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Porous asphalt mixture with alternative aggregates and crumb-rubber 13 

modified binder at reduced temperature 14 

Abstract: 15 

This paper studies the design and characterization of a PA mixture with 91% of EAF slag, 16 

using a commercial CRM binder. A fatty acid amide wax was added to decrease the 17 

mixture manufacturing temperature. The mechanical performance of the designed 18 

mixtures was studied with the determination of void characteristics, water sensitivity, 19 

and particle loss in dry and wet conditions. Finally, their compactability, stiffness and 20 

fatigue resistance were also analysed. 21 

The addition of the wax allowed to decrease the manufacturing temperature 15 °C. 22 

Besides, the wax increased the complex modulus of bitumen, increasing also the elastic 23 

component and decreasing the thermal susceptibility, although these modifications did 24 

not have a significant impact in the mechanical performance of the mixture.  25 

Keywords: porous asphalt mixture; crumb-rubber modified bitumen; wax; EAF slag; 26 

warm mix asphalt.  27 

Highlights: 28 

• PA mixtures with 91 % of alternative aggregate have been designed 29 
• The influence of a fatty acid amide was on the CRM binder was analysed 30 
• The wax decreases 15 °C the manufacturing temperature of the asphalt mixture 31 
• The wax increases stiffness and decreases bitumen thermal susceptibility 32 
• Similar mechanical performance has been observed for PA with and without the 33 

wax 34 

1. Introduction 35 

Road infrastructure is a resource-intensive sector since a large amount of materials and 36 

energy are required during the construction, maintenance and rehabilitation of 37 

pavements. Hence, the search of cost-effective and eco-friendly practices will result in 38 

a huge impact. The development of new techniques and the use of alternative materials 39 

can significantly contribute to decrease the environmental impact of asphalt mixes. As 40 

an example, warm mix asphalts (WMA), manufactured by different methods [1,2], have 41 
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revolutionized the construction process of the road sector by means of reducing the air 42 

emissions at both the asphalt plant and the construction site, thus decreasing the 43 

environmental impact and improving the working conditions. Likewise, replacing the 44 

natural aggregate with alternative materials is another strategy widely used. Thus, 45 

recycled asphalt pavement (RAP) from roads[3], by-products[4,5] or construction waste 46 

[6] are some of the materials used in bituminous mixtures to replace natural aggregate, 47 

although other are also standing out, as rubber from end-of-life tires[7,8] and other 48 

polymers[9,10], which can also be used to improve the mechanical performance of the 49 

bituminous mixtures.  50 

Therefore, although the impact of all these  strategies have been analysed in different 51 

studies, the combined use of these practices to improve the environmental impact of 52 

asphalt mixes has not been sufficiently studied together. 53 

This paper addresses the design of a porous asphalt (PA) mixture at reduced 54 

temperature and incorporating high percentage of recycled aggregates and crumb-55 

rubber modified (CRM) bitumen. Electric Arc Furnace (EAF) slag aggregate was selected 56 

to replace most of the natural aggregate[11], because this material shows a great 57 

resistance against fragmentation and polishing[12]. A comercial crumb-rubber modified 58 

(CRM) bitumen was used as binder. The Spanish normative prioritizes this type of binder 59 

because the incorporation of crumb rubber from end-of-life tyres contributes to the 60 

Spanish resource-efficiency policy. On the other hand, the addition of rubber improves 61 

the properties of the bitumen, increasing the elasticity and decreasing the thermal 62 

sensitivity[13]. However, the higher viscosity of this bitumen force the mixture to be 63 

produced at a greater temperature, which increases the energy consumption and the 64 

greenhouse gas emissions to air [14], hindering its use. Therefore, a fatty acid amide 65 

wax was used to neutralize this effect. Although the impact of organic additives in this 66 

type of bitumen is smaller than the one observed in conventional binders [15], the aim 67 

in this study was to achieve the same manufacturing conditions of conventional 50/70 68 

penetration grade bitumen. 69 

For the development of this research, which involves the elements previously described, 70 

a porous asphalt mixture type was selected. Its particle size distribution fits perfectly 71 

with the EAF slag aggregate, which usually contains a low percentage of fines. Besides, 72 
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the porous asphalt mixtures also show some environmental advantages, as a better 73 

management of surface run-off[16] and a significant decrease of road noise[17]. 74 

