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Signal plan transition is the process of changing from one timing plan to another. It begins when the first intersection starts
adjusting signal timing plans and ends when the last intersection completes adjusting signal timing plans. The transition between
signal timing plans is required because traffic patterns change during the day. Therefore, it is necessary to modify signal timing
parameters offset, phase split, and cycle length for different expectations of traffic volume. This paper presents an alternative and
new mathematical model to enhance the performance of traffic signals coordination at intersections during the transition phase.
This model is oriented to describe the transition regarding coordination parameters in all intersections of an arterial road for
minimizing the social cost during the transition phase expressed in function of costs due to delays, fuel consumption, and air
emissions. An ant colony algorithm was designed, coded, and simulated to find the optimal transition parameters using available
data. The model was evaluated based on its ability to minimize social costs during the transition period. Results showed that the
proposed method performs better than traditional ones.

1. Introduction

The rapid increase in urban traffic demand because of a
growing population and economic development has led to an
increase in the effects of traffic congestion and the associated
externalities. A recent study revealed that the total traffic
congestion cost in American urban areas would grow from
$101 billion dollars to $133 billion dollars in 2015 to $199
billion dollars in 2020. Delay times will grow to 6.1 billion
hours in 2015 and 8.4 billion hours in 2020. The amount
of fuel wasted due to congestion will increase to 2.5 billion
gallons in 2015 and 4.5 billion gallons in 2020 [1]. Further, the
29 percent of total US greenhouse gas (GHG) emissions and
over 5 percent of GHG emissions in the world are generated
by the transportation sector [2]. The emissions of CO2 from
fossil fuel combustion increased by 17 percent from 1990
to 2011. This led to an increase in overall emissions from
transportation activities of 18 percent [3].

The statistics above show that, despite the efforts per-
formed, there is still work to do in order to alleviate con-
gestion problem and its implications. Efficient transportation
system strategies have become a tool for mitigating traffic
problems and improving mobility in cities. In addition, they
may lead to a potential reduction in fuel consumption, GHG
emissions, and delay. Improving traffic signals is one of the
most valuable tools for decreasing total congestion and its
effects. A study of the status of signals in USA indicated that
basic signal improvements could achieve a 15 to 20 percent
reduction in delay times, while advanced improvements can
reduce them by up to 40 percent [4].

Many of researches [5–11] are directed towards increas-
ing efficiency of traffic systems related to traffic signals.
Improving traffic signals is one of the most effective tools for
decreasing total congestion, travel time, delays, air pollution
emissions, and fuel consumption. The coordination of traffic
signals and optimization of timing plans and transition
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phases are often used to improve signals and traffic flow in
arterial streets.

The signal timing is modified to achieve the coordination
during the transition or process of changing from one signal
timing plan to another new plan. Adjusting a timing plan
may have an adverse impact on the level of service because
traffic signals are operating with suboptimal values [12].
This increases travel time, delays, speed, stops, and greatest
percentage of pollutant emissions and fuel consumption [13,
14], while minimizing the benefits that the new plan could
achieve.

An optimal transition improves the efficiency of signal
systems even in adaptive systems and preemption signal
systems. In those systems, the need for better transition
algorithms is heightened because the transition between
timing plans occurs more frequently and its effects become
more pronounced.

Two approaches have been identified in the literature
to address the transition phase: applied methods, which are
studies where the transition is attained by a sudden or gradual
change of the parameters of the plan, while mathematical
methods are based on optimizing operational measures of
effectiveness during transition using mathematical models
[15, 16]. A recent study [15] concluded that most transition
articles are focused on applied methods (78.3%) and only a
few addressed mathematical methods (21.7%). Also, litera-
ture mainly focuses on investigating and analysing existing
methods rather than presenting new solutions to optimize the
transition phase.

