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in a THREDDS Data Server (TDS), implementing fine-grained user management and authorization via the
THREDDS Access Portal (TAP). As a result, users can retrieve the subsets best suited to their particular
research needs in a user-friendly manner using the standard TDS data services. Moreover, an open source,
R-based interface for data access and postprocessing was developed in the form of a bundle of packages
implementing harmonized data access (one single vocabulary), data collocation, bias adjustment and
downscaling, and forecast visualization and validation. This provides a unique comprehensive framework
for end-to-end applications of seasonal predictions, hence favoring the reproducibility of the ECOMS sci-

entific outcomes, extensible to the whole scientific community.
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Practical Implications

The integration of seasonal predictions in different impact sectors such as agriculture, energy, hydrology and health require data
from different sources, including observations, reanalysis and seasonal predictions/hindcasts from state-of-the-art forecasting sys-
tems. Typically, only a reduced number of surface variables is needed, which can be directly obtained from the different data pro-
viders. However, the resulting formats, temporal scales/aggregations and vocabularies (variable naming and units) may not be
homogeneous across datasets. Thus, obtaining and harmonizing the datasets (particularly seasonal predictions) is typically an
error-prone, time consuming task. Moreover, different data policies hold for the various datasets (which are freely available only
in some cases) and therefore data access may not be straightforward.

The ECOMS User Data Gateway (ECOMS-UDG) was developed in order to mitigate the above mentioned problems, facilitating
data provision to end users and favouring science transparency, openness and reproducibility. To this aim, ECOMS-UDG was built
upon different open-source software components publicly available: The UNIDATA THREDDS data server, the THREDDS Access Por-
tal implementing fine-grained user management and authorization, and the climate4R bundle providing data access and post-
processing tools (including bias adjustment and downscaling) based on the R language and computing environment. As a result,
ECOMS-UDG provides a unique framework to explore seasonal predictability allowing for the development of end-to-end seasonal
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forecast applications using state-of-the-art seasonal forecasting systems (such as NCEP/CFSv2, ECMWF/System4 or UKMO/

GloSeab).

The functionalities of ECOMS-UDG are illustrated with a case study application over Europe, analyzing seasonal predictability of
winter (DJF) temperatures and precipitation, in connection to North Atlantic Oscillation (NAO) predictability at seasonal time scales.
Although some of the datasets used in this work are restricted to ECOMS partners due to data access constraints imposed by the data
providers, there is a minimum amount of information (e.g. WFDEI observations, NCEP/NCAR reanalysis and CFSv2 seasonal fore-
casts) openly accessible, which allows reproducing the results here presented and undertaking further research activities.

Currently, ECOMS-UDG does not provide operational forecasts, but only retrospective forecasts (hindcasts) and reference data
(observations and reanalysis). Therefore, operational applications would require accessing (downloading) the operational predic-
tions directly from the data provider; however, the tools provided in ECOMS-UDG can be used to transparently access the down-
loaded local dataset (e.g. using the corresponding hindcast dictionary), thus facilitating this task.

1. Introduction

The European Climate Observations, Modelling and Services
(ECOMS) initiative coordinates the activities of three European
projects (EUPORIAS, SPECS and NACLIM) focusing on seasonal to
decadal prediction. Different studies carried out in these projects
have tested the integration of seasonal prediction in several impact
sectors such as agriculture, energy, hydrology and health (Lowe
et al.,, 2016; Ogutu et al., 2016; Bedia et al., 2018). These sectorial
studies require data from different sources (observations, reanaly-
sis and seasonal predictions/hindcasts) for verification and down-
scaling purposes. Typically, only a reduced number of surface
(and upper-air for downscaling) variables is needed, which can
be directly obtained from the different data providers. However,
the resulting formats, temporal scales/aggregations and vocabular-
ies (variable naming and units) may not be homogeneous across
datasets. Thus, obtaining and harmonizing the datasets (particu-
larly seasonal predictions) is typically an error prone, time
consuming task. Moreover, different data policies hold for the
various datasets (which are freely available only in some cases)
and therefore data access may not be straightforward. These
difficulties and challenges for moving towards end-to-end climate
data services have been reported in several studies (Coelho and
Costa, 2010) and constitute a major bottleneck for real-world
applications.