The aim of this paper is to demonstrate the technical viability of a porous asphalt 75 

mixture with a high percentage of alternative aggregates, and manufactured with a CRM 76 

binder but at reduced temperature, trying to achieve the same manufacturing 77 

conditions than a conventional 50/70 penetration grade binder. 78 

2. Materials and methods 79 

2.1 Materials characterization 80 

A previous analysis was carried out to find out the properties of the materials. An EAF 81 

slag from a steel factory of Cantabria (Spain) was used as coarse aggregate. Table 1 82 

shows its main characteristics and the limits of the Spanish standard for the highest 83 

heavy traffic category.  84 

Table 1. EAF Slag properties 85 

Property Result Spanish 
standard Specification 

Specific weight (g/cm3) 3.821 - EN 1097 – 6 

Water absorption WA 24 (%) 1 - EN 1097 – 6 

Slab index 2 < 20 EN 933 – 3 

Los Angeles coefficient 18 ≤ 20 EN 1097 – 2 

Polished Stone Value 0.59 ≥ 0.56 EN 1097 - 8 

According to the results, the material showed good properties as coarse aggregate. The 86 

low coefficient of Los Angeles guarantees a hard mineral skeleton and the high PSV value 87 

means a superior skid resistance of the road surface, what is an important safety road 88 

factor. Besides, the potential expansiveness (EN 1744-1) and leaching of contaminants 89 

(EN 12457-4) were analysed and the material and complied with current normative for 90 

their use in asphalt mixes in Spain [18,19]. As expected, the EAF slag aggregates 91 

presented higher specific weight than conventional aggregates. Regarding the fine 92 

fraction, it was completed with limestone, with a density of 2.708 g/cm3, and the sand 93 

equivalent coefficient was 78.  94 
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The bitumen was a PMB 45/80 – 60C, which has approximately 10 % of rubber, and 95 

according to the supplier, a manufacturing temperature between 165 °C and 175 °C. Its 96 

main properties are presented in the Table 2. 97 

Table 2. Characteristics of CRM binder 98 

Property Result 

Penetration (0.1 mm) 54 

Softening point (°C) 63 

Elastic recuperation (%) 58 

Relative density (g/cm3) 1.047 

Finally, a fatty acid amide wax (Kemfluid) was selected to decrease the manufacturing 99 

temperature. This additive is manufactured in Zaragoza (Spain) from pig tallow and 100 

presents a melting point around 140 °C[20]. 101 

2.2 Viscosity and DSR test 102 

The wax was used to decrease the viscosity of the binder. Its impact on the bitumen was 103 

studied with a rheometer DHR-1 of TA Instrument, which was used to analyse the 104 

rheological behaviour of the bitumen with and without the wax. Both tests were carried 105 

out with a 25 mm plate geometry and a 1 mm gap. The viscosity test was performed 106 

with a temperature ramp from 100 °C to 190 °C in rotational mode, while the DSR test 107 

was done in oscillatory mode from 0.1 Hz to 10 Hz with a 0.1% strain, in a range of 108 

temperatures from 20 °C to 75 °C at 5 °C intervals. 109 

In all the samples with wax, the percentage added was always 3 % of bitumen weight, 110 

while the mixing process was carried out at 150 °C with an IKA homogenizer during 5 111 

minutes at 15,000 rpm. 112 

The decrease in the production temperature that it is possible to achieve by adding the 113 

wax was determined by measuring the dynamic viscosity between 100 °C and 190 °C. 114 

The viscosity of the CRM binder without wax at the manufacturing temperature 115 

recommended by the supplier (170 °C) was considered as reference. The test was 116 

repeated under the same conditions to the samples with wax. The temperature, at 117 

which the samples achieved the reference viscosity, was considered the new reduced 118 

manufacturing temperature. Besides, the master curves of binder stiffness and phase 119 
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angle were obtained to analyse the influence of the wax on the performance of the CRM 120 

binder, so the rheological behaviour of both bitumen was analysed independently from 121 

the frequencies and temperatures used in the test[21,22]. 122 

2.3 Design of PA mixture 123 

Firstly, porous asphalt mixes incorporating EAF slag aggregates as coarse aggregate and 124 

