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Highlights 

 Soil washing performance after nZVI addition was examined. 

 Dilution effect caused by nZVI was considered for metallurgical accounting purposes. 

 Nanoparticle addition improved PTE removal.  

 nZVIs were selective for Cu, Pb and Sb. 

 

Abstract 

The present study focuses on soil washing enhancement via soil pretreatment with nanoscale 

zero-valent iron (nZVI) for the remediation of potentially toxic elements. To this end, soil 

polluted with As, Cu, Hg, Pb and Sb was partitioned into various grain sizes (500–2000, 125–

500 and < 125 μm). The fractions were pretreated with nZVI and subsequently subjected, 

according to grain size, to Wet-High Intensity Magnetic Separation (WHIMS) or 

hydrocycloning. The results were compared with those obtained in the absence of nanoparticles. 

An exhaustive characterization of the magnetic signal of the nanoparticles was done. This 

provided valuable information regarding potentially toxic elements (PTEs) fate, and allowed a 

metallurgical accounting correction considering the dilution effects caused by nanoparticle 

addition. 

As a result, remarkable recovery yields were obtained for Cu, Pb and Sb, which concentrated 

with the nZVI in the magnetically separated fraction (WHIMS tests) and underflow 

(hydrocyclone tests). In contrast, Hg, concentrated in the non-magnetic fraction and overflow 

respectively, while the behavior of As was unaltered by the nZVI pretreatment. All things 

considered, the addition of nZVI enhanced the efficiency of soil washing, particularly for larger 

fractions (125–2000 μm). The proposed methodology lays the foundations for nanoparticle 

utilization in soil washing operations. 

 

Key words: soil remediation; nanoscale zero-valent iron; soil washing; PTEs  

 

1. Introduction 

Potentially toxic elements (PTEs) are a major cause of contamination in soils of cities and rural 

areas. The concept of PTE encompasses a wide selection of elements (As, Cu, Hg, Pb, Zn, 

among others) that in high concentrations might cause severe damage to the environment and 
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also to the human health [1,2]. Their persistence in the environment and the ease with which 

they bioaccumulate and biomagnify in living organisms make them pollutants of special 

concern [3]. PTEs may derive from natural sources or anthropogenic sources such as mining, 

industry or traffic [4,5]. In soils they usually appear linked to industrial and chemical waste, or 

even atmospheric deposition [6]. They enter tissues via ingestion, breathing and touching and 

cause severe diseases [7]. For all these reasons, their removal has been widely discussed in 

environmental research over recent decades [8–10]. 

Of all the remediation techniques available [11], soil washing is widely used [12,13]. It is based 

on concentrating the contaminants into a reduced volume fraction of the affected soil (or 

concentrated fraction), thereby leaving the matrix decontaminated (non-concentrated fraction) 

[14]. The method embraces two contaminant-removal technologies, namely, physical 

separation, which is based on mineral processing technologies, and chemical extraction, which 

is based on hydrometallurgy [15].  

Here we focused on physical soil washing, that is to say, those procedures that do not alter the 

chemical properties of materials [12]. In these cases, separation is achieved by means of 

differences in the physical properties, namely particle size, density, magnetic susceptibility, or 

even physicochemical properties, as is the case of froth floatation, between the soil and the 

contaminant [16]. This technique has several advantages, including ease of deployment and 

versatility to be combined in sequence with other physical and chemical remediation methods 

[17]. In this context, some researchers have used remediation techniques that combine soil 

washing together with phytoremediation [18,19], stabilization [20], electrokinetics [21] or 

ultrasonics [22]. 

Moreover, the addition of certain compounds such as surfactants [23] and chelants to soil 

washing enhances PTE recovery [24]. In this respect, nanoscale zero-valent iron (nZVI) is the 

most commonly used nanomaterial for remediation purposes in Europe and the United States 

[25,26]. It is a non-toxic reactive metal (as a result of its large surface area, among other factors) 

that has found wide applications due to its abundance, low cost and ease of production [27]. 

This remediation material has been successfully applied for the removal of PTEs not only from 

soils [28–30] but from groundwater [31–34] and water runoff [35].  

The applications of nZVI for PTE decontamination of soil are diverse. In this regard, this 

nanomaterial can be used to immobilize, sorb and capture these compounds [36]. Within this 

context, nanoparticles enhance soil washing by adsorption of the PTE-containing particles, 

thereby causing the formation of larger and heavier aggregates which are easier to separate [37]. 

Regarding magnetic separation, the high magnetic susceptibility of the newly formed aggregates  

allows the separation of otherwise non-magnetic particles [11,12].  
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This study aims to evaluate the effect of nZVI as a pre-treatment to a subsequent soil washing 

process. Thus, the specific objectives were as follows: 

 To introduce a procedure that allows the measurement of the amount of natural Fe and 

nZVI present in each studied fraction. 

 To develop a metallurgical accounting correction that circumvents the dilution effect 

that the addition of nZVI entails, thus facilitating the comparison of results between 

experiments with and without pretreatments. 

 To ascertain the trace elements for which nZVI is selective, on the basis of their 

behavior in the separation equipment. 

2. Materials and methods 

2.1 Site description and soil sampling 

Soil samples were collected from the old Hg mine of Olicio, in the surroundings of the Picos de 

Europa National Park (Asturias, Spain). The geology of the area is framed within the Cantabrian 

zone, specifically in the Ponga mantle [40]. The lithology comprises mainly paraconglomerates, 

white quartzites and siltstones from the Ordovician period [41]. The first evidence of cinnabar 

dates back to the late 19th century, but it was not until 1965 when underground mining began, 

persisting until the early 1970s, when the Hg crisis occurred. During these years, the extracted 

mineral was treated in a retort furnace, and ashes and tailings were mindlessly dumped in the 

confined valley of the Brengues stream [42].  