The ECOMS User Data Gateway (ECOMS-UDG) was developed
as part of the ECOMS data management activities in order to mit-
igate the above mentioned problems, facilitating data provision to
end users (see Fig. 1 for a schematic illustration of the main com-
ponents). To this aim, the variables required in the sectorial appli-
cations were identified, downloaded from data providers, and
stored locally in a THREDDS (THematic Real-time Environmental
Distributed Data Services) data server implementing fine-grained
user authorization via the TAP (THREDDS Access Portal). This pro-
vides a one-stop-service for climate data access where users can
efficiently retrieve the subsets best suited to their particular
research aims (for particular regions, periods and/or ensemble
members). Besides the standard data access services (such as
OPeNDAP or NetCDF Subset Service), an additional interface (the
loadeR package) is provided for R users (R Core Team, 2017), pro-
viding also appropriate R data structures for data manipulation.
Thus, ECOMS-UDG data subsets can be efficiently accessed directly
from R using a single line of code.

Furthermore, some common transformation/calibration post-
processing steps are typically applied to raw model data before
their use in sectorial models, including data collocation (e.g. regrid-
ding, temporal aggregation, subsetting), bias adjustment (e.g. local
scaling or quantile mapping) and forecast validation. In some cases,
these steps are very technical and they are not always appropri-
ately documented in practical applications, thus making the repro-
ducibility of the results difficult. In order to facilitate these tasks,
an R bundle for data postprocessing was developed as an extra
layer of ECOMS-UDG, implementing a generic package for data
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Fig. 1. Schematic illustration of the ECOMS-UDG components, including the
THREDDS Data Server (TDS), the THREDDS Access Portal (TAP) and the climate4R
interface for data access and postprocessing, formed by several packages for data
access, transformation, bias adjustment and visualization and validation. Compat-
ibility with some external packages has been achieved by appropriate two-way
bridging functions (for the corresponding data structures). Arrows indicate data
flow and blue shading indicates in-house developments. All componentes are
distributed under GNU General Public License. Some of the images are courtesy of
UCAR/Unidata. The R logo is ©2016 The R Foundation.

transformation (transformeR package, Bedia and Iturbide,
2017) and bridging some existing packages developed in the
framework of ECOMS for bias adjustment and downscaling (down-
scaleR package, Bedia et al., 2017), and forecast visualization and
validation (visualizeR package, Frias et al., 2017). Moreover,
transparent connection to other external packages (e.g. easyVer-
ification package, MeteoSwiss, 2017) was also developed by
implementing two-way bridging functions for the corresponding
data structures (documented in the corresponding packages). The
resulting R bundle (referred to as climate4R) provides a unique
framework with which data access, postprocessing and validation
can be performed using a few lines of code. This allows end-to-
end experimental reproducibility and facilitates the description
(metadata) and documentation of the whole data flow. An up-to-
date description of ECOMS-UDG, including information on the
available datasets, variables and tools is provided in the wiki page:
http://www.meteo.unican.es/ecoms-udg.
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This work describes the structure of ECOMS-UDG and illustrates
its application with a case study over Europe, analyzing seasonal
predictability of winter (DJF) temperatures and precipitation, in
connection to NAO predictability. Research reproducibility has
been a major concern in the development of ECOMS-UDG. There-
fore, it was developed using open-source tools (THREDDS server,
the THREDDS Access Portal, and R), thus favoring transparency,
openness and reproducibility of the results. Although some of the
datasets used in this work are restricted to ECOMS partners, there
is @ minimum amount of information (e.g. WFDEI observations,
NCEP/NCAR reanalysis, CFSv2 seasonal forecasts) openly accesible,
which allows reproducing the results here presented (the full code
is provided in a companion vignette available at http://meteo.
unican.es/work/UDG/climate-services-manuscript.html) and also
allows a public unrestricted use of ECOMS-UDG for other research
activities.

This paper is structured as follows: Section 2 describes the main
components of the ECOMS-UDG. An illustrative application case
study focusing on NAO predictability is presented in Section 3.
Finally, conclusions are given in Section 4.

2. The ECOMS-UDG data service

The ECOMS User Data Gateway consists of three main compo-
nentes: (1) THREDDS Data Server, (2) THREDDS Access Portal and
(3) an API/bundle of R packages for data access and postprocessing
(the climate4R bundle). The fist two components provide stan-
dard services for data access (e.g. OPeNDAP and NetCDF Subset
Service) and user management and authentication (based on data
policies associated with virtual datasets). The third component is
an extra layer for data access and postprocessing based on the R
statistical computing language. Fig. 1 provides an schematic view
of the service. These components are described in detail in the

Table 1
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following sections (full documentation at http://www.meteo.uni-
can.es/ecoms-udg).

2.1. The THREDDS Data Server (TDS)

The THREDDS Data Server (TDS) developed by unidata/NCAR
provides catalog, metadata, and data access services (HTTP, OPeN-
DAP, OGC WCS, OGC, and WMS) for scientific data. The catalogs are
XML documents that list (virtual) datasets and the data access ser-
vices available for the datasets. This allows separating the data/
metadata service layer from the physical organization of the data-
sets (in files), aggregating a collection of data resources into a sin-
gle virtual dataset, thus greatly simplifying user access to the data
collection.

