
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–15
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

A scalable synthetic traffic model of Graph500 for computer
networks analysis

Pablo Fuentes1∗ Mariano Benito1, Enrique Vallejo1, José Luis Bosque1, Ramón
Beivide1, Andreea Anghel2, Germán Rodrı́guez3, Mitch Gusat2, Cyriel Minkenberg3

and Mateo Valero45

1University of Cantabria, Dept. Computer Science and Electronics, Avda. Los Castros s/n 39005, Cantabria, Spain.
2IBM Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.

3Rockley Photonics Inc, Switzerland.
4Universitat Politecnica de Catalunya, Barcelona, Spain
5Barcelona Supercomputing Center, Barcelona, Spain.

SUMMARY

The Graph500 benchmark attempts to steer the design of High-Performance Computing systems to
maximize the performance under memory-constricted application workloads. A realistic simulation of such
benchmarks for architectural research is challenging due to size and detail limitations. By contrast, synthetic
traffic workloads constitute one of the least resource-consuming methods to evaluate the performance.
In this work, we provide a simulation tool for network architects that need to evaluate the suitability of
their interconnect for BigData applications. Our development is a low computation- and memory-demanding
synthetic traffic model that emulates the behavior of the Graph500 communications, and is publicly available
in an open-source network simulator. The characterization of network traffic is inferred from a profile of
several executions of the benchmark with different input parameters.
We verify the validity of the equations in our model against an execution of the benchmark with a different
set of parameters. Furthermore, we identify the impact of the node computation capabilities and network
characteristics in the execution time of the model in a Dragonfly network.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: scalable simulation tools; system interconnect; network evaluation; Graph500 benchmark

1. INTRODUCTION

BigData applications have become ubiquitous and gather the interest of system architects and
designers. Many of these workloads are more memory- and IO-bounded and place a higher stress
on the network system than traditional High-Performance Computing (HPC) applications. This
behavior makes the nature of their communications of high relevance for network architects, who
require new tools for an adequate development of future systems.

One of the biggest challenges of BigData applications is to structure data to rapidly find relations
and establish associations. A typical approach is to organize data into graphs and explore them
following a tree. There exist multiple strategies to obtain a tree given a graph; Breadth-First Search
(BFS) is one of the most known and employed among them.

∗Correspondence to: Pablo Fuentes, Dept. Computer Science and Electronics, Facultad de Ciencias, Universidad de
Cantabria, Avda. Los Castros s/n 39005, Cantabria, Spain. E-mail: pablo.fuentes@unican.es

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 P. FUENTES ET AL.

The Graph500 benchmark [1] [2] appeared in 2010 with the aim of influencing the design of
new systems, so they better adjust to the memory- and IO-bounded requirements of data intensive
applications. Based on the execution of a BFS within a graph, it is currently one of the most
known BigData-focused benchmarks. Therefore, it is strongly useful for the evaluation and design
of parallel computers, especially their memory and network subsystems.

The objective of this work is to provide computer network architects with a simple and scalable
tool to evaluate the impact of the system interconnect on the execution of a BigData workload. To
achieve it, we review, extend and implement a synthetic traffic model of the communications of the
Graph500 benchmark. A publicly available implementation in an open-source network simulator is
provided, and can be handily adapted to other simulators. Our model replicates the staged structure
of the benchmark with large batches of uniformly distributed point-to-point messages ending in
a collective all-reduce operation. The number of messages for each stage is defined through a
Gaussian distribution whose mean and standard deviation are a function of the input parameters
of Graph500. The equations for the mean and standard deviation are obtained empirically from a
characterization of several benchmark executions with different input parameters.

In summary, the main contributions of this paper are:

• We extend a synthetic traffic model that follows the behavior of the Graph500 benchmark,
introduced in a previous work in [3]. Our model predicts the volume of point-to-point
communications in each stage of the model.

• We implement our model in an open-source network simulator [4]. This model achieves good
scalability both in size of the simulated network and maximum graph size explored in the
benchmark, without extensive computational or memory requirements.

• We validate our model through a comparison against empirical values from the execution
of the Graph500 benchmark, and present a series of results from the execution of our model,
considering a Dragonfly network. We analyze these results and link them to the characteristics
of the workload.

The remainder of the paper is organized as follows: first, we perform a brief analysis of the
Graph500 benchmark and the behavior of its communications. Then, we present our synthetic traffic
model. Next, we give a comprehensive description of the implementation of the model in a network
simulator. A validation of the model follows, crosschecking the validity of the equations in the
model and presenting results from the implementation in a network simulator. Finally, we present
related work and the conclusions of the paper.

2. ANALYSIS OF THE BENCHMARK COMMUNICATIONS

This section extends the analysis of the communications of the Graph500 introduced in [3]. The
benchmark consists of two kernels: a graph generator and a BFS performed for a number of
randomly selected tree vertices across the graph. The benchmark receives two input parameters
defining the size of the graph (scale and edgefactor) and returns the achieved system performance
along the execution of the BFS. Four implementations of the BFS are provided by default; in this
work we focus on the most-scalable simple implementation that splits the graph among the processes
without replicating data. A thorough description of the implementations can be found in [5] and [6].

Communications along the benchmark execution are tied to the levels of the tree obtained from
the BFS execution. In each level, each process searches the neighbors of the current frontier of the
tree. Those vertices are marked as part of the next frontier, so they are visited in the following level.
A query is generated when a given neighbor vertex is allocated to a different process. This query
corresponds to a petition to determine if the vertex has been already visited. These queries translate
into point-to-point messages. From a network perspective, each tree level consists of a batch of
point-to-point messages followed by a final notification to all other processes, to signal the end of
the level within the process.

