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Abstract 

S-curves are usually taken as expression of project progress and have become a requisite tool for project managers through the 
execution phase. The common methodology for predicting S-curve forecasting models is based on classifying projects into groups 
and producing a standard S-curve for each group using multiple linear regression techniques. Traditional regression models taken 
to fit individual projects require a large amount of data and make many strict assumptions regarding statistical distribution of the 
data. The grey system theory, however, is well suited to study the behavior of a system with incomplete information or limited 
amount of discrete data. Easy of use and accuracy, two significant criteria for project managers when choosing a forecasting model, 
are considered two additional attributes of the grey system theory. This paper proposes a residual Grey prediction model to forecast 
the actual cost and the cost at completion of a project based on the grey system theory. Results show that the accuracy of the 
forecasting model is highly efficient. 
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1. Introduction 

It is assumed that the profile of the cumulative cost versus elapsed time on projects takes the shape of an S-curve1. 
The common characteristics of all systems that demonstrate this behaviour (S-curve) include slow growth, followed 
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by rapid growth, which in turn is followed by slow growth again to an asymptotic maximum. The reason is that projects 
start slowly when the resources necessarily need to set up, and then projects start to accelerate once all resources have 
been acquired2,3. Even the largest projects start with an initially small number of tasks, but soon begin to tackle multiple 
activities simultaneously. These parallel interconnected activities increase the spending greatly compared to the work 
at the beginning which in comparison is usually more limited. A cap on the total cost limits the budget and forces this 
large spending rate to decline. Because the tasks depend on each other, they cannot all end simultaneously. Activities 
dwindle to a small number again and eventually the entire project ends. Thus, in projects, the S-curve is driven by the 
multiple interconnected activities that occur in the middle of the project life4. 

S-curves are usually taken as expression of project progress and have become a requisite tool for project managers 
through their execution phase5. The guide to the Project Management Body of knowledge (the PMBOK) defines the 
S-curve based on its appearance as: “graphic display of cumulative costs, labour hours, percentage of work, or other 
quantities, plotted against time.” The name derives from the S-like shape of curve (flatter at the beginning and end, 
steeper in the middle4. 

The literature review suggests that S-curves can be used for several purposes, as a target against which the actual 
progress of the project can be evaluated at any point in time to monitor whether the project is on schedule6, to forecast 
the likely duration of the project once the contract price and cumulative expenditure are known, and even to manage 
cash flow, current performance status, future necessary cost/duration, etc., for running projects5,7-9. Jepson10 argued 
that S-curves representing labour man hours or labour costs can only act as indices for financial control. 

Traditional regression models taken to fit individual projects could not be well fitted. These methods require a large 
amount of data and make many strict assumptions regarding statistical distribution of data. Few data, extreme values, 
emerging changes, classifications of projects, uncertainties and uniqueness always exist in the project engineering 
environment. This paper proposes a residual Grey prediction model to forecast the actual cost and the cost at 
completion of a project based on the grey system theory, which is well suited to study the behaviour of a system with 
incomplete information or limited amount of discrete data. The paper begins by reviewing the literature on methods 
for predicting S-curves. Next, the residual grey forecasting method is presented and applied to a road building project. 
Finally, there is a concluding section with the main findings of the paper. 

2. Methods for predicting S-curves 

Various mathematical formula forms for S-curves have been developed5,7,11.  Hardy12 analysed 25 different types 
of projects and found that there was no close correlation between the values considered even when separating them 
into different categories. Bromilow and Henderson13 used four general building projects to develop their value S-
curve. Drake14 collected projects from regional health authorities and classified them into different cost categories, 
the author fitted and S-curve into each of these categories but no figures were published of the number of projects 
analysed or of the level of accuracy of the fitted function. Kenley and Wilson3 proposed an ideographic methodology 
to build individual construction project cash flows model based on the logit transformation approach.  Skitmore15 
utilized three approaches, analytic, synthetic, and hybrid, in combination with six alternative models to determine the 
best approach/model combination for the available data and forecasts for future expenditure flows.  Kaka2 used a 
stochastic model based on historical data with logit transformation technique to incorporate variability and inaccuracy 
in their forecasts and decision-making. Barraza et al.,8 developed stochastic S-curves to provide probability 
distributions of budgeted cost and planned elapsed time for a given percentage of progress in order to evaluate cost 
and time variations. Hwee and Tiong16 developed an S-curve profile model from cost-schedule integration equipped 
with progressive construction-data feedback mechanisms. Mavrotas et al.,1 modelled cash flows based on a bottom-
up approach from a single contract to the entire organization with an S-curve based on a conventional non-linear 
regression model. Blyth and Kaka9 proposed a model that standardized activities to produce an individual S-curve for 
an individual project using a multiple linear regression model.  Chao and Chien17 proposed an empirical method for 
estimating project S-curves that combined a succinct cubic polynomial function and a neural network model based on 
existing S-curve formulas and attributes of the project. Cheng and Roy18 proposed an evolutionary fuzzy decision 
model for cash flow prediction using time-dependent support vector machines and S-curves.  Cheng et al.,6 proposed 
a progress payment forecasting approach using S-curves for the construction phase. The authors improve the 
traditional grey prediction model by applying the golden section and bisection method to build a short-interval cost-
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forecasting model.  Maravas and Pantouvakis19 developed an S-surface cash flow model based on fuzzy set theory to 
predict the working capital requirements of projects. Lin et al.,5 proposed a construction project progress forecasting 
approach which combines the grey dynamic prediction model and the residual modified model to forecast the current 
project progress during the construction phase. Chen et al.,20 estimated project’s profitability at completion using a 
multivariate robust regression model to test how well the key variables in project initiation and planning phases predict 
project profitability. 