CRM bitumen were designed according to the Spanish standards, at the conventional 125 

temperature recommended by the bitumen provider In order to ensure that the mixes 126 

comply with the mechanical requirements, the following tests were carried out:  The 127 

void characteristics of bituminous specimens (EN 12697 – 8), water sensitivity test (EN 128 

12697 – 12) and Cantabro loss particle test in dry (EN 12697 – 17) and wet conditions 129 

(NLT-362 Spanish Standard). As a second step, the fatty acid amide wax was added to 130 

the same PA mix composition and new samples were produced at the reduced 131 

temperature previously determined with the rheometer. The same mechanical tests 132 

were repeated to the samples to assess the potential effect of reducing the production 133 

temperature in their mechanical performance.  134 

The requirements set by the Spanish regulations for the highest traffic level were 135 

considered as the reference for the mechanical performance. On the other hand, 136 

dynamic tests were also done to better characterize the performance of the mixtures. 137 

Thus, the asphalt mixes were tested for stiffness (EN 12697 – 26), fatigue resistance (EN 138 

12697 – 24), and energy compaction (EN 12697 – 31). By this way, the impact of the wax 139 

on the rheological performance of the bitumen can be related with the impact on the 140 

mechanical performance of the asphalt mixture. 141 

2.4 Statistical analysis 142 

The Minitab software was used to determine the statistical significance of the reduction  143 

in the production temperature . The confidence interval considered was 95 % (p-value 144 

of 0.05). In those cases, where the results fulfilled a normal distribution and there was 145 

homogeneity of variances the T Student test was applied. Otherwise, the U of Mann-146 

Whitney test was used. 147 
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3. Results and Discussion 148 

3.1 Rheological analysis 149 

The viscosity test (Figure 1) was carried out with three samples of each bitumen to 150 

determine the reduction of the asphalt production temperature that it is possible to 151 

achieve by adding the wax. 152 

Figure 1. Result of the viscosity test 153 

 154 
As it can be observed in Figure 1, the addition of the fatty acid amide wax decreases the 155 

viscosity of the CRM bitumen when the temperature of the mixture is above the melting 156 

point of the wax (140 °C). However, when the temperature falls below 130 °C the 157 

viscosity of the CRM bitumen with wax starts rising, reaching the viscosity of the original 158 

CRM bitumen at around 100 °C. Therefore, the behaviour of the reference bitumen with 159 

the wax can be divided in two zones: 160 

Zone A. Above the melting point of the wax (from 140 °C to 190 °C), where the 161 

viscosity of the bitumen with wax is below and parallel to the reference bitumen. 162 

Zone B. Under the melting point of the wax (from 100 °C to 140 °C), where the 163 

viscosity of the bitumen with the wax increases faster than the viscosity of the 164 

reference bitumen. 165 

The curves of viscosity obtained were adjusted to Arrhenius equation, where µ (Pa·s) is 166 
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the viscosity, T is the temperature in kelvin degrees, Ef (J/mol) is the flow activation 167 

energy, R is the universal gas constant (8.314 J/mol · K), and A is the fitting parameter[1]. 168 

𝜂𝜂 = 𝐴𝐴 · 𝑒𝑒
𝐸𝐸𝑓𝑓
𝑅𝑅·𝑇𝑇 (1) 

Table 3 presents the Arrhenius equation for the reference bitumen with and without the 169 

wax in the two different zones: above (A) and under (B) the wax melting temperature. 170 

Table 3. Viscosity curves and activation energy for both bitumen and zones 171 
Binder Zone Equation Ef (J/mol) R2 

PMB 45/80-60 C 
A. 

𝜂𝜂 = 153.464 · 10−9 · 𝑒𝑒
7188.73

𝑇𝑇  59767 0.99 

PMB 45/80-60 C + Fatty acid wax 𝜂𝜂 = 168.539 · 10−9 · 𝑒𝑒
6948.74

𝑇𝑇  57771 0.99 

PMB 45/80-60 C 
B. 