Figure 1 gives some understanding of the communications during a BFS execution. Figure 1a
portrays an outline of the communications within each phase of the BFS, depicting the dispatch

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A SCALABLE SYNTHETIC GRAPH500 TRAFFIC MODEL 3

(a) Outline of the communications in each BFS phase.

Synchronization (All-reduce)

Point-to-point messages

(with multiple queries each)
Notifications of

phase end

(b) Trace of an actual execution with 16 processes. Scale s = 22 and edgefactor fe = 16.

Figure 1. Temporal evolution of the communications of the BFS.

of messages through arrow lines. Processes communicate the end of message dispatching at the
current phase trough a phase end notification. The end of each phase is marked by a synchronization
point through an all-reduce, which comprises a reduction and a broadcast. This collective operation
ensures both the distribution of the number of new visited vertices in the stage, and a synchronous
beginning of the next phase. Between the dispatch of the notification of phase end and the beginning
of the all-reduce (shown in light blue), processes only perform the associated computation of the
incoming messages. The length of this block is marked by the slowest process to enter the all-reduce.

Figure 1b presents a trace of a BFS taken from the execution of the Graph500 benchmark over a
graph of scale 22 and edgefactor 16, employing 16 processes. The blue blocks in the trace represent
computation, and pink blocks correspond to the dispatch of a message. Black bars point the all-
reduce collectives. It can be appreciated that communications are interspersed with computation
along the execution, with message shipment uniformly distributed across the execution.

The amount of messages per level is distributed evenly between all processes, but it varies
significantly between tree levels. Two big levels typically represent around 80% of the total. The
impact of the point-to-point messages to notify the end of a tree level is negligible [7]. The likewise
sporadic all-reduce is important only because it synchronizes the generation of new messages.
Therefore, from a network usage perspective, the major communications are the point-to-point
exchanges during each tree level. These communications are highly homogeneous spatially due
to the even distribution of the graph across processes.

Graph500 exploits message aggregation to reduce network traffic, with every message grouping
multiple queries up to a value named coalescing size. Each query corresponds to a petition to explore
the vertex linked through a given edge, so the number of queries exchanged between two processes
equals the number of explored edges attached to vertices hosted in the two processes for a given
tree level. The even distribution of the graph across processes translates into an even distribution of

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 P. FUENTES ET AL.

Edges per vertex

F
re

qu
en

cy

0 50 100 150

0
10

00
00

25
00

00

Figure 2. Histogram of the vertex degree, truncated. Graph scale is s = 17, edgefactor is fe = 16.

the total number of explored edges per tree level among all the possible source-destination process
tuples. The graph is undirected, forcing all edges to be traversed twice - one per each way.

Graphs in the benchmark are generated through a Kronecker matrix product similar to the
Recursive MATrix (R-MAT) scale-free graph generation algorithm [8]. Graphs generated by R-
MAT emulate the behavior of small-world phenomena, where a small fraction of the nodes (or
vertices) have a significantly large number of direct connections (or edges) with other nodes, and a
large proportion of the vertices have a low number of edges (or vertex degree) [9]. Figure 2 displays
a histogram of the vertex degree measured for a graph generated in the benchmark. A reduced set
of sparse higher degree values (up to around 30,000 edges) has been truncated from the figure for
ease of visualization. It can be appreciated that the distribution is heavily condensed in low degree
values, with a trend of tails that favor some high degree values over others. Previous works from
Chakrabarti and Faloutsos [8], Leskovec et al. [10] and Kim and Leskovec [11] characterize the
distribution of the vertex degree in such graphs as power-law or lognormal, which is the distribution
employed in our model.

3. GRAPH500 NETWORK TRAFFIC MODEL

This section presents the model, which is extended from [3] by considering the variance of the
number of messages per level to support variability in the execution. Our model consists of a traffic
generator structured in multiple stages corresponding to the consecutive tree levels. For each stage,
a given number of point-to-point messages is dispatched from every process; these messages are
uniformly distributed in time and across destinations (following the analysis of the benchmark
communications in [7]) and are succeeded by end-of-phase signals and a synchronization point.

As explained in the previous section, the most critical part of the execution for any non-
trivial graph size will be the point-to-point communications, since the messages will significantly
outnumber those during the all-reduce. This section provides a comprehensive insight of the point-
to-point communications and its temporal and spatial distribution.

Table I presents a summary of the abbreviations that are employed in the model equations, with a
brief description of each parameter. The scale, edgefactor and coalescing size are input parameters
of the benchmark, and the number of nodes n is directly tied to the benchmark execution; the rest
of the variables in the table are internally employed.

Point-to-point message generation rate depends fundamentally on the node computation
capabilities, and we introduce it as an input parameter to the model that is constant across any
execution. Any given set of nodes can be tuned to under- or out-perform the rest of the system,
in order to model heterogenous systems. Message destination is selected randomly among all the
other processes in the application, following the uniform distribution of the vertices observed in
the execution of the benchmark [7]. In every level the number of messages sent for each process is
determined following Equations 1- 3.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A SCALABLE SYNTHETIC GRAPH500 TRAFFIC MODEL 5

Table I. List of abbreviations employed in the equations.

Abbr. Parameter Description
s Scale Base 2 logarithm of the number of vertices in the graph.
fe Edgefactor Half of the average vertex degree.
cs Coalescing size Amount of explored edges aggregated per message.
n Number of nodes Number of nodes (processes) employed in the benchmark execution.
n′ Number of destination nodes Number of nodes (processes) which actually receive a message

in a given level.
q Number of queries per process Number of queries sent from each process per tree level.
m Messages per process Number of messages sent from each process per tree level.
El Edges per tree level Total number of edges explored within each stage of the BFS.
dr Degree of the root Number of edges connected to the root vertex.
l Tree level Stage of the tree in the BFS execution, starting at 0.

q =
El

n
· n− 1

n
(1)

n′ = n ·
(
1−

(
1− 1

n

)q)
(2)

m =

⌈
q

cs
· 1
n′

⌉
· n′ (3)

Equation 1 refers the number of queries as a function of the number of edges explored per node
and tree level, minus those edges that are explored within the node and do not span any network
communication. The number of explored edges per tree level is evaluated in Section 3.1.

