMBER OF DIMENSIONS 

When attempting dimensionality reduction, it is convenient to have an idea of the number 

of dimensions that is the most appropriate for the problem in hand. In our case, we are 

aiming at having less features than samples, since as we have discussed generalisation is 

hard to obtain when this is not the case. Ideally, we would like to have less than 20 features 

(this value is approximate and based on intuition as there is no clear rule determining the 

optimal number of features) so that we obtain a very simple model that is unlikely to 

overfit. At the same time, compressing 11288 features into just 10-20 is not an easy task 

and it might be not even possible. As in any case, the strategies chosen to achieve this 

goal will greatly determine the probabilities of success. 

 

6.2 UNSUPERVISED VS SUPERVISED DIMENSIONALITY REDUCTION 

Unsupervised dimensionality reduction tries to achieve a lower dimensional 

representation of the features while maintaining the inner structures and relationships; 

while its supervised counterpart aims at selecting a set of relevant features discarding all 

the attributes that seem unrelated with the output. With these ideas in mind, we can start 

comparing both methods. 

On one hand, supervised approaches are more likely to overfit for the following reason. 

They select features based on how related they are with the output in the training set, 

which will lead to those attributes that give better performance in the training set being 

selected. As a consequence, training results may be overly optimistic and not reflect 

reality. This is the case with our baseline model, which is overfitting despite its great 

simplicity, as it is performing a form of embedded supervised feature selection. On the 



39 
 

contrary, unsupervised approaches minimize the amount of information they use from the 

training set by disregarding output labels often leading to more generalizable results. 

On the other hand, the same reason that leads to an advantage of unsupervised methods 

can turn into a downside in cases where most of the features are irrelevant like ours. In 

these scenarios, unsupervised approaches will be heavily limited by the requirement to 

preserve internal relationships among irrelevant features, even though these have no 

effect on our predictive model. Consequently, supervised methods can be more powerful 

(in terms of achieving greater reductions in dimensionality) in these circumstances as they 

can identify non-informative attributes and discard them.  

Since there is no clear conclusion from this discussion we will attempt both strategies. 

 

6.3 SUPERVISED DIMENSIONALITY REDUCTION 

6.3.1 Decision Tree Based Methods: Feature Importance 

When using Decision Tree based methods we can get an estimate of each feature’s 

importance by considering how good they are at reducing impurity (breaking a two-class 

group into two single class groups) in each node. Then the least important features can be 

removed from the model. Features’ importance is usually obtained using Random Forests, 

but this does not necessarily have to be the case. Unfortunately, Decision Tree based 

methods perform rather poorly in our dataset, so the importance they assigned to each 

feature is not meaningful.  

 

6.3.2 Linear Discriminant Analysis (LDA) 

Most of the supervised dimensionality reduction techniques are based on classifiers and 

this is not an exception. As its name implies, LDA (Hastie et al. 2008) uses linear decision 

boundaries to classify samples; however, what makes it interesting for us is that it 

provides the most discriminative directions in our dataset, in other words, it allows to 

perform dimensionality reduction. We can test the model predictions to get an idea of 

how good LDA works in our dataset: 

 



40 
 

Table 6.1 Linear Discriminant Analysis Training and Validation 

Performance. 

Training Leave One Out Cross Validation 

Precision Recall F1 Precision Recall F1 

0.92 0.46 0.62 0.33 0.08 0.12 

 

Given such poor results, we cannot rely on how this algorithm classifies the most 

discriminative directions and so we will move onto other approaches. 

 

6.3.3 F-test Based Feature Selection 

This technique consists in using One-Way ANOVA (Analysis of Variance of a single 

feature) (Heiman 2001) in order to discern whether the difference in the mean value of a 

feature from one class to another is statistically significant. In our case, for every gene, 

we want to see if the mean level of expression in relapse samples is significantly different 

than the mean level of expression in no relapse samples.  

This method has two main limitations, namely it performs univariate feature selection and 

it is based on many assumptions including linearity and normally distributed (within 

class) gene expression levels. Performing univariate feature selection means that we are 

only considering relations between each feature and the output, disregarding relationships 

among features; which can result in our model having redundant features (features that 

contain the same information). This is not a considerable disadvantage as we can always 

look at the correlation matrix of the selected features and discard those that are redundant. 

Similarly, the assumptions made by One-Way ANOVA are not a strong downside in our 

case, since they also lead to simpler models with less variance. We can plot the F-statistic 

we obtain after applying in this technique, sorting values in descendent order: 



41 
 

 

Figure 6.1: Plot of the F values of every gene expression in descendent order. 

 

As we had expected, most gene expressions are uncorrelated with relapse whereas a few 

are truly significant. There is a noticeable inflexion point that separates these two groups, 

although it is hard to see how many features constitute each side. For this reason, we will 

zoom in by only considering the 2000 most relevant features: 

 

Figure 6.2: Plot of the F values of the 2000 most relevant genes. 

INFLEXION POINT 

INFLEXION POINT 



42 
 

We can see the inflexion point is closer to 0 than to 250 but it is still hard to identify a 

precise value. Therefore, we zoom again, only showing the 500 most significant genes: 

 

Figure 6.3: Plot of the F values of the 500 most relevant genes. 

Finally, we can see that the division point is at around 50 genes. In other words, we can 

say that there are approximately 50 relevant genes according to the F-test feature 

selection. We can now look at the correlation matrix whether this univariate approach is 

including too many redundant attributes. 

