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Abstract 13 

14 

The inter- and intra-crystalline fractions of the topshell Phorcus lineatus recovered from 15 

modern specimens and shells from archaeological sites in Northern Spain covering Neolithic, 16 

Mesolithic, and Upper Magdalenian periods were examined for amino acid composition and 17 

racemisation over time. The main loss of proteins from the inter-crystalline fraction occurred 18 

within the first 6,000 years after the death of the organism. In contrast, the intra-crystalline 19 

fraction isolated by bleaching—with a different protein composition to that of the inter-20 

crystalline fraction—appeared to behave like a closed system for at least 12.6 ka, as reflected 21 

by the lack of a significant decrease in amino acid content. However, changes in the relative 22 
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composition of the amino acids present in these shells occurred during this period. The 23 

concentration of aspartic acid remained almost constant with age within the intra-crystalline 24 

fraction and its contribution to the total amino acid content also remained the same. Good 25 

correspondence was obtained between Asx D/L values in unbleached and bleached samples 26 

and age, thereby allowing the dating of archaeological sites and the determination of 27 

chronometric age. 28 

29 

Key-words: Phorcus lineatus; inter- and intra-crystalline proteins; amino acids; 30 

microstructure; archaeology 31 

32 

Highlights:  33 

34 

- Inter- and intra-crystalline protein fractions of P. lineatus shells differ (amino acid35 

proportions).36 

- The main loss of proteins (85-90%) from the inter-crystalline fraction occurs within37 

the first 6 ka.38 

- The intra-crystalline protein fraction behaves like a closed-system.39 

- Asx D/L in unbleached and bleached P. lineatus specimens can be used for40 

chronological purposes over ~ 13 ka.41 

- The percentage of aspartic acid remained constant in intra-crystalline proteins for over42 

ca. 13 ka.43 
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44 

1. Introduction45 

46 

47 

Dating archaeological sites is crucial for interpreting changes in past human behaviour and 48 

for reconstructing environmental conditions. In recent decades, radiocarbon dating has 49 

become the most common approach for the chronological assessment of archaeological sites 50 

(Taylor, 1987; Stuiver and Brazuinas, 1993; Bronck Ramsey et al., 2004; Reimer et al., 51 

2013). However, the limitations of the method (e.g. expense, time-constraints) makes it 52 

difficult to date large numbers of samples. In addition, radiocarbon dating is not suitable for 53 

dating samples older than 50 ka (Walker, 2005; Chiu et al., 2007; Reimer et al., 2013). In this 54 

context, it is therefore necessary to develop cheaper and faster methods for the chronological 55 

analysis of archaeological deposits. Amino acid racemisation (AAR) is one of the most used 56 

alternative methods to radiocarbon dating, as it is a faster and less expensive technique, 57 

allowing the dating of archaeological sites (Masters and Bada, 1977; Wehmiller, 1977). 58 

While AAR dating goes beyond the time range of the radiocarbon method, it has also been 59 

employed for dating Holocene sites (e.g. Bateman, 2008; Ortiz et al., 2009, 2015; Demarchi 60 

et al., 2011). Moreover, many studies have demonstrated that AAR is a satisfactory tool for 61 

dating a range of material from palaeontological and archaeological sites, such as teeth and 62 

shells (Helfman and Bada, 1976; Wehmiller, 1977; Julg et al., 1987; Bateman, 2008; Torres 63 

et al., 2013, among others). 64 

Shell middens are unique archaeological deposits composed of large amounts of shells that 65 

were discarded by humans in the past after use or consumption of their content (Waselkov, 66 

1987; Stein, 1992; Colonese et al., 2011; Gutiérrez-Zugasti et al., 2011). Understanding shell 67 

midden formation/transformation/erosion, as well as changes in subsistence strategies and 68 

 © <2018>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

settlement patterns of human groups, usually requires a large number of dates to be obtained. 69 

In this regard, AAR can be helpful for chronological purposes in this type of context, as a 70 

large number of samples can be analysed from a single horizon, thus facilitating the 71 

identification of time-averaging and the time over which a certain site formed (Kowalewski 72 

et al., 1998), or potential anthropogenic heating (Demarchi et al., 2011). 73 

In Atlantic Europe, previous studies have centered on the use of the limpet Patella vulgata 74 

Linnaeus, 1758 for dating Palaeolithic, Mesolithic and Neolithic shell middens (Bateman, 75 

2008; Ortiz et al., 2009, 2015; Demarchi et al., 2011). Recent studies of modern and 76 

archaeological P. vulgata in northern Spain have shown the potential of inter- and intra-77 

crystalline proteins in the shells of this limpet for AAR geochronology (Ortiz et al., 2009, 78 

2015; Demarchi et al., 2013a,b). In the studies of Demarchi et al. (2013a, b), artificial 79 

diagenesis was induced in the whole protein content (inter- and intra-crystalline proteins) and 80 

in the isolated intra-crystalline protein fraction (IcP) of modern Patella shells. The extent and 81 

racemisation of various amino acids provided data on protein diagenesis in modern limpets, 82 

showing that the IcP fraction behaves like a closed system and is thus suitable for 83 

geochronological purposes. Ortiz et al (2015) revealed the patterns of protein degradation in 84 

fossil P. vulgata representatives collected from several archaeological sites of diverse ages 85 

(ca. 34 ka cal BP to 5.8 ka cal BP) in Northern Spain, by examining the amino acid content 86 

and D/L values in the whole protein content and the IcP fraction separately. The main protein 87 

leaching from the inter-crystalline fraction was observed to occur within the first 6 ka after 88 

the death of the organism. In contrast, the IcP fraction, which has a distinct protein 89 

composition to that of the inter-crystalline fraction, appeared to behave as a closed system for 90 

at least 34 ka. Notwithstanding, Asx D/L values appeared to be suitable for geochronological 91 

purposes even when considering the whole protein fraction, likely to be due to rapid initial 92 

leaching of the inter-crystalline matrix (Ortiz et al., 2015). 93 
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In contrast, the inter-crystalline fraction of Glycymeris sp. shells does not seem to behave as a 94 

closed system, with the inter- and intra-crystalline proteins probably being  similar (Demarchi 95 

et al., 2015, Ortiz et al., 2017). In spite of the high intra-sample variability, the extent of 96 

racemisation in unbleached Glycymeris sp. shells should be used with caution for AAR dating 97 

(Torres et al., 2014; Demarchi et al., 2015; Ortiz et al., 2017). 98 

In a recent study, Phorcus turbinatus shells were subjected to AAR analysis in Ksâr ‘Akil site 99 

(Lebanon). IcPs provided a robust fraction for AAR dating, showing closed-system behaviour 100 