These mining activities covered approximately 8000 m2 of the valley with waste, thus enriching 

the surrounding soils in several PTEs, particularly Hg and As. Within this context, 25 bulk soil 

samples were collected at a depth of between 0 and 30 cm using a Dutch auger. These samples 

were then pooled into a single “macro sample” of about 50 kg, which was subsequently sieved 

through a 2-cm screen to remove rocks, gravel, and other large material. 

 

2.2 Soil characterization and chemical analysis 

This macro sample was divided obtaining representative subsamples of 500 g each, which were 

subjected to wet sieving in order to obtain particle-size fractions of < 125, 125–500 and 500–

2000 μm. Thus, normalized sieves were placed in a column, and batches of 100 g of the material 

were placed in a sieve shaker for 5 min with a water flow of 0.3 l/min (ASTM D-422-63, 

Standard Test Method for Particle-Size Analysis of Soils). pH was measured with a glass 

electrode in a suspension of soil and deionized water (1:2.5). 
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Fractions were then laid out on glass trays, dried at 30ºC to prevent Hg volatilization, and 

finally weighed. Once all the material was meshed, each fraction was split into two equal and 

representative masses, which were used to perform the experiments with and without nZVI 

pretreatment. 

To standardize the conditions used for chemical determinations, samples > 125 μm were ground 

in a RS100 Resch mill at 400 rpm for 40 s. Then, 1-g representative subsamples of the diverse 

origins (soils, grain-size fractions, etc.) were subjected to a 1:1:1 “Aqua regia” digestion. The 

total concentrations of Ag, Al, As, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, 

Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, V, W and Zn in the digested material were 

determined by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) at the 

accredited (ISO 9002) Bureau Veritas Laboratories (Vancouver, Canada). 

Powder X-Ray diffraction (PXRD) patterns measured on a PANalytical X’Pert Pro MPD 

diffractometer with Cu k radiation (1.540598 Å) were used to determine the mineralogical 

composition of the soil. After determining the position of Bragg peaks observed over the range 

of 2=5-90º, the minerals were identified using databases of the International Centre for 

Diffraction Data. 

2.3 Nanoscale zero-valent iron pretreatment 

A commercial air-stabilized aqueous solution of nZVI (NANOFER STAR-W), supplied by 

Nano Iron Rajhrad (Czech Republic), was used. This product comprises Fe (0): 14–18%, 

magnetite (Fe2+Fe2
3+O4

2−): 2-6%, carbon (C): 0–1% and about 80% of water. None of these 

components are classified as hazardous according to 67/548/EEC and Regulation (EC) No 

1278/2008 (CLP). As quoted by the manufacturer, this product is optimal for the preparation of 

slurries for in-situ remediation purposes [43].  

The addition of nanoparticles followed the same procedure for each of the three grain-sizes. 

Thus, the nZVI drum provided by the manufacturer was first vigorously shaken in order to 

homogenize and suspend the nanoparticles. Then, 1 l of the homogenized liquid was removed 

from the barrel and mixed with 100 g of polluted soil. This mixture was stirred for 2 h at 400 

rpm. The operation was repeated until 10 l of nanoparticle solution had been mixed with 1000 g 

of raw soil. This material was then laid in glass trays and air-dried at 30ºC in order to prevent 

nZVI oxidation and Hg evaporation. 

Nanoparticles are highly susceptible to oxidation, mainly because of their large surface area. 

Nonetheless, oxidation was prevented with low drying temperatures and expeditious laboratory 

experiments. Constant monitoring of the magnetic signal of both soil Fe and nZVI was 

performed in order to assure the quality of the results. 
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Soil washing equipment was selected so as to fully exploit the physical properties of nZVI. In 

this regard, given the high magnetic susceptibility of HIMS, this technique was considered 

suitable, as was hydrocycloning in the case of the smallest fraction (< 125 μm). Experiments 

were performed with untreated and nZVI-pretreated soils for the three size fractions. Separation 

tests were performed in triplicate. 

2.4 Magnetic characterization 

To this end, about 100 mg of soil fractions were quartered and ground in an agate mortar in 

order to be compacted and later encapsulated into an acrylic pillbox. After that, the capsule was 

fixed to an acrylic rod using double-sided Scotch® tape and placed into the linear motor of a 

Microsense EV9 vibrating sample magnetometer (VSM). We then measured magnetic 

hysteresis loops (M(H)), which determine magnetization (M) as a function of the magnetic field 

(H) in a complete cycle between Hmax = 20 kOe and Hmin = -20 kOe at room temperature (RT). 

Each previous hysteresis loop, defined on the basis of soil grain size and output voltage in the 

WHIMS, was by pairs corresponding to its mags (magnetically separated fraction) and non-

mags (non-magnetically separated fraction) fraction. Thus, the hysteresis loops of each feed 

(nZVI-pretreated soil samples) were depicted by summing the loops of both the mags and non-

mags fractions, which minimized the least-square root difference by means the evolutionary 

(genetic) method of Microsoft Excel Solver package. In the same manner, the hysteresis loops 

of each compound (soil treated with nZVI and mags and non-mags fractions) were fitted by 

adding the corresponding raw soil and pure nZVI, thus determining the percentage of the latter 

disseminated. 