INFLEXION POINT 



43 
 

 

Figure 6.4: Correlation matrix of the 50 features selected according to the F-test.  

All correlations are below 0.8 (in absolute value), and only 4 are above 0.7. Therefore. 

there is not a problem of redundancy and we can continue with our study. To test this 

feature selection process in a model, we do not just select the 50 genes with the highest 

score in the whole training data as this would undermine the validity of cross validation 

results. Instead, we perform feature selection in each iteration of cross validation, using 

each training fold rather than the entire training set. After trying several logistic regression 

models with different parameters settings (l1 and l2 penalties across C values between 

0.01 and 100), we obtain this model: 

 Logistic Regression: balanced class weights, l2 penalty and C=30. 

Table 6.2: Logistic Regression (Balanced Class Weights, L2 

Penalty, C= 30) with 50 Genes Selected by ANOVA. 

Training Leave One Out Cross Validation 

Precision Recall F1 Precision Recall F1 

1 1 1 0.58 0.54 0.56 



44 
 

 

These results are similar to those of our baseline model which was achieving and f1 score 

of 0.59; although in this case recall is much lower so we would still opt for the l1 penalty 

based model. Finally, it can be interesting to compare whether both methods are selecting 

the same relevant genes. These are the 10 genes with the highest F value in the training 

set: 

Table 6.3: 10 Most Relevant Genes According to ANOVA. 

Probe Set ID 
Gene 

Symbol 
Gene Name 

203367_at DUSP14 dual specificity phosphatase 
204560_at FKBP5 FK506 binding protein 5 

205013_s_at ADORA2A adenosine A2a receptor 
205573_s_at SNX7 sorting nexin 7 
206660_at IGLL1 immunoglobulin lambda-like polypeptide 1 
206804_at CD3G CD3g molecule, gamma (CD3-TCR complex) 

211549_s_at HPGD hydroxyprostaglandin dehydrogenase 15-(NAD) 
213798_s_at CAP1 CAP, adenylate cyclase-associated protein 1 (yeast) 
220444_at ZNF557 zinc finger protein 557 

221081_s_at DENND2D DENN/MADD domain containing 2D 
 

If we compare it to Table x, we see that they have 7 genes in common, namely DUSP14, 

FKBP5, ADORA2A, SNX7, HPGD, CAP1 and ZNF55. Furthermore, the remaining 3 

genes selected by the baseline model (CDH20, NAPIL3, AVIL) are among the 50 genes 

with the highest F value. This was to be expected, since both methods have similar 

characteristics (both perform supervised linear feature selection); however, obtaining the 

same result through two different paths helps confirming that there is a true correlation 

between these genes and outcome in the training samples.  

 

6.4 UNSUPERVISED DIMENSIONALITY REDUCTION 

6.4.1 Dimensionality Reduction based on Linear Dependency 

The fact that 11171 features are a linear combination of the remaining 117 (we are 

considering the training set) is a piece of information about the inner structure of our 

attributes that we might be able to use to reduce dimensionality. Decision Tree based 

methods only take into account features individually so they do not seem appropriate for 

this task. On the contrary, models such as logistic regression and neural networks assign 

weights to features and can take decisions based on linear combinations of them. From 



45 
 

the perspective of making linear combinations of features, logistic regression and the first 

layer of a neural network work in the same way so we will refer indistinguishably to any 

of them. Anyway, it might be possible that such models using only 117 features are able 

to explore the same range of solutions (and reach the same conclusion) as a model with 

11171. Indeed, under certain conditions it actually happens. 

We consider a generic case in which we have a number 𝑛ௗ of dependent variables 

identified with the letter 𝑑 and a number 𝑛௜ of independent variables identified with the 

letter 𝑖. Any dependent variable 𝑑௝ can be obtained with a linear combination of the 

independent variables: 𝑑௝ =  ∑ 𝛼௝௞ · 𝑖௞
௡೔
௞ୀଵ  , where 𝛼௝௞ is the coefficient corresponding to 

each 𝑖௞. Now we consider the first layer of a neural network, where the weights associated 

to the dependent and independent variables for a given neuron are 𝑤ௗ and  𝑤௜ 

respectively; the output (without considering bias or activation function since they do not 

affect the result) will be: 

𝑧 = ෍ 𝑤௞
௜ · 𝑖௞ + 

௡೔

௞ୀଵ

෍ 𝑤௝
ௗ · 𝑑௝

௡ೕ

௝ୀଵ

 

We can substitute 𝑑௝ and obtain the following: then take 𝑖௞ as a common factor as it is 

constant across all 𝑗. 

𝑧 = ෍ 𝑤௞
௜ · 𝑖௞ + 

௡೔

௞ୀଵ

෍ 𝑤௝
ௗ · ቌ෍ 𝛼௝௞ · 𝑖௞

௡೔

௞ୀଵ

ቍ

௡೏

௝ୀଵ

 

Since 𝑤௝
ௗ is constant across all different 𝑘 we can introduce it in the second summation: 

= ෍ 𝑤௞
௜ · 𝑖௞ + 

௡೔

௞ୀଵ

෍ ෍ 𝑤௝
ௗ · 𝛼௝௞ · 𝑖௞

௡೔

௞ୀଵ

௡೏

௝ୀଵ

 

We can know change the order in which summations are taking place 

= ෍ 𝑤௞
௜ · 𝑖௞ + 

௡೔

௞ୀଵ

෍ ෍ 𝑤௝
ௗ · 𝛼௝௞ · 𝑖௞

௡೏

௝ୀଵ

௡೔

௞ୀଵ

 

