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We report evidence for s-channel single-top-quark production in proton-antiproton collisions at center-
of-mass energy /s = 1.96 TeV using a data set that corresponds to an integrated luminosity of 9.4 fb~!
collected by the Collider Detector at Fermilab. We select events consistent with the s-channel process
including two jets and one leptonically decaying W boson. The observed significance is 3.8 standard
deviations with respect to the background-only prediction. Assuming a top-quark mass of 172.5 GeV/c?,

we measure the s-channel cross section to be 1.41

DOI: 10.1103/PhysRevLett.112.231804

In proton-antiproton collisions, top quarks can be
singly produced through electroweak interactions. This
process provides a unique opportunity to test the standard
model (SM) and search for non-SM physics. Each channel
of the single-top-quark process is sensitive to different
classes of SM extensions: the s-channel process, in which
an intermediate W boson decays into a top (antitop) quark
and an antibottom (bottom) quark, is sensitive to con-
tributions from additional heavy bosons [1]; the 7-channel
process, in which a bottom quark transforms into a top
quark by exchanging a W boson with another quark, is
more sensitive to flavor-changing neutral currents [1].
Independently studying the production rate of these
channels provides more restrictive constraints on SM
extensions than just studying the combined production
rate [2].

Single-top-quark production was first observed inde-
pendently by the CDF and DO experiments in 2009 [3.,4].
The t-channel production was first observed in 2011 by the
DO experiment [5] and confirmed in 2012 by the ATLAS
[6] and CMS [7] experiments. The ATLAS [8] and CMS [9]
experiments also reported evidence for top-quark associ-
ated production with a W boson. The s-channel process has
not yet been observed. Because of the smaller production
cross section and larger backgrounds, it is more difficult to
isolate it compared to the f-channel process in proton-
antiproton collisions. It is even more difficult at the Large

10.44
Zo42 Pb.

PACS numbers: 14.65.Ha, 12.15.Ji, 13.85.Qk

Hadron Collider, although the absolute production rate is
higher, as proton-proton collisions yield a significantly
smaller signal-to-background ratio compared to the
Tevatron. Recently, the DO Collaboration announced the
first evidence for the s-channel process in the charge lepton
(¢) + jets channel with a data set corresponding t0 9.7 fb~!
of integrated luminosity [10].

In this Letter, we present the measurement of the
single-top-quark s-channel cross section with the full
CDF Run II data set in the £ + jets final state [11]. The
data are collected with the general-purpose Collider
Detector at Fermilab (CDF II) [12] and correspond to
an integrated luminosity of 9.4 fb~!. The CDF II detector
is a solenoid magnetic spectrometer surrounded by calo-
rimeters and muon detectors.

Since top-bottom quark coupling is much larger than the
magnitudes of the top-down and top-strange quark cou-
plings, we assume that all top quarks decay into Wb pairs.
We select events in which the W boson decays leptonically
into an electron or a muon with a corresponding neutrino.
Electrons or muons from 7 decay are also accepted. Thus,
the final state of the signal process consists of one
reconstructed electron or muon, one corresponding neu-
trino, and two jets originating from bottom quarks (b jets).
Since the final state of this process is the same one as used
in the search for a Higgs boson (H) produced in association
with a W boson [13], the techniques used in this Letter are
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based on this recent search but with a discriminant
optimized for the present measurement.

There are important differences in the jet selection
strategy between this s-channel-optimized analysis and
the previous measurements [14], which were optimized
for the t-channel process. The #-channel process usually
yields one light-flavor jet in the forward region (pseudor-
apidity || > 2.0), which is crucial to distinguish the
t-channel signal from background events. Since including
these forward jets does not lead to a more powerful
discriminator for the s-channel measurement, only central
jets (|n| < 2.0) are included. Moreover, for the s-channel
process, events with two b jets provide the most sensitivity,
while most #-channel events have only one reconstructable
b jet. As a result, the sensitivity of the s-channel analysis
has been improved with a more efficient b-jet selection
algorithm [15].

Events are collected using three classes of online
selection requirements (triggers). In order to improve the
lepton acceptance, a novel inclusive trigger strategy is used
for events including a central electron or central muon
(In] < 1.0) with large transverse momentum py [16]. This
improves the trigger efficiency by 4.7% for electrons
and 12.6% for muons compared to the previous single-
top-quark cross section measurement [3]. The details of this
technique are discussed in Ref. [13]. Events triggered by
E-based triggers [16], which require E; > 45 GeV or Er
> 35 GeV plus two jets, are also included. These events
allow the inclusion of additional identified muon types and
are referred to as the extended muon category [14].

The algorithms for identifying leptons and jets are the
same as those used in Ref. [14]. Events passing the trigger
requirements are further selected by requiring exactly
one isolated charged lepton with reconstructed transverse
momentum py > 20 GeV/c. The E; threshold is 20 GeV
for events containing central electrons and extended muons
and 10 GeV for events containing central muons. Events
are also required to have exactly two jets with transverse
energy Er > 20 GeV and pseudorapidity |7| < 2.0. A
support-vector-machine algorithm [17] is used to reduce
the contamination from multijet events that do not contain a
W boson.

