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Abstract 7 

 8 

Flood assessment in urban catchments is usually addressed through the combination of 9 

Geographic Information Systems (GIS) and stormwater models. However, the coupled use of 10 

these tools involves a level of detail in terms of hydrological modelling which can be beyond 11 

the scope of overall flood management planning strategies. This research consists of the 12 

development of a methodology based on Multiple Regression Analysis (MRA) to assess flood 13 

risk in urban catchments according to their morphologic characteristics and the geometrical 14 

and topological arrangement of the drainage networks into which they flow. Stormwater 15 

models were replaced by a combination of Multiple Linear Regression (MLR), Multiple Non-16 

Linear Regression (MNLR) and Multiple Binary Logistic Regression (MBLR), which enabled 17 

mailto:jatod@unican.es
mailto:nora.sillanpaa@aalto.fi
mailto:igando@hma.upv.es
mailto:rodrighj@unican.es


 

 

 

identifying influential parameters in the maximum runoff rates generated in urban catchments, 18 

modelling the magnitude of peak flows across them and estimating flood risk in the nodes of 19 

sewer networks, respectively. The results obtained through a real urban catchment located in 20 

Espoo (Finland), demonstrated the usefulness of the proposed methodology to provide an 21 

accurate replication of flood occurrence in urban catchments due to intense storm events 22 

favored by Climate Change, information that can be used to plan and design preventive 23 

drainage strategies. 24 
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Introduction 31 

 32 

The interactive effects of urbanization and Climate Change are one of the most important 33 

challenges with which human beings will have to deal as a collective in the future (Hoornweg 34 

et al. 2011). Their combination inflicts a particularly forceful impact on stormwater drainage 35 

in urban catchments. Growing urbanization contributes to increasing runoff volume and 36 

accelerating the time until peak flow occurs, whilst Climate Change is expected to result in an 37 

intensification of the hydrological cycle, which might lead to more violent rainfall events 38 

(Huntington 2006). In the end, this might result in localized floods along the sewer networks 39 

used to drain urban catchments, which are incapable of conveying such large amounts of water. 40 

Urban floods have important consequences in physical, economic, environmental and 41 

social terms (Tingsanchali 2012). These effects have traditionally been divided into tangible 42 



 

 

 

and intangible, depending on whether they can be monetized or not (Smith and Ward 1998). 43 

Examples of the former include damage to property or loss of profits, whilst the latter stand for 44 

aspects like loss of life or negative impacts on the well-being and environment. The potential 45 

impacts of urban floods can also be classified into direct and indirect, according to their 46 

spatiotemporal scale. Hence, direct damage is related to any loss caused by the immediate 47 

interaction of floods with human beings, properties and the environment, whilst indirect effects 48 

concern those which are beyond the limits of the flooded area (Hammond et al. 2015). All these 49 

potential consequences are expected to become more severe and frequent due to the 50 

combination of Climate Change with high density of population and large impervious areas 51 

(Huong and Pathirana 2013).  52 

However, despite the increasingly important threat posed by this phenomenon, flood 53 

management keeps being usually addressed in literature through stormwater models, which are 54 

often used in combination with Geographic Information Systems (GIS). Knebl et al. (2005) 55 

integrated them in a study to highlight the importance of the degree of imperviousness in urban 56 

catchments, which resulted in a decrease in infiltration capacity of the terrain and increased 57 

flood risk. Barco et al. (2008) coupled both components to prove that imperviousness and 58 

depression storage were the most influential factors in the generation of flow rates in a large 59 

urban catchment located in Southern California. Dongquan et al. (2009) combined stormwater 60 

models with GIS based on elevation-related data such as flow direction, raster-vector 61 

conversion or catchment division to automate the process of rainfall-runoff modelling. Guan 62 

et al. (2015) merged both tools to determine the increase in peak flow and runoff volume caused 63 

by urbanization in a catchment located in Espoo (Finland) and proposed different alternative 64 

drainage techniques to mitigate these effects. Eshtawi et al. (2016) coupled three existing 65 

models (SWAT, MODFLOW and MT3DMS) to quantify surface-groundwater interactions in 66 

increasingly developed areas, demonstrating the strength of using integrated hydrologic models 67 



 

 

 

in the sustainable urban water planning process. Jato-Espino et al. (2016a) presented a GIS-68 

based stormwater modelling approach that demonstrated the potential of permeable pavements 69 

and green roofs to attenuate floods in urban catchments in comparison with conventional sewer 70 

networks. Beck et al. (2017) described a semi-distributed approach to estimate runoff 71 

reductions (TELR) to inform stormwater management decisions, including a series of 72 

algorithms for rainfall-runoff transformation and routing and specifications to implement Best 73 

Management Practices (BMPs). Hanington et al. (2017) developed and calibrated a fine-scaled 74 

quasi-2D hydro-dynamic model (IWRM-LXQ) for interprovincial water resource planning and 75 

management, arguing that their approach was especially suitable for assessing hydraulically 76 

complex systems at a provincial or district level. 77 

The use of tools as those mentioned above is complex and entails a substantial time 78 

investment, aspects which are in conflict with the simplicity and promptness required by 79 

administrative and public entities to design flood management planning strategies (Ashley et 80 

al. 2007). Stormwater models are especially demanding in terms of characterization and 81 

simulation to be used by general public or non-modelling planners (Elliott and Trowsdale 82 

2007), since they involve making decisions related to infiltration and routing processes and 83 

calibrating the parameters that influence the transformation of rainfall to runoff. In contrast, 84 

the GIS-related tasks required for creating the input data into these models to run stormwater 85 

simulations, which mainly concern catchment delineation and the determination of 86 

subcatchment imperviousness and average slope, are easy to compute using basic editing and 87 

statistical tools (Jato-Espino et al. 2016a). Furthermore, GIS are widely implemented systems 88 

for multiple purposes related to the management of all kinds of spatial data, so that using them 89 

for flood management does not involve an innovation with respect to common resources and 90 

practices.  91 



 