ECOMS-UDG builds on a TDS with an extra layer for user man-
agement and authentication (see next section). The variables
required in the ECOMS sectorial applications were identified (see
Table 1), downloaded from data providers, and stored locally in a
TDS. These include:

e Observational data: WFDEI (Weedon et al., 2014).

e Reanalysis data: NCEP/NCAR Reanalysis 1 (Kalnay et al., 1996)
and ERA-Interim (Dee et al., 2011).

Seasonal forecasts from state-of-the-art forecasting systems:
NCEP-CFSv2 (Saha et al., 2011), ECMWEF-System4 (Molteni
et al., 2011) and UKMO-GloSea5 (Scaife et al., 2014). For the lat-
ter two models, two different virtual datasets were defined to
aggregate homogeneous datasets (with an equal number of
members) from all the available information. The labels S4
(15) and S4(51) refer to the seasonal System4 datasets with
15 and 51 members, respectively, with monthly initializations
in the first case, and four initializations per year in the latter
(1st of Nov, Feb, May and Aug). The labels GS5(12) and GS5
(24) correspond to the GloSea5 hindcast with 12 and 24 mem-

Variables available at ECOMS-UDG for some observational, reanalysis and seasonal hindcast datasets (see text for details). The codes used by the R interface and the variable
description (including the corresponding CF standard names; see http://cfconventions.org/standard-names.html) are given in the first two columns. The different cell codes
indicate the temporal resolution(s) of the available data: 6 h (six-hourly instantaneous data), 12 h (12-hourly instantaneous data), 6hA (six-hourly accumulated), DM (daily
mean), MM (monthly mean), DX (daily maximum), DN (daily minimum), DA (daily accumulated), DAr (accumulated since the initialization time); ‘fx’ denotes statistic fields (i.e.
no time dimension). The code ‘@ indicates that data is available at the following pressure levels (1000,850,700,500,300,200 mb, except for hus, which is not available at 200mb in
some models). The codes of open access datasets are boldfaced. Some codes refer to variables only accessible through the R interface: Codes ended by ‘(x)’ indicate variables which
do not exist in the dataset, but are derived/approximated from other available ones through the R interface; similarly, variables ended by ‘(#) indicate daily aggregated values

obtained from the corresponding original 3-hourly data.

Obs. Reanalysis Seasonal hindcasts

R code Variable description (Inc. standard_names) WEFDEI NCEP ERAInt CFSv2 S4(15) S4(51) GS5(12&14)
tas Near-surface air_temperature DM 6h DM 6h 6 h/DM DM/MM DM
tasmax Maximum near-surface air_temperature DX(#) 6h DX 6h DX DX DX
tasmin Minimum near-surface air_temperature DN(#) 6h DN 6h DN DN DN
pr precipitation_amount DA(x) 6hA DA 6h DAr DAr/MA DA
psl air pressure_at_sea_level - 6h DM 6h 6h 6 h/MM DM
ps surface_air_pressure DM - - 6h 6 h(x) -
WSS Near-surface wind_speed DM - - 6 h(x) 6 h(x) - -
tdps Near-surface dew_point_temperature - - - - 6h - -
huss Near-surface specific_humidity DM 6h - 6h 6 h(x) - -
hurs Near-surface relative_humidity DM 6h - 6 h(x) 6 h(x) - -
rsds surface_downwelling_shortwave_flux DA 6hA - - DAr - DA
rlds surface_downwelling longwave_flux DA 6hA - - DAr - -
uas Near-surface eastward_wind - 6h - 6h 6h - -
vas Near-surface northward_wind - 6h - 6h 6h - -
ua eastward_wind - 6 h@ DM@ - 12 h@ - -
va northward_wind - 6 h@ DM@ - 12 h@ - -
zg geopotential_height - 6 h@ DM@ - 12 h@ - -
ta air_temperature - 6 h@ DM@ - 12 h@ - -
hus specific_humidity - 6 h@ DM@ - 12 h@ - -
zgs Surface geopotential height - - - - fx - -
orog surface_altitude - - - fx - - -
Im land_binary mask - - - fx - - -



http://meteo.unican.es/work/UDG/climate-services-manuscript.html
http://meteo.unican.es/work/UDG/climate-services-manuscript.html
http://www.meteo.unican.es/ecoms-udg
http://www.meteo.unican.es/ecoms-udg
http://cfconventions.org/standard-names.html

36 A.S. Cofifio et al./Climate Services 9 (2018) 33-43

bers, respectively, with four initializations per year in the first
case and a single initialization (November, to focus on Boreal
winter) in the latter. Full information about ensemble formation
is provided at the wiki page http://www.meteo.unican.es/
ecoms-udg.