(Bosch et al., 2015). However, the poor resolution of the D/L values obtained on multiple 101 

amino acids hampered the usefulness of AAR for chronological applications within this site, 102 

at least between 43 to 30 ka BP. 103 

Therefore, further research is required to clarify the processes of protein preservation and 104 

degradation and the concomitant success of AAR for dating archaeological localities using 105 

molluscs. The quality of the archaeological record, as well as the range of species available 106 

and their abundance, makes northern Spain an excellent area to test dating methods such as 107 

AAR. Although the limpet P. vulgata is one of the most common species in archaeological 108 

sites in northern Iberia, other molluscs are also present, including the topshell Phorcus 109 

lineatus (da Costa, 1778) (syn. Osilinus lineatus). This mollusc, also known as toothed or 110 

thick topshell, is commonly found in archaeological sites of a range of ages in northern Spain 111 

(Table 1; González-Morales, 1982; Bailey and Craighead, 2003; Gutiérrez-Zugasti, 2009, 112 

2011; Álvarez-Fernández, 2011), thereby allowing the analysis of long-term chronological 113 

sequences.  Previous mineralogical studies (by SEM and X-ray diffraction) of P. lineatus 114 

shells (Fig. 2) have shown that they have a very thin calcite outer layer (with foliated and 115 

prismatic structures) and an inner nacreous aragonite layer (Mannino et al., 2003; Mannino 116 

and Thomas, 2007; Gutiérrez-Zugasti et al., 2015). These studies showed that the inner 117 

aragonitic structures of archaeological P. lineatus shells remained unaltered and well 118 
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preserved over 8,000 yr time range, probably not undergoing recrystallization or post-119 

depositional isotopic exchange (Mannino, 2000; Mannino et al., 2003; Mannino and Thomas, 120 

2007), therefore likely to be  suitable for AAR dating. 121 

 122 

Therefore, here we provide the background to the successful application of AAR of P. 123 

lineatus for geochronological purposes. We report the systematic study of the behaviour of 124 

the whole protein content (inter- and intra-crystalline proteins) and the IcP fraction (bleaching 125 

tests) separately within this species. To this end, we did the following: 126 

- Tested the patterns of diagenetic reactions and robustness of whole protein content and IcP 127 

fraction during artificial diagenesis (leaching tests at high temperature). 128 

-  Compared the diagenetic patterns in archaeological representatives within the IcP fraction 129 

and the whole-shell proteins. Shell specimens from archaeological sites of known ages (Fig.1, 130 

Table 1) covering the Upper Magdalenian (16.3-13.5 ka cal BP), Azilian (13.5-10.7 ka cal 131 

BP), Mesolithic (10.7-6.3 ka cal BP), and Neolithic (ca. 6.3-5.7 ka cal BP) periods were 132 

selected for analysis 133 

- Evaluated the potential for artificial diagenesis at high temperature in order to mimic 134 

diagenesis in archaeological sites, by comparing results from heated and archaeological 135 

shells. 136 

- Tested the suitability of AAR for dating purposes. 137 

 138 

2. Material and methods 139 
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 140 

A total of 101 shell samples of P. lineatus were selected from 19 stratigraphic levels 141 

belonging to 8 archaeological sites located in the regions of Asturias and Cantabria (Northern 142 

Spain) and radiocarbon-dated to the Upper Palaeolithic, Mesolithic and Neolithic periods 143 

(Fig. 1; Table 1). Shells were stored at the Museum of Archaeology of Asturias (MAA) and 144 

the Museum of Prehistory and Archaeology of Cantabria (MUPAC). For comparative 145 

purposes, 5 modern specimens (collected alive) were recovered from Cue beach (Asturias), 146 

located close to the archaeological sites (Fig. 1). 147 

Between 5 and 8 P. lineatus shells (analytical samples) from each archaeological level were 148 

analysed for amino acid content (Table 2). In the laboratory, shells were carefully sonicated 149 

and cleaned with water to remove sediment. Peripheral parts of the shells, approximately 20–150 

30%, were removed after chemical cleaning of the sample with 2 M HCl.  151 

For all shell samples, we drilled a small disc in the aperture—a procedure that has been 152 

shown to reduce intra-shell variability (cf. Murray-Wallace, 1995). Approximately 5–20 mg 153 

of carbonate was extracted from each shell and subjected to AAR analysis of total protein 154 

content (inter- and intra-crystalline proteins) and the isolation of IcP through bleaching 155 

(Penkman et al., 2008; Demarchi et al., 2013a). Samples from the aperture of modern 156 

specimens were also used to measure the amino acids in the total protein fraction and in the 157 

IcP fraction after leaching (heating at 140ºC over a range of time intervals). 158 

 159 

2.1 Leaching 160 

 161 
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Leaching was performed following the protocol described in Canoira et al (2003) and Torres 162 

et al (2017). A set of 20 modern shell samples were placed in borosilicate glass ampoules, 163 

together with 2 g of quartz sand (deeply pre-cleaned by oven baking at 600°C for 6 h). Next, 164 

120 ml of ultraclean water (HPLC-grade) was added with a syringe. The top of the ampoule 165 

was fitted into rubber tubing connected to a vacuum-N2 line, being alternately exposed to 166 

vacuum and N2, a procedure repeated three to four times to flush out all the air, following 167 

Kriausakul and Mitterer (1978), Goodfriend and Meyer (1991) and Canoira et al. (2003). The 168 

ampoule was later sealed under nitrogen. The ampoules were placed in a rack and put in an 169 

oven at 140ºC. 170 

Two ampoules with quartz sand were removed at the following intervals: 1, 2, 4, 6, 8, 24, 48, 171 

72, and 240 h. The ampoules were opened and dried. Shell samples were separated, washed 172 

with distilled water, sonicated, and vacuum-dried. They were then analysed for total amino 173 

acid content and IcP fraction after bleaching. 174 

After heating, 100 mL of the supernatant water was also analysed for the amino acids leached 175 

into the water (THAAw). 176 

 177 

2.2 Bleaching  178 

 179 

Powdered shell samples (from archaeological levels and leaching experiment) were used to 180 

isolate IcPs. The shell particles measured less than 500 µm, following Demarchi et al. 181 

(2013a, p. 151), a size for which bleaching is likely to be most effective. We exposed these 182 

samples to 12% sodium hypochlorite (NaOCl) for 48 h—a time reported to be the optimal 183 

bleaching period for some molluscs (Penkman et al., 2008; Demarchi et al., 2013a). 184 
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For each fraction, 50 µL of NaOCl per mg of powdered shell was added to accurately 185 

weighed subsamples at room temperature. To ensure the complete penetration of the 186 

oxidising agent, the vials containing the powders and the bleach were shaken every 24 h. The 187 

bleach was then removed, and the powders were rinsed five times in ultrapure water and once 188 

in HPLC-grade methanol, with centrifugation for 4 min between each rinse to minimise the 189 

removal of powder. Finally, the samples were air-dried overnight. 190 

 191 

2.3 Amino acid analysis 192 

 193 

Amino acid concentrations and racemisation/epimerisation ratios were quantified using a 194 