There are limitations that existed in the previous studies at developing models to forecast S-curves such as poor 
classification of projects, statistical assumptions, unique of construction projects, etc. Most developed formulas have 
been based on different classified groups according to criteria such as type of project, duration of contract, type of 
procurement, and size of company21. The characteristic of grouping distribution could display different S-curves due 
to the fact that each construction project is unique, should be modelled separately and greatly different from one 
project to another. In addition, the groups of the same classified projects still could have a variety of shapes of S-
curves due to uncertain factors, while the different type of projects may have almost the same shape of curves5. Thus, 
poor choice of project grouping could be done in practice3,9. Limitations of traditional linear regression is that extreme 
values could unduly influence the logistic transformation analysis when the data approaches either 0% or 100% and 
that it should be to gather a lot of history sample data and make many strict assumptions to distribution of samples5. 
Different parameter values of the fitting model should be used for different types of construction projects rather than 
the general practice of applying its parameter values to all types of work15. In addition, it is different for traditional 
statistical models to reflect real growth trends among different stages because parameters such as cost/period can grow 
at different speeds during the whole project5. 

In forecasting there is a common assumption that accuracy is the primary criterion in selection among forecasting 
techniques. However, new techniques and criteria are desirable in the selection and evaluation of forecasting 
techniques from practical perspective22. Easy of use, easy of using available data and interpretation, flexibility, etc., 
are significant criteria to project managers who are concerned about what technique will provide high-speed and works 
well over various work-related situations. The grey prediction model gets rid of any aforementioned strict assumptions 
and the sample is suited for limited data to construct a forecasting model. Few data, emerging changes, uncertainties 
and uniqueness always exist in the construction project engineering context5. 

3. A residual Grey forecasting method 

The grey system theory, originally presented by Deng23, focuses on model uncertainty and information 
insufficiency in analyzing and understanding systems seeking mathematical relations and movement rules. The grey 
system puts each stochastic variable as a grey quantity that changes within a given range. It does not rely on statistical 
method to deal with the grey quantity. It deals directly with original data, and searches the intrinsic governing laws 
from the available data24. In the grey system theory there are three systems classified by the degree of information 
completed. A white system is defined as the case where information in it is fully known; while a black system is 
defined as the case where information is unknown or nothing in the system is clear. A system with partial information 
known and partial information unknown is defined as a grey system. Among the various forecasting models that have 
been developed, the Grey prediction model requires fewer data and less complicated mathematical calculation. This 
characteristic is the core of the Grey system theory6, which has been successfully applied to many fields including 
wafer fabrication, opto-electronics, electricity costs, integrated circuits, and meteorology25. 

The most commonly used grey forecasting model is GM (1,1)26, which indicates one variable is employed in the 
model and the first differential equation is adopted to match the data generated by the accumulation generating 
operation (AGO). The AGO reveals the hidden regular pattern in the system development and converts a series lacking 
obvious regularity into a monotonously increasing series to reduce the randomness of the series, and increase the 
smoothness of the series. 

The grey dynamic prediction model should be operated in accordance with the principle of keeping the same 
dimension of data series. The minimum number of data must be four in consecutive order without bypassing any 
data28. That is to say, a new data is attached on tail end of the original data series and the first data in the original data 
series should be removed before the next forecasting operation. This operation could be performed step-by-step 
according to the above equation to get a new predicted value for each subsequent period. 
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In order to establish the GM (1,1) model, the raw data series of number )0(X is assumed to be 
 

nxxxX 000)0( ,,2,1  (1) 
where n is the total number of modelling data. These data are fluctuating in a definite range. In order to find out the 
regular patterns, the series of data is treated by 1-AGO: 
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The GM (1,1) model can be constructed by establishing a first order differential equation for kX )1(
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where parameters a and u are called the developing coefficient and grey input, respectively. In order to obtain the 
solution to this differential equation, we can get the parameters a and u by using the least square method26. Then  
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The solution of the differential equation (5) is  
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Then, according to the inverse accumulated generating operation (IAGO), we can get the modeling calculated 
values )0(X̂  
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11ˆ 0)1( xx  (12) 
The residual series is a sequence that could be derived from the operations by grey dynamic prediction model as 

follows: 
 

