UNIVERSIDAD DE CANTABRIA

DEPARTAMENTO DE CIENCIA E INGENIERÍA DEL TERRENO Y DE LOS MATERIALES

TESIS DOCTORAL

INTEGRIDAD ESTRUCTURAL DE VASIJAS NUCLEARES EN BASE A LA CURVA PATRÓN OBTENIDA MEDIANTE PROBETAS RECONSTRUIDAS

Autor:

DIEGO FERREÑO BLANCO

Directores:

IÑAKI GORROCHATEGUI SÁNCHEZ

FEDERICO GUTIÉRREZ-SOLANA SALCEDO

Tesis Doctoral presentada en la Universidad de cantabria para la obtención del Título de Doctor Ingeniero de Caminos, Canales y Puertos

Santander, octubre de 2007

"This song is dedicated to the scientist ... who make the future" (Bono, cantante de U2, San Sebastián, 9 de agosto de 2005)

"La página escrita nunca recuerda todo lo que se ha intentado, sino lo poco que se ha conseguido" (Antonio Machado, prólogo de "Páginas Escogidas", 1917)

"Muchos se jactan de lo que han escrito; yo me vanaglorio de lo que he leído" (Jorge Luis Borges)

"Science may set limits to knowledge but should not set limits to imagination" (Bertrand Russell, "History of Western Philosophy")

"Creer puede ser una lamentable debilidad biológica que debe ser controlada" (Imre Lakatos, "Escritos Filosóficos")

"Sólo espero de los que ignoran pero no se resisten a ignorar" (Unamuno, "Mi religión")

"La creencia nunca es racional: es racional suspender la creencia [...] me encuentro en una posición totalmente opuesta a aquéllos que temen la verdad, que piensan que fue pecado comer del árbol del conocimiento" (Karl Popper, "Búsqueda sin término")

"Para una tecnología exitosa, la realidad debe tener preferencia sobre las relaciones públicas, pues no se puede engañar a la naturaleza" (Dick Feynman, comisión Challenger, 1987)

Capítulo 7 Bibliografía

AGRADECIMIENTOS

En lo personal, debo comenzar expresando mi agradecimiento a mi familia: sin ellos no estaría aquí. Por razones parecidas, al personal del servicio de Hematología del Hospital Marqués de Valdecilla: a Richard, a Carmen, a las chicas de consultas y a las de la novena sur. También a mis amigos y a Justine, a Marilyn, a Jimena, a la bolita, a Mata-Hari, a la Magdalena, a Estela, a Fátima y a Salomé: por los buenos ratos.

En lo que respecta al trabajo desarrollado para la elaboración de esta tesis, no puedo olvidarme de sus directores, Iñaki y Fede, que han colaborado en esfuerzo y en conocimiento, orientando el avance del trabajo, superando los obstáculos y corrigiendo los errores que pudieran surgir: los que aún permanezcan en el texto son responsabilidad exclusivamente mía, sin duda achacables a mis infinitas limitaciones.

Del mismo modo, hubiera resultado imposible elaborar esta tesis sin el concurso del Departamento de Materiales de la Universidad de Cantabria. Probablemente tendría que incluir aquí una extensa lista; no lo haré por motivos de brevedad, sin embargo, me veo en la grata obligación de mencionar los nombres de Roberto Lacalle, de Román Cicero y de Sergio Cicero, que han participado diréctamente en algunos de los contenidos que se recogen en este documento. En este mismo sentido, debo citar también a Javier Martín de NUCLENOR, a Eric van Walle y Marc Scibetta, del SCK-CEN, y a Antonio Ballesteros y Xavier Jardí, de TECNATOM.

Finalmente, este trabajo, lo mismo que cualquier otro en el que yo me vea implicado, va dedicado a todos aquellos que me enseñaron algo, tanto lo que había que hacer como, sobre todo, lo que había que no hacer.