The invariant mass of the reconstructed top-quark
candidate provides the greatest discrimination between
s-channel single-top-quark events and non-top-quark back-
grounds. The z component of the neutrino momentum is
necessary for the invariant-mass calculation and can be
constrained by implementing the W-boson invariant-mass
requirement. We choose the smaller solution when there are
two real solutions to this quadratic equation. As tested with
simulated samples, the probability for this algorithm to
yield the correct answer is about 70%. Correctly selecting
the b jet that originated from top-quark decay is necessary
to improve the mass resolution of the reconstructed top
quark. A neural network is employed to select the correct

jet out of the two candidate jets in each event. The neural
network uses the following information on both jets: jet
transverse momentum py; invariant mass of the lepton and
one jet M ;; invariant mass of the lepton, the neutrino, and
one jet M, ;; and the jet direction in the off-shell W-boson
rest frame cos@;. This algorithm selects the correct jet
in 84% of the simulated SM single-top-quark s-channel
events.

To further suppress backgrounds, such as light-flavor jets
produced in association with a W boson, at least one of the
two jets in each event is required to be a b jet. Because there
are several observable properties of b jets that can be used
to discriminate them from other jets, a neural-network
tagging algorithm [15] is used to preferentially select b jets.
Jets are classified based on the output value of the
algorithm as untagged, loose (L), or tight (T) tagged.
For T (L) jets, as measured from simulation, the overall
efficiency for selecting true b jets is 42% +1.6%
(70% =+ 6.5%), while the misidentification rate for
charm-quark jets is 8.5% £ 0.7% (27% + 5%), and the
misidentification rate for jets originating from other quarks
and gluons is 0.89% =+ 0.16% (8.9% =+ 0.9%). The tagging
efficiency and misidentification rate applied to each jet
depend on the jet E; and 5. The scale factors for these
variables are also applied to each jet to bring the b-tagging
efficiencies in the simulation into agreement with those in
the data. By applying these tagging requirements to each jet
in an event, we construct four nonoverlapping tagging
categories: 77T, TL, T, and LL. For the double-tag
categories, the category with the highest signal-to-back-
ground ratio is chosen if an event satisfies more than one
category; for the single-tag category, one jet of the event is
required to be tight tagged, and the other one is untagged.

Signal and background events are modeled using a
combination of data-driven methods and Monte Carlo
(MC) simulation including the CDF II detector response
modeled by GEANT3 [18] with the CTEQSL parton
distribution function [19] and tuned to the Tevatron
underlying-event data [20]. The single-top-quark events
are modeled using POWHEG [21] with the top-quark mass
set to 172.5 GeV/c?, while quark shower and hadroniza-
tion are performed by PYTHIA [22]. Signal events generated
by POWHEG are at next-to-leading-order accuracy in the
strong coupling a,, which is an improved model compared
to the leading-order model used in Ref. [14]. The back-
ground model remains unchanged from the previous
measurement [14]. The diboson (WW, WZ, ZZ), fi,
and Higgs-boson processes (with the Higgs-boson mass
set to 125 GeV/c?) are modeled using simulated events
generated with PYTHIA and normalized to the cross section
calculated in Refs. [23-25].

Events in which a W or Z boson is produced in
association with jets (W/Z + jets) are generated with
ALPGEN [26, 27] at leading order with up to four partons
with generator-to-reconstructed-jet matching [28,29] and
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TABLE I. Summary of background and signal predictions in
two summed tagging categories. The predicted uncertainties
include statistical and systematic contributions.

Category IT+TL T+LL

1t 357 +£40 560 £ 57
Diboson 58.7+17.8 279 + 34
Higgs 125£1.0 12.0£0.9
Z + jets 31.6£3.5 190 £ 21
Multijet 76 £ 31 326 £ 130
W + heavy-flavor jet 712 £ 286 2597 £ 1046
W + light-flavor jet 66 £ 14 1220+ 175
t and tW channel 534+6.7 265 £ 30
s channel 116 £ 12 127 £ 12
Total prediction 1484 £ 403 5574 £ 1501
Observed 1231 5338

their hadronic shower simulated with pyTHIA. The back-
ground from the multijet process, which does not contain a
W boson, is predicted using a data-driven model. The
normalizations of multijet and W + jets processes are
determined in a control sample (pretag sample) that
includes events without any b-tag requirement. There are
122 039 events in the pretag sample, which is dominated by
W + jets and multijet events. Since multijet events typically
have smaller £; than W-boson events, their normalizations
are determined by fitting the E distribution in the control
sample. Normalization in the b-tagged signal sample for
the W + heavy-flavor-jets background is calculated by
applying the tagging efficiency and the fraction of
heavy-flavor jets to the rates calculated in the pretag
sample. The fraction of heavy-flavor jets is derived from
fitting jet-flavor-sensitive variables in the b-tagged
W + one-jet data sample [14]. For the W + light-flavor
background, where one or two light-quark jets or gluon jets
are misidentified as b jets, the normalization is calculated
from the W + jets pretag sample by subtracting the heavy-
flavor fraction and multiplying by the per-jet b-tag mis-
identification rate. For the multijet background, a b-tag rate
derived from the data is used to estimate the normalization
of the tagged multijet background.