𝜂𝜂 = 10.231 · 10−9 · 𝑒𝑒
8317.61

𝑇𝑇  69152 0.99 

PMB 45/80-60 C + Fatty acid wax 𝜂𝜂 = 0.058 · 10−9 · 𝑒𝑒
10266.62

𝑇𝑇  85356 0.99 

These curves were used to calculate the temperature at which the bitumen with wax 172 

reaches the same viscosity than the original CRM bitumen at its recommended 173 

production temperature (170 °C). According to the results, the temperature could be 174 

reduced by 15 °C; so, the asphalt mixture with wax was manufactured at 155 °C. 175 

In zone A, in the case of the bitumen with wax, a slight decrease of the activation energy 176 

is observed, meaning that less energy is required for molecular movement when the 177 

temperature is higher than the melting point of the wax. On the other hand, when the 178 

temperature is below the melting point of the wax (zone B), and the wax change from 179 

liquid to solid, the resistance to flow of the bitumen/wax mix increases. This is clearly 180 

reflected in the change of slope that is produced between 130 °C and 140 °C. 181 

As described before, the rheological behaviour of both bitumen was analyse to evaluate 182 

the influence of the wax on the performance of the CRM bitumen. The stiffness (G*) and 183 

phase angle (δ) of the reference bitumen PMB 45/80 – 60C and this bitumen with 3 % 184 

of fatty acid amide wax are shown in Figure 2 and Figure 3. 185 

Figure 2. Stiffness. From up to down: reference bitumen and reference + Fatty acid amide 186 
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 187 

 188 
As can be observed, the addition of the wax increased the stiffness, especially at low 189 

temperatures and high frequencies, and decreased the phase angle, suggesting a more 190 

elastic behaviour of the bitumen with wax. However, unlike in the case of the stiffness, 191 

the greater differences in the phase angle are produced at high temperatures and low 192 

frequencies. On the other hand, the relation of the phase angle with the temperature 193 

and frequency also changed, since a more horizontal plane is obtained, which implies 194 

that the bitumen with the wax is less dependent of these parameters. 195 

Figure 3. Phase angle. From up to down: reference bitumen and reference + Fatty acid amide 196 
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197 

 198 
Likewise, the master curve for both bitumen was developed. The stiffness results were 199 

adjusted to a sigmoidal curve by least-squares fitting: 200 

Log G*(Pa) = α + β / (1 + exp(ρ - γ · log ωr)) (2) 

Where α is the lower asymptote, β is the difference between the values of upper and 201 

lower asymptote, ρ and γ are shape parameters (they define the position of the turning 202 

point and the slope respectively)[23] and ωr is the reduced frequency: 203 

ωr = aT · ω (rad/s) (3) 
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ωr links the frequencies of the test (ω) with the temperature (aT): 204 

aT = a1 · T(°C)2 + a2 · T(°C) + a3 (4) 

Where a1, a2 and a3 are shape parameters. 205 

The same shift factors derived for the stiffness were used to obtain the master curve of 206 

the phase angle. These master curves are shown in Figure 4. 207 

Figure 4. Master curves of CRM bitumen alone and with the fatty acid amide wax 208 

 209 
According to this figure, a higher complex modulus is obtained for all the reduced 210 

frequencies when the wax is added to the CRM bitumen, which is in agreement with the 211 

work of other authors[2,24]. The greatest difference in the complex modulus of the 212 

reference bitumen and the bitumen/wax mixture is produced at low reduced 213 

frequencies (or high temperatures), so this increase of the binder stiffness should 214 

improve the resistance against permanent deformation. However, when adding the 215 

wax, a slight increase of the stiffness is also observed at high reduced frequencies (or 216 

low temperatures), what could imply that the bitumen is more prone to cracking. 217 

On the other hand, the wax decreases the phase angle associated to each modulus, 218 

making the binder more elastic especially at low reduced frequencies, as it was 219 

previously explained in Figure 3. It should also be noted that both binders show a lack 220 
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of linearity probably due to the modification of the bitumen structure caused by the 221 

rubber. The CRM bitumen shows a slight “S” shape traditional of this type of bitumen, 222 

when the wax is added this shape disappears, probably due to the interactions between 223 

it and the polar fractions of bitumen (asphaltenes and resins)[24]. 224 

The incorporation of the wax increases the solid-like behaviour, as stated by other 225 

studies[14,24]. 226 

The parameters of the master curve and the correlation coefficients are shown in Table 227 

4. In both cases, the value of α is negative, which means that G* at low frequencies (or 228 

high temperatures) is very small. The asymptotes of the bitumen with wax are upper 229 

than asymptotes of reference bitumen, which coincides with its increase of the stiffness. 230 