Now 𝑖௞ is constant across all different 𝑗 so we can take it out of the second summation: 



46 
 

= ෍ 𝑤௞
௜ · 𝑖௞ + 

௡೔

௞ୀଵ

෍ 𝑖௞ · ቌ෍ 𝑤௝
ௗ · 𝛼௝௞

௡೏

௝ୀଵ

ቍ

௡೔

௞ୀଵ

 

This is equal to: 

= ෍ 𝑤௞
௜ · 𝑖௞ + 

௡೔

௞ୀଵ

𝑖௞ · ቌ෍ 𝑤௝
ௗ · 𝛼௝௞

௡೏

௝ୀଵ

ቍ 

Finally taking 𝑖௞ as common factor: 

= ෍ 𝑖௞ · ቌ𝑤௞
௜ + ෍ 𝑤௝

ௗ ·

௡೏

௝ୀଵ

 𝛼௝௞ቍ 

௡೔

௞ୀଵ

= ෍ 𝑖௞ · 𝑤௞
௜ ᇱ

௡೔

௞ୀଵ

 

We have obtained a new model that is able to obtain the same output using only the 

independent variables by adjusting the weights as follows: for a given independent 

variable, the new weight is the original one plus the weights of the dependent variables 

multiplied by the linear coefficient that related them to the independent variable being 

considered.  

𝑤௞
௜ ᇱ

=  𝑤௞
௜ + ෍ 𝑤௝

ௗ ·

௡೏

௝ୀଵ

 𝛼௝௞ 

Since both models cover the same range of possible solutions and they have the same loss 

function, as we have not considered regularisation yet, they should converge to the same 

solution. Therefore, we can eliminate all the dependent variables from our model without 

limiting performance. Nonetheless, adding regularisation reduces our model’s flexibility 

and may limit its capability to make linear combinations of variables. Indeed, we are 

modifying the loss function, which now might not be equal in both models, causing them 

to converge to different solutions.  

 

First, we consider l1 regularisation for the original model: 

𝐿 =  𝜆 · ቌ෍ห𝑤௞
௜ ห + 

௡೔

௞ୀଵ

෍ห𝑤௝
ௗห

௡೏

௝ୀଵ

ቍ 

 



47 
 

Then, we consider l1 regularisation applied to the model excluding dependent variables: 

𝐿 =  𝜆 · ቌ෍ቚ𝑤௞
௜ ᇱ

ቚ 

௡೔

௞ୀଵ

ቍ = 𝜆 · ቌ෍ ቮ𝑤௞
௜ + ෍ 𝑤௝

ௗ ·

௡೏

௝ୀଵ

 𝛼௝௞ቮ 

௡೔

௞ୀଵ

ቍ 

If we compare both losses we see they are not equal: 

෍ห𝑤௞
௜ ห + 

௡೔

௞ୀଵ

෍ห𝑤௝
ௗห

௡೏

௝ୀଵ

≠  ෍ ቮ𝑤௞
௜ + ෍ 𝑤௝

ௗ ·

௡೏

௝ୀଵ

 𝛼௝௞ቮ 

௡೔

௞ୀଵ

 

If we had used l2 regularisation instead we would have got a similar result: 

෍൫𝑤௞
௜ ൯

ଶ
+ 

௡೔

௞ୀଵ

෍൫𝑤௝
ௗ൯

ଶ

௡೏

௝ୀଵ

≠  ෍ ቌ𝑤௞
௜ + ෍ 𝑤௝

ௗ ·

௡೏

௝ୀଵ

 𝛼௝௞ቍ

ଶ௡೔

௞ୀଵ

 

In summary, we can take advantage of the linear dependencies of our features to reduce 

our dimensionality as long as we do not apply regularisation which is a significant 

limitation for our dataset, given that it considerably favours overfitting. It should be noted 

that in the case of neural networks this limitation only applies to the first layer, allowing 

for regularisation in the rest of the network; however, we should keep in mind that neural 

networks are already more likely to overfit than logistic regression in the first place.  

Two more issues we have yet to consider are the process of choosing independent features 

and whether this method alone will suffice. First, most likely any 117 features we select 

will be independent since we have argued that linear dependency is not due to a true linear 

relationship among gene expressions but to a ‘saturation’ of the dimensional space. Then 

the question arises of why some features should be selected over others and the answer is 

not clear. We would like our selected features to be orthogonal since this allows for a 

more efficient representation (lower 𝛼 coefficients) of the dependent ones. However, it is 

not guaranteed that there will be such 117 orthogonal features. Instead, we could use PCA 

(will be later explained) which ultimately combines features to provide a set of orthogonal 

axes.  

Using PCA and then unregularized logistic regression yields the following results (PCA 

is used after the cross-validation split): 

 



48 
 

Table 6.4: Unregularized Logistic Regression (Balanced Class 

Weights, L2 Penalty, C = 1000) with PCA. 

Training Leave One Out Cross Validation 

Precision Recall F1 Precision Recall F1 

1 1 1 0.29 0.58 0.38 

 

Which are worse than those of our baseline model. Note the strong overfitting with a 

perfect fit in the training set, making it clear that regularization is key in variance 

reduction. 

In the case of neural networks, we first try different hyperparameter settings, as the range 

of possibilities is now much wider. We try two and three hidden layers that should allow 

to capture relatively complex non-linear patterns (if they were to exist) while do not add 

too many parameters to the model to counter overfitting. With the same idea we keep low 

number of neurons and apply strong regularization to all layers except the first one.   