Table 1 shows the great heterogeneity of temporal resolutions
available for the different datasets (specified by different codes in
the table). The harmonization of these datasets is performed via
the R interface for data access (see Section 2.3).

2.2. The THREDDS Access Portal (TAP)

The TAP is the user management and authorization web applica-
tion which controls user access to data resources (datasets via vir-
tual catalogs) exposed in a TDS. This is done by defining thematic
groups which are sets of datasets (sharing a common data policy)
together with the corresponding data access policy. For instance,
there is a PUBLIC_DATA thematic group which includes data from
publicly available datasets: observations (WFDEI), reanalysis
(NCEP/NCAR reanalysis1), seasonal hindcasts (CFSv2), etc. The
TAP also includes different thematic groups for particular projects
and initiatives. The ECOMS thematic group (restricted to members
of the ECOMS projects) focuses on seasonal forecasting and includes
restricted seasonal hindcasts (e.g. System4 and GloSea5), as well as
some other restricted products (ERA-Interim), which are only
accessible to project partners, according to the particular data poli-
cies obtained from the data providers. TAP users are associated with
some of the different thematic groups, which allow accessing differ-
ent datasets with the corresponding data policies. Registration in
TAP (http://meteo.unican.es/ecoms-udg/dataserver/registration) is
free and provides access by default to the PUBLIC_DATA thematic
group.

The goal of the TAP project was providing a solution to the prob-
lem of user management, roles definition (datasets + data policies)
and dataset access existing in the Unidata THREDDS application
and it is distributed under GNU General Public License. More tech-
nical information is given at http://meteo.unican.es/trac/wiki/tap.

2.3. Data Access and PostProcessing (c1imate4R bundle)

The 1oadeR package was developed to provide a user-friendly
connection to the User Data Gateway (UDG), implementing trans-
parent user authentication and data access building on NetCDF-
Java (see Fig. 1). More information about this package is given at
https://github.com/SantanderMetGroup/loadeR/wiki.

The different nature of the datasets, and the idiosyncratic nam-
ing and storage conventions of the ECOMS thematic group (partic-
ularly for seasonal forecast data), made it necessary to develop an
harmonization module across datasets in order to implement a
truly user-friendly toolbox for data access. To this aim, an exten-
sion of the loadeR package (loadeR.ECOMS) was developed,
including (1) the definition of the available datasets (with all the
necessary information for data access), (2) a single common vocab-
ulary (the variables and codes are shown in the first two columns
of Table 1; units are not shown) and (3) a dictionary for each of the
datasets to map the particular existing variables to the common
vocabulary, including transformations (for unit conversion, e.g.
—273.15 for conversion of K to °C, de-accumulation, etc.) when
needed. Note that these functionalities are needed in order to cope
with the great heterogeneity of temporal resolutions available for
the different ECOMS-UDG datasets (Table 1, specified by different
cell codes). In some cases, the values are daily mean values (DM)
or daily accumulated values (DA), whereas in others the values cor-
respond to the accumulated values since the initialization time

(DAr) —so differences with the previous day (de-accumulation)
have to be taken in order to obtain daily accumulated value.—.

Moreover, in some particular cases the requested variables are
not available in the original dataset, but can be derived/approxi-
mated using existing variables. Codes ended by ‘(%) in Table 1
indicate variables which do not exist in the dataset, but are
derived/approximated from other available ones through the R
interface. For instance, for the System 4 15-members dataset, rela-
tive humidity is obtained from surface temperature (tas) and sur-
face dew point temperature (tdps). Similarly, variables ended by *
(#) indicate daily aggregated values obtained from the corre-
sponding original 3-hourly data. All the details are described in
http://meteo.unican.es/ecoms-udg/catalog

In addition to the packages for data loading and harmonization,
the interface was extended including a number of packages for
postprocessing, building on the same data structures:

e transformeR (Bedia and Iturbide 2017) performs data
postprocessing tasks such as re-gridding/interpolation,
principal component/EOF analysis, detrending, aggregation,
subsetting, etc., being fully integrated with the different
packages here enumerated. Examples of application are
available in the transformeR’s wiki (https://github.com/
SantanderMetGroup/transformeR/wiki).

e downscaleR (Bedia et al.,, 2017) is an R package for bias adjust-
ment and statistical downscaling of daily data, including several
standard techniques such as local scaling, quantile mapping,
analogs, linear and generalized linear regression, etc. An intro-
duction to the package and examples of application are avail-
able in the downscaleR’'s wiki (https://github.com/
SantanderMetGroup/downscaleR/wiki).