2.5 Wet-High Intensity Magnetic Separation 

WHIMS is suitable for the treatment of small grain sizes [44]. It is straightforward to use and 

provides an excellent yield recovery and ratio of concentration [44]. The OUTOTEC Laboratory 

WHIMS 3X4L apparatus, which has the capacity to separate paramagnetic (weakly magnetic) 

from non-magnetic materials was used for the experiments.  

The feed for the untreated soil was prepared by mixing 50 g of dried soil with 200 g of water 

(57.5 g in the case of soil pretreated with nZVI, which represents about 16% of Fe (0) and 230 g 

of water). This slurry was then passed through a matrix canister filled with steel spheres 12.5 

mm or 6.5 mm in diameter (depending on the particle-size of the feed; 12.5-mm spheres are 

appropriate for soil particle sizes > 125 μm, while 6.5-mm spheres are appropriate for those < 

125 μm). 

The mags material was retained by the magnetized spheres, while the non-mags components 

and the water passed across the matrix canister and were collected in a tray. Finally, the 
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magnetic material retained on the spheres was washed out by turning off the equipment, thus 

reducing the magnetic field to zero.  

The variable magnetic field intensity of the equipment was adjusted through the coil input 

amperage (0-6 amps) [38]. WHIMS was set at 10%, 20%, 30% and 50% of the maximum 

output voltage for all three fractions (500–2000 μm, 125–500 μm and < 125 μm). Higher 

voltages may render the process economically unviable and may modify the magnetic properties 

of nZVI. Experiments were performed for untreated and nZVI-pretreated samples. After 

separation experiments, samples were dried at 30ºC, then ground and subsequently subjected to 

chemical determinations.  

2.6 Hydrocycloning 

The hydrocyclone is one of the most widely used systems for mineral treatment [45]. It 

separates heavy and light particles via a static piece of equipment that applies a centrifugal force 

to a liquid (commonly water) that contains the material. This device works in continuous flow 

mode [46]. The feed to this apparatus is introduced through instantaneous in-flow slurry (feed), 

which is tangentially pumped inside the cyclone, wherein the joint action of the centrifugal drag 

and gravity forces separate the particles on the basis of grain size and density [45]. This system 

determines whether an individual particle flows through the apex (underflow) or the overflow of 

the hydrocyclone [45], [46]. The underflow and overflow comprise the outflow, the sum of 

which must be equal to the inflow; the lighter and finer particles report to the overflow. 

Regarding the current study, a hydrocycloning lab-scale plant (C700 Mozley) with a capacity to 

operate hydrocyclones from 10 to 50 mm in diameter was used. The solid:water ratio of the 

slurry feed used in the experiments was constant (1:5), whereas the apex diameters (9.5 mm and 

6.5 mm) and working pressures (69 and 138 kPa) were combined (e.g. [47]). The procedure was 

used to treat the grain size fraction < 125 μm, in accordance with the manufacturer’s 

specifications. In all cases, after reaching a stationary regime, samples from the underflow and 

overflow were collected in borosilicate flasks and then weighed. Thereafter, they were dried at 

30ºC, and representative subsamples were obtained for chemical determinations. Tests were 

performed in triplicate. 

2.7 Evaluation of results 

2.7.1 Corrected expressions for weight and element recoveries 

The efficiency of the concentration operation was evaluated in terms of two concepts, namely 

weight recoveries and element recoveries [14]. Both concepts can be referred to any outflow 

from the WHIMS and hydrocyclone, irrespective of whether they correspond to the 

concentrated or non-concentrated fractions [48]. Nevertheless, all calculations in this study refer 
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to the concentrated fraction, that is to say, the fraction in which element recovery was higher 

than weight recovery. In this case, this refers to the magnetic fraction of the WHIMS and the 

overflow of the hydrocyclone. 

The concepts of weight recovery (WR) and element recovery (ER) used in this study were as 

defined by Wills [15]. These expressions are valid for any soil without nZVI pre-treatment, but 

nanoparticle addition entails a dilution effect that makes the correction of the abovementioned 

equations necessary in terms of facilitating the comparison of results between experiments with 

and without pretreatments. In this respect, considering that the original amount of Fe of the soil 

was small (between 0.9–2.6% Fe, see Table 1) compared with that after nZVI pretreatment, the 

dilution effect was removed by subtracting the weight of Fe. Thus, the corrected weight 

recovery in the concentrated fraction (WRc') would be: 

𝑊𝑅𝑐′ =
𝑤𝑐 − 𝑤𝑐

𝐹𝑒

𝑤𝑐 + 𝑤𝑛𝑐 − 𝑤𝑐
𝐹𝑒 − 𝑤𝑛𝑐

𝐹𝑒 (1), 

 

where wc is the weight of the concentrated fraction and wnc the weight of the non-concentrated 

fraction, wc
Fe  and wnc

Fe  being the weight of Fe in these fractions respectively. The 

 is calculated similarly. 

The concentration of the other elements is also altered when the weight of Fe is removed, but 

this change does not appreciably affect the comparability of the results. The corrected masses of 

element “i” in the concentrated (wc
i '

) and non-concentrated (wnc
i ′) fractions, [ic] and [inc] being 

the concentration of the element “i” in the concentrated fraction, can be calculated as: 

𝑤𝑐
𝑖′ = 𝑊𝑅𝑐′ · [𝑖𝑐] (2) 

 

𝑤𝑛𝑐
𝑖 ′ = 𝑊𝑅𝑛𝑐′ · [𝑖𝑛𝑐] (3), 

 

where [ic] and [inc] is the concentration of element “i” in the concentrated or non-concentrated 

fraction respectively. 