 

 

As a result of these considerations, the objective of this research was to develop a 92 

methodology for flood risk assessment omitting the use of stormwater models. This was 93 

achieved through the integration of Multiple Linear Regression (MLR), Multiple Non-Linear 94 

Regression (MNLR) and Multiple Binary Logistic Regression (MBLR), which were combined 95 

to play the role of stormwater models in a simpler manner. The integrated application of 96 

different types of Multiple Regression Analysis (MRA) provided a cutting-edge approach to 97 

replicate peak flow rates and predict flooding probabilities in sewer-catchments and opens new 98 

lines of research and in the field of urban water planning and management. The usefulness of 99 

the proposed methodology was evaluated through a case study of an urban catchment located 100 

in Espoo (Finland), which provided the precipitation and flow data required to validate the 101 

results at the nodes forming its sewer network.  102 

 103 

Methodology 104 

 105 

Since the delineation of urban catchments using Geographic Information Systems (GIS) is a 106 

widely studied topic in literature (Knebl et al. 2005; Guan et al. 2015; Jato-Espino et al. 2016a), 107 

the methodology proposed in this research only focused on reproducing the role of stormwater 108 

models using Multiple Regression Analysis (MRA). The general purpose of MRA is to predict 109 

the value of a dependent variable or predictand based on the values of a series of independent 110 

explanatory variables or predictors. 111 

In the context of this research, Multiple Linear Regression (MLR) was used as an 112 

exploratory analysis to identify relevant parameters to the occurrence of peak flow rates. Next, 113 

the identified parameters were incorporated into a Multiple Non-Linear Regression (MNLR) 114 

framework, in order to boost the prediction accuracy of the magnitude of runoff that might be 115 

generated in urban catchments and conveyed by sewer networks as a result of severe rainfall 116 



 

 

 

events. The magnitude of runoff was presented through the values of Maximum Lateral Inflow 117 

(MLI, l/s) and Maximum Total Inflow (MTI, l/s) produced in urban catchments. The former 118 

stands for the peak of apportionment of surface runoff from the subcatchment areas to each 119 

node in the sewer network, whilst the latter also includes the contribution from preceding nodes 120 

and conduits. Finally, Multiple Binary Logistic Regression (MBLR) models were created from 121 

the estimates of MLI and MTI to determine the probability of flooding in sewer networks, 122 

facilitating the adoption of measures for preventing urban flood events at strategic sites and 123 

maximizing their positive impact and effectiveness. Fig. 1 provides a graphical scheme of the 124 

proposed approach based on the sequential application of these three types of MRA. 125 

 126 

 127 

Fig. 1. Scheme of the proposed methodology based on Multiple Regression Analysis (MRA) 128 
 129 

The development of these analyses stemmed from a set of catchment parameters 130 

considered for estimating MLI, whose combination with a list of predictors related to the two 131 

main elements forming sewer networks (nodes and conduits) enabled modelling both MTI and 132 



 

 

 

flooding probability. Table 1 links these parameters to the visual objects required to represent 133 

urban drainage systems: subcatchments, nodes and conduits. 134 

 135 

Table 1. Parameters for estimating Flooding (%), Maximum Lateral Inflow (MLI, l/s) and Maximum Total Inflow 136 
(MTI, l/s) in urban catchments 137 

Predictand Sub-predictand Visual object ID Predictor 
Flooding (%) MLI (l/s) Catchment 𝑥𝑥1.1 Subcatchment area (ha) 
   𝑥𝑥1.2 Degree of imperviousness in the subcatchment (%) 
   𝑥𝑥1.3 Subcatchment width (m) 
   𝑥𝑥1.4 Average slope in the subcatchment (%) 
 MTI (l/s) Sewer network 𝑥𝑥2.1 Node invert elevation (m) 
   𝑥𝑥2.2 Preceding length of conduit (m) 
   𝑥𝑥2.3 Cumulative preceding length of conduits (m) 
   𝑥𝑥2.4 Subsequent length of conduit (m) 
   𝑥𝑥2.5 Preceding diameter of conduit (m) 
   𝑥𝑥2.6 Cumulative preceding diameter of conduits (m) 
   𝑥𝑥2.7 Subsequent diameter of conduit (m) 
   𝑥𝑥2.8 Preceding slope of conduit (%) 
   𝑥𝑥2.9 Cumulative preceding slope of conduits (%) 
   𝑥𝑥2.10 Subsequent slope of conduit (%) 
 138 

These predictors were selected to result in a set of basic variables easy to acquire and/or 139 

compute, in order to facilitate the implementation of the proposed methodology worldwide. 140 

Therefore, the length and depth of conduits (pipes) and nodes (manholes), respectively, were 141 

the inputs required to parameterize the drainage network in the study area, whilst the 142 

subcatchments forming it were characterized according to their area, percentage of 143 

imperviousness, slope and width, which was estimated dividing their area by the average length 144 

of the flow paths from the furthest drainage points. All these catchment-related variables were 145 

determined using GIS-based editing and zonal statistics tools.  146 

As pointed out by Yao et al. (2017), who highlighted the complexity of urban hydrology 147 

for water resources planning and management, the relationships between rainfall-runoff 148 

processes and spatial patterns is a key factor to manage flood risks in small catchments. In fact, 149 

the need for designing strategies for flood risk prevention based on proactive spatial planning 150 



 

 

 

has been identified as a crucial aspect to ensure the resilience of urban socio-ecological systems 151 