e visualizeR (Frias et al, 2017) is an R package implementing a
set of advanced tools for forecast visualization and verification,
such as tercile plots, bubble and pie plots, reliability categories,
etc. It allows visualizing seasonal predictions and/or validation
results, in a form suitable to communicate the underlying
uncertainty (https://github.com/SantanderMetGroup/
visualizeR).

o Integration with other external packages. As part of the ECOMS
initiative, two different verification R packages have been devel-
oped: SpecsVerification, (Siegert, 2017) in SPECS and
easyVerification (MeteoSwiss, 2017) in EUPORIAS, imple-
menting new verification metrics for probabilistic forecasts.
Several bridging functions have been developed for a complete
integration with the previous in-house packages so these pack-
ages can be transparently used within the ECOMS-UDG R
interface.

The resulting c1imate4R R bundle provides a unique postpro-
cessing framework where data access, postprocessing and valida-
tion can be performed using a few lines of code, as shown in the
illustrative example below.

3. Illustrative example: NAO predictability

The North Atlantic Oscillation (NAO) emerges over the middle
and high latitudes of the Northern Hemisphere as the most promi-
nent pattern of atmospheric variability, affecting European climate
(Hurrell et al., 2003). The potential predictability of NAO interan-
nual variability has been an active topic of research in the last dec-
ade, and new encouraging advances have been recently reported
with state-of-the-art operational seasonal forecasting models
(such as GloSea5, Scaife et al., 2014). However, there is some con-
troversy around this topic due to the impact of hindcast length on
estimates of seasonal climate predictability (Shi et al., 2015). The
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restricted access to the data and the above mentioned problems
related to data access makes it very difficult for end users to repli-
cate the results, study the sensitivity to different factors, and ana-
lyze the potential applicability in their particular sectors. In the
present example we illustrate the added value of ECOMS-UDG in
this context.

We focus on NAO during Boreal winter (DJF) and investigate (1)
to what extent NAO interannual variability can be skillfully repro-
duced by state-of-the-art forecasting systems and (2) how this is
related to their skill in predicting regional precipitation and tem-
perature over western Europe.

3.1. Loading data

The steps followed for data loading are next briefly described,
considering observations, reanalysis (for the definition of the
NAO index) and seasonal forecast data. Some code is interwoven
within the text in order to illustrate the main characteristics of
the R interface. Each line of code is identified by the R prompt sym-
bol (>). Extended reproducible examples to obtain the different
datasets and the figures presented in this paper are included in
the companion vignette (http://meteo.unican.es/work/UDG/
climate-services-manuscript.html).

Prior to data access, authentication is required to access the
UDG. The authentication is performed in one step:

> library(loadeR.ECOMS)
> loginUDG(username = "jDoe", password = "sx¥*x'")

The following call to the function 1oadECOMS retrieves the
NCEP/NCAR reanalysis (dataset = "NCEP_reanalysisl'") sea-
level pressure field (var = "ps1"), considering the NAO spatial
domain (lonLim =c(-90,40), latLim =c(20,80)). Note that
"psl" corresponds to the harmonized nomenclature defined by
the UDG vocabulary for sea-level pressure (see Section 2.3). Fur-
thermore, the requested seasonal data correspond to boreal winter
(DJF, season =c(12,1,2)), and considers the whole available
period (1949-2010, thus the argument "years" is omitted). As
the original data are 6-hourly, data are aggregated on-the-fly by
the R interface through the arguments time = "DD" (to convert
the data from 6-h to daily), aggr.d = "mean" (to indicate the
aggregation function) and aggr.m = "mean" (which indicates that
the resulting daily data will be monthly averaged).

> loadECOMS (dataset = "NCEP_reanalysisl",

var = "psl", season = c(12,1,2),
lonLim = c(-90,40), latLim = c(20,80),
time = "DD",

aggr.d = "mean",

aggr.m = "mean")

The corresponding seasonal forecast data are loaded in a similar
way, but in this case it is necessary to specify two additional
parameters to unequivocally define the data requested: the mem-
bers (for instance, the first 24 members: members = 1:24) and the
initialization to be considered (e.g., 1-month ahead predictions:
leadMonth =1; this will correspond to November initialization
in the present example). Here, we illustrate this step using the data
from the CFSv2 hindcast (dataset = "CFSv2_seasonal").