Finally, once wc
i '

 and wnc
i ' have been calculated, the corrected element enrichment factor (𝐸𝑅𝑐

𝑖 ′) 

for element “i” can be obtained as follows: 
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𝐸𝑅𝑐
𝑖 ′ =

𝑤𝑐
𝑖′

𝑤𝑐
𝑖′ + 𝑤𝑛𝑐

𝑖 ′
 (4). 

 

2.7.2 Determination of nZVI fate by magnetic quantification 

The magnetization of the WHIMS feed (Ms) corresponding to the original soil treated with 

nZVI, i.e. the blend of soil and nanoparticles obtained in the stirring tank before the separation 

test, was estimated using a linear combination of the measured signal of the original soil 

fraction (not treated with nanoparticles, denoted as Mo) and the signal of the pure nZVI (MnZVI). 

Thus, the magnetization for the mixture in a magnetic field, “i”, can be calculated as: 

 𝑀𝑠(𝐻𝑖) = %𝑠
𝑛𝑍𝑉𝐼 · 𝑀𝑛𝑧𝑉𝐼(𝐻𝑖)+(1 − %𝑀𝑠

𝑛𝑍𝑉𝐼) · 𝑀0(𝐻𝑖)   (5), 

where the common factor, %𝑠
𝑛𝑍𝑉𝐼 , which minimizes the sum of square root difference between 

the two members for all applied magnetic fields “i” of the M(H) curve, represents the weight 

percentage of nZVI in the WHIMS feed. Likewise, once all the tests had been performed, 

magnetization values for the mags (MM) and non-mags (MNM) fractions were also modeled 

using analogous equations as follows:   

 
 𝑀𝑀(𝐻𝑖) = %𝑀

𝑛𝑍𝑉𝐼 · 𝑀𝑛𝑧𝑉𝐼(𝐻𝑖)+(1 − %𝑀
𝑛𝑍𝑉𝐼) · 𝑀0(𝐻𝑖)

 𝑀𝑁𝑀(𝐻𝑖) = %𝑁𝑀
𝑛𝑍𝑉𝐼 · 𝑀𝑛𝑧𝑉𝐼(𝐻𝑖)+(1 − %𝑁𝑀

𝑛𝑍𝑉𝐼) · 𝑀0(𝐻𝑖)
   (6), 

  

  %𝑀
𝑛𝑍𝑉𝐼 and  %𝑁𝑀

𝑛𝑍𝑉𝐼 being the weight % of nZVI in the mags and non-mags fractions, 

respectively. 

On the other hand, signals from the mags (MM) and non-mags (MNM) fractions were also used to 

reconstruct the previous feed signal (Ms) for each test. In this case, the least-square root fit of 

data was derived as: 

 𝑀𝑠(𝐻𝑖) = %𝑀 · 𝑀𝑀(𝐻𝑖) + (1 − %𝑀)𝑀𝑁𝑀(𝐻𝑖)   (7), 

  

where  %𝑀  is the proportion of magnetics in the mags. Finally, by combining equations (6) and 

(7), we can also calculate the weight percentage of nZVI in the feed belonging to each pair of 

mags and non-mags fractions, by means of: 

%𝑠
𝑛𝑍𝑉𝐼 = %𝑀 · %𝑀

𝑛𝑍𝑉𝐼 + (1 − %𝑀) · %𝑁𝑀
𝑛𝑍𝑉𝐼   (8). 
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3. Results and discussion 

3.1 Textural and chemical characterization of the soil 

X-ray diffraction results (Figure 1) indicated that the soil samples were composed mainly of 

quartz (SiO2), some calcite (CaCO3), and muscovite (KAl2(AlSi3O10)(OH)2), and  probably also 

hematite (Fe2O3), with an unclear presence of dolomite (CaMg(CO3)2) and microcline 

(KAlSi3O8). Table 1 shows the element concentrations for the different grain sizes. pH values 

measured were slightly alkaline (around 7.5). 

The coarser fraction (> 2000 μm) accounted for approximately 50%w of the bulk soil, followed 

by the fine fraction (< 125 μm), which accounted for roughly 26%w. The 500–2000 μm and 125-

500 μm fractions represented 11%w and 12%w respectively. The main potential toxicant in the 

bulk samples was Hg and to a lesser extent As, Cu and Sb. In the < 125 µm fraction, Pb played 

an important role.  

Chemical determinations revealed that the abovementioned elements were the main 

environmental threats in the soil. However, the presence of other elements may indicate how 

they interact with other soil constituents. We therefore also included the following in our 

analysis: Al as representative of clays; Ca of carbonates; K of feldspars; La and Y of rare earth; 

V as neutral element (does not associate to any other); and Fe (main component of the 

nanoparticles). 

3.2 Metallurgical accounting 

First, corrected weight and element recoveries were calculated in order to compare the 

efficiency of soil washing with and without the nZVI pretreatment. The results corresponding to 

the WHIMS are shown in Table 2. 

As can be observed, weight recoveries showed great variations after nZVI pretreatment. Thus, 

classical soil washing yielded corrected weight recoveries ranging from 3% to 20% in the 

concentrated fraction, whereas values for the pretreated soil ranged from 30% to 76%. In both 

cases, the greater the output voltage, the larger the weight recovery obtained. Simultaneously, 

higher voltages provided a slight improvement in element recoveries. In this respect, an increase 

in field intensity has to be seen as a trade-off between the previous facts, as well as the 

subsequent larger weight recovery in the concentrated fraction and higher power consumption.  