Table 6.5: Neural Network (Two Layers of 10 Neurons, 0.3 Dropout 

Rate and 0.4 L2 Regularization on Second Layer) 

Training Leave One Out Cross Validation 

Precision Recall F1 Precision Recall F1 

0.84 1 0.91 0.38 0.38 0.38 

 

These results are for two layers with 10 neurons each; despite using a dropout rate of 0.3 

and a l2 regularisation term of 0.4 the model is still heavily overfitting. Other number of 

neurons, dropout rates and regularisation terms did not result in significant improvements. 

Therefore, we will discard this approach. 

 

6.4.2 Principal Component Analysis (PCA) 

PCA (Jolliffe, 2002) is probably the most common and successful approach when 

attempting unsupervised linear dimensionality reduction. PCA is based on using a new 

set of orthogonal axes so that the variance is maximised across each of them, the idea is 

that a feature with 0 variance across all samples is not providing any information, 

therefore by maximising variance we are maximising the amount of information we keep. 



49 
 

Axes are ranked according to their explained variance, and so we can pick those with 

highest values ignoring the rest, effectively reducing the dimensionality of the dataset. A 

common method of choosing the number of components is based on the cumulative plot 

of the explained variance of each component.  

 

Figure 6.5 (Géron 2017): Cumulative variance plot example from the book 

‘Hands-On Machine Learning with Scikit-Learn and TensorFlow’ by 

Aurélien Géron (O’Reilly). 

In the upper graph we can see that 50 components (12.5%) already explain 80% of the 

dataset variance. If we include another 100 components we will reach 95%, which is the 

most frequently used threshold. This leaves the remaining 250 explaining only 5% of the 

variance, which can be considered an irrelevant amount of information and thus left out 

of the model. This is a clear example in which the ‘intrinsic dimensionality’ (as described 

by Aurélien Géron in the cited book) is lower than its apparent dimensionality.  

We can make the same plot for our model, using a subset (75%) of the training set. Note 

that the number of components is limited to the number of linearly independent features 

since they have to be orthogonal; in our case, we only have as many independent features 

as samples, 117 in the training set. Ideally, we would use only a portion of the training 

set for this purpose, but in our case further reducing the data size can have a strong 

negative impact.  



50 
 

 

Figure 6.6: Cumulative variance plot on the training set. 

This second graph has a much more constant slope, the elbow marked in the previous 

graph is very hard to identify in this one. We need to use around 50% (as opposed to 

12.5% for the previous example) of dimensions to explain 80% of the variance; if we 

want to reach the 95% threshold we would have to use almost all the components resulting 

in an almost non-existent dimensionality reduction. This suggests that the variance of the 

dataset cannot be efficiently explained through linear relationships. If we want to reduce 

dimensionality while minimizing the information loss we will have to turn to non-linear 

techniques.  

 

6.4.3 Autoencoders 

Autoencoders (Hinton & Salakhutdinov 2006) are a very flexible non-linear method to 

reduce dimensionality since their complexity can be varied across a wide range by 

modifying their architecture and regularisation. In the low complexity limit case, a single 

layer with linear activation is equivalent to PCA; in the high complexity limit case, there 

will always be a number of layers and neurons that is able to encode the training set in a 

single value and reconstruct it, although this will be achieved by memorising the dataset. 

This flexibility is an important virtue of autoencoders (and neural networks in general) 

but it can also be problematic, as the vast range of possibilities can make hyperparameter 

tuning take much longer than desired. To deal with this the following methodology is 

often used: start with a simple model and add complexity until it is possible to accurately 



51 
 

fit the training set, then check validation performance adding regularisation if necessary 

to ensure generalisation. As this last step might hurt training performance, it may be 

necessary to iterate until satisfactory results are achieved.  

Applying this methodology to our autoencoder, we start with a simple model: single 

hidden layer and no regularisation/noise; we have yet to decide the number of units in the 

hidden layer, which may not be such an easy choice. In our training/validation set features 

can be thought of as 117-dimensional vectors, therefore 117 hidden units should be 

enough to represent the whole feature set. Indeed, if we test this autoencoder in Keras 

using 20-fold cross validation we get a 0.046 mean squared error in the training set, so 

our model is complex enough to fit the data. In fact, it is complex enough to overfit, as 

the validation mean squared error is 0.66. 

 

Figure 6.7: Training and validation loss of the autoencoder on the last iteration 

of cross validation. We see how after epoch 10 validation loss does not improve 

while training loss keeps decreasing, which is a clear sign of overfitting. Note 

that early stopping would only result in higher training loss without any 

significant reduction in validation loss. 

As a side note, it is important to emphasize that the fact that we are able to easily reduce 

our 11288 features to 117 during training, does not mean that the 11288 gene expressions 

can be condensed in a 117-dimensional representation. We are able to do this feature 

‘compression’ because we only have 117 samples, meaning that only 117 features are 



52 
 

independent as previously explained. If we had 20 000 samples, all 11288 would most 

certainly be independent (although some could be highly correlated) and trying to reduce 

it to a 117-dimensional space would be a much more challenging task. In other words, 

while there are more features than samples, the complexity of the unsupervised 

dimensionality reduction problem is going to increase as more samples are incorporated. 

This is not an issue because more samples would also help identifying more clearly 

patterns on the data, leading to better predictions but we have to keep in mind this if we 

incorporate more samples at some point. 