(Hegger et al. 2016). 152 

 153 

Identification of relevant parameters for peak flow generation 154 

 155 

The justification of which parameters related to the morphology of urban catchments and the 156 

geometry of sewer networks (Table 1) contributed more to explaining the values of MLI and 157 

MTI associated with different storm events was carried out using MLR. MLR consists of 158 

modelling the relationship between 𝑛𝑛 predictors 𝑥𝑥𝑛𝑛 and a predictand 𝑦𝑦 through a linear 159 

expression as formulated in Eq. (1) (Aiken et al. 2003): 160 

 161 

𝑦𝑦 = 𝑏𝑏0 + �𝑏𝑏𝑖𝑖 · 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝜀𝜀 (1) 

 162 

where 𝑏𝑏𝑖𝑖 is the weight that indicates the importance of each predictor in the model. All 163 

the information that cannot be provided by the independent variables is completed by 𝑏𝑏0 and 164 

𝜀𝜀, which are a constant and the residuals, respectively. A significance level of 𝛼𝛼 = 0.05 (Fisher 165 

1925) was the threshold which determined whether a parameter was statistically significant for 166 

estimating MLI and MTI or not.  167 

Therefore, this first step had the sole purpose of justifying the selection of parameters 168 

that contributed the most to reach high values of MLI and MTI from a physical point of view. 169 

The use of MLR was deemed essential to ensure the hydrological and hydraulic validity of the 170 

proposed approach, since the clarity of these contributions might be distorted if evaluated 171 

through MNLR, due to the increased complexity involved by the inclusion of non-linear terms. 172 

This course of action was adopted based on the results of similar previous studies (Jato-Espino 173 



 

 

 

et al. 2017), which applied MNLR to refine the prediction accuracy of relevant parameters 174 

identifiable using MLR. 175 

 176 

Modelling of Maximum Lateral Inflow and Maximum Total Inflow 177 

 178 

Once the identification of catchment and sewer network parameters proving to be statistically 179 

significant for the generation of peak flow rates was accomplished, MNLR was used to 180 

combine them in the creation of non-linear equations for predicting both MLI and MTI with 181 

high accuracy. Unlike Eq. (1), the formula associated with MNLR also includes interactions 182 

and quadratic terms, as shown in Eq. (2): 183 

 184 

𝑦𝑦 = 𝑏𝑏0 + �𝑏𝑏𝑖𝑖 · 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ �𝑏𝑏𝑖𝑖𝑖𝑖 · 𝑥𝑥𝑖𝑖 · 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ ��𝑏𝑏𝑖𝑖𝑖𝑖 · 𝑥𝑥𝑖𝑖 · 𝑥𝑥𝑖𝑖 + 𝜀𝜀
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 (2) 

 185 

where 𝑏𝑏𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑖𝑖𝑖𝑖 are the weights that indicate the importance of the quadratic and 186 

interaction terms in the model.  187 

Since the objective of this paper was the design of a methodology to assess flood risk 188 

in urban catchments for water resources planning and management, the predicted 𝑅𝑅2 coefficient 189 

was chosen to measure the goodness-of-fit of MNLR, in order to validate the proposed 190 

approach for modelling new cases. This coefficient consists of removing each observation from 191 

the dataset in the MNLR, predicting the regression equation and calculating how well the model 192 

estimates the omitted observation. 193 

To further ensure the validity of the MNLR models built, their residuals were analyzed 194 

based upon the assumptions of normality, homoscedasticity and independence. The fulfillment 195 

of these assumptions was graphically verified using the following residual plots (Osbourne and 196 



 

 

 

Waters 2002): normal probability plot (Q-Q plot), standardized residuals vs. standardized 197 

predicted values plot and standardized residuals vs. observation order plot. 198 

The equations derived from these MNLR were used to estimate the values of MLI and 199 

MTI in urban catchments straightforward through a series of predictors as those listed in Table 200 

1. Such equations were further processed to incorporate rainfall intensity (𝐼𝐼) into them, in order 201 

to allow predicting the magnitude of flooding for different precipitation scenarios accordingly. 202 

To this end, MLR was used again to determine the constant 𝑏𝑏0 and weights 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑖𝑖𝑖𝑖 of the 203 

terms in the MNLR models as a function of 𝐼𝐼 through Eq. (3). The estimates obtained using 204 

this expression were inputs in the calculation of the flooding probability of the nodes forming 205 

urban sewer networks through MBLR. 206 

 207 

𝑏𝑏0 ⋁ 𝑏𝑏𝑖𝑖  ⋁ 𝑏𝑏𝑖𝑖𝑖𝑖 ⋁ 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑏𝑏0′ + 𝑏𝑏1′ ∗ 𝐼𝐼 (3) 

 208 

Prediction of flooding probability 209 

 210 

MBLR was used to integrate the knowledge generated through the application of the other 211 

types of MRA considered in the methodology (MLR and MNLR) to assess flood risk in urban 212 

catchments. MBLR is another variant of MLR characterized by the dichotomous nature of the 213 

predictand, which only has two possible outcomes. Hence, MBLR predicts the probability Pr 214 

that a certain characteristic is present in the predictand 𝑦𝑦 from the values of the predictors 𝑥𝑥𝑖𝑖. 215 

The analytic expression for a MBLR model based on the logit link function is given in Eq. (4): 216 

 217 

Pr( 𝑦𝑦 = 1 | 𝑥𝑥𝑖𝑖) =
exp (𝑦𝑦′)