Regarding the corrected element recoveries, significant improvement after nZVI pretreatment 

was achieved for all the elements studied. It is important to indicate that all element recoveries 

were corrected to minimize the effect of nanoparticle addition on the comparability of results 

with those of untreated samples. In this respect, Fe recovery was greatly increased for the nZVI-
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assisted concentration experiments as recoveries for this element cannot be corrected by 

subtracting the concentration of Fe.  

In must be indicated that element recoveries rose in parallel to weight recovery. Since the aim of 

the concentration operation is to achieve high element recoveries for the smallest possible 

weight recoveries, a new trade-off between the two variables has to be established. This 

optimum could possibly be at around 30% of the maximum output voltage. 

The best results in grain-size terms were obtained for the pretreated 500-2000 μm fraction 

(Table 2), with significantly high recoveries of Cu (> 90%), Pb (> 80%) and Sb (60-70%). 

Results were similar for the pretreated 125-500 μm fraction, Cu being the element with the 

greatest recovery (around 90%) for a repeatable mass of soil (30–40%). The previous 

experiments did not present appropriate concentration yields for the < 125 µm fraction. 

Therefore, a set of hydrocycloning tests was performed for this fraction (Table 3). 

As occurred for the WHIMS assays, the immediate effect of nZVI pretreatment was an increase 

in weight and element recovery. However, although the pretreatment produced remarkable 

improvements in the hydrocycloning of this fraction (< 125 µm), the results were more modest 

than those of WHIMS. In this regard, smaller apex diameters translated into greater recoveries, 

although an increase in operating pressure did not lead to appreciable variations but may result 

in greater equipment abrasion. All things considered, although the performance of the separator 

was enhanced after nZVI pretreatment and certain selectiveness over Pb, Cu and Sb was 

observed, element recoveries as compared to weight recoveries were not as remarkable as in the 

WHIMS device, thus indicating poorer upgrading. These results are further discussed in the next 

section.  

3.3 Nanoscale zero-valent Fe selectivity 

nZVI Fe selectivity with regard to PTEs can be easily visualized by plotting ERc
i ' vs. WRc′  and 

determining the separation between the represented points from the perfect splitting line 

(ERc
i '

= WRc'). Thus, points along this line are undesirable since separation does not take place 

and, conversely, the further the distance of a point from the “perfect splitting” line, the better the 

concentration levels obtained.  

Moreover, this line divides the figures into two triangles. The one on the top is the domain of 

the concentrated elements, that is to say, those elements that tend to accumulate in the mags 

fraction (WHIMS) or the overflow (hydrocyclone). In contrast, the area below the perfect 

splitting line comprises the elements that tend to accumulate in the non-mags fraction or in the 

underflow.  

3.3.1 Wet-High Intensity Magnetic Separation  
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In all experiments (Figures 2, 3 and 4) there are two clusters of points, the left one (circles) 

corresponding to traditional soil washing tests and the right one (crosses) to the nZVI-enhanced 

tests. Both clusters are clearly separated, thereby indicating that the addition of nanoparticles 

had a strong effect on the separation. Moreover, more elements scattered from the non-

concentration line after nZVI pretreatment, thus revealing that the addition of this nanomaterial 

enhances concentration. 

By size intervals, in the 500-2000 μm fraction (Figure 2), nZVI  pretreatment enhanced Cu, Pb 

and Sb concentration in the mags fraction and Hg in the non-mags fraction; while As showed 

better yields in the untreated tests than under nZVI pretreatment. Moreover, Al, K, and La and 

Y, representative of clays, feldspars, rare earth, respectively and which were not concentrated in 

the mags fraction by traditional soil washing, concentrated in the non-mags fraction after 

addition of nZVI. Conversely, Ca, which is generally prone to concentrating in the non-mags 

fraction, lost this tendency. Finally, V seemed unaffected by nZVI pretreatment. 

The 125–500 μm fraction (Figure 3) showed similar results. Thus, Cu yielded better 

concentrations, as did Sb and Pb after pretreatment with nanoparticles. Note that all the PTEs 

accumulated in the mags fraction, with the exception of Hg, which was markedly concentrated 

in the non-mags fraction with other elements such as Al and rare earths. This observation 

suggests that nZVI repels Hg-containing particles (mostly of cinnabar).  

The thickest fraction (< 125 μm) presented several differences with regards to the preceding 

ones (Figure 4). Thus, it was difficult to concentrate any of the elements, the only exception 

being Cu. This observation could be explained as magnetic forces can be overcome by dragging 

forces for the smallest grain sizes [39]. Despite this drawback, the positive effects of nZVI on 

separation were once again observed.  

All things considered, we conclude that the nanoparticles were selective for Cu, Pb and Sb in 

the 125–2000 μm size range. Moreover, Hg was also concentrated in this size interval but in the 

non-mags fraction. As regards the < 125 μm fraction, a certain degree of selectivity was 

observed but the separation efficiency diminished with grain size.  

A proper discussion on PTEs mobility in soils is complex and commonly associated with 

adsorption and desorption processes as well as to precipitation with Al, Fe and Mn oxides (e.g.: 

[49,50]). In this context, in our case, we hypothesized the relevance of the amount of magnetite 

in the nanoparticles applied. In general, iron oxides adsorption capacities are greatly influenced 

by the redox conditions, the presence of other ions and the pH. Particularly, adsorption 

mechanisms of metals on magnetite are mainly due to the electrostatic attraction between the 

metallic ions and nanoparticles, being the hydrated ionic radius of cations a key parameter [51]. 