Equation 2 defines the actual number of destinations (n′) as a Bernoulli experiment [12] with as
many trials as queries sent and a uniform probability of selecting a given node as destination for a
query. If q →∞, the number of effective destination equals the number of nodes in the network, n.

The number of messages given in 3 equals the quotient of the number of queries sent per tuple
of (source, destination) processes times the number of destination processes, and the message
aggregation. Due to message aggregation, each message can carry up to as many queries as the
value of the coalescing size (cs). The number of messages between every pair of nodes is rounded
up to account for those messages carrying less than cs queries.

3.1. Characterization of the mean and standard deviation of the number of edges per tree level

The total number of explored edges across the whole BFS execution is almost constant for a pair
of given scale and edgefactor parameter values, but its allocation among tree levels varies heavily.
Figure 3a depicts the histogram of the number of new edges traversed in a graph during the third tree
level (l = 2), which gathers most of the point-to-point communications of the whole execution as
discussed in the previous section. This histogram has been obtained by running a BFS for every root
in the graph and does not seem to follow any clear distribution, because simply averaging multiple
executions with the same input parameters masks the actual behavior.

Our approach is to determine the number of explored edges per tree level as a function of the
degree of the root vertex, which heavily influences the distribution. Figures 3b-3d display the
average distribution of the number of explored edges during the third tree level for the same graph in
Figure 3a, with three different ranges of root degree: roots with only one neighbor (Figure 3b), roots
with 10 to 20 neighbors (Figure 3c) and roots with a high root degree of 10,000 neighbors or more
(Figure 3d). For each range of the root degree there is only one predominant peak, as opposed to the
histogram for all roots shown in Figure 3a where there are multiple peaks of similar impact. This
heavy dependence on the root degree comes from the dynamic evolution of the benchmark: roots
with low vertex degree originate a low amount of communications at first tree levels, shifting the
biggest part of the graph traversal to higher levels, whereas roots with high degree rapidly explore
the majority of the graph and present low (or non-existent) communication at higher levels.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 P. FUENTES ET AL.

(a) Aggregated for all possible dr .

Number of explored edges at third tree level

F
re

qu
en

cy

0e+00 1e+06 2e+06 3e+06

0
20

00
0

40
00

0

(b) Roots with dr = 1.

Number of explored edges at third tree level

F
re

qu
en

cy
0

20
00

0
40

00
0

0e+00 1e+06 2e+06 3e+06

(c) Roots with 10 ≤ dr ≤ 20.

Number of explored edges at third tree level

F
re

qu
en

cy
0

10
00

0
25

00
0

0e+00 1e+06 2e+06 3e+06

(d) Roots with dr ≥ 104.

Number of explored edges at third tree level
F

re
qu

en
cy

0
20

40
60

80

0e+00 1e+06 2e+06 3e+06

Figure 3. Histogram of the number of explored edges in the third tree level, with different root degree dr .
Graph with scale s = 17 and edgefactor fe = 16.

We model the number of edges explored per tree level and process through a Gaussian
distribution. This method has the benefit of adjusting reasonably to the observed behavior while
remaining computationally low demanding.

The equations for the mean and standard deviation of the Gaussian distribution have been obtained
through a statistical analysis of the average number of explored edges from a set of executions of
the benchmark for different input parameters. The Gaussian distribution does not apply for the first
tree level, where the number of explored edges is trivially determined as the root degree.

This analysis has been conducted by establishing a linear combination that fits the observed
values through a model fitting tool based on the function described by Chambers in [13]. The
coefficients of said linear combinations have then been generalized to follow the variations with
the input parameters. The measurements are oblivious to the infrastructure employed, so they can
be extrapolated to any other system.

Our model characterizes the mean and standard deviation of the number of visited edges per tree
level as a function of the root degree and the graph parameters (scale and edgefactor).

Figures 4 and 5 depict the mean and standard deviation of the number of edges upon the root
degree, broken down per tree level. X-axis is displayed in logarithmic scale. Note that Y-axis in
Figure 4b is also in logarithmic scale. Results in Figure 4 correspond to the same data used for
the histograms in Figure 3. The three blocks circled in red correspond with the average number
of explored edges in the third tree level whose distribution was presented in Figures 3b-3d. Some
values in Figure 4 are interpolated, as not all the vertex degrees are present in a graph. This translates
into the gaps in the curves of the standard deviation (Figure 5). The aggregated amount of edges
remains almost constant, since the size of the graph is independent of the vertex selected as root
(and consequently the amount of edges to traverse during the BFS will be similar). However,
the distribution of those edges among the tree levels varies significantly, further confirming our
motivation to relate the communications to the vertex degree at the tree root. In the following
subsection we will present an equation linking the number of edges per tree level to the root degree.

3.2. Number of explored edges per tree level

Our model estimates the evolution of the number of explored edges per process for each tree level
through a Gaussian distribution. The first tree level is an exception to this, with the number of

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A SCALABLE SYNTHETIC GRAPH500 TRAFFIC MODEL 7

(a) Stacked values.

1 10 100 1000 10000

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06

Average Total New Edges (Breakdown per tree level)

Number of edges in first tree level

Tree level

0
1
2
3
4
5
6
7
8

(b) Curves.

1 10 100 1000 10000

1e
+
00

1e
+
02

1e
+
04

1e
+
06

Average Total New Edges Per Tree Level

Number of edges in first tree level

Figure 4. Number of explored edges per root degree, broken down per tree level. Note that the Y-axis is in
logarithmic scale for the right figure.