HPLC, following the sample preparation protocol described in Kaufman and Manley (1998) 195 

and Kaufman (2000). This procedure involves hydrolysis, which was performed under an N2 196 

atmosphere in 20 µL/mg of 7 M HCl for 20 h at 100ºC. The hydrolysates were evaporated to 197 

dryness in vacuo and then rehydrated in 10 µL/mg of 0.01 M HCl with 1.5 mM sodium azide 198 

and 0.03 mM L-homo-arginine (internal standard).  199 

Samples were injected into an Agilent HPLC-1100 equipped with a fluorescence detector. 200 

Excitation and emission wavelengths were programmed at 230 nm and 445, respectively. A 201 

Hypersil BDS C18 reverse-phase column (5 µm; 250 x 4 mm i.d.) was used for the analysis. 202 

Derivatisation was achieved before injection by mixing the sample (2 µL) with the pre-203 

column derivatisation reagent (2.2 µL), which comprised 260 mM isobutyryl-L-cysteine 204 

(chiral thiol) and 170 mM o-phtaldialdehyde, dissolved in a 1.0 M potassium borate buffer 205 

solution at pH 10.4. Eluent A consisted of 23 mM sodium acetate with 1.5 mM sodium azide 206 

and 1.3 mM EDTA, adjusted to pH 6.00 with 10 M sodium hydroxide and 10% acetic acid. 207 

Eluent B was HPLC-grade methanol, and eluent C consisted of HPLC-grade acetonitrile. A 208 
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linear gradient was performed at 1.0 mL/min and 25ºC, from 95% eluent A and 5% eluent B 209 

upon injection to 76.6% eluent A, 23% eluent B, and 0.4% eluent C at min 31; and then with 210 

a progressive gradient at 1.07 mL/min and the following percentages: 46.2% eluent A, 48.8% 211 

eluent B, and 5.0% eluent C at min 95. As a laboratory routine, we separated glycine (Gly) 212 

and the D and L peaks of the following amino acids (Fig. 1-Supplementary Data): aspartic 213 

acid and asparagine (Asx); glutamic acid and glutamine (Glx); serine (Ser); alanine (Ala); 214 

valine (Val); phenylalanine (Phe); isoleucine (Ile); leucine (Leu); threonine (Thr); arginine 215 

(Arg); and tyrosine (Tyr). 216 

 217 

2.4 Data screening of the AAR analyses 218 

 219 

A total of 108 powdered samples taken from the aperture of archaeological P. lineatus shells 220 

were analysed for amino acid content. The same 108 samples were also used for the 221 

bleaching experiment. Of these samples, 14 results (12.9% of the data- 3 in El Penicial, 3 in 222 

Bricia-A, 3 in Bricia-C, 1 in El Mazo-101, 1 in El Toral III-21, 2 in Mazaculos II-A2,  and 1 223 

in level 24 of La Riera) were excluded because Asx and Glx D/L values fell off the 224 

covariance trend (cf. Kaufman, 2003, 2006; Laabs and Kaufman, 2003) (Supplementary 225 

Data) and/or because of abnormally high D/L values, characterised by Asx D/L and Glx D/L 226 

values falling outside the 2σ range of the group (cf. Hearty et al., 2004; Kosnik and Kaufman, 227 

2008). These samples also showed a low amino acid content. A similar percentage of the data 228 

set from bleached samples was also excluded following the same rejection criteria exposed 229 

above, coinciding in most cases with the outliers identified for unbleached samples. Most of 230 

the samples with high D/L values may have been subjected to anthropogenic heating (3 in El 231 
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Penicial, 1 in Bricia-A, 1 in El Mazo-101, 1 in El Toral III-21, and 1 in level 24 of La Riera), 232 

as they showed a similar pattern to that of heated ostrich eggshells (Brooks et al., 1991; 233 

Crisp, 2013) and suspected burned P. vulgata shells (Demarchi et al, 2011), i.e., the sum of 234 

total amino acid concentrations were considerably lower, especially for Asx, Ser, Thr and 235 

Arg. Each result and the samples rejected are shown in the Supplementary Data. The data 236 

used in the following sections are only from the screened samples and do not include outliers. 237 

None of the 20 powdered samples of modern P. lineatus shells that were analysed for total 238 

amino acid content or the same 20 samples that were bleached for the isolation of the IcP 239 

fraction were rejected. 240 

 241 

3 Modern P. lineatus shells 242 

 243 

3.1 Amino acid concentration and composition 244 

 245 

The total concentration of amino acids in modern shells was ca. 386 nmol/mg, whereas in the 246 

IcP fraction registered ca. 16 nmol/mg (Table 3). Thus, the latter accounted for around 4.2% 247 

of the total proteins in these shells (Fig. 3A). 248 

The amino acid composition of the inter- and intra-crystalline proteins in modern shells also 249 

differed, as the percentage of the individual concentration of Asx ([Asx]) was higher in 250 

bleached (40%) than in unbleached samples (14%) (Table 3), the relative proportion of Ala 251 

and Gly being higher in the latter (Fig. 3C). 252 

 253 

3.2 Amino acid D/L values 254 

 255 
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The mean Asx, Glx, Ala, Ser D/L values and D-aIle/L-Ile values in bleached and unbleached 256 

modern P. lineatus shells are shown in Fig. 3B. We selected these amino acids because they 257 

account for a considerable percentage of the amino acid content in modern shells (Fig. 3C). 258 

Asx, Glx, and Ala were the amino acids with highest D/L values in unbleached samples. In 259 

contrast, Asx, Glx, Ala, and Ser D/L and D-aIle/L-Ile values were higher in bleached samples 260 

than in unbleached ones, the differences between Ser and Asx being significant.  261 

 262 

3.3 Discussion 263 

 264 

The IcPs in modern P. lineatus shells accounted for a small fraction with respect to the total 265 

protein content (ca. 4.2%) (Fig. 3A). Acidic amino acids were not abundant in the whole 266 

shell, representing only 22%. The relatively low percentages of acidic amino acids found in 267 

P. lineatus may be explained by the aragonitic composition of the shell (Mannino et al., 2003; 268 

Mannino and Thomas, 2007; Gutiérrez-Zugasti et al., 2015), as the presence of acidic and 269 