Magnetite is an amphoteric solid which may adsorb either negatively or positively charged 
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species depending on pH variations. Magnetite surface has a positive charge at pH below 6.7-7 

with prevalence of FeOH2+ on its surface, and negative when the pH is higher and groups FeO- 

are predominant [15]. As a consequence, for most PTEs (metals), magnetite adsorption 

efficiency increases with rising pH because they are prone to be in cationic form; on the 

contrary,  As is mostly present in the form of oxyanions [51,52] when the pH is slightly alkaline 

as occur in this work.. Therefore, As behavior is different, as electrostatic repulsion between the 

arsenates and magnetite (with a net negative charge) hinders adsorption [53]. Moreover, As 

could co-precipitate with Fe (III) ions forming amorphous Fe arsenates and secondary oxidation 

minerals [54]. On the whole, maximum adsorption capacity of As on Fe oxides may occur at pH 

between 4 and 6 [55–57]. In addition, it has to be also pointed out that reliable adsorption 

determinations are complex at neutral or alkaline pH as a consequence of cations precipitation 

as hydroxides [51].  

Concerning the preference of Hg for the non-mags fraction, it has to be considered that in the 

studied soil the Hg predominant form is cinnabar [48]. This mineral has mainly on its surface 

exposed hydroxyl sites and sulfide groups [58] which are negatively charged at pH above 3-4 

[59] thus hindering sorption on magnetite surface. 

 

3.3.2 Hydrocyclone 

Given the unsatisfactory concentration yields obtained for the < 125 μm fraction, 

hydrocycloning was also tested. In this respect, a hydrocycloning test without nZVI 

pretreatment did not provide a significant improvement in separation yields. Moreover, samples 

pretreated with nZVI did not show a clear separation of elements, with all the points placed near 

or along the perfect splitting line and untreated and pretreated point clusters located very close 

as shown in Figure 5. 

In this respect, it must be commented that Cu was concentrated only when the nZVI particles 

were added. This observation suggests that the hydrocyclone showed less effectiveness as a 

concentrator compared with WHIMS even under nZVI pretreatment conditions. Regarding the 

interaction of nanoparticles with the PTEs, the positions of Cu and Hg showed variations with 

respect to the non-concentration line, as occurred for WHIMS, thereby evidencing that nZVI 

preferentially interacts with these two elements.  

 

 

3.4 Magnetic quantifications 

3.4.1 Magnetic signals of the nZVI, soil and feeds 
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Figure 6 shows the hysteresis loops of: a) pure nZVI, b) raw soil and c) nZVI-pretreated soil 

when fed to the separating apparatus. Each hysteresis loop is depicted on the basis of soil grain-

size: 500–2000 μm (blue), 125–500 μm (green) and < 125 μm (red). 

In this respect, a relative low difference in magnetic susceptibility (below 0.5%) was observed 

in pure nZVI, as reflected by identical shape of the curves (Figure 6a). This observation 

suggests that the distribution of the nanoparticles in the feed was homogeneous. Moreover, the 

hysteresis loops of the raw soil samples differed considerably in terms of both maximum 

magnetization value and form, with signals approximately 1/400-1/1000 smaller than those 

registered for pure nZVI (Figure 6b).  

The medium fraction of the raw soil had a significantly smaller magnetic signal, while the larger 

fraction had the highest signal (Figure 6b). Once the nZVI was added, the red line became the 

most prominent, thereby revealing that the < 125 μm grain-size fraction had the highest 

proportion of nZVI (Figure 6c). Moreover, this figure evidences that aggregation of nZVI in the 

soil was heterogeneous, as curves showed different shapes and magnetic signals. 

All things considered, the linear combination of the pure nZVI signal and that of the raw soil 

(Equation 5) allowed the reconstruction of nZVI concentration in each feed. Thus, the magnetic 

signals indicated higher concentration for the finest grain size (18.52% < 125 μm), intermediate 

for the largest grain size (16.50%, 500–2000μm) and lower for the medium grain size (11.27%, 

125–500 μm). These results highlight how nanoparticle coalescence hinders the achievement of 

a homogenous soil-nanoparticle mixture. 

Once the concentration experiments were completed, the magnetic signals of the mags and non-

mags fractions were measured and the magnetic signal of the feed was reconstructed using 

equation 6. Figures 7 and 8 show the signals of the two separated fractions (mags and non-

mags) for all the experiments. 

Regarding the hysteresis loops of the mags fraction, the maximum signal (corresponding to the 

highest concentration of nZVI) was obtained for the 500–2000 μm and 125–500 μm fractions at 

30% of the maximum output voltage (Figure 7, column C). When chemical analyses were taken 

into consideration, the highest element recoveries for relatively low weight recoveries were also 

obtained for this voltage. High element recoveries at this voltage suggest that nZVI acted as a 

PTE scavenger, as PTE recovery was related to the recovery of nZVI. This observation is also 

confirmed by the finding that the greater the magnetization (or nanoparticle content), the higher 

the recovery of Cu, Pb and Sb for a fixed grain size (Figure 7, rows A’, B’ and C’). 

Furthermore, as shown in B’ and C’, increasing the maximum output voltage over 30% did not 

promote nZVI recovery—and subsequently more PTEs—in the mags fraction. Conversely, the 

magnetization for the < 125 μm fraction was minor at 30% voltage. This observation is 
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consistent with previous findings (section 3.2), in which it was concluded that the metallurgical 

accounting revealed problems with the separation for this size. In fact, concerning the magnetic 

signals, these problems in the thickest fractions are also reflected in terms of the difference 

between the < 125 μm signals and the respective 500–2000 μm and 125–500 μm.  In any case, 

for each experiment, almost all the nZVI was concentrated in the magnetic part (as revealed by 

the low percentages of nZVI in non-mags loops), thereby confirming a correlation between the 

accumulation of Cu, Pb, Sb in the mags fraction (or Hg in the non-mags fraction). 