> loadECOMS (dataset = "CFSv2_seasonal",
var = "psl", season = c(12,1,2),
lonLim = c(-90,40), latLim = ¢(20,80),
time = "DD",
aggr.d = "mean", aggr.m = "mean",
members = 1:24,
leadMonth = 1)

Note that the only difference between this example and the
other two hindcasts compared in this paper lies just in the dataset
specification: dataset = "Gloseab_seasonal_24" for the UKMO

Glosea5 hindcast of 24 members, or dataset = "System4_sea-
sonal_51" for the ECMWF System4 seasonal hindcast of 51
members. Thanks to the data harmonization performed by the R
interface to ECOMS-UDG, the rest of parameters remain exactly
the same. Member selection is also transparent to the user, who
doesn’t need to worry about the different member configurations
for different hindcasts. As an example, see the CFSv2 lagged run-
time member configuration and its translation by 10adECOMS in
this link: http://meteo.unican.es/ecoms-udg/dataserver/datasets/
CFSv2.

Similarly, loading the data for near-surface air temperature in
the same domain is directly achieved by just replacing the harmo-
nized variable name from sea-level pressure (var = "ps1") to air
temperature (var = "tas") in the examples above.

In order to perform the regional forecast verification over west-
ern Europe, the E-OBS dataset (v15, Klein Tank et al., 2002) is used
as observed reference. In this example, we load observations from

Fig. 2. Ensemble mean bias of winter surface temperature for the multimodel
common period 1993-2010, using the E-OBS dataset (Klein Tank et al., 2002) as
reference. The original resolution of each model has been preserved.
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the E-OBS database directly from the KNMI OPeNDAP server,
demonstrating the capabilities of the R interface developed for
climate data load beyond the ECOMS-UDG. The main difference
with the previous loading examples is the replacement of the
argument dataset by a valid OPeNDAP URL. In this particular exam-
ple dataset = "http://opendap.knmi.nl/knmi/thredds/-
dodsC/e-obs_0.50regular/tg_0.50deg_reg_v15.0.nc". In
this case, however, data harmonization is not automatic, since
there is no dictionary for this external dataset, and the user needs
to take care of the necessary data transformations and variable
names. A full example is provided in the companion vignette.

3.2. Analyzing model biases

Global seasonal forecast systems exhibit systematic biases
when compared with observations. This is related to complex
topography and land-sea contrasts, which are not well represented

—NCEP
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NAO index
(o]
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in the global models (current model resolutions range from ~60 to
100 km). For instance, Fig. 2 shows the temperature biases of the
three seasonal forecasting datasets available from ECOMS-UDG,
considering the E-OBS observation data, as loaded in the previous
section. Note that System4 and GloSea5 exhibit a very similar bias
pattern, with a strong cold bias in Northern Europe, whereas CFSv2
exhibits a more uniform bias pattern. Moreover, these models are
unable to provide information at the regional or local spatial scales
required in a number of sectors.

Therefore, a number of bias adjustment and downscaling meth-
ods have been recently proposed to calibrate the raw model out-
puts, providing suitable regional inputs for impact models. The R
package downscaleR (Bedia et al., 2017) allows to easily bias cor-
rect and downscale the global model outputs. A comprehensive
example of bias-correction of seasonal forecast data using
ECOMS-UDG is provided in a separate paper in this special issue
(Bedia et al., 2018).
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Fig. 3. Seasonal predictions of the winter NAO interannual variability by three different seasonal products: CFSv2 (a), System 4 (b) and Glosea5 (c). The observed NAO
(calculated from the mean sea-level pressure anomalies over the North Atlantic as represented by the NCEP/NCAR reanalysis) is depicted in all panels by the black line. The
ensemble mean is represented by the red line. The green shading indicates, from lighter to darker, the envelopes delimited by min-max (range), 10th-90th percentiles and
interquartile range of the ensemble respectively. The Pearson’s correlation coefficients (1) between the observations and the ensemble mean series are indicated in each plot,

calculated upon the complete pairs of observations/predictions in each case.
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3.3. Analysing Winter NAO predictability

There is no unique way to define the spatial structure of NAO
and its temporal evolution. Here, we consider the definition based
on the principal component time series of the leading EOF of the
mean winter (DJF) sea-level pressure anomalies over the Atlantic
sector (Hurrell, 2016). First, we use NCEP/NCAR reanalysis data
to compute the EOF and the corresponding PC time series. After-
wards, we projected the seasonal forecast model data on the
resulting EOFs to obtain the predicted NAO time series. The post-
processing capabilities of the R package transformeR allow calcu-
lating these indices with a few simple commands, using the
function computeEOF to compute the NCEP EOF and the function
PC2grid to project the CFSv2 data (see the companion vignette
for full details).