Therefore, we need to simplify our autoencoder. The most direct way is reducing the 

number of hidden units; however, if we lower it to 50 neurons we obtain the same 

validation error while training error raises. Tests with other number of neurons point at 

the same direction, training error increases without the validation error decreasing. We 

can also apply l2 regularisation to our initial model with 117 neurons; we start with a 

regularisation term of 0.01 and get similar results, training error is higher, but 

generalisation does not improve. Increasing the regularisation term to 0.02, 0.04 and 0.1 

only increments training error, validation performance remains the same. Finally, we try 

adding gaussian noise to the output layer, we try a standard deviation of 0.05, 0.1, 0.2 and 

0.4 but the outcome is similar to the previous attempts. Trying combinations of the three 

different approaches mentioned does not change the outcome, validation error always 

remains above 0.6, which is a considerably high value given that the standard deviation 

of our attributes is 1. In conclusion, a single layer autoencoder with 117 hidden units is 

complex enough to represent our 11288 features; however, it is not able to generalise to 

the validation data, even as complexity is reduced with fewer number of neurons, 

regularisation and noise addition. This suggests that the available amount of data is not 

enough for the model to learn useful patterns.  

Back to the autoencoder, there is a different way to try to improve generalisation that does 

not rely on reducing complexity. If we try to learn a function, that not only considers the 

values of each features but also the relationships among features, we are effectively giving 

more information to the model about the way our data looks like, hoping this will make 

it better at reconstructing unseen instances; this can be achieved with the Relational 

Autoencoder.  The Relational Autoencoder is mainly based on modifying the loss 

function, therefore we will move to TensorFlow as it allows to make these types of 

changes more easily. Using a single layer with 117 units and equal weight for both 

reconstruction losses (data and data relationships reconstruction losses) we obtain 1.08 



53 
 

training mse and 1.14 validation mse. This suggest that the new function is too complex 

for this autoencoder to learn. We can increase the complexity of our model by adding 

more neurons. When we reach 10 000 we are able to lower both errors to 0.72 and 0.77 

respectively, but the performance is still worse than that of the previous autoencoder. At 

this point we are limited by GPU memory and we cannot keep increasing the complexity 

of the network, so we will have to turn to other models.  

 

6.4.4 Manifold Learning 

Manifold Learning is probably with Autoencoders one of the most commonly used 

techniques for non-linear unsupervised dimensionality reduction. We can visualize how 

it works through a basic example. We have a rectangle of datapoints meaning our 

dataset’s dimensionality is 2D. If we fold this rectangle we can make the surface of a 

cylinder, which is a 3D shape; therefore, without modifying the internal structure of the 

dataset (and thus the information contained in it) we have increased dimensionality. The 

purpose of Manifold Learning is doing the opposite: unfolding high dimensional shapes 

to result in lower dimensional ones that contain the same information.  

However, these techniques are not suitable in our case for one main reason. In order to 

keep internal structures and relationships, they either attempt to maintain the distance (not 

necessarily Euclidean) among datapoints or apply some type of transformation locally 

based on nearest neighbours. In any case, as we previously explained distance or 

neighbourhoods in our dataset are determined by the irrelevant features, as they 

significantly outnumber the relevant ones; so Manifold Learning does not seem to be 

adequate. Indeed, if we look at the neighbours of the relapse samples, only 7 datapoints 

out of 26 have a same class nearest neighbour. On the contrary, in the majority class 78 

out of 91 instances have a same class nearest neighbour. In summary, relapse datapoints 

are isolated and surrounded by non-relapse datapoints in the high dimensional space. 

 

 

 

 

 



54 
 

7. OTHER STRATEGIES FOR VARIANCE REDUCTION 

7.1 OUTLIER REMOVAL 

In large datasets, the impact that each sample has on determining the decision boundary 

is minimal, so outliers do not suppose a threat. However, as we have discussed in section 

4.2, our case is quite the opposite. A common approach in these situations is to remove 

outliers, although these are not easy to identify in small datasets. Outlier removal is also 

problematic because it implies losing information about the classes, which is already 

scarce, specially in the case of relapse. For this reason, we will only remove outliers from 

the majority class; this will also help balance the dataset.  

Edited Nearest Neighbours (ENN) (Wilson 1972) is a data cleaning algorithm that 

identifies those samples that disagree with its nearest neighbours (which can be 

considered outliers) and deletes them. As a distance based method, it is not suitable for 

high dimensionality problems, so we will have to perform feature selection beforehand. 

After several attempts we find a satisfactory model based on the one obtained with One-

Way ANOVA. We use the F-test for selecting 10 relevant genes (once again, in cross 

validation feature selection is performed on each training fold, not on the whole training 

set); then we use ENN to remove those samples from the majority class that disagree with 

any of its three nearest neighbours and finally we have logistic regression (balanced class 

weights, l2 penalty and C=30) as our classifier, leading to the best results we have 

obtained so far: 

Table 7.1 Logistic Regression (Balanced Class Weights, L2 Penalty, C = 30) 

Combined with ANOVA Feature Selection and ENN Outlier Removal. 

Training Leave One Out Cross Validation 

Precision Recall F1 Precision Recall F1 

0.67 0.92 0.77 0.56 0.73 0.63 

 

 

 

 

 

 

 



55 
 

7.2 BAGGING 

Bagging (Breiman 1996) is one of the most common approaches for variance reduction 

and one of the main reasons behind the success of Random Forests. It is based on creating 

a certain number of bags with the same size as the original dataset by randomly sampling 

with replacement this dataset. On average each bag contains 63% of distinct datapoints, 

some of them appearing twice or more. As a result, all bags will resemble the original 

dataset, but they are slightly different. Then, a model is trained on each of the bags and 

when classifying, predictions from all models are averaged to obtain a final result. The 

idea is that as all predictions are averaged, the common factor in all models, which reflects 

the true pattern of the dataset, is preserved; while any predictions due to overfitting will 

differ in each bag ideally compensating each other or averaging to 0.  