Additionally, Figure 8 shows the signals of the non-mags for all the experiments. In this case it 

can be appreciated that the percentage of nZVI is lower than 1% in all the cases, evidencing that 

nZVI tends to accumulate in the magnetic fractions (Figure 7). Moreover, this percentage 

decreases as the intensity of the magnetic field rises.  

Finally, the ratio %s
nZVI (i.e.; the percentage of nZVI in the soil feed) was calculated by means 

of equation 8, providing similar concentrations to those reconstructed with equation 5, as can be 

seen in Table 4. This ratio is a way of checking the robustness of the method of mixing and the 

innovative formulation presented. 

 

4. Conclusions 

Here we studied the effect of nZVI as a pretreatment to a subsequent soil washing process of 

soil affected by PTEs. To this end, various grain-size fractions were pretreated with nZVI and 

subjected to WHIMS or hydrocycloning. The study included an exhaustive chemical and 

magnetic characterization.   

We introduced a correction of element recoveries in order to facilitate the comparison of results 

from experiments with and without nZVI pretreatment. In this respect, the equations proposed 

provided coherent results and successfully removed the dilution effect caused by nZVI addition. 

Nanoparticle pretreatment performed before WHIMS provided satisfactory results, improving 

PTE concentrations for the 125–500 μm and 500–2000 μm grain-size fractions. However, 

concentration by hydrocycloning and WHIMS presented problems for the < 125 μm fraction. 

On the basis of these experiments, we conclude that nZVI preferentially interacts with Cu, Sb 

and Pb (making them report to the mags fraction) and Hg (which reported to the non-mags 

fraction). Unlike the previous elements, nanoparticles did not have a clear effect on As 

concentration. 

Concerning the magnetic signals study, the hysteresis loops and proposed equations allowed us 

to determine the amount of nanoparticles present in each of the separated fractions. These 
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results were essential to corroborate the contribution of nZVI to enhancing the concentration 

process, as well as to perform the metallurgical accounting correction. In this respect, we 

conclude that the larger the nZVI dose, the better the PTE recovery. Along the same lines, 

optimal operating conditions were deemed to be at 30% of the maximum output voltage, except 

in the < 125 μm fraction. In view of the aforementioned findings, we conclude that nZVI 

treatment prior to soil washing brings about an improvement in PTE recovery. 
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Tables  

Table 1. Particle-size distribution and element concentration of the bulk and initial grain-

size fractions (aqua-regia digestion and ICP-OES analysis).    

Grain-size 

fraction 

(μm) 

Weight  

(%) 

Element concentration 

Al 

(%) 

As 

(ppm) 

Ca 

(%) 

Cu 

(ppm) 

Fe 

(%) 

Hg 

(ppm) 

K 

(%) 

La 

(ppm) 

Pb 

(ppm) 

Sb 

(ppm) 

V 

(ppm) 

Y 

(ppm) 

> 2000 50.4 - - - - - - - - - - - - 

500–2000 11.0 0.6 182.4 2.8 92.6 1.0 73.7 0.3 14.4 22.4 10.4 11.4 15.9 

125–500 12.6 0.5 123.0 1.6 63.7 0.9 53.5 0.2 10.3 52.1 9.3 9.8 15.3 

< 125 25.9 0.9 380.7 1.6 300.5 2.6 153.8 0.2 17.4 129.4 18.2 24.7 29.5 

Bulk - 0.7 249.0 2.4 88.0 1.6 100.6 0.3 14.0 46.0 13.0 17.0 23.0 
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Table 2. Results for WHIMS experiments. WRc' designates the corrected weight recovery 

in the concentrated fraction and ERi
c' the corrected element recoveries for PTEs. In the 

case of Fe, uncorrected ERic values had to be used. Results correspond to the average of 

three measurements with a standard error < 3%. 

Grain-

size 

fraction 

(μm) 

WHIMS 

Voltage 

(% of the 

maximum 

output) 

Soil washing nZVI-assisted soil washing 

WRc' 

(%) 

ERi
c ERi

c' 
WRc' 

(%) 

ERi
c ERi

c' 

Fe As Cu Hg Pb Sb Fe As Cu Hg Pb Sb 

500–2000 

10 8 3.22 24 19 4 14 18 55 14.30 59 76 37 62 61 

20 14 2.85 35 25 9 16 29 60 18.00 66 78 66 82 71 

30 17 3.17 41 40 6 36 38 69 14.10 75 94 45 86 82 

50 20 3.21 49 41 7 43 45 76 7.07 80 92 46 87 82 

 

125–500 

 

10 5 3.96 16 17 2 25 17 30 25.70 31 78 10 36 45 

20 6 4.10 20 13 3 20 20 43 21.70 44 85 21 50 60 

30 8 4.25 28 22 4 30 27 37 20.40 41 81 19 49 55 

50 10 4.14 36 30 5 40 31 51 20.90 56 89 27 62 70 

       < 125 

10 3 7.24 9 8 4 11 12 35 21.80 37 59 39 42 43 

20 6 7.68 18 14 6 24 22 47 20.10 51 68 48 55 56 

30 7 7.41 17 14 7 19 22 60 17.40 60 75 65 66 67 

50 8 7.13 20 16 8 22 25 51 22.00 54 74 49 57 61 
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Table 3. Results for hydrocycloning experiments for the < 125 µm fraction under different 

conditions. WRc' indicates the corrected weight recovery in the concentrated fraction. 