1 10 100 1000 10000

1e
−

01
1e

+
01

1e
+

03
1e

+
05

Standard Deviation of Total New Edges (Breakdown per tree level)

Number of edges in first tree level

Tree level

0
1
2
3
4
5
6
7
8

Figure 5. Standard deviation of the number of explored edges per root degree for each tree level.

explored edges being defined directly as the degree of the root vertex (and originating messages
only at one process, the one hosting the root).

The Gaussian distribution is characterized by a mean and standard deviation that are a function of
the root degree dr, the tree level l and the input parameters of the benchmark: the scale of the graph
(s) and the edgefactor (fe). We consider a notation for the tree level l that spans from l = 0.

The evolution of the mean per tree level (shown in Figure 4b) is estimated through a polynomial
of degree 2 as the one described in Equation 4. We have approximated theA,B andC factors in each
tree level to fit the observed values for several combinations of scales s = 16, 17, 18, 19, 20, 23, 25

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 P. FUENTES ET AL.

and edgefactors fe = 16, 20, 32, 45, 64. For each explored combination, we have run a BFS to
compute a tree for every vertex in the graph, and measured the average number of explored edges
per level for each root vertex degree.

We then have obtained an expression that fits the evolution of each of the parameters in Equation 4
with the scale and edgefactor parameters as well as the tree level, accomplishing a reasonable
prediction for larger scale and edgefactor values. This expression is presented in Equations 5 - 7.
The mean of the Gaussian distribution is truncated when the number of edges explored through the
whole execution reaches the limit of twice the number of edges in the graph. Equations 5 - 7 are
an update to a previous version of this work in [3] to prevent anomalous behaviors for large scale
values (s ≥ 30).

ln
(
El

)
≈ A · ln2 (dr) +B · ln (dr) + C, l ≥ 1 (4)

A = −0.133 + 0.0046 · s+ e0.01257·fe−0.1829·s−e
1.75−0.7·l

(5)
B = 2− l · (0.91 + 0.002 · fe − 0.012 · s) (6)

C = e1+(1+0.004·fe)·(−0.81+0.8411·ln(s))·e−
(l−2.8)2

30 (7)

A similar analysis is performed for the standard deviation, although in this case the approximation
function changes significantly between tree levels. Lower levels can be described through an
exponential of a polynomial like the one used for the average, whereas higher levels fit better into
an exponential of an inverse function. Interestingly, the second and third tree levels present a dual
nature; in the second level, there are two zones with different trends, and the second zone follows
the curve from the first level. Something similar happens for the third tree level, in which the first
points equal those of the fourth level and the remaining match the values of the second level. In both
cases, this is equivalent to taking the maximum between the crossing curves (this third case is not
spotted in this figure, but occurs with higher scale sizes).

Equation 16 refers said model, where the functions f1 (l, dr) and f2 (l, dr) are determined by the
formulas in Equations 8 - 15. These equations reflect a high divergence for roots with low degree,
which have a much larger number of samples in the graph. High degree roots are much sparser,
reducing the deviation between samples.

f1 (l, dr) = D · ln (dr)2 + F · ln (dr) +G (8)

f2 (l, dr) =
K

dr
H

+ J (9)

D = 0.002 · s− 0.14− (0.015 · s− 0.285) (0.56 + 0.033 · fe) (l − 1) (10)
F = 0.97− (l − 1) (4.438− 0.168 · s) (0.83 + 0.01 · fe) (11)

G = ((2.1 + l) (5.35 + 0.093 · s)− 13.625)

(
1.23− 2.9 + 0.69 · l

fe

)
(12)

H = 2l · (0.011 + 0.00012 · fe) · e1.7−
s
10 (13)

J = 1− e(1−0.012·fe)·(9.55−1.3·l−s·(0.6−0.1·l)) (14)
K = 13 · (0.062 · s− 0.046) · (2− 0.24 · l)− J (15)

ln (σEl
) ≈

f1(l, dr) l = 1,

max (f1 (1, dr) , f1 (2, dr)) l = 2,

max (f1 (2, dr) , f2 (4, dr)) l = 3,

f2(l, dr) l > 3.

(16)

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A SCALABLE SYNTHETIC GRAPH500 TRAFFIC MODEL 9

Table II. List of abbreviations employed in the model implementation.

Abbr. Parameter Description
ps Packet size Size of the packet, in phits. A phit is the number of bytes sent per simulation cycle.
pinj Injection probability Probability of injecting a phit in a given cycle.
tq Query time Number of cycles of computation associated with processing a query.
tc Cycle time Duration of a simulation cycle, in seconds.

Table III. List of query computation time for different node architectures.

Node tq
Altamira supercomputer - IBM iDataplex dx360m4, Intel Xeon E5-2670 @2.6GHz, 64GB RAM @1.6GHz 1.5ns
Intel Core i5-5200U @2.2GHz, 8 GB RAM @1.6GHz 2.25ns
Intel Xeon E5-2620 @2GHz 2.4ns
Mont-Blanc prototype [14] - Samsung Exynos 5, ARM Cortex A15 @ 1.7GHz 15ns

4. IMPLEMENTATION OF THE MODEL IN A NETWORK SIMULATOR

We have implemented our model in the FOGSim network simulator [4] in order to evaluate the
impact of the Graph500 traffic workload on system networks. Our implementation receives as input
parameters the scale of the graph (s), the edgefactor (fe) and the coalescing size (cs) in order to
determine the amount of point-to-point messages that will be transmitted during the execution.
Additionally, it requires a value for the time invested in the associated computation of an incoming
query. This query computation time tq is also used to compute the rate at which the point-to-point
messages will be injected into the network. Table II presents a list of abbreviations used in the
implementation of the model.