We will use the model from the previous section as the basis for our bagging classifier 

which will be composed of 500 bags. Additionally, we perform random undersampling 

of the majority class samples in order to obtain balanced bags. The results, once again, 

are better than those of any of the previous models: 

Table 7.2 Bagging Ensemble of Logistic Regression Models 

(Balanced Class Weights, L2 Penalty, C = 30) Combined with 

ANOVA Feature Selection and ENN Outlier Removal. 

Training Leave One Out Cross Validation 

Precision Recall F1 Precision Recall F1 

0.71 0.96 0.82 0.65 0.77 0.70 

 

Therefore, this will be our final model. 

 

 

 

 

 

 



56 
 

8. RESULTS 

8.1 GENES SELECTED BY L1 PENALTY 

In section 5.3 we used our baseline model (logistic regression with l1 penalty) to select a 

set of 10 relevant genes that we then used as predictors for the logistic regression model 

shown in table 5.12 achieving an f1 score of 0.79 on leave one out cross validation. 

However, this was not an accurate estimate of generalization, as we were performing 

cross validation on the same set we used to identify the relevant features; therefore, we 

will now use the test set obtaining these results: 

Table 8.1 Test Results of Logistic Regression Model (Balanced Class 

Weights, L2 Penalty, C=30) Based on 10 Genes Selected by L1 Penalty. 

Test 

Precision Recall F1 

0.36 0.44 0.40 

 

Such low results seem to indicate that our model was strongly overfitting to the training 

set. In other words, the 10 genes selected by our baseline model are not nearly as relevant 

in the test data as they are in the training data. To confirm this hypothesis, we can look at 

the performance of our baseline model in the test set. 

 

8.2 BASELINE MODEL  

Our baseline model (obtained in section 5.1 and discussed in 5.3) achieved an F1 score 

of 0.59 using leave one out cross validation. This time, cross validation results were more 

reliable as the form of embedded feature selection performed by the model is based on 

each training fold and not on the entire training set. Still, we can use the test set to compare 

results and gain a better insight that can help us understand the results from the previous 

section.  

 

 

 



57 
 

Table 8.2: Test Results of the Baseline Model (Logistic 

Regression with Balanced Class Weights, L1 Penalty and C=0.1). 

Test 

Precision Recall F1 

0.50 0.44 0.47 

 

The difference between test and cross validation results is considerably lower here than 

in the previous section, which is reasonable, since in this case cross validation provides a 

more accurate estimate of generalization performance. However, there is still a significant 

difference between the scores obtained with cross validation and the test set: 0.47 against 

0.5 for precision, 0.81 against 0.44 for recall and 0.59 against 0.47 for f1 score. This could 

be due to two reasons. First, the grid search used to obtain the baseline model may be 

leading to overfitting: since we tried a wide range of models and selected the one that 

provided the best cross validation results on the training set, we might have chosen a 

model that performs particularly well in this training data but does not generalise as well. 

Second, given the low number of samples, the training and test set might not be 

representative of the whole population; therefore, each of them may contain different 

information, which would explain why there is such low performance when we train the 

model in one set and we test it in the other.  

We can determine which hypothesis is true by comparing cross validation and test results 

for different data splits. If the training and test sets were representative, results would be 

similar for different splits, since, although they would include different samples, the 

information contained would be the same. For this task we use a logistic regression model 

with default parameters and we test it in 10 different stratified (the ratio between classes 

is preserved) train/test splits.  

 

 

 

 



58 
 

Table 8.3: Comparison of Cross Validation and Test Results for Different 

Train/Test Splits. Logistic Regression with Default Parameters (L2 Penalty, C=1) 

and Balanced Class Weights. 

 
Leave One Out Cross Validation Test 

Precision Recall F1 Precision Recall F1 

1 Split 0.33 0.62 0.43 0.32 0.67 0.43 

2 Split 0.26 0.42 0.32 0.30 0.67 0.41 

3 Split 0.28 0.50 0.36 0.38 0.56 0.45 

4 Split 0.28 0.54 0.37 0.28 0.56 0.37 

5 Split 0.38 0.77 0.51 0.20 0.44 0.28 

6 Split 0.35 0.69 0.46 0.31 0.56 0.40 

7 Split 0.31 0.65 0.42 0.25 0.33 0.29 

8 Split 0.31 0.62 0.42 0.25 0.33 0.29 

9 Split 0.24 0.46 0.31 0.32 0.67 0.43 

10 Split 0.22 0.42 0.29 0.29 0.56 0.38 

  

As we can see values vary significantly across different splits. Therefore, we can conclude 

that the choice of samples that make part of the training and test set has a strong impact 

on the cross validation and test results; this is ultimately a problem of variance. On the 

contrary, on large datasets, there is enough data for the training and test sets to be 

representative of the entire population. As a result, performance scores are almost 

constant across multiple splits, since the information contained in the training and test set 

is always the same. 

Now, if we look at split 7, which is the one we have been using in this project, we see that 

the cross validation f1 score is 0.13 higher than the f1 test score, suggesting that the test 

set contains samples that are harder to classify. We can expect a similar difference in 

other models and indeed this is the case with our baseline model, where we obtain a 

difference of 0.12 (see tables 5.9 and 8.2).  