Research projects conducted to date on transition strate-
gies have centred on evaluating the impact and performance
measures using different transition strategies on various
traffic conditions. Most of the proposed transition methods
were empirical methods based on experience, and they do
not take advantage of current modelling, mathematical, and
optimization techniques. During 1970 to 1981, most arti-
cles applied empirical methods, but only one mathematical
methodwas developed [17]. In this work, the RAST algorithm
was designed to minimize the duration of the transition
period at critical nodes. Over the last two decades, the same
trend remained. The amount of applied empirical methods
was greater than the number of the developed mathematical
methods. However; more attempts to design new mathe-
matical methods were made: Abbas et al. [18] presented
a traffic signal offset transitioning algorithm as an inte-
grated optimization approach. Selekwa et al. [19] proposed
a methodology to optimize traffic flow based on dynamic
quadratic optimization. Lee and Williams [20] presented
a nonlinear mathematical model that provides constrained
delay minimization. Other studies about transition have
oriented their efforts in optimizing time-of-day break points
at a coordinated actuated traffic signal control system [21, 22]

Existing mathematical methods aim to optimize only one
measurement of efficiency and only minimize secondary fac-
tors such as parameter variation or time spent in transition.
This can be seen as a disadvantage because complex methods
are required to resemble prevailing conditions.This issue was
pointed out by Selekwa et al. [19] and Penabaena-Niebles et
al. [15] which stated that existing methods usually are not

based on any optimization procedure and measurements of
traffic flow are not optimized. As a result, the need of a more
complex mathematical method able to resemble in a more
accurate way the existing conditions arises. Consequently,
there is an opportunity to design new mathematical models
that provide solutions to the transition problem by simulta-
neously optimizingmore than onemeasurement of efficiency
and using advanced solution techniques.

The design of a mathematical model is presented in
this paper in order to enhance the performance of traffic
signals coordination at intersections during the transition
phase. This model describes the transition in terms of
coordination parameters of all intersections in an arterial
road to minimize the social cost during the transition phase
expressed in function of the delay cost, fuel consumption cost,
and air emission cost. An ant colony algorithm determines
the optimal parameters of coordination and the social cost
due to transition, including user and environment costs.
This method is considered because its main advantage is to
allow the construction of the solution space, avoiding the
generation of infeasible solutions. This issue is typical of
evolutionary algorithms such as GA in the stage of crossover
[20]. Also, its speed in processing time and suitability are
considered relevant for dynamic problems [21–23] because of
the complex characteristics of the problem under study and
the importance of obtaining small response times.

The proposed model was designed to quantify the eco-
nomic impact of a transition that benefits all modes of
travel, improving not only measurements of traffic flow but
also influencing the reduction of gas emissions and fuel
consumption. Frequently, when a solution to the congestion
problem is given, solutions are chosen separately, with the
risk of causing the exacerbation of other problems. Only by
considering multiple objectives, the full value of a mathemat-
ical model can be correctly addressed. The proposed model
aims to generate a broad range of direct and indirect benefits.
Primarily, it is intended to minimize the cost related to delay
time, fuel, and gas emissions. However, this approach can
also lead to a reduction of mileage that decreases vehicle
depreciation, wear-and-tear, oil cost, and maintenance cost
(repair and replacement).

The aim of this paper is to present a new method to
address a complex problem, as is the transition between
signal timing plans, and assess the impact regarding social
cost and externalities generated during this phase, in relation
to traditional methods, such as immediate, two cycles, and
three-cycle transition.

2. The Mathematical Model of Transition
between Signal Timing Plans

The mathematical model for transition is formulated as
a nonlinear mathematical model where the transition is
represented as a dynamic process in the time, oriented to
maintain a progression and to smooth the adjusting the
coordination parameters, offset, split, and cycle length of all
intersections of an arterial. This model is limited to develop
only the issues associated with the transition between signal
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timing plans and tomeasure the effectiveness of the proposed
model in function of the social cost related to delay, fuel
consumption, and gas emissions. This section presents the
mathematical formulation of transition problem.

2.1. Model Approach and Basic Considerations. The proposed
transition mathematical model has basic considerations. The
model is oriented atminimizing delay, fuel consumption, and
air emission gas during the transition period in function of
the social cost established for each component of the model.

The objective function considers the effect of signals on
delay, fuel consumption, and gas emissions at intersections.
This assumption is important because the delay caused by
a full stop may affect in a particular manner the vehicle
acceleration and deceleration trajectories, fuel consumption,
and air emissions. The presence of traffic signals causes
interruptions in traffic flow because vehicles decelerate when
they approach a stop line and signal turns red. Then, they
stand still until the signal turns green. Finally, vehicles
accelerate to pass the intersection [23]. This concept is used
assuming no initial queue and no queue move up delay.