As outcome, the simulator reports the time invested in completing the execution of one Breadth-
First Search, as well as various sets of network statistics about the execution. It does not consider the
invested time in the generation of the graph, since that part of the benchmark execution is overlooked
for the performance figures of the benchmark.

Since the simulator is cycle-accurate, the time invested in the computation of a query must be
input in cycles. The injection probability of the point-to-point messages is expressed as a percentage
of the maximum traffic load that can be delivered by the network. For a given node architecture,
Equation 17 determines the corresponding injection probability at the simulator as a function of the
query execution time and the length of a simulation cycle.

pinj =
ps · tc
tq · cs

(17)

Query computation time is highly related to the performance of the hypothetical machine being
evaluated. In order to ease model usability, Table III provides the per-query computation times
measured under different node architectures, including a conventional HPC cluster and a novel
ARM-based cluster prototype. This serves as a reference to estimate the computation capabilities
for a given architecture; should a more precise value be desired, tq can be quantified running an
instrumentalized version of the Graph500 benchmark.

The difference between architectures is not very significant in absolute terms; query processing
is not computing-intensive and is mainly bounded by memory accesses. The best performer is
Altamira, an HPC cluster located at the University of Cantabria. However, a laptop chip such as
the Core i5 performs only a 30% slower. The highest computation time corresponds to the Mont-
Blanc prototype, an ARM low-consumption cluster. This prototype has been built as part of Mont-
Blanc [14], an EU-funded program that targets energy-efficient computation through large ARM-
based systems. Being based on low-power processors, a high execution time is reasonably expected,
and constitutes a lower bound for the execution time in our set of architectures.

Figure 6 portrays a flowchart with the states followed by the Graph500 synthetic traffic generator.
Simulation starts by determining the number of point-to-point communications that will be delivered
within the current stage or tree level. Each node of the network corresponds to a process in the

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 P. FUENTES ET AL.

Level start
Message

generation

Send
point2point

signal

Send
point2point

message

Message
consumption

More
messages to

send?

Level end
Graph fully
traversed?

START

END

YES

NO

YES
NOAll-reduce

Figure 6. Flowchart describing the behavior of the Graph500 simulation model.

benchmark; for the first stage, one node is selected as host of the root vertex and begins the
generation and dispatch of the point-to-point messages, being the lone sender for the whole level.

The amount of messages is calculated through the equations in Section 3, employing a Gaussian
distribution to quantify for every node the number of edges explored per tree level, El. This
process is not followed in the first phase, where El trivially equals the connectivity of the root
vertex. In [11], Kim and Leskovec demonstrate that the vertex degree in Kronecker matrix product-
generated graphs such as the one used in the Graph500 Benchmark can be approximated through a
lognormal distribution with the mean and standard deviation in Equations 18- 19.

d = ln ((0.3604)s) + 1.0661704 · s (18)
σd = 0.079313065 · s (19)

Whenever a point-to-point message is generated, the node attempts to insert it in the injection
buffer of the directly-linked router. Following the simple implementation of the benchmark, the
node is not able to generate new messages until all received messages have been consumed. New
message generation is halted while an incoming message is being consumed or an outgoing message
cannot be injected into the network (due to lack of space, or buffer in use).

After a node has delivered all the messages for the current stage, it dispatches a signal to all other
nodes in the network. When all nodes have finished sending and receiving messages, they enter an
all-reduce phase comprising a reduce (all nodes send to one) and a broadcast (one node sends to the
rest). The node selected as host for the root vertex will act as the receiver for the messages in the
former case and transmitter in the latter.

Following the all-reduce, the simulator determines if the graph has been wholly traversed (all
the queries have been sent, upper bounded by twice the number of edges in the graph). If not, they
re-enter the level start phase and proceed with another stage; otherwise, the execution ends.

5. MODEL VALIDATION

To validate our model, we have employed a two-phase approach: first, we have crosschecked the
validity of the prediction from our equations; then, we have implemented our model in the FOGSim
network simulator [4] and have analyzed the execution outcome for different configurations.

5.1. Validation of the equations for the number of explored edges per tree level

Since the impact of message aggregation is clearly defined by Equation 3, we compare the outcome
of the equations for the mean (El) and standard deviation (σEl

) of the number of explored edges per
tree level against the values measured from a set of Graph500 executions with parameters different
than those employed to obtain the equations.

Figure 7a displays the average number of explored edges El for all possible root vertices in a
graph of scale s = 22 and edgefactor fe = 16. Points correspond to the measured values, whereas

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A SCALABLE SYNTHETIC GRAPH500 TRAFFIC MODEL 11

(a) Mean.

1 100 10000

1e
+

00
1e

+
02

1e
+

04
1e

+
06

1e
+

08

Average Total New Edges (Breakdown per tree level)

Number of edges in first tree level

Tree level

0
1
2
3
4
5
6
7
8

(b) Standard Deviation.

1 10 100 1000 10000

1e
−

01
1e

+
01

1e
+

03
1e

+
05

1e
+

07

Stddev of Total New Edges (Breakdown per tree level)

Number of edges in first tree level

Figure 7. Validation of the model. Points correspond to measured average and standard deviation values
from a real execution, lines correspond to the fittings from the model.

lines are the fittings obtained through our model. The fitting curves approximate clearly the observed
behavior, following the same trends as the measurements for every stage of the execution. The model
reproduces the staged behavior and replicates the dependence on the root degree, observing a similar
proportion between the impact of each stage in the total amount of explored edges. From the second
level l = 1 we observe that the model result is truncated for large root degrees when the maximum
number of edges given by the scale and edgefactor are explored.

The dynamic range of the observed values is very large due to its logarithmic nature; this implies
that any deviation in the prediction will incur in a very large absolute error. Still, the relative error of
our model for this second tree level is lower than 18% in more than 90% of the cases. For the third
tree level, which amounts the largest amount of communications for most root degrees, the model is
still able to reproduce the same behavior with an average relative error of 12.5%. The total number
of explored edges across the graph presents a relative error below 12%, which is corrected when the
maximum value is reached and the edges in the last levels are truncated.