Fig. 3 shows the resulting observed and predicted NAO interan-
nual series together with their correlation, as a simple measure of
association. These correlations are computed both for the full
hindcast periods and also for the common period for the three
datasets (1993-2010). It can be seen that GloSea5 provides the
better results for the common period. However, these results are
sensitive to the particular definition of the NAO index (the com-
panion vignette shows the results for a point-based NAO defini-
tion, based on the Icelandic low and Azores high). Moreover, as
shown by Shi et al. (2015), the result may strongly depend on
the hindcast length. Furthermore, there is also uncertainty linked
to the ensemble size and the member selection. Therefore, some
kind of sensitivity analysis is necessary to fully analyze the perfor-
mance of the forecasting systems to predict the NAO interannual
fluctuations.

This kind of sensitivity analysis (using, e.g. bootstrapping) can
be performed in R in a simple and efficient way (see the
companion vignette for full details). For instance, Fig. 4 shows
the sensitivity of the correlation results for CFSv2 after a simple
bootstrapping analysis sampling (5000 samples with replace-
ment) the members of the ensemble, the years of the hindcast
and both factors simultaneously. This figure shows the large vari-
ability of results that could be obtained under this experimental
framework, with larger correlations obtained when sampling the
years. This may allow end users to better understand the potential
predictability results shown in Fig. 3 and decide whether or not to
use bootstrapped series in their applications in order to sample
this uncertainty.
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Fig. 4. Boxplot of bootstrapped interannual correlations of observed and predicted
(CFSv2) NAO time series obtained from 5000 samples of the ensemble members
(left), the years (centers) and both (right). The horizontal dashed line indicates the
correlation of the full set without bootstrapping.

3.4. Validation of temperature in the North-Atlantic domain

The results above suggest a slight improvement of the skill of
System4 and GloSea5 as compared to CFSv2 in the representation
of the Winter NAO. In order to ascertain whether this has an
impact on temperature predictability over the NAO domain, a cor-
relation analysis is performed (Fig. 5). While the results show a sig-
nificant improvement of correlation for GloSea5 over a sizable
proportion of the study area, the results over western Europe
remain similar for the three forecasting systems tested, slightly
better for CFSv2 over NE Europe. These results are in agreement
with Scaife et al. (2014) for the case of GloSea5, thus giving some
prospect of research reproducibility, although we couldn’t fully
reproduce the results of the NAO index correlation, most likely
due to the different ways in which alternative NAO calculations
can differ (see Section 3.3). This particular NAO example highlights
the compelling need for research reproducibility.

3.5. Regional validation over Europe

Besides the above synoptic analysis of model performance con-
sidering the NAO index (or temperatures over the North Atlantic
domain), end users are usually more interested in the regional val-
idation of the predictions for the different variables used in impact
applications (e.g. temperature and precipitation) at a suitable res-
olution (using high-resolution observations). It is clear that
improving the skill of the models to predict NAO interannual fluc-
tuations would have a positive effect in the regional skill of the
models. However, quantifying this effect is not evident, since the
NAO explains a small fraction of the regional climatic variability
in Europe. Therefore, in order to obtain comprehensible and action-
able information of model performance for particular end-user
applications, tools are needed allowing for a regional validation
of these models.

ECOMS-UDG offers the possibility to efficiently compute a vari-
ety of validation indices (both for the ensemble mean and for prob-
abilistic forecasts) building on external packages (such as
easyVerification) which have been bridged to the ECOMS-
UDG R bundle. For instance, Fig. 6 shows the anomaly correlation
scores obtained for temperature and precipitation for the common
hindcast period. In this case, GloSea5 exhibits the lowest correla-
tions, although it shows the highest NAO correlation in the com-
mon hindcast period (see Fig. 3). A description of further
validation measures is provided in the companion vignette.

3.6. Visualization of model predictions and validation

Finally, in recent times there has been an intense work in devel-
oping suitable tools for the communication of the uncertainty of
seasonal forecasts, both the uncertainty inherent to probabilistic
predictions, and the uncertainty derived from the skill of the
model. The R package visualizeR includes a number of graphical
tools to visualize model predictions, filtering non-skilful regions
and/or including information about past model performance. For
instance, tercile plots allow to visualize the series of predictions
and observations for a particular period over a selected domain
(it may be computed on single gridboxes as well). The correspond-
ing terciles for the joint ensemble are then calculated to define
three categories (i.e. below-normal, normal and above-normal con-
ditions). The observed terciles (the events that actually occurred)
are also represented on top, allowing for a quick visual overview
of observations and predictions. Finally, the ROC Skill Score
(ROCSS) is indicated in the secondary (right) Y axis. ROCSS is
directly derived from the area under the ROC (Receiver Operating
Characteristic) curve, and it is an indicator of the quality of a fore-
cast by describing the system’s ability to discriminate correctly
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Fig. 5. Forecast skill (Pearson’s correlation coefficient) of surface winter mean temperature against the observations from the NCEP/NCAR reanalysis, considering the
predictions of CFSv2 (top), System 4 (middle) and GloSea5 (bottom) forecasting systems.

between the binary variable occurrence/non-occurrence of a
certain event (Jolliffe and Stephenson, 2003).