Asp-rich proteins is usually linked to calcitic structures (Gotliv et al., 2005; Marin et al., 270 

2012). In the aragonite-dominated shells of Margaritifera falcata and Bithynia tentaculata, 271 

Asx and Glx account for a low percentage (ca. 15-25%) of the amino acid content, although 272 

in Corbicula fluminalis is ca. 45% (Penkman et al., 2008). 273 

In contrast, acidic amino acids accounted for 45-50% of the IcP fraction (Fig. 3C). Similarly, 274 

in some other mollusc shells, the percentage of Asx has been reported to increase after 275 

bleaching (Penkman et al., 2008). This may be explained by the strong binding of acidic 276 

amino acids to the mineral matrix observed in ostrich eggshell (Demarchi et al., 2016). 277 

Moreover, we observed that the relative composition of other amino acids (Ala, Gly, Leu, 278 

Val) in inter- and intra-crystalline fractions was dissimilar. This observation indicates that the 279 
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inter- and intra-crystalline protein compositions differ, thus potentially affecting the AAR 280 

rates (Fig. 3B) (Penkman et al., 2008; Crisp, 2013; Demarchi et al., 2013a). 281 

It is worth noting that, coinciding with previous studies, the D/L values were higher in the IcP 282 

fraction of modern P. lineatus than in the whole shell. The differences found in the 283 

concentration of amino acids and D/L values between the inter- and intra-crystalline proteins 284 

were in agreement with the findings of Sykes et al. (1995) and Penkman et al. (2007, 2008), 285 

who observed distinct racemisation rates in these fractions in a variety of mollusc shells. 286 

These results could be due to the removal of certain proteins and amino acids (mainly free 287 

amino acids-FAA) from the inter-crystalline matrix of the shells during bleaching (cf. 288 

Penkman et al., 2007, 2008). According to Penkman et al. (2008), the loss of FAA—which 289 

tend to be more highly racemised than the total hydrolysable amino acids (THAA) (Mitterer 290 

and Kriausakul, 1984)—in the inter-crystalline fraction during diagenesis produces a 291 

decrease in D/L values for the THAA of the whole shell. In this regard, the higher 292 

concentration of free amino acids (which are the most highly racemised) within the IcP 293 

fraction (Fig. 3A) may explain the higher D/L values obtained in the intra-crystalline fraction 294 

compared to whole shell (Fig. 3B). Other processes should also be taken into account, such as 295 

the different contribution of the distinct amino acids to the proteins entrapped within the 296 

biomineral, as some amino acids may be more tightly bound to the mineral (Demarchi et al., 297 

2016). Also, the position of each amino acid in the protein chains can cause a variation in 298 

degradation rates (Kriausakul and Mitterer, 1980; Wehmiller, 1980, 1993; Mitterer and 299 

Kriausakul, 1984), i.e., the rate of racemisation differs depending on the sequence position of 300 

amino acids, with most amino acids racemising only when in a terminal position. 301 

 302 

4 Behaviour of shell proteins during artificial diagenesis 303 

 304 
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4.1 Amino acid concentrations vs. heating time 305 

 306 

The total concentration of amino acids decreased with heating time in unbleached samples 307 

(Fig. 4). In contrast, the total concentration of amino acids remained similar during artificial 308 

diagenesis in bleached P. lineatus shells. 309 

After 6 h leaching at 140ºC, approximately 60% of total amino acid content of unbleached 310 

shells remained, while almost all of amino acids in bleached shells were retained after 240 h 311 

of leaching at 140ºC (Table 2). 312 

 313 

4.2 Amino acid composition vs. heating time 314 

 315 

• Unbleached 316 

 317 

The proportion of Asx remained similar over time in the 140ºC experiment (Fig. 5A, Table 5 318 

Supplementary Information), as did that of Phe, Ile, Leu, and Thr. Only after heating at 140ºC 319 

for 240 h did the percentages of Glx and Val increase, while that of Arg decreased; this 320 

amino acid is very labile. The percentages of Ser and Gly decreased with heating time after 1 321 

h, whereas that of Ala increased. 322 

 323 

• Bleached  324 

 325 

The variation of the percentages of each amino acid in the IcP fraction with heating time did 326 

not precisely reproduce what was observed in unbleached shells (Fig. 5B, Table 6 327 

Supplementary Information), although in most cases the pattern was the same, i.e., the 328 
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percentage of Ala, Glx, and Val increased, while that of Ser decreased. In contrast to 329 

unbleached samples, the percentage of Gly increased, while that of Thr decreased. 330 

 331 

4.3 D/L values vs. heating time 332 

 333 

The D/L values increased with time in unbleached and bleached shells (Fig. 6). As expected, 334 

the highest D/L values for all amino acids were observed after heating for 240 h, thereby 335 

indicating that rates of racemisation/epimerisation in P. lineatus shells are regulated by 336 

temperature and time. 337 

 338 

• Unbleached shells 339 

 340 

Asx showed the most rapid racemisation rate, followed by Phe, Glx, and Ala (Fig. 6). 341 

 342 

• Bleached shells 343 

 344 

The IcP fraction in modern P. lineatus shells showed higher D/L values than the inter-345 

crystalline one (Fig. 6). In this case, Ala and Phe showed the most rapid racemisation rates, 346 

followed by Asx and Glx, although Asx showed the highest D/L values before 8 h. 347 

 348 

4.4 Discussion 349 

 350 

The heating experiment at 140ºC confirmed the distinct protein composition of the inter- and 351 

intra-crystalline fractions, as the percentage of each amino acid in unbleached and bleached 352 

samples differed (Figs. 5A, 5B). Moreover, contrary to the unbleached samples, the IcP 353 
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fraction remained almost constant, indicating that this fraction remained closed over time 354 

during isothermal heating. In this regard, according to Demarchi et al. (2013a, p. 154), the 355 

total concentration of amino acids in unbleached samples would eventually reach the 356 

concentration levels detected in bleached powders, as prolonged leaching would isolate the 357 

IcP fraction. However, this was not observed here, i.e. after 240 h heating at 140ºC the amino 358 

acid concentration in unbleached samples was still 14 times higher than that in the IcP 359 

fraction (Table 3). Nevertheless, it is likely that leaching would occur over geological 360 

timescales (Miller and Hare, 1980; Collins and Riley, 2000; Bright and Kaufman, 2011); after 361 

ca. 6 ka cal B.P., the amino acid concentration in unbleached samples was reduced by around 362 