1 + exp (𝑦𝑦′) =
exp (𝑏𝑏0 + ∑ 𝑏𝑏𝑖𝑖 · 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 )
1 + exp (𝑏𝑏0 + ∑ 𝑏𝑏𝑖𝑖 · 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 ) (4) 
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where 𝑦𝑦 = 1 indicates that the characteristic is present in observation 𝑖𝑖. In this case, the 219 

two outcomes for the predictand were “yes” and “no”, depending on whether the nodes of 220 

sewer networks were flooded or not after the occurrence of heavy rainfall events, and the 221 

predictors were the parameters included in Table 1.  222 

In addition to the predictors and the predictand, MBLR enables incorporating another 223 

term into the analysis, known as frequency, which is an indicator of the number of times that 224 

the characteristic to be modelled is present. This concept was adapted to the purpose of this 225 

study to express how susceptible the nodes in sewer networks were to flooding. Hence, based 226 

on the parameters considered in the methodology so far, the frequency was defined as the ratio 227 

of MTI to MLI. This value was expected to provide a measure of the sensitivity of the nodes 228 

of sewer networks to reach their full capacity, since it combines two of the main factors 229 

favouring the occurrence of floods: accumulation and immediate contribution. 230 

Therefore, flooding was a dichotomous dependent variable (i.e. its presence in a node 231 

is either “yes” or “no”) to be estimated using a series of catchment and sewer network 232 

continuous independent variables modulated by a frequency term representing the peak flow 233 

conditions in the sewer network. Consequently, the application of Eq. (4) yielded a probability 234 

indicating how likely a certain node was to be flooded; i.e. the worse the combinations of values 235 

in the predictors and the higher ratios of MTI to MLI, the closer the probability (expressed as 236 

a decimal) of that node to be 1. 237 

The goodness-of-fit evaluation of MBLR slightly differed from that used for MNLR, 238 

due to the particular nature of the predictand in this type of MRA. The quality of MBLR models 239 

was assessed through the adjusted deviance 𝑅𝑅2 coefficient and the Akaike Information 240 

Criterion (AIC) (Akaike 1973), which enabled the comparison of models with different 241 

predictors. Furthermore, the Hosmer-Lemeshow test was applied to check whether the 242 

deviation between estimated and observed probabilities was unpredictable by the binomial 243 



 

 

 

distribution (Hosmer and Lemeshow 2000). This test was found to be more suitable than the 244 

Deviance or Pearson tests due to the binary/response/frequency format of the data. The fact 245 

that the predictand was a binary outcome made the verification of residuals described for 246 

MNLR nonsensical. 247 

The application and testing of the proposed framework enabled detecting which 248 

subcatchments and nodes required priority actions in terms of urban drainage planning and 249 

management, based on the values of peak runoff and flooding probability obtained through the 250 

subsequent application of Eqs. (2), (3) and (4). 251 

 252 

Results and discussion: a case study in Espoo, Finland 253 

 254 

The proposed methodology was implemented through a case study consisting of an urban 255 

catchment located in Espoo, Finland (see (Sillanpää and Koivusalo 2015) for further details). 256 

Fig. 2a) shows the spatial arrangement of the sewer network corresponding to this catchment, 257 

which was provided by the Helsinki Region Environmental Services Authority HSY and 258 

consisted of 75 nodes and 80 conduits, the 79 subcatchments forming the whole catchment 259 

area, which covered 10.535 ha, and the relationship between impervious and pervious areas in 260 

the catchment, which were delineated from the ortophoto of the study area (Jato-Espino et al. 261 

2017). Fig. 2b) depicts the values of slope in the catchment, which were determined and 262 

classified from the Digital Terrain Model of the study area using Geographic Information 263 

Systems (GIS) tools (Jato-Espino et al. 2016b). 264 

 265 



 

 

 

 266 

Fig. 2. a) Sewer network, subcatchments and impervious and pervious areas in the study catchment b) Slope (%) 267 
in the study catchment 268 

 269 

The rainfall events used in this paper were taken from Jato-Espino et al. (2017), who 270 

modelled the study catchment in SWMM 5.1.010 (USEPA 2016) using three calibration (CAL 271 

1, CAL 2 and CAL 3) and validation (VAL 1, VAL 2 and VAL 3) rainfall events (Table 2). 272 

These simulations reproduced the real hydrographs monitored at the outlet of the catchment 273 

with high accuracy, as demonstrated by the goodness-of-fit measures used to test them: Root-274 

Sum Squared Error (RSSE), coefficient of determination (𝑅𝑅2) and Nash–Sutcliffe model 275 

efficiency coefficient (E) (Table 2).  276 

The study catchment was re-simulated with the calibrated parameters for different 277 

return periods and Climate Change scenarios: RCP4.5 and RCP8.5 (Moss et al. 2008). Table 2 278 

lists the values of duration, depth and intensity associated with four combinations of Climate 279 

Change scenario and return period (T) producing floods of different magnitude in the 280 



 

 

 

catchment, which were determined through its lag time and the coupling of Intensity–Duration–281 

Frequency (IDF) curves and the Alternating Block Method, respectively. 282 

 283 

Table 2. Summary of the rainfall events used to test the proposed methodology. Adapted from Jato-Espino et al. 284 
(2017) 285 

Event Duration (min) Rainfall depth (mm) Intensity (mm/h) RSSE R2 E 
CAL 1 352 5.0 0.85 81.94 0.91 0.85 
CAL 2 686 37.4 3.27 212.81 0.93 0.86 
CAL 3 418 12.2 1.75 92.67 0.96 0.93 
VAL 1 396 5.2 0.79 42.46 0.97 0.97 
VAL 2 288 9.0 1.88 68.26 0.95 0.92 
VAL 3 408 23.4 3.44 115.64 0.97 0.96 
RCP4.5; T = 5 yr. 106 19.0 10.75 - - - 
RCP8.5; T = 5 yr. 106 25.6 14.48 - - - 
RCP4.5; T = 50 yr. 106 31.5 17.84 - - - 
RCP8.5; T = 25 yr. 106 38.0 21.51 - - - 
 286 