 

 

 



59 
 

8.3 BAGGING, FEATURE SELECTION AND OUTLIER REMOVAL COMBINED 

We now look at the performance of the model obtained in section 7.2 (which had the best 

cross validation results) on the test set. 

Table 8.4 Bagging Ensemble of Logistic Regression Models 

(Balanced Class Weights, L2 Penalty, C = 30) Combined with 

ANOVA Feature Selection and ENN Outlier Removal. 

Test 

Precision Recall F1 

0.22 0.44 0.30 

 

The cross validation f1 score of this model was 0.70 (see table 7.2) resulting in a 

difference of 0.4 with the test result. Such a great difference cannot be explained by the 

variability discussed in the previous section, therefore we can conclude that our selected 

model is overfitting. Note that at this point it would not be reasonable to modify our model 

in order to improve test performance, as we would be implicitly incorporating the 

information in the test set to our model and the whole purpose of using this set would be 

defeated. 

 

9. CONCLUSION 

In this project we have explored the use of machine learning to identify patterns in the 

genetic data of ALL patients that allow to predict relapse, as this plays a major role in 

determining the most adequate therapy. For this task, a dataset of 157 patients was used, 

which is characterised by a low number of samples, class imbalance and high 

dimensionality, which also constitute the three main challenges of this project.  

These three challenges lead to a problem of high variance, in other words, models are 

likely to overfit, not generalising to new data that has not been seen during training. 

Consequently, we explore several approaches to reduce variance such as the use of simple 

linear models (logistic regression), dimensionality reduction, bagging and outlier 

removal.  

These techniques combined yield good cross validation results, but they do not generalise 

well to the test set, due to a problem of overfitting. This casts doubt over the patterns 



60 
 

identified during the project, such as the existence of 7 genes (DUSP14, FKBP5, 

ADORA2A, SNX7, HPGD, CAP1 and ZNF55) highly correlated with relapse, which 

may still deserve attention in further research. On the other hand, these results highlight 

the importance of using a hold out set, especially in small datasets where it is very likely 

to overfit and cross validation estimates might not be reliable. 

Finally, the lack of data, which has been a great obstacle throughout the project, also 

prevents us from reaching any definitive conclusions. Since our models suffer from 

overfitting, we can conclude that the patterns we found were dubious, but we cannot 

discard the existence of other, subtler patterns, that actually generalize. In other words, 

witth this amount of information, we cannot affirm neither deny that relapse in ALL can 

be predicted using gene expression data. Thus, gathering more samples seems the most 

effective way of either obtaining a successful predictive model or discarding such 

possibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

10. REFERENCES 

Abu-Mostafa, Y., Magdon-Ismail, M., Lin, H. 2012, Learning from Data: A Short 

Course, 1st edn, AMLbook.com, USA. 

American Cancer Society, 2016, Survival Rates for Melanoma Skin Cancer, by Stage, 

viewed 7 December 2017, <https://www.cancer.org/cancer/melanoma-skin-

cancer/detection-diagnosis-staging/survival-rates-for-melanoma-skin-cancer-by-

stage.html >. 

Breiman, L. 1996, ‘Bagging Predictors’, Machine Learning, vol. 24, issue 2, pp. 123-140.  

Breiman, L. 2001, ‘Random Forests’, Machine Learning, vol. 45, issue 1, pp. 5-32. 

Breiman, L., Friedman, F., Olshen, R., Stone, C. 1984, Classification and Regression 

Trees, Wadsworth, Belmont, USA. 

Buduma, N. 2017, Fundamentals of Deep Learning: Designing Next-Generation 

Machine Learning Algorithms, 1st edn, O’Reilly Media, Sebastopol, CA, USA. 

Cancer Council Australia, 2017, Skin cancer, viewed 30 January 2018, 

<http://www.cancer.org.au/about-cancer/types-of-cancer/skin-cancer.html >. 

Cancer Research UK, 2015, Why is early diagnosis important?, viewed 30 January 2018, 

< http://www.cancerresearchuk.org/about-cancer/cancer-symptoms/why-is-early-

diagnosis-important>. 

Cancer Research UK, 2015, About side effects of treatment, viewed 9 June 2018, < 

http://www.cancerresearchuk.org/about-cancer/acute-lymphoblastic-leukaemia-

all/treatment/side-effects/about>. 

Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer, W. P. 2002, ‘SMOTE: Synthetic 

Minority Over-sampling Technique’, Journal of Artificial Intelligence Research, vol. 16, 

pp. 321-357. 

Cortes, C., Vapnik, V. N. 1995, ‘Support-vector networks’, Machine Learning, vol. 20, 

issue 3, pp. 273-297. 

Cox, D. R. 1958, ‘The Regression Analysis of Binary Sequences’, Journal of the Royal 

Statistical Society. Series B (Methodological), vol. 20, no. 2, pp. 215-242. 



62 
 

Danaee, P., Ghaeini, R., Hendrix, D.A. 2016, ‘A Deep Learning Approach For Cancer 

Detection And Relevant Gene Identification’, Pacific Symposium of Biocomputing, 22, 

pp. 219-229. 

Flöck, F. 2016, K-fold cross validation, Wikimedia Commons, viewed 4 January 2018, < 

https://commons.wikimedia.org/wiki/File:K-fold_cross_validation_EN.jpg>. 