85-90% (see Section 5). 363 

The leaching experiment also showed that, upon isothermal heating, 40% of proteins from the 364 

unbleached samples were lost (Table 3). However, only a small amount of the total amino 365 

acids lost in the unbleached samples were found in the water (4.9%). Therefore, the main loss 366 

of amino acids from the inter-crystalline fraction is likely to be due to decomposition (the 367 

processes leading to the chemical degradation of the molecular structure of the amino acids), 368 

either within the shell or once leached into the water. 369 

 370 

5 Amino acids in archaeological shells 371 

 372 

5.1 Amino acid composition of the whole shell 373 

 374 

The total amino acid concentration of unbleached P. lineatus shells (representing the amino 375 

acids that comprise inter- and intra-crystalline proteins) was higher in modern specimens than 376 
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in archaeological ones (Fig. 7), and more variable; the total amino acid content decreased by 377 

around 85-90% from modern to archaeological shells. However, the concentrations were 378 

similar in archaeological P. lineatus shells of diverse ages (Neolithic, Mesolithic, and Upper 379 

Magdalenian), even in the oldest samples analysed in this study. It is worth noting that [Asx] 380 

and [Glx] were higher in modern P. lineatus shells, while archaeological samples showed 381 

similar concentrations of these amino acids (Asx and Glx).  382 

Similar percentages for all amino acids (considering [Asx], [Glx], [Ser], [Ile], [Leu], [Phe], 383 

[Val], [Ala], Gly], [Arg] and [Thr]) were obtained in archaeological levels of different ages. 384 

However, the percentage of each respective amino acid varied in a different way with respect 385 

to that of the modern shells (Fig. 8A). The percentage of Asx increased sharply with age (Fig. 386 

8A), i.e. for modern specimens it was around 14%, whereas for the Neolithic ones 387 

(Mazaculos II-A2) it was 35%, remaining similar for Mesolithic and Upper Magdalenian 388 

ones. The percentage of Glx, Val and Leu also increased from modern to archaeological 389 

samples. In this regard, samples older than ca. 6 ka cal BP (Neolithic) showed similar 390 

proportions of Asx. In contrast, the percentage of Ser, Ala, Phe, Gly and Arg showed a rapid 391 

decrease in P. lineatus shells from modern to Neolithic age, after which the percentage 392 

remained almost constant. It should be noted that the percentage of Ile and Thr remained 393 

almost the same. 394 

 395 

5.2 Amino acid composition of the IcP fraction 396 

 397 

In contrast to that observed in unbleached samples, the concentration of amino acids in 398 

bleached P. lineatus shells (representing the amino acids that comprise only IcPs) was similar 399 
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for modern and archaeological representatives of distinct ages (Fig. 7). The same results were 400 

obtained for [Asx]. 401 

Similar percentages were obtained for Asx, Glx, Ile, Leu, and Phe in modern and 402 

archaeological shells (Table 2). In contrast, the percentage of Ser decreased sharply with age 403 

(Fig. 8B), from modern (ca. 15%) to Neolithic (ca. 8%) specimens, remaining similar for 404 

Mesolithic and Upper Magdalenian ones. The percentage of Arg and Thr also decreased from 405 

modern to archaeological samples. The percentage composition of Ala, Val, and Gly showed 406 

a rapid increase from modern to Neolithic P. lineatus shells, after which the percentage of 407 

these amino acids remained almost constant.  408 

 409 

5.3 Interpretation of amino acid concentration trends  410 

 411 

5.3.1 Whole shell amino acids 412 

 413 

Significant protein leaching is likely to have occurred from the inter-crystalline fraction 414 

during the ca. 6,000 yr cal BP after the death of P. lineatus, as the total amino acid content 415 

decreased ca. 85-90% over this time and then stabilised. After this decrease, the amino acid 416 

content in P. lineatus shells of Mesolithic and Upper Magdalenian ages (up to ca. 12.6 ka cal 417 

BP) remained almost the same (Fig. 4), whereas the contribution of each amino acid to the 418 

total content differed (Fig. 8A, B). Thus, there was an increase in the relative proportion of 419 

Asx, Glx, Val, and Leu with age, while the relative composition of other amino acids such as 420 

Ser, Ala, Phe, Gly and [Arg] decreased with age.  421 
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Of note is the decrease in the percentage of Ala with age in the whole shell  (Fig. 8A), as an 422 

increase in the relative concentration of this amino acid is commonly observed upon artificial 423 

diagenesis in molluscs (Penkman et al., 2008; Demarchi et al., 2011, 2013b) and eggshells 424 

(Miller et al., 2000; Crisp, 2013). In contrast, the percentage of Ala increased in the IcP 425 

fraction of P. lineatus (Fig. 8B). This increase is assumed to be caused by the decomposition 426 

of other amino acids, such as Asx and mainly Ser, into Ala (Bada and Miller, 1970; Bada et 427 

al., 1978; Bada and Man, 1980; Walton, 1998).  428 

We also observed a decrease in [Ser]/[Ala] values in unbleached P. lineatus samples, thereby 429 

indicating a general pattern of increased protein degradation with age, as also interpreted 430 

from the increase in D/L values (Fig. 9A) and a decrease in amino acid concentrations with 431 

age (Fig. 7). 432 

Therefore, the different behaviour of Ala in unbleached P. lineatus shells may be explained 433 

by the loss of free Ala from the inter-crystalline matrix. Also, a different decomposition rate 434 

of amino acids in this species compared to other taxa cannot be ruled out. In fact, Ala 435 

accounted for ca. 25% of the total amino acid content in unbleached P. lineatus, whereas in 436 

other molluscs and eggshells it represents less than 15% (Penkman et al., 2008; Demarchi et 437 

al., 2011, 2013b, Crisp, 2013), thus indicating differences in protein composition. Moreover, 438 

the total amino acid content reduced considerably from modern to archaeological shells (ca. 439 

85-90%), thereby revealing a considerable loss of amino acids. In this regard, the biomineral 440 

might also play an important role due to differential mineral binding of amino acids 441 

(Demarchi et al., 2016).  442 

 443 

5.3.2 IcP amino acids 444 
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 445 

The IcPs accounted for around 4% of the total protein content of modern shells (Fig. 4). This 446 

percentage increased sharply with age (up to 60–70% over 6 ka), with apparently limited 447 

degradation of the proteins in this fraction (the concentration of amino acids remained 448 

constant with age in bleached samples), thereby indicating that there was an important 449 

preferential break-down and loss of inter-crystalline proteins. Similarly, [Asx] remained 450 

constant with age.  451 

In contrast, the percentage of the distinct amino acids in bleached samples did not vary with 452 

age in a similar way to unbleached samples. This observation confirms that the composition 453 

of the intra- and inter-crystalline fractions differed. 454 

Moreover, the amino acid percentages in unbleached samples showed a different pattern after 455 

leaching (Fig. 5A) and in archaeological sites (Fig. 8A). These observations can be attributed 456 

to the IcP fraction becoming more representative in archaeological P. lineatus shells (60-70% 457 

with respect to the total proteins) after 6 ka due to amino acid loss from the inter-crystalline 458 

fraction by leaching and decomposition. This finding coincides with reports by Penkman et 459 

al. (2008), who observed that the proportion of intra-crystalline amino acids within the whole 460 

shell increases as the sample ages.  461 

The differences found in the concentration and composition of amino acids and D/L values 462 

between the inter- and intra-crystalline proteins are in agreement with Sykes et al. (1995) and 463 