The constraint search spaced for transition procedure is
defined by the strategies implemented by Lee and Williams
[20]. Stepwise changes in offsets are associated with specific
stepwise changes in background cycle length and vice versa
during the transition phase. Thus, a common cycle length is
maintained for the operations of a coordinated arterial, pre-
serving the correlation between system cycle length and offset
during the transition period. The authors demonstrated that
this technique results in a more efficient transition. Prece-
dence constraints during the transition period are developed
to ensure that the total variations of control variables are
within the levels of change established during the transition

period. Finally, conditions for the standard NEMA dual ring
structure for signal timings are contemplated.

2.2. Transition Problem Variables and Objective Function.
The proposed mathematical transition model has four (4)
decision variables: the number of steps of the transition 𝑛, the
offset shift (Δ𝜑)𝑖𝑗 in the intersection 𝑖 on each transition step𝑗, the common cycle length shift (Δ𝐶)𝑐𝑗 on each transition step𝑗, and the green effective timing (Δ𝑔)𝑖𝑗𝑚 in the intersection 𝑖
on each step 𝑗 for the movement𝑚.The number of transition
steps 𝑛 is the number of cycles needed to complete the
transition. The offset change (Δ𝜑)𝑖𝑗 is the offset variation
between transition steps, where offset is defined as the start
of the green time on the coordinated phase of an intersection
relative to the start of green time at a reference intersection.
The common cycle length change (Δ𝐶)𝑐𝑗 is the common cycle
length variation between steps during the transition, where
the cycle length is the time needed to complete a rotation
through all phases. It must be the same for all intersections
in the coordination plan to maintain a consistent time based
relationship [24], perform the effect of the transition, and
ensure progression in the network.The split change (Δ𝑔)𝑖𝑗𝑚 is
the variation of the green time in a phasewithin cycle between
transitions steps.

The objective of the mathematical model in this research
aims is to minimize the social cost during the transition
period using the social cost function proposed by Peñabaena-
Niebles et al. [25]. This model considers a generalized
cost involving the effect of signals on the delay time, fuel
consumption, and gas emissions at intersections. Therefore,
the social cost function, which is applicable to any network
of intersections with unsaturated traffic flow, is as presented
in

min SC = 𝑛∑
𝑗

𝐼∑
𝑖

VT ⋅ 𝑀∑
𝑚

[ 𝑉∑
V
ORV ⋅ 𝐷𝑖𝑗𝑚V (𝑔𝑖𝑗𝑚, 𝐶𝑖𝑗, 𝑞𝑖𝑗𝑚V)]

+ 𝑛∑
𝑗

𝐼∑
𝑖

𝑀∑
𝑚

[ 𝑉∑
V
OCV ⋅ 𝐷𝑖𝑗𝑚V (𝑔𝑖𝑗𝑚, 𝐶𝑖𝑗, 𝑞𝑖𝑗𝑚V)] + 𝑛∑

𝑗

𝐼∑
𝑖

𝐸∑
𝑒

[ECG𝑒 ⋅ 𝑀∑
𝑚

𝑉∑
V
GE𝑖𝑗𝑚V𝑒 (𝑔𝑖𝑗𝑚, 𝐶𝑖𝑗, 𝑞𝑖𝑗𝑚V)] ,

(1)

where 𝑖 is the intersection, 𝑗 is the transition step, 𝑚 are the
movements by the lane or lanes, V is the type of vehicle, and 𝑒
is the type of gas emission. In themodel, the social cost (SC) is
computed as the sum of driver or user cost and environment
cost. In turn, the driver costs are given as an average delay by
vehicle (𝐷𝑖𝑗𝑚V) and the fuel consumption (FC𝑖𝑗𝑚V) including
the time cost per person in the vehicles (VT) and the
vehicle operating costs (OCV). The cost is estimated using
the vehicle occupation time (ORV), the average income, and
a time value factor that turns average income into a value
of time (VT) [26]. Meanwhile, the operating cost factor
of the vehicles OCV is formed by the fuel costs, tires, oil,
repair, and maintenance. Similarly, the environment cost is
the price or the monetary valuation of the greenhouse gas

emissions (ECG𝑒) considering the global warming potential
of the emission according to the type of gas to be evaluated(GE𝑖𝑗𝑚V𝑒).