Freund, Y., Schapire, R. 1997, ‘A decision-theoretic generalization of on-line learning 

and application to boosting’, Journal of Computer and System Sciences, vol. 55, issue 1, 

pp. 119-139. 

Gareth, J., Witten, D., Hastie T., Tibshirani R. 2013, An Introduction to Statistical 

Learning, 1st edn, Springer-Verlag New York, USA.  

Géron, A., 2017, Hands-On Machine Learning with Sickit-Learn and TensorFlow: 

Concepts, Tools, and Techniques to Build Intelligent Systems, 1st edn, O’Reilly Media, 

Sebastopol, CA, USA. 

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., 

Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., Lander, E. 

S., 1999, ‘Molecular Classification of Cancer: Class Discovery and Class Prediction by 

Gene Expression Monitoring’, Science, vol. 286, issue 5439, pp. 531-537. 

Gurts, P., Ernst, D., Wehenkel, L. 2006, ‘Extremely Randomized Trees’, Machine 

Learning, vol. 63, issue 1, pp. 3-42. 

Halls-Moore M. 2015, Image: Various estimates of the underlying sinusoidal 

model, f=sin, The Bias-Variance Tradeoff in Statistical Machine Learning - The 

Regression Setting, QantStart, viewed 14 January 2018, 

<https://www.quantstart.com/articles/The-Bias-Variance-Tradeoff-in-Statistical-

Machine-Learning-The-Regression-Setting>. 

Harari, Y.N. 2017, ‘Reboot for the AI revolution’, Nature, vol 550, pp. 324-327. 

Hastie, T., Tibshirani, R., Friedman, J. 2008, The Elements of Statistical Learning, 2nd , 

Springer, New York, USA. 

He, H., Bai, Y., Garcia, E. A., Li, S. 2008, ‘ADASYN: Adaptive Synthetic Sampling 

Approach for Imbalanced Learning’, 2008 IEEE International Joint Conference on 

Neural Networks (IEEE World Congress on Computational Intelligence),  pp. 1322-1328. 



63 
 

Heiman, G. W. 2001, Understanding Research Methods and Statistics: An Integrated 

Introduction for Psychology, 2nd edn, Houghton Mifflin Company, Boston, USA. 

Hinton, G. E. & Salakhutdinov, R. R., 2006, ‘Reducing the dimensionality of the data 

with neural networks.’, Science, vol. 313, issue 5786, pp. 504-507. 

Institute of Medicine, 2015, Improving Diagnosis In Healthcare, Report In Brief, 

September 2015, The National Academies of Sciences, Engineering and Medicine, < 

http://www.nationalacademies.org/hmd/~/media/Files/Report%20Files/2015/Improving

-Diagnosis/DiagnosticError_ReportBrief.pdf>. 

Kirk, M. 2015, Thoughtful Machine Learning with Python: A Test-Driven Approach, 1st 

edn, O’Reilly Media, Incorporated, Sebastopol, USA.  

Liu. Y., Gadepalli, K., Norouzi, M., Dahl, G.E., Kohlberger, T., Boyko, A., Venugopalan, 

S., Timofeev, A., Nelson, P.Q., Corrado, G.S., Hipp, J.D., Peng, L., Stumpe, M.C. 2017, 

‘Detecting Cancer Metastases on Gigapixel Pathology Images’, arXiv, 

arXiv:1703.02442v2. 

National Cancer Institute, 2018, Childhood Acute Lymphoblastic Leukemia, viewed 8 

June 2018, <https://www.cancer.gov/types/leukemia/patient/child-all-treatment-pdq>. 

Teachey, D. T., Hunger, S. P., 2013, ‘Predicting relapse risk in childhood acute 

lymphoblastic leukaemia’, British Journal of Haematology, vol. 162, pp. 606-620. 

Thrun, S., Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., 2017, 

‘Dermatologist-level classification of skin cancer with deep neural networks.’, Nature, 

vol. 542, pp. 115-118. 

Jolliffe, I. T., 2002, Principal Component Analysis, 2nd , Springer, New York, USA. 

Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A. H. 2016, ‘Deep learning for 

identifying metastatic breast cancer’, arXiv, arXiv:1606.05718v1. 

Wilson, D. L., 1972, ‘Asymptotic Properties of Nearest Neighbour Rules Using Edited 

Data’, IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-2, no. 3, pp. 408-

421. 

Winters, B., Custer, J., Galvagno, S.M., et al. 2012, ‘Diagnostic errors in the intensive 

care unit: a systematic review of autopsy studies’, BMJ Qual Saf, vol. 21, issue 11, pp. 

894-902. 



64 
 

World Health Organization 2017, Cancer Fact sheet, viewed 30 January 2018, < 

http://www.who.int/mediacentre/factsheets/fs297/en/>. 

Xiao, Z., Huang, R., Ding, Y., Lan, T., Dong, R., Qin, Z., Zhang, X., Wang, W., 2016, 

‘A Deep Learning-Based Segmentation Method for Brain Tumor in MR Images’, 2016 

IEEE 6th International Conference on Computational Advances in Bio and Medical 

Sciences (ICCABS), IEEE, Atlanta, GA. 

Zhang, H. 2004, ‘The Optimality of Naïve Bayes’, FLAIRS2004 Conference, viewed 13 

June 2018, < http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf>. 

Zhang, T. 2004, ‘Solving Large Scale Linear Prediction Problems Using Stochastic 

Gradient Descent Algorithms’, ICML 2004: Proceedings of the Twenty-First 

International Conference on Machine Learning, pp. 919-926. 

 