Table 4. Master curve parameters 231 
 α β ρ γ a1 a2 a3 R2 

PMB 45/80 – 60C -18.85 30.21 -1.70 0.12 5.72·10-4 -0.13 0.30 0.997 

PMB 45/80 – 60C + 
fatty acid amide -12.60 26.87 -0.97 0.10 5.80·10-4 -0.13 -0.30 0.998 

The increase in the ρ parameter when the wax was added means that the horizontal 232 

position of its turning point increased. However, this did not imply a reduction of the 233 

hardness of the bitumen with wax as it was stated by other author[25]), because the 234 

master curve of the bitumen with wax is always above the reference bitumen due to the 235 

differences in the position of the asymptotes. The slope is quite similar in both cases. 236 

Finally, the thermal susceptibility was also analysed with the value of tan(δ) [26]. A flat 237 

curve implies a lower susceptibility of temperature. The values of tan(δ) are presented 238 

in Figure 5 for both bitumen at 1.59 Hz, which has been considered as the representative 239 

frequency. According to the results, the thermal susceptibility is lower when the wax is 240 

added, which is linked with the lower phase angle obtained in the rheology analysis. 241 

Figure 5. Tan (δ) values of both bitumen 242 
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 243 
The rheological analysis of the bitumen samples showed that the incorporation of fatty 244 

acid amide wax increases the modulus and the elastic behaviour of CRM bitumen, makes 245 

the binder less sensitive to thermal variations, and decreases the manufacturing 246 

temperature approximately by 15 °C. 247 

3.2 Mechanical tests 248 

Taking into account the high specific weight of the EAF slag aggregate and in order to 249 

design well-balanced mixes, the design of the mixture was carried out by volume. 250 

Therefore, although due to the high specific weight of the EAF slags, the density of the 251 

resulting mixes is higher than the density of conventional PA mixes (above 2.5 g/cm3) 252 

and the percentage of bitumen by weight is lower than usual, the final quantity of 253 

bitumen is in the range of conventional porous asphalt mixtures.   254 

Concerning the particles size distribution, no slag aggregate was used below  2 mm sieve, 255 

only limestone. The particle size distribution of the PA mixes is presented in the Figure 256 

6 and the percentage of each material is shown in the Table 5. The percentage of 257 

bitumen was 3.85 % by weight of mixture; what it is approximately 50 g of bitumen per 258 

Marshall sample. 259 

Figure 6. Particle size distribution of PA mixture 260 
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 261 
Table 5. Percentage of each material 262 

Material % by 
volume 

% by 
weight 

Slag 88 90.9 

Limestone 7.5 5.5 

 Limestone Filler 4.5 3.6 

As previously explained, the porous asphalt mixture incorporating the original CRM 263 

bitumen was manufactured at 170 °C, as recommended by the supplier. On the other 264 

hand, the PA mixture containing the CRM bitumen/wax mix was produced at 155 °C. 265 

Both PA mixes were subjected to the same mechanical; therefore, there are two 266 

equivalent mixtures: one manufactured at 170 °C (conventional temperature), and 267 

another with the wax manufactured at 155 °C (reduced temperature). 268 

Determination of void characteristics of bituminous specimens (EN 12697 – 8) 269 

The void characteristics of the mixtures is presented in Table 6. The mixture produced 270 

at reduced temperature presented a slightly higher air void content, despite the 271 

viscosity should be the same in both mixes.  On the other hand, the statistical analysis 272 

indicated that this increment was not significant (Table 9). 273 
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Table 6. Void characteristics of both mixtures 274 
Temperature 170 °C 155 °C Spanish Standard 

Density (g/cm3) 2.608 2.547 - 

Voids in mixture (%) 22.2 24.4 ≥ 20 

Water sensitivity test (EN 12697 – 12) 275 

No mixture was affected by the water saturation, since both mixtures achieved a high 276 

Indirect Tensile Strength Ratio (ITSR). The results are presented in Table 7. Although the 277 

mixture manufactured at reduced temperature had a good behaviour with a slightly 278 

higher ITSR, this mixture reached lower Indirect Tensile Strength (ITS). This decrease in 279 

the resistance agrees with other studies [27]. The ITS of the dry samples was significantly 280 

lower in the case of the mixtures with wax (p-values are shown in Table 9), although this 281 

parameter could have been affected by the difference in the percentage of voids. 282 