ERi
c' represents the corrected element recoveries for PTEs except for Fe (uncorrected). 

Results correspond to the average of three measurements with a standard error < 3%. 

Assay conditions Soil washing nZVI-assisted soil washing 

Apex diameter (mm) Pressure (kPa) WR'c 

ERi
c (%) ERi

c' (%) 

WR'c 

ERi
c (%) ERi

c' (%) 

Fe As Cu Hg Pb Sb Fe As Cu Hg Pb Sb 

6.4 68.95 18 5,32 27 31 20 33 25 38 21,30 46 60 37 51 45 

6.4 137.90 22 5,37 33 41 27 40 30 25 21,40 31 43 24 35 33 

9.5 68.95 16 5,30 26 28 20 31 24 28 21,50 31 44 24 38 35 

9.5 137.90 12 5,48 16 20 15 23 19 25 21,70 31 40 22 33 30 

 

Table 4. nZVI concentration derived from M(H) curves. %M
nZVI and %NM

nZVI are the 

percentages of nZVI in the mags and non-mags fractions, respectively, %M is the 

proportion of magnetics in the mags fraction, and %s
nZVI is the percentage of nZVI in each 

feed, calculated by means of equation 8. 

Voltage  

(% of the 

maximum 

output) 

2000–500- μm  125–500 μm  < 125 μm  

%𝐌
𝐧𝐙𝐕𝐈 %𝐍𝐌

𝐧𝐙𝐕𝐈
 %𝐌 %𝐬

𝐧𝐙𝐕𝐈
 %𝐌

𝐧𝐙𝐕𝐈
 %𝐍𝐌

𝐧𝐙𝐕𝐈
 %𝐌 %𝐬

𝐧𝐙𝐕𝐈
 %𝐌

𝐧𝐙𝐕𝐈
 %𝐍𝐌

𝐧𝐙𝐕𝐈
 %𝐌 %𝐬

𝐧𝐙𝐕𝐈
 

10 18.44 0.14 89.42 16.51 22.24 0.41 49.75 11.27 28.98 0.82 62.86 18.52 

20 18.26 0.28 90.24 16.48 27.84 0.31 39.81 11.08 32.23 0.95 56.17 18.11 

30 39.52 0.00 41.81 16.52 38.79 0.31 28.48 11.05 26.51 0.64 69.11 18.32 

50 27.13 0.06 60.76 16.48 33.44 0.10 33.50 11.20 31.81 0.71 57.27 18.22 
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Figures 

 

Fig. 1. X-ray diffraction patterns for the raw soil of grain size: 500–2000 μm (blue), 125–

500- μm (green) and < 125 μm (red). Characteristic peaks of main crystalline phases 

identified are indicated as: quartz (*), calcite (□) and muscovite (●). 
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Fig. 2. Corrected element recovery vs. corrected weight recovery for the 500–2000 µm 

fraction after WHIMS. Crosses and circles and represent experiments with and without 

nZVI pretreatment, respectively. Vertical alignments correspond, from left to right, to 

increasing output voltages.   
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Fig. 3. Corrected element recovery vs. corrected weight recovery for the 125–500 µm 

fraction after WHIMS.  Crosses and circles and represent experiments with and without 

nZVI pretreatment, respectively. Vertical alignments correspond, from left to right, to 

increasing output voltages.   
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Fig. 4. Corrected element recovery vs. corrected weight recovery for the < 125 µm fraction 

after WHIMS. Crosses and circles and represent experiments with and without nZVI 

pretreatment, respectively. Vertical alignments correspond, from left to right, to 

increasing output voltages.   
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Fig. 5. Corrected element recovery vs. corrected weight recovery for the < 125 µm fraction 

after treatment with the hydrocyclone. Crosses and circles and represent experiments with 

and without nZVI pretreatment, respectively. Vertical alignments correspond to a) 6.4 

mm apex diameter and 68.95 kPa; b) 6.4 mm apex diameter and 137.90 kPa; c) 9.5 mm 

apex diameter and 68.95 kPa; d) 9.5 mm apex diameter and  137.90 kPa. 
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Fig. 6. Hysteresis loops of: a) pure nZVI, b) raw soil, and (c) nZVI pretreated soil. M, is 

the specific magnetization; and H, the magnetic field applied. Grain size: 500–2000 μm 

(blue), 125–500- μm (green) and < 125 μm (red). Bottom right loops indicate the 

magnification of the central section of the loop. 
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Fig. 7. M(H) curves for magnetic fractions of the feeds after WHIMS. Hysteresis loops are arranged in rows by grain size: A’: < 125 μm, B’: 125–500 

μm and C’: 500–2000 μm; and in columns by percentages of maximum output voltage: A (10%), B (20%), C (30%) and D (50%). Bottom right loops 

are the magnification of the central section of the loop. % values correspond to the weight % of nZVI in the mags fraction. 
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Fig. 8. M(H) curves for non-magnetic fractions of the feeds after WHIMS. Hysteresis loops are arranged in rows by grain size: A’: < 125 μm, B’: 

500–125 μm and C’: 500–2000 μm; and in columns by percentages of maximum output voltage: A (10%), B (20%), C (30%) and D (50%). Bottom 

right loops are the magnification of the central section of the loop. % values correspond to the weight % of nZVI in the non-mags fraction. 
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