Identification of relevant parameters for peak flow generation in the study 287 

catchment 288 

 289 

Multiple Linear Regression (MLR) enabled identifying which predictors listed in Table 1 were 290 

statistically significant for the generation of peak flow rates and, by extension, determining 291 

their degree of contribution to producing high values of Maximum Lateral Inflow (MLI) and 292 

Maximum Total Inflow (MTI). MLR models were built stepwise in Minitab 17 (Minitab Inc 293 

2016) to select only those predictors that were statistically significant to explain variations in 294 

MLI and MTI at the 95% confidence level (p-value < 0.05). 295 

The results obtained for the modelling of MLI revealed that three parameters were 296 

statistically significant for estimating this predictand (p-value < 0.05): 𝑥𝑥1.1 (Subcatchment 297 

area), 𝑥𝑥1.2 (Degree of imperviousness in the subcatchment) and 𝑥𝑥1.4 (Average slope in the 298 

subcatchment). The most influential predictor for estimating MLI was found to be 𝑥𝑥1.1 with an 299 

average contribution of 82.52%, followed by 𝑥𝑥1.2 and 𝑥𝑥1.4 with 6.03% and 2.04%, respectively. 300 



 

 

 

Although their weights were different depending on the characteristic of the rainfall events 301 

used (Table 2), the contribution of the predictors considered was very similar in all cases. This 302 

homogeneity of values under different rainfall events validates the results achieved, since it 303 

indicates that the impacts of 𝑥𝑥1.1, 𝑥𝑥1.2 and 𝑥𝑥1.4 on MLI were very similar both when considering 304 

common (CAL 1, CAL 2, CAL 3, VAL 1, VAL 2 and VAL 3) and extreme storms. 305 

Furthermore, the relationships between these predictors and MLI were logical, because larger 306 

subcatchments provide more opportunities to accumulate runoff and both impervious and steep 307 

areas facilitate the rapid conveyance of water. Hence, areas devoid of divisions due to drainage 308 

network deficiencies, built-up surfaces and topographically problematic sites were found to be 309 

more prone to produce high lateral inflows in urban catchments. Consequently, the mitigation 310 

of excessive runoff should be approached merging both nature and artificial solutions aimed at 311 

vegetating urban surfaces and also ensuring drainage support services, respectively. 312 

Since the methodology was a stepped process in which the values of MTI in the nodes 313 

were partially calculated from those of MLI, the latter was included in the MLR models for 314 

estimating the former as a single predictor, in addition to those related to the sewer network 315 

(Table 1). As a result, 𝑥𝑥1 (MLI) emerged as one of the two parameters proving to be statistically 316 

significant for predicting MTI, along with 𝑥𝑥2.3 (Cumulative preceding length of conduits). In 317 

this case, 𝑥𝑥2.3 was clearly the most important factor influencing the values of MTI in the nodes 318 

of the study catchment, with an average contribution of 97.39%. Again, both predictors were 319 

positively correlated to the predictand, since they contributed to increased runoff accumulation 320 

throughout the sewer network and the catchment, respectively. In fact, 𝑥𝑥1 was statistically 321 

significant only for the extreme events. However, since they represented the situations in which 322 

floods occurred for different combinations of climate scenario and return period, this parameter 323 

was concluded to be relevant for the purpose of this research and was therefore not removed 324 

from further analyses.   325 



 

 

 

All these results enabled validating the MLR models built for identifying statistically 326 

significant parameters for estimating peak flow rates and, therefore, using the information 327 

related to their degree of contribution to create MNLR models to predict MLI and MTI with 328 

high accuracy. 329 

 330 

Modelling of Maximum Lateral Inflow and Maximum Total Inflow in the 331 

study catchment 332 

 333 

Multiple Non-Linear Regression (MNLR) was used to fit the values of MLI and MTI obtained 334 

in all the nodes of the study catchment (Fig. 2a)) through the simulations run in SWMM (Jato-335 

Espino et al. 2017) for the rainfall events that produced floods in the study catchment (Table 336 

2), based on the knowledge acquired from the application of MLR to determine which 337 

catchment and sewer network parameters were more relevant for producing peak flow rates. 338 

Table 3 and Table 4 summarize the MNLR models determined for predicting both MLI and 339 

MTI. 340 

 341 

Table 3. Summary of the Multiple Non-Linear Regression (MNLR) models built for the estimation of Maximum 342 
Lateral Inflow (MLI, l/s) 343 
Event Equation Pred. 𝑹𝑹𝟐𝟐 
RCP4.5; T = 5 yr. 𝑀𝑀𝑀𝑀𝐼𝐼 = (3.21 − 54.85 ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.1 + 1.64 ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.2 + 1.51 ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.4)1 0.845�  0.95 
RCP8.5; T = 5 yr. 𝑀𝑀𝑀𝑀𝐼𝐼 = (4.17 − 75.00 ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.1 + 2.29 ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.2 + 2.04 ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.4)1 0.845�  0.96 
RCP4.5; T = 50 yr. 𝑀𝑀𝑀𝑀𝐼𝐼 = (4.94 − 93.04 ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.1 + 2.90 ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.2 + 2.51 ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.4)1 0.845�  0.96 
RCP8.5; T = 25 yr. 𝑀𝑀𝑀𝑀𝐼𝐼 = (5.77 − 113.55 ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.1 + 3.60 ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.2 + 3.02 ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.4)1 0.845�  0.96 
  344 



 

 

 

Table 4. Summary of the Multiple Non-Linear Regression (MNLR) models built for the estimation of Maximum 345 
Total Inflow (MTI, l/s) 346 