The estimated event yields are shown in Table 1. Here,
and in all following figures, we combine b-tag categories
with similar signal purity (77T with TL and T with LL).
Table I shows that the predicted background and its
uncertainty are larger than the expected signal. By using
variables with different distributions for signal and back-
grounds, we improve signal purity in some regions of these
distributions. The invariant-mass distribution of the top-
quark candidates shown in Fig. 1 is the most powerful
single discriminating variable.

We train a set of artificial neural networks [30] to further
discriminate the signal process using the combined infor-
mation on the reconstructed top-quark mass and several
other variables. The neural networks incorporate the
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FIG. 1 (color online). Distribution of invariant mass of the
reconstructed top-quark candidates (left) and distribution of the
neural-network output (right). We combine b-tag categories with
comparable signal purity: 77 + TL for panels (a) and (b) and
T + LL for panels (c) and (d). Events in the pretag control sample
are shown in panel (e). Statistical uncertainties are shown for the
data points.

following variables: invariant mass of the top-quark can-
didate M, ;; invariant mass of all signal final-state particles
My, ;;; transverse momentum of the charged lepton 5
invariant mass of the two jets M;;; angle between the
charged-lepton momentum and the momentum of the jet
from the top-quark decay in the top-quark rest frame
cos @, scalar sum of transverse energy of the two
jets, the charged lepton, and the neutrino Hy; transverse
mass of the top-quark candidate M7/ defined to be the
invariant mass calculated using the projections of the three-
momentum components in the plane perpendicular to the
beam axis; and the output value of the neural network that
determines the b jet most likely to originate from the top-
quark decay. We optimize the neural networks separately
for each tagging category and for different lepton categories
using different input variables. The variable M5/ is used
only for extended muon events, and the output value of the
b-jet-selector neural network only for the central-lepton
events. In the neural-network training, the background
samples consist of all backgrounds predicted by simulation,
and the fractional yields among background samples are set
as predicted by the background model.
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We use the pretag sample to check the modeling of each
input variable. We investigate the neural-network output in
the b-tagged signal region only after ensuring that all
variables are well modeled in the control sample. The
distributions of neural-network output are shown in Fig. 1,
with categories having similar signal purities combined.

We employ a binned-likelihood technique to extract the
single-top-quark s-channel cross section from the neural-
network-output distribution. We assume a uniform prior
probability density for all non-negative values of the cross
section and integrate the posterior probability density over
the parameters of effects associated with all sources of
systematic uncertainties parametrized using Gaussian
priors truncated to avoid negative probabilities. We include
the rate uncertainties from the following sources: b-tag
scale factor; charm-quark-jet-misidentification rate; light-
flavor-jet-misidentification rate; luminosity uncertainties;
lepton-acceptance uncertainties; theoretical cross section
uncertainties; initial- and final-state radiation; normalization
of multijet, Z + jets, and W + jets backgrounds; and jet-
energy scale. Shape uncertainties on the final discriminant
output that arise from initial-state and final-state radiation,
the jet-energy scale, the renormalization and factorization
scales, and the electron multijet sample are also taken into
account. The standard deviation of the expected cross
section distribution obtained from pseudoexperiments is
reduced by 17% if the measurement is performed without
including any of the systematic uncertainties. The most
relevant systematic uncertainties are, in descending order of
importance: the luminosity uncertainties, the b-tag scale-
factor uncertainties, the normalization of W + jets, and the
uncertainties from initial- and final-state radiation.

The posterior probability density of the s-channel cross
section is shown in Fig. 2. The most probable s-channel
cross section is 1.4170"47 pb, assuming that the top-quark
mass is 172.5 GeV/c?. This result is in good agreement
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FIG. 2 (color online). Posterior probability density distribution
for the s-channel cross section measurement, with the SM
prediction shown as the vertical dashed line.

with the theory prediction calculated at next-to-next-to-
leading-order accuracy of 1.05+0.05 pb [31], which
assumes the same top-quark mass, and the uncertainty is
assigned to cover the imperfect estimation of the parton
distribution functions. This result also agrees with the
previous measurement from the DO experiment [10]. The
cross section is also measured in separate b-tagging and
lepton categories, and the results in each independent
measurement are all consistent with each other and the
theory prediction.

The sensitivity is defined to be the significance ex-
pected assuming the SM cross section and as measured
from pseudoexperiments where the background-only
assumption is 2.9 standard deviations. From background-
only pseudoexperiments, we determine the significance
of the excess of the measured cross section over the
expected backgrounds as corresponding to a p value
of 5.5 x 1073, equivalent to 3.8 standard deviations. We
interpret the observed excess as evidence of the single-top-
quark production through the s-channel process.

In summary, we perform a measurement of the single-
top-quark s-channel cross section in the final state with a
charged lepton and two jets using the full CDF Run II data
set. We find evidence for the single-top-quark s-channel
process, and we measure the s-channel cross section to be

1.41fg_ﬁ pb, in agreement with the SM prediction.
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