Índice

Capít	ulo 1 Introducción y objetivos	1
1.1	Introducción	1
1.1.1	Los Programas de Vigilancia de las centrales nucleares	1
1.1.2	Los programas de alargamiento de vida de las centrales	4
1.2	Objetivos de la tesis	5
Capít	ulo 2 Estado del arte	<i>9</i>
2.1	Introducción	9
2.2	La zona de transición dúctil-frágil	9
2.3	Descripción de la zona de transición según el código ASME	11
2.3.1	La Temperatura de Referencia RT_{NDT}	14
2.3.2	Crítica del método ASME	21
2.4	La Curva Patrón (Master Curve)	22
2.4.1	Modelos micromecánicos de fractura por clivaje	23
2.4.2	Dispersión de resultados; efecto del tamaño de la probeta	31
	2.4.2.1 Probabilidad incondicional de iniciación del clivaje	35
	2.4.2.2 Probabilidad condicional de iniciación del clivaje	42
	2.4.2.3 Efecto del tamaño de la probeta en la tenacidad	53
	2.4.2.4 Justificación del valor de K_{\min} y del exponente de Weibull	54
2.4.3	Tenacidad en la región Lower Shelf	55

2.4.4	Depend	encia con la temperatura en la ZTDF	56
	2.4.4.1	Base experimental	56
	2.4.4.2	Definición de la Curva Patrón	60
	2.4.4.3	Justificación de K_{Jc} como parámetro de tenacidad	63
	2.4.4.4	Condiciones de confinamiento. Censura de datos	67
2.4.5	Estimac	ción de parámetros	74
	2.4.5.1	Método de Máxima Verosimilitud (MML)	75
	2.4.5.2	Determinación de T_0 a partir de ensayos realizados a una temperatura	
	2.4.5.3	Determinación de T_0 a partir de ensayos realizados a múlt temperaturas	_
	2.4.5.4	Ventana de validez de ensayos y precisión de T_0	81
2.4.6	Aplicab	vilidad. Situaciones al margen de la Curva Patrón	88
2.4.7	Crítica o	del método de la Curva Patrón	90
2.5	Fragiliz	zación por irradiación neutrónica de los aceros de vasija	92
2.5.1	Caracte	rísticas de las vasijas y sus condiciones de trabajo	94
2.5.2	Medició	ón de la fragilización neutrónica	95
2.5.3	Mecanis	smos físicos de fragilización	97
2.5.4	Predicci	iones de fragilización según la normativa vigente	105
2.5.5	Alternat	tivas para la predicción del efecto de fragilización	110
	2.5.5.1	Procedimiento EPRI para la evaluación de la fragilización	111
	2.5.5.2	Procedimiento ASTM para la evaluación de la fragilización	115
2.5.6	Efecto d	de la irradiación sobre la Temperatura de Referencia T_0	116

2.6	Reconst	titución de probetas	120
2.6.1	Dificult	ades asociadas a la caracterización con probetas reconstruidas	121
2.6.2	Técnica	s de reconstrucción	122
	2.6.2.1	Requisitos para la técnica de reconstrucción	122
	2.6.2.2	Técnicas habituales de reconstrucción	123
2.6.3	Configu	raciones habituales de probetas reconstruidas	128
	2.6.3.1	Probetas Charpy reconstruidas	128
	2.6.3.2	Probetas CT reconstruidas	133
2.7	Integrid	lad Estructural de la vasija de un reactor nuclear	135
2.7.1	Normati	iva vigente	136
	2.7.1.1	El Código ASME	136
	2.7.1.2	Formulaciones alternativas: los Code Case	143
	2.7.1.3	Confección de las curvas p-T según la normativa vigente	149
	2.7.1.4	Limitaciones de la normativa vigente	151
2.7.2	El Proce	edimiento FITNET de Integridad Estructural	152
	2.7.2.1	Los Diagramas de Fallo (FAD)	154
	2.7.2.2	Características del procedimiento FITNET	171
2.8	Sumario	o	186
Capítu	lo 3 M	lateriales y metodología experimental	187
3.1	Introdu	cción	187
3.2	Materia	al complementario	188
3.2.1	Descripe	ción del acero JRQ en estado de recepción	190