In this formulation, the Highway Capacity Manual
(HCM) [27] delay model was selected to estimate average
control delay per vehicle for each intersection in a corridor
or arterial road, assuming no initial queue. This delay model
is expressed in terms of cycle length, green time, progression
factors, and traffic flow. In order to determine the delay in
(1), the effect of the quality of progression in the coordinated
movement was considered by calculating a PF𝑖𝑗𝑚 following
previous work by Lee [28]. Based on this, the percentage
arrival under green is calculated assuming that vehicles
released from upstream signals will reach the downstream
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signal in the free flow travel time, allowing a platoon of
vehicles to move through several signals without stopping.
The fuel consumption and gas emission components included
are estimated according to the models proposed by Akçelik
[29] and Frey et al. [30]. In order to evaluate the impact
of signalized intersections on fuel consumption and air
emissions, both components are based on the assumption of
three independent amounts corresponding to three driving
modes: idling, acceleration, and deceleration.

2.3. Feasibility Constraints. This section explains the condi-
tions that define the space of possible solutions or restrictions
in the proposed transition model. First, (2) sets out an equal
cycle length for all intersections of the coordinated arterial
defined as the common cycle length (𝐶𝑐𝑗) on each transition
step 𝑗.

𝐶𝑐𝑗 = 𝐶𝑐𝑗−1 + (Δ𝐶)𝑐𝑗 for 1 ≤ 𝑗 ≤ 𝑛. (2)

Besides, (3)–(5) determine the signal timing transition plan
or the values of parameters of coordination: cycle length (𝐶𝑖𝑗)
and phase green time (𝑔𝑖𝑗𝑚) for the movement 𝑚 and offset
(𝜑𝑖𝑗) in function the change (Δ) for all intersections 𝑖 in each
transition step 𝑗.

𝐶𝑖𝑗 = 𝐶𝑐𝑗 + (Δ𝜑)𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛 (3)

𝜑𝑖𝑗 = 𝜑
𝑖𝑗−1

+ (Δ𝜑)𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛 (4)

𝑔𝑖𝑗𝑚 = 𝑔
𝑖𝑗−1𝑚

+ (Δ𝑔)𝑖𝑗𝑚
for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑚 ≤ 𝑀 (5)

Explicitly, (2) and (3) allow the existence of system or
common cycle lengths (𝐶𝑐𝑗) and consider the relationship
between offset (𝜑𝑖𝑗) and cycle length (𝐶𝑖𝑗), in all intersections𝑖 in each transition step 𝑗. This is necessary to provide
progressive operation between intersections.

Equations (6) ensure that the total variation in the param-
eters coordination is inside of the level of change established
for old and new signal plan (before and after transition
signal plan). For this, it is necessary that the optimal signal
timing plan parameters are determined before and after the
transition period.

𝑛∑
𝑗=1

(Δ𝐶)𝑐𝑗 = 𝐶𝑖𝑓 − 𝐶𝑖𝑜 for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛
𝑛∑
𝑗=1

(Δ𝜑)𝑖𝑗 = 𝜑𝑖𝑓 − 𝜑𝑖𝑜 for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛
𝑛∑
𝑗=1

(Δ𝑔)𝑖𝑗𝑚 = 𝑔𝑖𝑓𝑚 − 𝑔𝑖𝑜𝑚
for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑚 ≤ 𝑀.

(6)

In turn, (7) are precedence constraints and allow that coor-
dination parameters are within the interval between previous
step cycle length and cycle length after the transition.

𝐶𝑖𝑗−1 ≤ 𝐶𝑖𝑗 ≤ 𝐶𝑖𝑓 for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛
𝜑𝑖𝑗−1 ≤ 𝜑𝑖𝑗 ≤ 𝜑𝑖𝑓 for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛
𝑔𝑖𝑗−1𝑚 ≤ 𝑔𝑖𝑗𝑚 ≤ 𝑔𝑖𝑓𝑚 for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛.