Figure 7b depicts in a similar fashion the measured points and fittings for the standard deviation.
Deviation between the measured points and the model prediction is larger in this case; however, the
dispersion for large root degree values is so large that any fitting must necessarily incur in substantial
errors. The model curves nevertheless resemble the trend of the samples.

A similar analysis has been conducted for the mean and standard deviation upon graphs of scale
s = 18 and edgefactor fe = 40, with analogous results.

5.2. Execution results from the network simulator

We have run a battery of simulations in the FOGSim network simulator [4] with the Graph500
synthetic traffic model to evaluate its accuracy. We employ a Dragonfly network [15] with
72 computation nodes, and input-output-buffered routers with several virtual channels to avoid
deadlock and mitigate Head-of-Line blocking. We use a simple model of a router with a 200-cycle
pipeline. As a reference point, we have considered the specifications of the 40Gbps QDR/FDR10
InfiniBand (IB) switch in the Altamira supercomputer to calculate the network-related input
parameters summarized in Table IV. Each point represents the average of 10 executions; they
correspond to 10 different graph roots with different degree (the same set for all points), selected
randomly according to the lognormal distribution.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 P. FUENTES ET AL.

Table IV. Simulation parameters.

Parameter Value
Number of nodes 72
Network topology Dragonfly [15]
Router size 7 ports (h=2 global, p=2 injection, 3 local)
Group size 4 routers, 8 computing nodes
System size 9 groups
Latency 50/500 cycles (local/global links), 200 cycles (router)
Virtual Channels 2/1 (local/global input ports) for MIN, 4/2 for VAL, 3 injection buffers
Buffer size 16kB (local input per VC, output), 128kB (injection and global input per VC)
Packet size 4kB
Freq. speedup 2×
Switching Virtual Cut-Through
Allocator Iterative input-first separable allocator
Routing Minimal

(a) Node capability.

 0

 0.5

 1

 1.5

 0.5 1 2 4 8 16 32

E
xe

cu
tio

n
tim

e
(s

)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

(b) Bandwidth.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20 40 100 200

E
xe

cu
tio

n
tim

e
(s

)

Link BW (Gbps)

Query time 0.5ns

Query time 1.0ns

Query time 1.5ns

Query time 5.0ns

Query time 10.0ns

Figure 8. Execution time for a sweep in node computation capability and link bandwidth (BW), with a graph
of scale 26 and edgefactor 16.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.5 1 2 4 8 16 32

A
pp

lie
d

lo
ad

 (
ph

its
/n

od
e/

cy
cl

e)

Query time (ns)

5Gbps

10Gbps

20Gbps

40Gbps

100Gbps

Figure 9. Network usage per node computation capability, under different link bandwidths. Results for a
graph of scale 26 and edgefactor 16.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A SCALABLE SYNTHETIC GRAPH500 TRAFFIC MODEL 13

Figure 8 illustrates the impact of the node computation capabilities and the link bandwidth (BW)
on the execution time of one BFS execution, in a graph of scale s = 26 and edgefactor fe = 16, with
a coalescing size of cs = 256. Figure 8a depicts the execution time in seconds for a sweep in the
query computation time (tq), for different link bandwidths. The curves for the execution time present
two clearly different behaviors. For long query times, the execution time grows with the query
computation time. This zone corresponds to CPU-bounded execution, where the node computational
capabilities act as the bottleneck for the performance of the benchmark. However, for short query
computation times the execution time stales, and the network becomes a bottleneck for the system
performance. The frontier between these zones represents a balanced system. Interestingly, for a
system with the characteristics of the Altamira supercomputer (query time tq = 1.5ns and 40Gbps
of link bandwidth) the execution time is already hindered by the network limitations.

The impact of the network is restricted to the bandwidth and not the latency characteristics. A
simulation employing links with a 10x increase in delay (omitted for the sake of brevity) rendered
negligible differences from the displayed curves. This behavior is related to the nature of the
communications of the benchmark, which do not present any interdependencies between messages
within the same tree level and therefore favor higher message dispatch rates over lower latencies.

Figure 8b renders the execution time in seconds upon the link bandwidth, for different query
computation times (and thus, different node computation capabilities). For a node with a query
computation time tq = 10ns (similar to the ARM CPU of the Mont-Blanc prototype) an increase in
link BW beyond 40Gbps is close to ineffective, but for a query time below 1.5ns an improvement
from 40Gbps to 100Gbps halves the execution time. Performance in the zone limited by the network
is not completely proportional to the link BW, because the model does not only consider the point-
to-point communications but also the synchronization phases (through the end-of-level signals and
the all-reduce operations).

Figure 9 portrays the network usage for the same curves in Figure 8a. The half-duplex nature of
the program (where the nodes cannot generate new messages when they are consuming an incoming
packet) forces that for all link bandwidths the curves saturate at close to 0.5 phits/node/cycle. Out
of that region, the query time determines the message injection rate; for a given query computation
time, a higher bandwidth gives a lower injection rate.

Each execution of the simulator has required less than 100MB of memory in a single process; as a
reference point, the capture of the behavior for a scale s = 23 (8 times smaller than the scale s = 26
employed in our simulations) and 64 processes involves a trace of 600MB. Furthermore, trace size
scales almost linearly with the size of the graph and the number of processes, making unfeasible
to evaluate larger cases. By contrast, our model only requires a longer execution to perform the
analysis of greater graph sizes.