However, in the case of the wet samples, there were not significant differences among 283 

the mixtures, so it seems that the water saturation affects, at least equally, to both 284 

mixtures. 285 

Table 7. Water sensitivity test 286 
Temperature 170 °C 155 °C Spanish Standard 

I.T.S. (KPa) 
Dry 886.0 764.0 - 

Wet 805.2 706.2 - 

I.T.S.R. (%) 91 92 ≥ 85 

Cantabro loss particle test in dry (EN 12697 – 17) and wet conditions (NLT-362) 287 

This test was carried out under two different conditions: dry samples were used for the 288 

determination of the resistance against abrasion, while the loss of cohesion caused by 289 

water was evaluated in wet conditions. The results for both temperatures were very 290 

similar (Table 8), although a slightly increasing trend in the particle loss is observed when 291 

the mixture is produced at reduced temperature. This can also be attributed to the small 292 

difference of voids, increasing the percentage of mass loss proportionally to the 293 

percentage of voids. In any case, the resulting differences were not statistically 294 

significant (Table 9).  295 

Table 8. Cantabro particle loss test 296 
Temperature 170 °C 155 °C Spanish Standard 



 

16 
 

Dry samples (%) 12.8 14.4 ≤ 20 

Wet samples* (%) 29.6 33.5 ≤ 35 
*Required until 2008.  

According to the results obtained in these mechanical tests, the two PA mixtures fulfilled 297 

the requirements stablished in the Spanish regulations for the most demanding 298 

conditions (highest traffic level and warmest area). From the mechanical point view, the 299 

EAF slag presents an excellent performance as coarse aggregate, and the use of a fatty 300 

acid amide wax to reduce the production temperature does not significantly modify the 301 

mechanical properties of the mixture, given that the performance of the porous asphalt 302 

mixture at conventional and reduced temperature was statistically equivalent. 303 

The results followed a normal distribution and there was homogeneity of variances 304 

except in the case of the Cantabro particle loss test in wet conditions. The T of Student 305 

and U of Mann-Whitney tests were applied respectively. In Table 9 the p-values of each 306 

test are shown. The ITS of the dry samples in the water sensitivity test is the only 307 

statistically different result, with a p-value under 0.05, although the p-value of the void 308 

characteristics is also close to the 0.05 limit. 309 

Table 9. Significances of mechanical test of porous asphalt mixture at conventional and 310 
reduced temperature 311 

  Voids Water sensitivity Loss particle  
dry wet dry wet 

P-value 0.052 0.013 0.066 0.535 0.665 

3.3 Compactability 312 

The compactability test (EN 12697-10) was carried out  to analyse if a higher level of 313 

compaction energy is required when the mixture is manufactured with the wax at 314 

155 °C. The test was performed with a Controls ICT 76-B0251 gyratory machine on three 315 

samples of 100 mm of diameter per type of mixture, the load was 600 KPa, the speed of 316 

movement 30 rpm and the angle of rotation 0.82°. The accumulated energy was 317 

calculated using the model developed by del Rio[28]: 318 

𝑊𝑊
𝑚𝑚

= �
𝑊𝑊𝑖𝑖

𝑚𝑚
=

𝑁𝑁

1

2 · 𝜋𝜋 · 𝛼𝛼 · 𝐴𝐴
𝑚𝑚

�ℎ𝑖𝑖 · 𝑆𝑆𝑖𝑖

𝑁𝑁

1

 (5) 
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Where: 319 

𝑊𝑊 (KJ): energy of compaction; 320 

𝑚𝑚 (Kg): mass; 321 

𝑁𝑁: total cycles applied; 322 

𝛼𝛼 (rad): inclination angle of the cylindrical sample; 323 

𝐴𝐴 (m2): Transverse area of the sample; 324 

ℎ𝑖𝑖  (m): height of the sample in each cycle i; 325 

𝑆𝑆𝑖𝑖 (KN/m2): shear stress measured in each cycle i; 326 

The required compaction energy is shown in Figure 7: 327 

Figure 7. Required compaction energy for each type of mixture 328 

 329 
A slightly lower energy is needed for compacting the PA mixture at 150 °C. The results 330 

were adjusted using the linear least-squares method (Equation 6), whose characteristics 331 

are shown in Table 10. W100% is the energy required to reach the reference density 332 

calculated by the model. 333 

W (KJ/Kg) = a · C (%) + b (6) 