	3.2.1.1	Composición química	190
	3.2.1.2	Historial térmico	190
	3.2.1.3	Despiece y mecanizado	191
3.2.2	Caracter	ización convencional	193
	3.2.2.1	Caracterización microestructural	193
	3.2.2.2	Caracterización mecánica	194
3.2.3	Caracter	ización en fractura	199
3.3	Material	de interés	. 208
3.3.1	Normati	va de los Programas de Vigilancia	209
3.3.2	Origen d	lel material de interés	212
3.3.3	Descripc	ción del material en estado de recepción	217
	3.3.3.1	Composición química	217
	3.3.3.2	Historial térmico	217
3.3.4	Caracter	ización convencional del material de interés	217
	3.3.4.1	Caracterización microestructural	218
	3.3.4.2	Caracterización mecánica	219
3.3.5	Caracter	ización en fractura	220
	3.3.5.1	Ensayos de resiliencia	220
	3.3.5.2	Temperatura de referencia RT_{NDT}	222
3.4	Proceso	experimental	. 222
3.4.1	Selecció	n del material. Proceso de reconstrucción	223
	3.4.1.1	Material complementario	223
	3.4.1.2	Material de interés	225

3.4.1.3 Programa experimental sobre el material de interés	221
Validación del proceso de reconstrucción	233
3.4.2.1 Material complementario	233
3.4.2.2 Material de interés	238
Ensayos de tenacidad K_{Jc}	250
Procedimiento analítico para la obtención de T_0	262
Ensayos Charpy instrumentado sobre probetas prefisuradas	264
lo 4 Presentación y análisis de resultados experimenta	les 267
Introducción	267
Experimentación en el material complementario	268
Resultados de tenacidad	272
Resultados de Temperatura de Referencia, T_0	275
Validación de los resultados	277
Conclusiones sobre los resultados en material complementario	
	279
Experimentación en el material de interés	
	279
Experimentación en el material de interés	279
Experimentación en el material de interés	279 280 283
Experimentación en el material de interés	279 280 283 295
Experimentación en el material de interés	279 280 283 295 297
	Validación del proceso de reconstrucción

	4.4.1.1 Apariencia externa de las probetas PCCv reconstruidas	300
4.4.2	Efecto de la orientación	304
4.4.3	Efecto de la irradiación	305
4.4.4	Efecto de la configuración experimental	308
4.4.5	Efecto de la velocidad de ensayo	310
4.5	Sumario	316
Capíti	ulo 5 Aplicación estructural	319
5.1	Introducción: alcance y objetivos	319
5.2	Operaciones de enfriamiento y calentamiento de la vasija	321
5.2.1	Descripción de las herramientas analíticas	322
5.2.2	Validación de las herramientas analíticas	323
5.2.3	Obtención de la solicitación pésima por medio del Código ASME	334
	5.2.3.1 Curvas $p-T$ en estado no irradiado	342
	5.2.3.2 Curvas $p-T$ tras 40 años de operación (32 EFPY)	342
	5.2.3.3 Curvas $p-T$ tras 60 años de operación (54 EFPY)	344
	5.2.3.4 Comparación de las curvas $p-T$ pésimas	345
5.2.4	Estudio comparativo	346
	5.2.4.1 Aplicación del Código ASME	347
	5.2.4.2 Aplicación de los Code Case N-629 y N-631	347
	5.2.4.3 Aplicación de la Curva Patrón	349
	5.2.4.4 Aplicación del procedimiento FITNET	349
	5.2.4.5 Conclusiones del estudio comparativo	354

	Integridad Estructural de la vasija ante situaciones dinámicas	356
5.3.1	Solicitaciones dinámicas en la vasija del reactor	356
	5.3.1.1 Efectos dinámicos ante un accidente tipo LOCA	358
	5.3.1.2 Efectos dinámicos ante un choque térmico postulado	363
5.4	Sumario	365
	Apéndice I Fundamentos matemáticos	367
	Apéndice II Resolución del problema térmico	377
	Apéndice III Resolución del problema mecánico	391
Capít	ula (Canailana i an as fin alas	200
.	ulo 6 Consideraciones finales	399
6.1	Resumen de los trabajos desarrollados	
_	·	399
6.1	Resumen de los trabajos desarrollados	399 401
6.1 6.2	Resumen de los trabajos desarrollados Aportaciones contenidas en la tesis	399 401 402
6.1 6.2 6.2.1	Resumen de los trabajos desarrollados	399 401 402 403