6. RELATED WORK

Graph500 was introduced in 2010 as a benchmark data intensive applications. Beamer et al.
characterize the memory requirements and locality of the benchmark in [16], but they do not
study the impact of the network and its utilization. Previous works from Anghel et al. [17] [18]
and Fuentes et al. [7] provide a comprehensive characterization of the communications in the
simple implementation of the benchmark. Our previous work in [3] identified the strong dependence
between root vertex connectivity and BFS execution and provided a first model of Graph500 traffic,
which has been extended in Section 3.

The distribution of the vertex degree in graphs generated with the R-MAT algorithm can be
modeled through a power-law or lognormal distribution [8, 11, 10]. Groër et al. [19] provide a more
accurate model as a series expansion from normal distributions, and Seshadhri et al. [20] simplify it
as a combination of a lognormal and an exponential tail distribution. The distribution in our model
can be readily replaced by either of these approaches should a more precise distribution be needed.

Network simulators constitute a useful tool for network architects in the design and evaluation
of new systems. Simulators are commonly based on full-system simulation, trace-driven execution
or synthetic traffic patterns. Full system simulators such as Gem5 [21] present high computational

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 P. FUENTES ET AL.

and memory requirements; an alternative is to replace the application by a dwarf [22], or a skeleton
restricted to the most relevant sections for the network evaluation, as done in the SST simulator [23].
Such options are not feasible for the Graph500 benchmark, because the core interest of the network
simulation requires the graph traversal, and presents similar memory restrictions to the simulation
of the whole application. Trace-driven simulators, such as Dimemas [24], Netrace [25] or the VEF
framework [26], fail to accurately represent the dependencies in the execution. Additionally, the size
of traces from data-intensive applications is too big and increases with the number of processes.

Synthetic traffic models, as the one presented in Section 3, have smaller computational and
memory requirements than the previous alternatives while retaining the core characteristics of
the workload they represent. Synthetic traffic models have traditionally consisted of permutations
to determine the destination or set of destinations for the messages from a given node, but this
does not fit the behavior of BigData applications. SynFull [27] generates synthetic network traffic
which preserves the characteristics (temporality, destinations, volume, etc.) from executions of a real
application. It relies on Markov Chains to model the behavior of multiple phases of an application.
However, it is focused on Networks-on-Chip only, modeling memory accesses and their associated
coherence traffic, which is not appropriate for system-level interconnects. [28] introduces a 3-tuple
statistical model to generate synthetic traffic and [29] presents synthetic traffic traces which model
the communications in a video application, but they are both oriented to NoC traffic. An example
of the use of a traffic model and its application to real systems has been presented in Section 5.2,
where the node computing performance is related to maximum application speedups derived from
improvements in the network.

7. CONCLUSIONS

Current evaluations of BigData workloads consist mostly of full-system simulations of the real
applications, or rely on the use of traces. Both options limit severely the size and detail of the
network that can be investigated via simulation - which confers observability otherwise unattainable.
Here we have introduced a novel computationally non-intensive synthetic traffic model of the most
scalable implementation of the Graph500 benchmark. We have analyzed the distribution of the
benchmark communications in stages and its relation with the number of explored edges per tree
level. Furthermore, we have identified a strong connection to the degree of the vertex selected as
root of the tree.

We have modeled the benchmark behavior as a set of stages of point-to-point messages separated
by all-reduce collective operations. The number of messages is defined as a linear model of the
benchmark parameters (scale, edgefactor) for each stage within the BFS computation (tree level).
Using an empirical characterization of actual benchmark executions for different graph parameters,
we have defined a set of equations to compute the mean and standard deviation of a normal
distribution that determines the number of edges per tree level for any given tree root degree; the
degree of the root vertex is decided randomly following a lognormal distribution.

We have provided an implementation of our model for the FOGSim network simulator, which
can be handily adapted for other network simulators. Our implementation features high scalability
with the size of the graph and the number of nodes employed. We also provide a short list of system
architectures and its associated computation time as a reference value for the input parameter of the
model. Following the network parameters in the simulator that correspond to a reference InfiniBand
router architecture, we perform a set of simulations and provide a figure with the model execution
time for different node capabilities and link bandwidths. Our results demonstrate that the execution
time of the model presents two distinct behaviors: a CPU-bounded region where execution time
grows with query computation time, and a flat region when the node computation capability exceeds
the maximum injection rate of the network. Maximum performance in network-limited regions does
not only account for point-to-point communications but also synchronization phases.

ACKNOWLEDGEMENT

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A SCALABLE SYNTHETIC GRAPH500 TRAFFIC MODEL 15

The authors would like to thank the European HiPEAC Network of Excellence for partially funding this work
through a Collaboration Grant. They would like to thank as well Cristóbal Camarero for his help. This work
has been supported by the Spanish Ministry of Education, FPU grants FPU13/00337 and FPU14/02253,
the Spanish Ministry of Economy, Industry and Competitiveness under contract TIN2016-76635-C2-2-
R (AEI/FEDER, UE), and by the Mont-Blanc project. The Mont-Blanc project has received funding
from the European Union’s Horizon 2020 research and innovation programme under grant agreement No
671697. Santander Supercomputacion support group from the University of Cantabria provided access to
the Altamira Supercomputer at the Institute of Physics of Cantabria (IFCA-CSIC).

REFERENCES

1. Graph500 benchmark May 2016. URL http://www.graph500.org/.
2. Murphy RC, Wheeler KB, Barrett BW, Ang JA. Introducing the Graph 500. Cray User’s Group (CUG) 2010; .
3. Fuentes P, Vallejo E, Bosque JL, Beivide R, Anghel A, Rodrı́guez G, Gusat M, , Minkenberg C. Synthetic traffic

model of the Graph500 communications. Proceedings of the 16th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP), 2016.

4. Garcı́a M, Fuentes P, Odriozola M, Vallejo E, Beivide R. FOGSim Interconnection Network Simulator. University
of Cantabria 2014. URL http://fuentesp.github.io/fogsim/.