Event Equation Pred. 𝑹𝑹𝟐𝟐 
RCP4.5; T = 5 yr. 𝑀𝑀𝑀𝑀𝐼𝐼 = (6.03 + 9.50 ∗ 10−2 ∗ 𝑥𝑥2.3 + 6.39 ∗ 10−2 ∗ 𝑥𝑥1 − 2.50 ∗ 10−5 ∗ 𝑥𝑥2.3 ∗ 𝑥𝑥2.3)1 0.682�  0.96 
RCP8.5; T = 5 yr. 𝑀𝑀𝑀𝑀𝐼𝐼 = (7.70 + 1.15 ∗ 10−1 ∗ 𝑥𝑥2.3 + 7.11 ∗ 10−2 ∗ 𝑥𝑥1 − 4.00 ∗ 10−5 ∗ 𝑥𝑥2.3 ∗ 𝑥𝑥2.3)1 0.682�  0.95 
RCP4.5; T = 50 yr. 𝑀𝑀𝑀𝑀𝐼𝐼 = (8.98 + 1.30 ∗ 10−1 ∗ 𝑥𝑥2.3 + 7.54 ∗ 10−2 ∗ 𝑥𝑥1 − 5.10 ∗ 10−5 ∗ 𝑥𝑥2.3 ∗ 𝑥𝑥2.3)1 0.682�  0.93 
RCP8.5; T = 25 yr. 𝑀𝑀𝑀𝑀𝐼𝐼 = (10.04 + 1.42 ∗ 10−1 ∗ 𝑥𝑥2.3 + 7.90 ∗ 10−2 ∗ 𝑥𝑥1 − 6.20 ∗ 10−5 ∗ 𝑥𝑥2.3 ∗ 𝑥𝑥2.3)1 0.682�  0.92 

 347 

The high values of predicted 𝑅𝑅2 reached for both models, which were always above 0.9, 348 

ensured their reliability for making new estimates of MLI and MTI and validated the two-step 349 

approach based on the combination of MLR and MNLR. Furthermore, their residuals met the 350 

assumptions on which Multiple Regression Analysis (MRA) is based: normality, 351 

homoscedasticity and independence. For instance, Fig. 3 provide visual verification of the 352 

fulfilment of these assumptions for the worst regression models in Table 3 and Table 4 in terms 353 

of goodness-of-fit: RCP4.5; T = 5 yr. (MLI) and RCP8.5; T = 25 yr. (MTI). The approximate 354 

straight line in the Q-Q plots ensured the normality of residuals, whilst their random and non-355 

curvilinear distributions around the horizontal axis in the standardized residuals versus fits 356 

plots confirmed the homoscedasticity of the regression models. Finally, the residuals versus 357 

order plots suggested that there was no serial correlation and their independence could also be 358 

assumed. 359 

  360 



 

 

 

 361 

Fig. 3. Residual analyses for the Multiple Non-Linear Regression (MNLR) models built for the estimation of a) 362 
Maximum Lateral Inflow (MLI, l/s) for the RCP4.5 scenario and a return period of 5 years and b) Maximum 363 

Total Inflow (MTI, l/s) for the RCP8.5 scenario and a return period of 25 years 364 
 365 

To facilitate the application of the equations for estimating MLI and MTI shown in 366 

Table 3 and Table 4 according to the characteristics of rainfall events, their constant 𝑏𝑏0 and 367 

weights 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑖𝑖𝑖𝑖 (Eq. (2)) were fitted using MLR again with the intensity (𝐼𝐼) of the Climate 368 

Change storms listed in Table 2 as predictor. Table 5 collects the equations obtained to predict 369 

these weights for both MLI and MTI. 370 

 371 

Table 5. Summary of the Multiple Linear Regression (MLR) models built for the estimation of the constant (𝒃𝒃𝟎𝟎) 372 
and weights (𝒃𝒃𝒊𝒊, 𝒃𝒃𝒊𝒊𝒊𝒊 and 𝒃𝒃𝒊𝒊𝒊𝒊) for the Maximum Lateral Inflow (MLI, l/s) and Maximum Total Inflow (MTI, l/s) 373 

Variable Equation Pred. 𝑹𝑹𝟐𝟐 
MLI 𝑏𝑏1.0 = 0.692 + 0.238 ∗ 𝐼𝐼 1.00 
 𝑏𝑏1.1∗1.1 = 3.675 − 5.434 ∗ 𝐼𝐼 1.00 
 𝑏𝑏1.1∗1.2 = −0.329 + 0.182 ∗ 𝐼𝐼 1.00 
 𝑏𝑏1.1∗1.4 = 0.008 + 0.140 ∗ 𝐼𝐼 1.00 
MTI 𝑏𝑏2.0 = 2.115 + 0.380 ∗ 𝐼𝐼 0.97 
 𝑏𝑏2.3 = 0.049 + 0.005 ∗ 𝐼𝐼 0.96 
 𝑏𝑏1 = 0.046 + 0.002 ∗ 𝐼𝐼 0.88 
 𝑏𝑏2.3∗2.3 = 1.111 ∗ 10−5 − 3.471 ∗ 10−5 ∗ 𝐼𝐼 0.98 

 374 

Again, the MLR models obtained highlighted by the excellent values of predicted 𝑅𝑅2 375 

achieved and enabled accepting the assumptions of MRA, as proven in Fig. 4, which depicts 376 



 

 

 

the residuals plots associated with the less accurate equations in Table 5: interaction between 377 

catchment area and average slope in the subcatchment (𝑏𝑏1.1∗1.4) and b) Maximum Lateral 378 