nkkxkxke ,,3 ,2,ˆ 0)0(  (13) 
where kx )0(ˆ  is the prediction value, kx )0(  is the real value and ke  is the residual value. Thus, the residual 
series is transformed as a nonnegative sequence as follows. Given the series nYYYY ,,, 21 , the nonnegative 
sequence of this series is: 
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Then, the grey dynamic prediction model GM(1,1) is again introduced as: 
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Through inverse AGO to get the predictive error’s value as: 
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An error measure is used to asses the accuracy in terms of closeness of fit as well as to provide a basis for model 

performance evaluation. The evaluation criterion to measure the percent of prediction accuracy is the mean absolute 
percentage error (MAPE): 
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Lower MAPE values are better because they indicate that smaller percentage errors are produced by a forecasting 

model. Following Lewis27 (1982), less than 10 percent is highly accurate forecasting. Values between 10 percent and 
20 percent, between 20 percent and 50 percent, and higher than 50 percent are considered indicators of high, average, 
and low prediction accuracy, respectively. 
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4. Application 

The purpose of this section is to illustrate the use of the proposed model, which can be a useful tool for project 
managers in controlling and revising the gap between the estimated and actual S-curve during the course of a project. 
With this aim, the GM (1,1) model is applied to the road building project shown in Table 1. The project was undertaken 
in the mountain pass La Braguía in the North of Spain from June 2012 to July 2013. Table 2 shows the actual cost, 
the forecasted value and the corresponding MAPE values. 

Table 1. Data of the project. 

Task Description  Predecessors 

A Demolitions  - 

B Transport of Earths  - 

C Walls  A 

D Longitudinal drainage  A 

E Transversal drainage  B 

F Granular and asphalt capes  C, D 

G System of road signs  F, E 

H Markings on the road  F, E 

I Landscape integration  B 

Table 2. Actual cost, forecasted value, error and MAPE values. 

Date Real Forecasted Error MAPE 

Jun-12 25,567    

Jul-12 66,293 59,985   

Ago-12 78,293 84,338   

Sep-12 124,073 118,577   

Oct-12 191,367 166,717 -24,650  

Nov-12 259,845 295,589 26,842 1.5 
Dic-12 285,612 338,051 80,578 2.7 
Jan-13 290,843 365,047 60,337 1.3 
Feb-13 303,489 406,482 7,246 3.8 
Mar-13 316,431 313,012 -4,728 1.1 
Apr-13 320,690 305,523 9,348 3.0 
May-13 336,756 312,135 -5,725 2.2 
Jun-13 349,379 346,961 -3,794 1.6 

 
In order to obtain the values shown in Table 2, we follow the following process: with the data from June 12 to 

September 12, a series of number )0(X is formed: 
073,124, ;293,78 ;293,66 ;567,25)0(X  

This series of number is treated by 1-AGO (Eqs. 2 and 3). Then, we get a new series of number: 
304,294 ;170,231 ;91,938 ;567,25)1(X  

Applying Eqs. (6), (7), and (8) we can get â  
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The solution of the differential equation (5) is therefore 
111,122341.0exp756,14711 kkx  

Then, a series of calculated data )0(X̂ is given by inverse accumulated generating operation 
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Operating in accordance with principle of keeping the same dimension of data series, that is, attaching a new data 

on tail end of the original data series and removing the first data, a new predicted value is obtained for each subsequent 
period. Performing this operation step-by-step, the residual series is obtained applying equation (13). Repeating the 
same process as above for this residual series, the forecasted values and their corresponding MAPE values shown in 
Table 2, are obtained. 

All MAPE values are lower than 5 percent and only one value is higher than 3 percent. Both the initial and final 
MAPE values are lower than 2 percent, which indicates the small percentage error produced by the forecasting model 
at the initial and final stages of the project, as can be seen in Figures 1. According to Lewis’ interpretation32, these 
results show that the accuracy of the residual modified Grey prediction model to forecast the cost and the cost at 
completion of the project is highly efficient. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Real and Predicted cost. 

5. Conclusions 

Accuracy has traditionally been the primary criterion in selection among forecasting techniques. However, new 
techniques and criteria are desirable in the selection and evaluation of these techniques from practical perspective. 
Easy of use and available data, interpretation, flexibility, etc., are significant criteria to project managers who are 
concerned about what technique will provide high-speed and works well over various work-related situations. The 
objective of this paper is to develop a reliable and easy cost forecasting method to assist project managers to control 
and revise the gap between the estimated and actual S-curves. In an environment featured by scarcity of data and 
uncontrollable factors, project managers always need a practicable and effectual tool to monitor real progress against 
the expected schedule at any time during the course of a project. This paper shows that the residual Grey prediction 
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model can be utilized for prediction of the actual cost and cost at completion of a project. The advantages of the model 
are remarkable. When the number of data is not enough for mathematics statistics, or probabilistic analysis, the model 
provides an accurate, easy and stable method for predicting project progress in comparison with the traditional 
forecasting methods. Results show that the proposed approach is able to get accurate cost forecast. The low MAPE 
values obtained reflect that the accuracy of the residual Grey prediction model forecasting model is highly efficient. 
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