5. Suzumura T, Ueno K, Sato H, Fujisawa K, Matsuoka S. Performance characteristics of Graph500 on large-scale
distributed environment. International Symposium on Workload Characterization (IISWC), IEEE, 2011; 149–158.

6. Ueno K, Suzumura T. Highly scalable graph search for the Graph500 benchmark. Proceedings of the 21st
international symposium on High-Performance Parallel and Distributed Computing, HPDC ’12, ACM, ACM: New
York, NY, USA, 2012; 149–160, doi:10.1145/2287076.2287104. Doi:10.1145/2287076.2287104.

7. Fuentes P, Bosque JL, Beivide R, Valero M, Minkenberg C. Characterizing the communication demands of the
Graph500 benchmark on a commodity cluster. Int. Symposium on Big Data Computing, 2014; 83–89.

8. Chakrabarti D, Zhan Y, Faloutsos C. R-MAT: A recursive model for graph mining. Proceedings of the 2004 SIAM
International Conference on Data Mining; 442–446, doi:10.1137/1.9781611972740.43.

9. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature 1998; 393(6684):440–442.
10. Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C, Ghahramani Z. Kronecker graphs: An approach to modeling

networks. The Journal of Machine Learning Research 2010; 11:985–1042.
11. Kim M, Leskovec J. Multiplicative attribute graph model of real-world networks. Algorithms and Models for the

Web-Graph. Springer, 2010; 62–73.
12. Papoulis A. Bernoulli trials. Random Variables, and Stochastic Processes, McGraw-Hill, New York, 1990; 57–63.
13. Chambers J, Hastie T. Statistical Models in S. Wadsworth & Brooks/Cole, 1992.
14. Rajovic N, Rico A, Mantovani F, Ruiz D, Vilarrubi J, Gomez C, Nieto D, Servat H, Martorell X, Labarta J, et al.. The

Mont-Blanc prototype: An alternative approach for HPC systems. International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2016.

15. Kim J, Dally W, Scott S, Abts D. Technology-driven, highly-scalable dragonfly topology. ISCA’08: 35th
International Symposium on Computer Architecture, IEEE Computer Society, 2008; 77–88.

16. Beamer S, Asanovic K, Patterson D. Locality exists in graph processing: Workload characterization on an Ivy
Bridge server. Workload Characterization (IISWC), 2015 IEEE International Symposium on, 2015; 56–65.

17. Anghel A, Rodriguez G, Prisacari B. The importance and characteristics of communication in high performance
data analytics. Workload Characterization (IISWC), 2014 IEEE International Symposium on, IEEE, 2014; 80–81.

18. Anghel A, Rodriguez G, Prisacari B, Minkenberg C, Dittmann G. Quantifying communication in graph analytics.
High Performance Computing, Springer, 2015; 472–487.

19. Groër C, Sullivan BD, Poole S. A mathematical analysis of the R-MAT random graph generator. Networks 2011;
58(3):159–170.

20. Seshadhri C, Pinar A, Kolda TG. An in-depth study of stochastic Kronecker graphs. Data Mining (ICDM), 2011
IEEE 11th International Conference on, IEEE, 2011; 587–596.

21. Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR, Krishna T, Sardashti S,
et al.. The Gem5 simulator. SIGARCH Comput. Archit. News Aug 2011; 39(2):1–7, doi:10.1145/2024716.2024718.

22. Asanovic K, Bodik R, Catanzaro BC, Gebis JJ, Husbands P, Keutzer K, Patterson DA, Plishker WL, Shalf J,
Williams SW, et al.. The landscape of parallel computing research: A view from berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of California, Berkeley Dec 2006.

23. Rodrigues AF, Hemmert KS, Barrett BW, Kersey C, Oldfield R, Weston M, Risen R, Cook J, Rosenfeld P,
CooperBalls E, et al.. The structural simulation toolkit. SIGMETRICS Perf. Eval. Rev. Mar 2011; 38(4):37–42.

24. Badia RM, Labarta J, Gimenez J, Escale F. Dimemas: Predicting mpi applications behavior in grid environments.
Workshop on Grid Applications and Programming Tools (GGF8), vol. 86, 2003; 52–62.

25. Hestness J, Grot B, Keckler SW. Netrace: Dependency-driven trace-based network-on-chip simulation. Proceedings
of the Third International Workshop on Network on Chip Architectures, NoCArc ’10, ACM: New York, NY, USA,
2010; 31–36, doi:10.1145/1921249.1921258. URL http://doi.acm.org/10.1145/1921249.1921258.

26. Andújar FJ, Villar JA, Sánchez JL, Alfaro FJ, Escudero-Sahuquillo J. VEF traces: A framework for modelling MPI
traffic in interconnection network simulators. International Conference on Cluster Computing, 2015; 841–848.

27. Badr M, Jerger NE. SynFull: Synthetic traffic models capturing cache coherent behaviour. 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA), 2014; 109–120, doi:10.1109/ISCA.2014.6853236.

28. Soteriou V, Wang H, Peh L. A statistical traffic model for on-chip interconnection networks. 14th IEEE
International Symposium on Modeling, Analysis, and Simulation, 2006; 104–116, doi:10.1109/MASCOTS.2006.9.

29. Varatkar GV, Marculescu R. On-chip traffic modeling and synthesis for MPEG-2 video applications. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems Jan 2004; 12(1):108–119.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.graph500.org/
http://fuentesp.github.io/fogsim/
http://doi.acm.org/10.1145/1921249.1921258

	Introduction
	Analysis of the Benchmark Communications
	Graph500 Network Traffic Model
	Characterization of the mean and standard deviation of the number of edges per tree level
	Number of explored edges per tree level

	Implementation of the Model in a Network Simulator
	Model validation
	Validation of the equations for the number of explored edges per tree level
	Execution results from the network simulator

	Related work
	Conclusions