Where: 334 

• W (KJ/Kg): Compaction energy per unit mass; 335 
• C (%): Degree of compaction, calculated as the percentage of the density 336 

achieved in each cycle divided by the reference density at 170 °C (2.608 g/cm3);  337 
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• a and b are constants. 338 

Table 10. Required energy in function of the compaction degree 339 
Temperature a b R2 W100%  

Conventional 0.143 -11.984 0.96 2.31 KJ/Kg 

Reduced 0.125 -10.564 0.95 1.94 KJ/Kg 

In order to confirm the significance of the results, and as they followed a normal 340 

distribution and there was homogeneity of variances, the T-Student test was carried out. 341 

The analysis showed that the compaction energy of both PA mixes (with and without 342 

wax) did not have significant differences (p-value 0.315). Accordingly, the mixture could 343 

be laid like a conventional mixture in spite of the decrease of the production 344 

temperature, as long as the temperature of the mixture with the wax is above its melting 345 

point (130 °C – 140 °C).  346 

3.4 Dynamic analysis of the mixture at reduced temperature 347 

In order to analyse the influence of the wax on the dynamic performance of the asphalt 348 

mixtures, the stiffness and the fatigue resistance of the PA mixtures were determined 349 

using the four point bending test according to EN 12697-26 and EN 12697-24 350 

respectively, in a universal hydraulic machine Zwick Z100. To determine the stiffness 351 

modulus, specimens were tested at 20 °C, a fixed strain amplitude of 50 µm/m and a 352 

frequency sweep was carried out from 0.1Hz to 30Hz.   Fatigue tests were carried out at 353 

20 °C and 30 Hz, the failure criteria was defined as the load cycle when the dynamic 354 

stiffness decreases to half of its initial value, being this initial value the stiffness after 355 

100 load cycles. There are not minimal requirements regarding stiffness and fatigue 356 

resistance for this type of mixture in the Spanish specifications, but these properties are 357 

important for the characterisation of the asphalt mixture behaviour. 358 

Stiffness. Four point bending test (EN 12697-26. Annex B) 359 

The dynamic modulus (E*) and phase angle (φ) of both mixtures are presented in Table 360 

11. 361 

Table 11. Dynamic modulus test 362 
 Conventional temperature Reduced temperature 

Frequency E* ± Deviation φ ± Deviation E* ± Deviation φ ± Deviation 
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(Hz) (MPa) (°) (MPa) (°) 
0.1 734 290 41.2 3.9 379 55 38.6 3.4 

0.2 782 249 40.2 3.9 476 55 38.1 2.2 

0.5 929 240 38.8 3.9 665 68 37.5 1.7 

1 1088 253 37.4 3.9 851 83 36.8 1.2 

2 1274 267 36.1 4.2 1091 101 35.7 1.0 

5 1618 314 34.1 4.4 1512 138 33.7 0.9 

8 1881 391 32.8 4.6 1774 158 32.4 0.8 

10 1965 383 32.3 4.5 1906 169 31.9 0.7 

20 2403 471 33.0 4.5 2384 211 29.9 0.7 

30 2674 518 29.7 4.5 2796 186 29.7 1.7 

A slightly lower dynamic modulus was obtained for the PA mixture with wax, especially 363 

at the lowest frequencies. However, the statistical analysis carried out indicated that 364 

there are not  statistical differences between the mixtures, since the significance in the 365 

U test of Mann-Whitney was 0.164. In the case of the phase angle, despite the slight 366 

decrease, the difference between mixtures is very small, so it cannot be concluded that 367 

the mixture with the wax is more elastic. 368 

In spite of the differences shown by the binders in the rheology test (the CRM binder 369 

with wax presented a higher G* and a lower δ), the addition of wax has not significantly 370 

affected the stiffness of the mixture, probably due to the fact that, in this type of 371 

mixture, this property is mostly influenced by the high percentage of voids. 372 

However, although the differences among mixtures are very small, if we consider that 373 

this test has been carried out at 20 °C, the results of the PA mixtures followed a similar 374 

trend that the one observed with the bitumen in Figure 2 and Figure 3. In Figure 2, at 375 

low frequencies, the differences in stiffness among the bitumen and the bitumen/wax 376 

were small. However, these differences increased at higher frequencies. Regarding the 377 