Inflow (MLI) (𝑏𝑏1) 379 

 380 

 381 

Fig. 4. Residual analyses for the Multiple Linear Regression (MLR) models built for the estimation of weights 382 
for a) interaction between subcatchment area and average slope in the subcatchment (𝒃𝒃𝟏𝟏.𝟏𝟏∗𝟏𝟏.𝟒𝟒) and b) Maximum 383 

Lateral Inflow (MLI) (𝒃𝒃𝟏𝟏) 384 
 385 

The merger of the expressions contained in Table 3 and Table 4 with those determined 386 

in Table 5 yielded Eqs. (5) and (6), whose application allowed calculating the values of MLI 387 

and MTI in the study catchment from the sole use of easy-to-compute GIS-based factors and 388 

the intensity of the rainfall event to be assessed. 389 

 390 

𝑀𝑀𝑀𝑀𝐼𝐼 = [(0.692 + 0.238 ∗ 𝐼𝐼) + (3.675 − 5.434 ∗ 𝐼𝐼) ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.1 + (−0.329 + 0.182 ∗ 𝐼𝐼)

∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.2 + (0.008 + 0.140) ∗ 𝑥𝑥1.1 ∗ 𝑥𝑥1.3]1 0.845�  
(5) 

 391 

𝑀𝑀𝑀𝑀𝐼𝐼 = [(2.115 + 0.380 ∗ 𝐼𝐼) + (0.049 − 0.005 ∗ 𝐼𝐼) ∗ 𝑥𝑥2.1 + (0.046 + 0.002 ∗ 𝐼𝐼) ∗ 𝑥𝑥1

+ (1.111 ∗ 10−5 − 3.471 ∗ 10−5 ∗ 𝐼𝐼) ∗ 𝑥𝑥2.1 ∗ 𝑥𝑥2.1]1 0.682�  
(6) 

 392 



 

 

 

The particularization of Eqs. (5) and (6) to the Climate Change storm events shown in 393 

Table 2 produced the values of MLI and MTI represented in Fig. 5 and Fig. 6, respectively. 394 

Their comparison with the results obtained through simulation in SWMM resulted in values of 395 

𝑅𝑅2 higher than 0.9 in all cases, demonstrating the accuracy of the proposed framework based 396 

on the combination of MLR and MNLR to fit the lateral and total peak flow rates in the nodes 397 

of the study area due to a series of storms with different intensities and durations, which in turn 398 

enable putting a focus on the elements in urban catchments which most contribute to producing 399 

flood events and taking water-related actions accordingly. 400 

 401 

 402 

Fig. 5. Fit between the values of Maximum Lateral Inflow (MLI, l/s) obtained through stormwater simulations 403 
and those determined using Multiple Non-Linear Regression (MNLR) 404 

 405 



 

 

 

 406 

Fig. 6. Fit between the values of Maximum Total Inflow (MTI, l/s) obtained through stormwater simulations 407 
and those determined using Multiple Non-Linear Regression (MNLR) 408 

 409 

Prediction of flooding probability in the study catchment 410 

 411 

The last step to accomplish the implementation of the proposed methodology to the study 412 

catchment consisted of combining the parameters listed in Table 1 with the values of MLI and 413 

MTI predicted through Eqs. (5) and (6), in order to build Multiple Binary Logistic Regression 414 

(MBLR) models for predicting the probability of flooding throughout the sewer network. The 415 

equations to estimate 𝑦𝑦′ (see Eq. (4)) for the four rainfall scenarios under consideration are 416 

provided in Table 6. 417 

 418 

Table 6. Summary of the Multiple Binary Logistic Regression (MBLR) models built for the estimation of 419 
Flooding Probability (%) 420 

Event Equation Adj. Dev. 𝑹𝑹𝟐𝟐 AIC H-L 
RCP4.5; T = 5 yr. y′ = −0.49 − 0.26 ∗ 𝑥𝑥1.2 + 0.01 ∗ 𝑥𝑥2.3 + 0.06 ∗ 𝑥𝑥2.4 0.83 84.23 0.42 
RCP8.5; T = 5 yr. y′ = −0.17 − 0.26 ∗ 𝑥𝑥1.2 + 0.08 ∗ 𝑥𝑥2.2 + 0.01 ∗ 𝑥𝑥2.3 0.81 80.32 0.37 
RCP4.5; T = 50 yr. y′ = −26.41 − 0.13 ∗ 𝑥𝑥1.2 + 0.41 ∗ 𝑥𝑥1.4 + 6.23 ∗ 𝑥𝑥2.1 + 0.11 ∗ 𝑥𝑥2.2 + 18.39 ∗ 𝑥𝑥2.5 0.79 88.41 0.07 

RCP8.5; T = 25 yr. y′ = −27.83 + 11.09 ∗ 𝑥𝑥1.1 + 9.79 ∗ 𝑥𝑥2.1 + 22.13 ∗ 𝑥𝑥2.5 − 0.29 ∗ 𝑥𝑥2.9 0.74 106.36 0.19 

 421 



 

 

 

The quality of these models was ensured by the high and low values of adjusted 422 

deviance 𝑅𝑅2 and Akaike Information Criterion (AIC) reached, which guaranteed the suitability 423 

of the predictors included in the equations presented in Table 6 to predict flooding probabilities. 424 