(7)

The set of constrains defined by (8) are the conditions for the
standard NEMA dual ring structure for signal timings, where𝑦𝑖𝑗𝑚 and 𝑟𝑖𝑗𝑚 are the yellow and red time of intersection 𝑖 at
the transition step 𝑗 for movement𝑚, respectively.

𝐶𝑖𝑗 = 4∑
𝑚=1

(𝑔𝑖𝑗𝑚 + 𝑦𝑖𝑗𝑚 + 𝑟𝑖𝑗𝑚)
for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛

𝑔𝑖𝑗1 + 𝑔𝑖𝑗2 = 𝑔𝑖𝑗5 + 𝑔𝑖𝑗6 for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛
𝑔𝑖𝑗3 + 𝑔𝑖𝑗4 = 𝑔𝑖𝑗7 + 𝑔𝑖𝑗8 for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛.

(8)

Finally, (9) sets the maximum number of transition steps
regarding the analysed period (𝑇𝑓) and the initial cycle length𝐶𝑖0.

1 ≤ 𝑛 ≤ 𝑇𝑓𝐶𝑖0 for 1 ≤ 𝑖 ≤ 𝐼. (9)

3. Ant Colony Optimization

For solving the mathematical model for the transition
between signal timing plans, the problem will be represented
as an Ant Colony Optimization (ACO) problem, where the
ACO algorithm is designed to find the transition parameters
that minimize social cost.

ACO is inspired by the cooperative behaviour of real
ant colonies and their process to find a food source [31].
These ants deposit a chemical substance, called pheromone,
which is accumulative and evaporative, in order tomark some
favourable paths that other members of the colony should
follow. ACO is an iterative algorithm, in which each iteration,
a set of possible solutions, is constructed using artificial ants
[32]. At each step, the ants travel the shorter path following
the pheromone trail left by previous ants. The pheromone
trails tend to evaporate, which means that it decreases
when few ants travel on the path and increases when many
ants travel on it. Consequently, the pheromone evaporates
faster on long paths and short paths occur opposite. This
phenomenon causes that all the ants tend to travel the shortest
path.

Ant colony optimization was designed by Dorigo and
Caro [33] as a metaheuristic or an algorithm that can
be applied to different optimization problems with some
modifications. Initially, this algorithm was used to solve
single objective problems based on the traveling salesman
problem (TSP). However, recently it has been applied to
combinatorial optimization problems such as distribution
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scheduling problem, vehicle routing problem, and railroad
blocking problem, among other applications [34–38]. ACO
has been applied to transportation systems optimization, but
these works have been oriented to find optimal signal setting
in function of traffic demand [39–41].

In this research, ACO generates the coordination param-
eters during transition cycles, which are a signal plan for
each step to achieve the transition. Then, the social cost
is determined using the transition plan to evaluate the
actual transition plan and improving the set of parameters
coordination in the next iteration. This is repeated until
the solution converges to a minimum value or a previously
defined number of iterations are reached. The next subsec-
tions describe in detail the implementation ofACOalgorithm
for solving the minimization problem.

3.1. Ant Colony Preparation. The algorithm begins assuming
a number of ants in the colony (𝐶). In this problem, three
subtypes of ants (AntD, AntF, and AntE) are defined and all
of them are associated with delay cost, fuel consumption cost,
and air emission cost, respectively. The number of ants for
each subtype is the third part of the total population or ants
in the colony; that is, all components of the objective function
are equally important.

3.2. Constructing Ant Solution. Ants are randomly placed on
a solution space that represents a multidimensional structure
where all possible solutions of the problem are defined. A set
of possible discrete values for each of the problem variables
is assumed. For this, it is necessary to set a single solution.
In this case, the proposed mathematical transition model
has four (4) decision variables: number of transition steps 𝑛,
offset change (Δ𝜑)𝑖𝑗, common cycle length change (Δ𝐶)𝑐𝑗, and
effective green time or split change (Δ𝑔)𝑖𝑗𝑚. Cycle length (𝐶𝑖𝑗)
can be calculated from (Δ𝐶)𝑐𝑗 and offset change (Δ𝜑)𝑖𝑗 using
(3). Concurrently, split change (Δ𝑔)𝑖𝑗𝑚 can be obtained from
cycle length (𝐶𝑖𝑗) using (5) and (8). Steps 𝑛, common cycle
length change (Δ𝐶)𝑐𝑗, and offset change (Δ𝜑)𝑖𝑗must be known
to find a solution. This means that a set of different values
for each of the variables should be obtained. The decision
variable 𝑛 is restricted as an integer number (see (9)) and the
common cycle length change (Δ𝐶)𝑐𝑗 and offset change (Δ𝜑)𝑖𝑗
are two multidimensional arrays. Therefore, there are much
more possible ways of being generated.