PA mixes, at low frequencies, the asphalt mixture with wax presented a smaller 378 

modulus, probably due to the high percentage of voids. Nevertheless, as frequency 379 

increases, the differences between the dynamic modulus of both mixes is reduced, 380 

being the dynamic modulus of the PA mixture with wax higher at 30 Hz.  381 

A similar behaviour is observed for the phase angle. The greatest differences between 382 

the phase angle of the CRM bitumen and CRM bitumen/wax were found at low 383 
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frequencies, while at high frequencies, similar phase angle values were obtained (Figure 384 

3, at 20 °C). Likewise, phase angle of the PA mixes (Table 11) presented the greatest 385 

differences at low frequencies while at the highest frequencies the differences were 386 

minimum.  387 

The correlation coefficient between the DSR test at 20 °C and the dynamic test was 388 

calculated for a range of frequencies from 0.1 Hz to 10 Hz. According to Table 12, good 389 

correlation was obtained in all cases.  However, considering the small differences in 390 

stiffness and phase angle at 20 °C, the analysis of these correlations at other 391 

temperatures is recommended.  392 

Table 12. Correlation between stiffness and phase angle of DSR and dynamic modulus tests 393 

Correlation 
coefficient 

Samples without wax Samples with wax 
Stiffness 
G* - E* 

Phase angle 
δ – Φ 

Stiffness 
G* - E* 

Phase angle 
δ – Φ 

R2 0.97 0.98 0.96 0.98 

Resistance to fatigue. Four point bending test (EN 12697-24. Annex D) 394 

Table 13 presents the initial modulus (S0), the strain-characteristic at 106 cycles, the 395 

fatigue laws and the coefficient correlation for the PA mixture manufactured at reduced 396 

temperature with the wax. Although there are not specific requirements for the fatigue 397 

resistance of PA mixes because they are usually employed in surface layers and under 398 

compression strengths, the fatigue performance of this mixture is good and the addition 399 

of wax do not negatively affect this parameter. 400 

Table 13. Results of fatigue resistance of the PA mixture with wax 401 
S0 

(MPa) 
Deformation* 

(µm/m) fatigue law R2 

2329 165 ε(m m⁄ ) = 3.947 · 10−3 · N(cycles)−0.230  0.79 
*106 cycles   

4. Conclusions 402 

A PA mixture with alternative aggregates and a CRM binder has been designed. Besides, 403 

a fatty acid amide wax has been added with the aim of reducing the production 404 

temperature of the PA mixture to the conventional ranges used by a 50/70 penetration 405 

grade bitumen. The influence of the wax on the bitumen and the asphalt mixture has 406 
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been analysed by determining the rheology of the bitumen samples and the mechanical 407 

behaviour of the PA mixtures. 408 

Based on the results of this study, the following conclusions are drawn: 409 

• The addition of wax produces an increase of the stiffness of the CRM binder, 410 
increasing also the elastic component and decreasing the thermal susceptibility. 411 
However, this increase has not been reflected in the stiffness of the asphalt mixture. 412 

• Above the melting point of the fatty acid amide wax (130 °C / 140°C) a decrease of 413 
the viscosity of the CRM binder is observed that allows to decrease the 414 
manufacturing temperature of the asphalt mixture by 15 °C. 415 

• The PA mixtures designed with 90.9% of alternative aggregates fulfilled the technical 416 
requirements established by the Spanish regulations for their use in the most 417 
demanding roads.  418 

• The mixture at reduced temperature has not had significant differences with the 419 
mixture at conventional temperature in the mechanical tests, although it seems a 420 
tendency to increase the percentage of voids that could affect the indirect tensile 421 
strength of the samples in the water sensitivity test. Only the indirect strength of the 422 
dry samples of the water sensitivity tests was statically different. The results in the 423 
cantabro loss particle test were also similar. 424 

• The stiffness and the resistance to fatigue have not turned out as properties that 425 
limit the use of the wax in the selected percentage of 3 %. 426 

• The workability analysis has shown that there are not significant differences 427 
between the mixtures. The incorporation of the wax does not modify compaction 428 
energy, while this compaction is performed above 130 °C. Therefore, the 429 
compaction process of the mixture would be the same than a conventional mixture 430 
with 50/70 penetration grade bitumen. 431 
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