Penkman et al. (2007, 2008), who observed distinct racemisation rates in these fractions in a 464 

variety of mollusc shells. In leaching experiments (140ºC for 24 h to 240 h) on unbleached 465 

and bleached B. tentaculata and P. vulgata shells, Penkman et al. (2008) and Demarchi et al. 466 

(2013a) reported that only a small percentage (1–4%) of the total amino acid content leached 467 
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from the IcP fraction, in contrast to a higher percentage (ca. 40%) from unbleached shells 468 

under the same conditions. While inter-crystalline proteins are more susceptible to 469 

decomposition or leaching, the IcP fraction has been found to behave like a closed system in 470 

various mollusc shells, including those of P. lineatus. Similarly, Bosch et al. (2015) 471 

concluded that the IcP fraction of the topshell P. turbinatus approximates a closed-system. 472 

The results observed in unbleached and bleached archaeological P. lineatus shells confirmed 473 

that the inter- and intra-crystalline fractions of this species differ in protein profiles, thus 474 

showing distinct racemisation rates and compositions. IcPs seemed to remain in a closed 475 

system, as the total concentration of amino acids remained similar with age, although 476 

percentages of some amino acids varied. It should be highlighted that the concentration and 477 

percentage of Asx (which is the amino acid commonly used for dating recent samples) 478 

remained constant with age in bleached samples. 479 

 480 

6 Aminochronology  481 

 482 

To establish the aminochronology of the archaeological samples here, we used only Asx, 483 

because it is the amino acid that shows the fastest racemisation. Furthermore, due to their low 484 

D/L values, other amino acids were not suitable to discriminate between archaeological sites 485 

of these ages. 486 

 487 

6.1 Asx D/L values vs. age -unbleached  488 

 489 
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In general, topshells from archaeological sites showed Asx D/L values consistent with their 490 

age (Table 4; Fig. 9A), i.e. in the Neolithic site (Mazaculos II-A2) shells had the lowest Asx 491 

D/L values, followed by those belonging to the Mesolithic (shell midden and level 29 of La 492 

Riera, level 1.3 of Mazaculos II, El Penicial, Bricia-A, La Trecha, Arenillas, El Mazo and 493 

Toral), Azilian/Magdalenian (level 27 of La Riera), and Magdalenian (level 24 of La Riera, 494 

Bricia-C) periods. To select the best fit for the amino-age estimation algorithm, we compared 495 

the correlation coefficients (r2) for various approaches. We used the relationship between D/L 496 

Asx values vs. age because it provided the highest correlation coefficient. 497 

 498 

6.2 Asx D/L values vs. age -bleached 499 

 500 

As with the Asx D/L values of unbleached samples, D/Ls also increased with age in the 501 

bleached fraction (Table 4; Fig. 9B). Asx D/L values in the bleached samples showed a 502 

strong correspondence (r2= 0.88) with age. 503 

Of note, the Asx D/L values were similar in unbleached and bleached samples, although in 504 

unheated modern specimens they were lower in the former (Table 4). 505 

 506 

6.3 Aminochronological considerations 507 

 508 

The mean Asx D/L values of 106 bleached and unbleached P. lineatus shells from the 509 

archaeological levels (after the rejection of samples with abnormally high D/L values) 510 

increased with age (Figs. 9A and 9B). Asx D/L values were similar in unbleached and 511 

bleached samples. This observation could be attributable to the considerable loss of amino 512 
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acids in the inter-crystalline fraction over time, thereby producing a significant contribution 513 

of the IcP fraction to the whole protein content. Thus, good correlations were obtained for 514 

Asx D/L values in the inter- and intra-crystalline fractions versus age.   515 

However, the extent of racemisation of some amino acids (Asx, Glx, Ala, Val) within the IcP 516 

fraction of P. turbinatus specimens from Ksâr ‘Akil (Lebanon) revealed intralayer variability 517 

of the D/L values comparable with intra-horizon variability. Therefore D/L values could not 518 

be used to resolve the chronology within the site at the timescale relevant in that study, 519 

between 30 and 43 ka BP (Bosch et al., 2015). The low coefficients of variation for Asx D/L 520 

values in both bleached and unbleached P. lineatus samples (> 7% in most of cases) can 521 

explain the good resolution observed for discriminating the chronology of archaeological 522 

sites.  523 

A general increase in Asx D/L values with radiocarbon age was observed (Figs. 9A and 9B) 524 

up to 13 ka cal BP. We propose that the palaeoclimatic variations that occurred after the 525 

accumulation of the archaeological remains did not significantly affect the amino acid 526 

racemisation rate of P. lineatus shells, in contrast to that observed from limpet shells of the 527 

Solutrean and Gravettian periods (Ortiz et al., 2015). The sites studied here were formed after 528 

the Last Glacial Maximum (LGM), when climate amelioration occurred and was maintained 529 

throughout the Holocene with no significant temperature variations during the last 13 ka cal 530 

BP, with the exception of Younger Dryas (Bard, 2002; Peck et al., 2008).  531 

This study indicates that Asx D/L values of unbleached and bleached P. lineatus shells are 532 

useful for dating P. lineatus shells from archaeological levels in this region (Figs. 9A and 533 

9B).  534 

 535 
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7. Conclusions 536 

 537 

In summary: 538 

1.-The protein composition of the inter- and intra-crystalline fractions of the topshell P. 539 

lineatus differs, as shown by differences in the percentages of amino acids present. IcP amino 540 

acids accounted for 4% of the modern total amino acid content, but this percentage increased 541 

to 60-70% after ca. 6 ka BP.  542 

2.-The percentage of Asx remained constant with age (in archaeological samples over ca. 13 543 

ka cal BP) within IcPs. However, in inter-crystalline proteins, the percentage of this amino 544 

acid increased sharply in the first ca. 6 ka after the death of P. lineatus and then stabilised. 545 