Moreover, the results of the Hosmer-Lemeshow (H-L) test for the four MBLR models built 425 

yielded p-values above the significance level (𝛼𝛼 = 0.05) in all cases, which further validated 426 

their goodness-of-fit. Consequently, the inclusion of the ratio of MTI to MLI as the frequency 427 

in MBLR demonstrated to be a key factor to enhance the fit between predicted and simulated 428 

probabilities of flooding. 429 

The values obtained for MLI and flooding probability were imported to GIS and 430 

mapped as depicted in Fig. 7. MLI was represented according to the subcatchments based on 431 

their peak runoff rates, in order to determine their degree of contribution to the nodes to which 432 

they flowed, whilst flooding probability was illustrated through the nodes forming the sewer 433 

network under study. Since the Climate Change events used to test the methodology provided 434 

the ranges of values for which drainage systems will have to be designed in the future to prevent 435 

the occurrence of floods in the catchment, this map provided the information required to plan 436 

water management strategies to take priority action in vulnerable areas.  437 

 438 



 

 

 

 439 

Fig. 7. Maximum Lateral Inflow (MLI, l/s) and Flooding Probability (%) in the subcatchments and nodes in the 440 
study area 441 

 442 

The results represented in Fig. 7 for short return periods (RCP4.5; T = 5 yr. and RCP8.5; 443 

T = 5 yr.) indicated that oversizing the existing sewer network would not result in a relevant 444 

improvement of the drainage capacity of the catchment, since aspects like the depth and 445 

diameter of its nodes and conduits were not significantly correlated to its flooding susceptibility 446 



 

 

 

from a statistical point of view (Table 6). On the contrary, the implementation of Sustainable 447 

Drainage Systems (SuDS), also known as BMPs, Low Impact Development (LID) or Water 448 

Sensitive Urban Design (WSUD), in those areas with higher values of MLI might decrease the 449 

degree of imperviousness of these subcatchments and therefore reduce the amount of lateral 450 

inflow received by the nodes of the sewer network too. Di Matteo et al. (2017) and Meerow 451 

and Newell (2017) highlighted the importance of the spatial distribution of SuDS to improve 452 

urban water-related decision-making processes, in order to maximize their impact by locating 453 

them at those sites which most contribute to produce flooding, as illustrated in Fig. 7. In fact, 454 

the results presented in Jato-Espino et al. (2016b) demonstrated that the installation of 455 

Permeable Pavement Systems at the critical areas shown in Fig. 7 prevented the occurrence of 456 

floods in the study catchment when simulating the rainfall scenarios from which these 457 

phenomena started to occur in the catchment. 458 

Although the common return periods used to design urban drainage systems range from 459 

2 to 10 years under the assumption of stationarity (Jato-Espino et al. 2016b), Climate Change 460 

is expected to accelerate the water cycle in Finland, producing earlier peak flows and increased 461 

discharges (Korhonen and Kuusisto 2010). Therefore, exploring the potential consequences 462 

derived from storms associated with longer return periods (RCP4.5; T = 50 yr. and RCP8.5; T 463 

= 25 yr.) must be a first concern too. According to Table 6, these scenarios would require taking 464 

integrated solutions based on extending the capacity of the existing drainage network through 465 

larger diameters and invert elevations and smoother slopes, whilst implementing alternative 466 

measures to complement its efficiency, such as installing SuDS and/or including new nodes to 467 

divide existing subcatchments into smaller areas and reduce high inflow rates in some nodes. 468 

The maps illustrated in Fig. 7 can be of great help for focusing on critical areas and optimize 469 

the planning and management of resources to prevent floods. 470 

 471 



 

 

 

Conclusions 472 

 473 

This paper proposed and validated a methodology based on Multiple Regression Analysis 474 

(MRA) for assessing flood risk in urban catchments. Multiple Linear Regression (MLR) was 475 

applied to select catchment and sewer networks parameters proving to be influential in the 476 

occurrence of runoff peaks in urban areas, whilst Multiple Non-Linear Regression (MNLR) 477 

and Multiple Binary Logistic Regression (MBLR) models were built to make predictions of 478 

Maximum Lateral Inflow (MLI) and Maximum Total Inflow (MTI) in urban catchments and 479 

determine the probability of flooding across them, respectively. 480 

The excellent values reached in the MNLR models for the predicted coefficient of 481 

determination proved that the combination of catchment and sewer network parameters, 482 

especially subcatchment area and cumulative length of preceding conduits, can provide 483 

accurate estimates of the maximum peak flow rates in subcatchments and nodes. The 484 

subsequent use of MBLR provided high-accuracy prediction models to determine the flooding 485 

probability associated with the nodes of sewer-catchments under different extreme rainfall 486 

scenarios produced by Climate Change. The results proved that the implementation of 487 

Sustainable Drainage Systems (SuDS) might be enough to mitigate floods for the return periods 488 

commonly used for urban designs, whilst integrated approaches combining both conventional 489 

and alternative water management measures would be required to deal with more extreme 490 

scenarios. The fact that these outcomes were based on easy to acquire and/or produce 491 

parameters and their relationships were solid in both physical and statistical terms enabled the 492 

extrapolation and generalization of the proposed approach to other case studies, since the 493 

interpretation and application of MRA is simple and compatible with Geographic Information 494 

Systems (GIS). 495 



 

 

 

This methodology is presented as an accessible framework to support the adoption of 496 

measures by administrative entities for facilitating their drainage management planning actions 497 

and maximizing their impact through their implementation at strategic sites in terms of flood 498 

susceptibility. Although the reliability of the results to which it led is not compromised by the 499 

location of the study area, further research should consider the application of this methodology 500 

to other urban catchments with larger areas, different climate conditions and more complex 501 

drainage systems, in order to regionalize the development of prediction models according to 502 

the degree of similarity of distinct zones worldwide. The other main future line of action to 503 

continue this research should consist of exploring the automation of the proposed methodology 504 

through easy-to-use interfaces and/or support tools, so that potential decision-makers and water 505 

resources planners without expertise in the statistical techniques considered might apply them 506 

by merely providing a series of basic weather and physical inputs. 507 
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