A typical end-user need is the assessment of forecast
quality over a small region of interest. Fig. 7 illustrates the use of
tercile plots (see e.g. Diez et al., 2011; Bedia et al., 2018), calculated
for a small domain centred on southern UK (-5.5-2.5°E, 50.5-
54°N).

4. Conclusions

The ECOMS User Data Gateway (ECOMS-UDG) was developed in
the framework of the ECOMS initiative as a one-stop-service for
climate data building on a THREDDS server and including a
fine-grained user management and authorization scheme through
the THREDDS Access Portal (TAP). This allows (1) integrating
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Fig. 6. Skill maps (Pearson’s correlation coefficient) of the seasonal predictions of winter surface temperature (left) and precipitation (right) over western Europe by three
different seasonal products: CFSv2 (top), System 4 (middle) and Glosea5 (bottom). The maps show the correlation of the ensemble mean predictions against observed
temperature from the NCEP/NCAR reanalysis and precipitation from the E-OBS dataset (v15, Klein Tank et al., 2002).

heterogeneous datasets (observations, reanalysis, seasonal refore- result, users can transparently access harmonized data (including
casts) with different terms of use (e.g. public or restricted to partic- multi-model seasonal forecasts) for sector-specific applications.
ipants in the ECOMS initiative), and (2) harmonizing formats, Besides the standard data access services, an additional interface

temporal aggregations, and vocabularies across datasets. As a is provided for R users, formed by a bundle of seamlessly
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Fig. 7. Forecast skill visualization by means of tercile plots, implemented in package visualizeR. The tercile plots are presented for the three forecasting systems available
in ECOMS-UDG: CFSv2 (top), System 4 (middle) and GloSea5 (bottom). The results correspond to the spatially averaged predictions for a domain encompassing southern UK.
Terciles are arranged by rows. White dots indicate the tercile of the observations for each particular year. Further details for graph interpretation are given in the text.

integrated R packages. The climate4R bundle allows accessing
user-defined subsets of data from ECOMS-UDG, and provide tools
for climate data manipulation (aggregation, interpolation,
subsetting, etc.), bias adjustment and statistical downscaling, and
seasonal forecast verification and visualization. This allows
end-to-end experimental reproducibility and facilitates the
description (metadata) and documentation of the whole data flow.
An up-to-date description of ECOMS-UDG, including information
on the available datasets, variables and tools is provided in the wiki
page: http://www.meteo.unican.es/ecoms-udg.

The main characteristics and capabilities of ECOMS-UDG are
briefly illustrated with a worked case study over Europe, analyz-
ing seasonal predictability of winter (DJF) temperatures and pre-
cipitation, in connection with the North Atlantic Oscillation
(NAO) predictability at seasonal time scales. Although some of
the datasets used are restricted to ECOMS partners due to data
access constraints imposed by the data providers, there is a min-
imum amount of information (e.g. WFDEI observations, NCEP/
NCAR reanalysis and CFSv2 seasonal forecasts) openly accessible,
which allows reproducing the results here presented and for a
public, unrestricted use of the ECOMS-UDG for other research
activities. The code to reproduce the results presented in this
paper examples are included in a companion vignette (http://
meteo.unican.es/work/UDG/climate-services-manuscript.html),
with all the necessary instructions for registration and worked
examples.

ECOMS-UDG is built upon different open-source software com-
ponents publicly available: The UNIDATA THREDDS data server,
the THREDDS Access Portal (TAP, https://meteo.unican.es/trac/
wiki/tap), and the climate4R R bundle. Therefore, the entire
architecture could be replicated in any server (although the diffi-
cult part is downloading and harmonizing the datasets). Finally,
it is important to remark that the ECOMS-UDG does not provide
operational forecasts, but only retrospective forecasts (hindcasts)
and reference data (observations and reanalysis) for exploring

the skill and potential application of state-of-the-art seasonal fore-
casting systems in specific impact sectors. Therefore, operational
applications would require accessing (downloading) the opera-
tional predictions directly from the provider; however, climate4R
could still be used to transparently access the downloaded local
dataset (e.g. using the corresponding hindcast dictionary), thus
facilitating this task.
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