The relative composition of other amino acids in the inter-crystalline fraction decreased with 546 

age (Ser, Ala, Phe, Gly, and Arg), whereas the percentage of Glx, Val and Leu increased. In 547 

contrast, within IcPs, Ala and Gly increased. The different protein composition of the inter- 548 

and intra-crystalline fractions, the closed system behaviour of the IcP fraction, and the 549 

differential mineral binding of amino acids may explain these differences. 550 

3.-The IcP fraction behaved like a closed system, as the concentration of amino acids did not 551 

vary significantly after heating at 140ºC. The main loss of inter-crystalline proteins occurred 552 

through decomposition, and only a small fraction was leached into water (ca. 4.9%). 553 

4.-The main leaching of inter-crystalline proteins in P. lineatus shells occurred within at least 554 

the first 6,000 yr cal BP after the death of the organism. This is evidenced by the considerable 555 

decrease (85-90%) in the total amino acid content in archaeological samples with respect to 556 

modern representatives. However, the total amount of amino acids in the IcP fraction 557 
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remained virtually intact for at least 12.6 ka, thereby confirming that this fraction 558 

approximates a closed system. 559 

5.-Differences in the amino acid content of inter- and intra-crystalline proteins, which 560 

undergo racemisation at different rates, may be produced because the products of diagenesis 561 

are likely to remain in the IcP fraction. Likewise, the preferential removal of certain proteins 562 

and amino acids from the inter-crystalline matrix over time might cause this fraction to 563 

degrade faster than the intra-crystalline one. Although Asx D/L values were higher in 564 

unbleached samples, there was good correspondence between the Asx D/L values in inter- 565 

and intra-crystalline proteins. However, other amino acids, such as Glx, showed lower levels 566 

of racemisation in the inter-crystalline proteins. We consider that the age of archaeological 567 

levels can be established through analysing unbleached samples; however, bleaching 568 

provides important information and complements the interpretation of the results obtained 569 

from the inter-crystalline fraction. 570 

6.-Asx D/L values in unbleached and bleached P. lineatus shells were comparable and 571 

showed a good correspondence with age. They can both therefore be used for the age 572 

calculation of archaeological localities. 573 

7.-In brief, AAR is a satisfactory tool for dating P. lineatus from archaeological sites 574 

covering the Upper Magdalenian to Neolithic periods, i.e. from ca. 13 to 5.5 ka cal BP. 575 

 576 
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Figure captions 870 

 871 

Figure 1. Geographical location of the caves studied. 1-La Trecha, 2-Arenillas, 3-Mazaculos 872 

II, 4-El Mazo, 5-El Toral III, 6-La Riera, 7-Bricia, and 8-El Penicial. Cue beach is also 873 

plotted. 874 

 875 

Figure 2. A) Photograph of an archaeological P. lineatus shell from level 108 of El Mazo. B) 876 

Cross-section of a shell showing the different layers, and the sampling area. 877 

 878 

Figure 3. A) Concentration (nmol/mg) of Asx, Glx, Gly, Ala, Ser, Val and Ile in unbleached 879 

and bleached samples of modern P. lineatus shells (errors are shown in Table 1 880 

Supplementary Information). B) D/L values of Ala, Ile, Asx, Glx, and Ser in unbleached and 881 

bleached samples of modern P. lineatus shells (errors are shown in Table 2 Supplementary 882 

Information). C) Relative amino acid composition of unbleached and bleached P. lineatus 883 

shells (errors are shown in Table 3 Supplementary Information). 884 

 885 

Figure 4. Variation of total amino acid concentration (nmol/mg) in unbleached and bleached 886 

samples of modern P. lineatus shells in response to heating at 140ºC. 887 

 888 

Figure 5. Percentage of each amino acid in unbleached (A) and bleached (B) samples of P. 889 

lineatus shells after heating at 140ºC (Tables 5 and 6 Supplementary Information). 890 
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 891 

Figure 6. Asx, Glx, Ala and Phe D/L values in unbleached and bleached samples of P. 892 

lineatus shells heated at 140ºC versus heating time (h). 893 

 894 

Figure 7. A) Total amino acid concentration of the unbleached and bleached modern and 895 

fossil P. lineatus shells.  896 

 897 

Figure 8. Percentage of each amino acid in unbleached (A) and bleached (B) samples of P. 898 

lineatus shells from modern and archaeological sites (Tables 7 and 8 Supplementary 899 

Information). The same colour code was used for all the levels of the same period, and 900 

localities are plotted in the age order indicated in the legend. 901 

 902 

Figure 9. Best-fit relation between Asx D/L values obtained in (A) unbleached and (B) 903 

bleached samples of P. lineatus shells versus age.  904 

905 
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Tables 906 

Table 1.  Archaeological levels studied and the periods assigned. Calibrated ages (yr cal) 907 

were converted using the Radiocarbon Calibration Program 7.1 (CALIB 7.1) (Stuiver et 908 

al., 2017) with the calibration dataset IntCal13 (Reimer et al., 2013). Reservoir effect 909 

was corrected using data from Monge Soares et al. (2016). 910 

Cave  Archaeological 
level 

Age (14C yr cal BP) 

Cue beach  - Modern 
Arenillas 
(ARE) 

 Shell midden Mesolithic [1] 
7,975±23 (OxA-X-2488) 
8,227±58 (OxA-27154) 

Bricia 
(BRI) 

 Shell midden (Level 
A) 

Mesolithic [2,3] 
7,680±150 (GaK 2908) 

  Level C Upper Magdalenian [2] 
aar 13,934 ± 1,949 [5] 

Mazaculos II 
(MAZ) 

 Level A2 
Shell midden Level 

1.3 

Neolithic [4] 
 5798±121 [4]  
Mesolithic [4] 

8,490±40 (UGAM-9081)  
8,529±49 (OxA-26953) 

La Riera 

(RIE) 

 Shell midden 
 

Level 29 
 

Level 27upper 
 

Level 24 
 

Mesolithic [6] 
7,375±185 (GaK-3046) 

Mesolithic [6] 
9,722±379 (GaK-2909) 
Azilian/Magdalenian[6] 
12,510±195  (BM-1494);   
Upper Magdalenian [6] 
12,660±545 (GaK-6982) 

El Mazo 
(EMA) 

 101 
 
 

113 
 
 

120 
 
 

105 
 
 

108 

Mesolithic [1] 
7,927±42 (OxA-30780) 
8,112±52 (OxA-30806) 

Mesolithic [1] 
8,032±43 (OxA-28403) 
8,385±18 (OxA-28404) 

Mesolithic [1] 
8,255±50 (OxA-28405) 
8,436±38 (OxA-30976) 

Mesolithic [1] 
8,209±86 (OxA-30535) 
8,402±19 (OxA-30977) 

Mesolithic [1] 
8,899±91 (OxA-28411) 
9,193±63 (OxA-26954) 

El Penicial 
(PEN) 

 Surface shell 
midden 

Mesolithic [2,7] 
9,760±250 (GaK 2906) 

La Trecha 
(LTR) 

 Level 1 Mesolithic [8] 
 8,303±72(URU0083)  

El Toral 
(TOR) 

 Level 17 
 

Level 21 
 
 

Level 13C 

Mesolithic [9] 
7370±40(UGAMS 5403) 

Mesolithic [9] 
7510±40(UGAMS 5400) 
7620±30(UGAMS 5401) 

Mesolithic [9] 
9530±20(UGAMS 5404) 
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1.-Monge Soares et al. (2016); 2.-Clark (1976); 3.-Jordá (1957, 1958); 4.-González-Morales (1982); 5.-911 

Ortiz et al. (2009); 6.-Straus et al. (1978); Straus and Clark (1986); 7.-Vega del Sella (1914); 8.-González-912 

Morales et al. (2002), 9.-Rigaud and Gutiérrez-Zugasti (2016). 913 

 914 

915 
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 916 

Table 2. Percentage of Asx and Glx content with respect to the total amino acid content 917 

of unbleached and bleached samples of modern and archaeological P. lineatus shells. 918 

Period Localities N %Asx 
unbleached 

%Asx 
bleached 

%Glx 
unbleached 

%Glx 
bleached 

 Modern 5 14.3 ± 0.4 40.4 ± 2.1  7.5 ± 0.8 8.4 ± 1.0 
N MAZ-A2 5 31.6 ± 1.9 37.6 ± 0.9 8.6 ± 0.5 9.1 ± 0.8 
M TOR-17 5 31.0 ± 2.7 35.2 ± 2.5 8.9 ± 0.7 9.2 ± 0.5 
 RIE-SM 5 32.3 ± 2.2 37.1 ± 1.9 9.8 ± 3.8 8.6 ± 0.5 
 TOR-21 5 32.4 ± 3.2 35.1 ± 2.4 9.8 ± 0.4 9.7 ± 1.6 
 BRI-A 5 30.7 ± 4.9 38.5 ± 0.4 8.1 ± 0.2 9.1 ± 0.5 
 ARE 5 30.0 ± 0.2 36.6 ± 1.0 8.3 ± 0.2 8.9 ± 0.5 
 EMA-101 5 31.2 ± 1.6 35.6 ± 0.5 9.7 ± 1.6 9.0 ± 0.8 
 EMA-113 5 30.1 ± 1.7 35.2 ± 1.1 8.5 ± 0.4 8.8 ± 0.3 
 LTR 5 29.6 ± 4.4 37.1 ± 1.4 9.2 ± 0.7 9.6 ± 0.7 
 EMA-105 5 30.1 ± 2.1 36.5 ± 0.9 9.0 ± 0.9 8.9 ± 0.1 
 EMA-120 5 32.4 ± 1.7 35.1 ± 1.6 8.3 ± 0.4 8.8 ± 0.2 
 MAZ-1.3 5 32.0 ± 0.2 37.3 ± 0.8 8.5 ± 0.2 9.0 ± 0.2 
 EMA-108 5 31.8 ± 2.8 35.2 ± 3.6 8.5 ± 1.4 9.4 ±0.9 
 TOR-13C 5 31.3 ± 1.5 37.5 ± 1.1 9.6 ± 0.4 8.9 ± 0.3 
 RIE-29 5 30.5 ± 5.2 36.5 ± 1.1 8.3 ± 0.3 8.4 ± 0.3 
 PEN 8 30.3 ± 0.7 37.2 ± 0.8 8.4 ± 0.2 9.7 ± 0.6 
AZ/UM RIE-27 5 28.9 ± 1.9 35.4 ±1.5 8.5 ± 0.3 8.7 ± 0.2 
UM RIE-24 5 30.3 ± 1.4 35.3 ± 1.5 8.6 ± 1.8 9.4 ± 1.0 
 BRI-C 8 32.5 ± 0.3 36.9 ± 1.1 8.5 ± 0.3 9.5 ± 0.9 
N:Neolithic; M: Mesolithic (Asturian); Az: Azilian; UM: Upper Magdalenian. 919 

 920 

 921 

Table 3. Loss of amino acids from bulk unbleached and bleached P. lineatus powders 922 

(experimental samples) after 24h of heating at 140ºC (n= number of samples). Total 923 

concentrations (nmol/mg) were calculated using [Asx], [Glx], [Ser], [Ala], [Val], [Ile], 924 

[Leu], [Phe], [Gly], [Arg] and [Thr].  925 

 926 

Loss of amino acids after 24h heating at 140ºC Unbleached Bleached 

Initial [total] concentration in shell unheated (pmol/mg) (n=5) 385.733 16.130 

[total] THAA after heating (pmol/mg) (n=2) for 24h 231.393 16.092 

[total] THAA in water, heated (pmol/mg equiv.) (n=2) 18.903 - 

Overall loss in shell (%) from the original 40.0 0.23 

Loss into water by leaching (%) from the original 4.9 - 

Loss by decomposition (%) from the original 35.1 - 

 927 
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Table 4. Asx D/L values in unbleached and bleached samples of modern and 928 

archaeological P. lineatus shells. 929 

 930 

Period Localities D/L Asx 
unbleached 

D/L Asx 
bleached 

 Cue beach 0.048±0.001 0.084±0.004 
N MAZ-A2 0.177±0.022 0.180±0.012 
M TOR-17 0.225±0.011 0.208±0.009 
 RIE-SM 0.223±0.021 0.228±0.015 
 TOR-21 0.219±0.019 0.199±0.009 
 BRI-A 0.237±0.018 0.240±0.023 
 ARE 0.224±0.011 0.208±0.019 
 EMA-101 0.235±0.009 0.227±0.033 
 EMA-113 0.227±0.009 0.197±0.010 
 LTR 0.235±0.013 0.235±0.011 
 EMA-105 0.219±0.016 0.207±0.011 
 EMA-120 0.228±0.008 0.199±0.006 
 MAZ-1.3 0.218±0.021 0.201±0.007 
 EMA-108 0.233±0.010 0.216±0.020 
 TOR-13C 0.236±0.017 0.239±0.001 
 RIE-29 0.251±0.020 0.257±0.017 
 PEN 0.244±0.019 0.246±0.018 
AZ/UM RIE-27 0.268±0.013 0.268±0.028 
UM RIE-24 0.285±0.002 0.284±0.017 
 BRI-C 0.299±0.030 0.294±0.027 
N:Neolithic; M: Mesolithic (Asturian); Az: Azilian; UM: Upper Magdalenian. 931 

 932 
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