Nevertheless, for indices 𝑖 and 𝑗, the values of (Δ𝐶)𝑐𝑗 and(Δ𝜑)𝑖𝑗 are restricted by (2) and (4). Therefore, they can only
vary independently through index 𝑗. To avoid generating
random values on each one of the j submatrices of (Δ𝐶)𝑐𝑗
and (Δ𝜑)𝑖𝑗, these values are interpolated with an exponential
function. At the same time, this allows that the obtained
solutions are analysed more properly in order to infer rules
that lead to a better understanding of them.

Considering the above assumptions, (2) and (4) are
redefined as follows:

𝐶𝑐𝑗 = 𝐶𝑖𝑜 + (𝐶𝑖𝑓 − 𝐶𝑖𝑜) ( 𝑗𝑛)
𝑐pow

for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛

𝜑𝑖𝑗 = 𝜑𝑖𝑜 + (𝜑𝑖𝑓 − 𝜑𝑖𝑜) ( 𝑗𝑛)
𝜑pow

for 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝑛.
(10)

The values of 𝐶𝑖𝑜 and 𝐶𝑖𝑓 are given as parameters for all
interceptions 𝑖 ∈ 𝐼, as well as all the values for 𝜑𝑖𝑜 and𝜑𝑖𝑓 for all interceptions 𝑖 ∈ 𝐼. Consequently, the only
unknown variables in equations are 𝑐pow and 𝜑pow, which
are exponents that allow the output of the function to vary
according to them. Therefore, a solution can be generated
just with three parameters: 𝑛, 𝑐pow, and 𝜑pow, which are the
three dimensions in the space solution.

Different values of 𝑐pow and 𝜑pow yield different inter-
polations for a solution. One of the properties of the expo-
nential functions is as follows:

𝑥𝑎 ≤ 1 if 𝑎 ≥ 0 ∀𝑥 ∈ [0, 1] . (11)

If 𝑔pow ≥ 0 𝜑pow ≥ 0, then for 1 < 𝑗 < 𝑛
(Δ𝜑)𝑖1 ≤ (Δ𝜑)

𝑖𝑗
≤ (Δ𝜑)𝑖𝑛 ,

(Δ𝐶)𝑖1 ≤ (Δ𝐶)𝑐𝑗 ≤ (Δ𝐶)𝑖𝑛 . (12)

Also, due to the fact that the exponential function is mono-
tonically increasing in its entire domain, (2) and (4) are
always respected.

Then, the solution space is a three-dimensional structure
that contains all possible triplets composed by 𝑛, 𝑐pow, and𝜑pow; thus

𝑆 = {(𝑛, 𝑐, 𝜑) ; 𝑛 ∈ 𝑁, 𝑐pow ∈ 𝐶Pow, 𝜑pow
∈ ΦPow} , (13)

where N is the set of all the possible values for 𝑛 and CPow
and ΦPow are all the possible values for 𝑐pow and 𝜑pow,
respectively.

The values of 𝑐pow and 𝜑pow affect the interpolation in
(10). For values belowone, they define an initially fast growing
and lastly slow growing curve, and values above one describe
the opposite. Finally, when 𝑐pow or 𝜑pow are equal to 1, they
yield linear interpolation functions.

Hence a reasonable range for ΦPow and CPow, which
allows the comparison of different behaviours of the objective
function, is

{𝑥, 1 ≥ 𝑥 ≥ 10, 𝑥 ∈ N} ∪ { 1𝑥 , 1 > 𝑥 ≥ 10, 𝑥 ∈ N} . (14)

However, these values can vary because they are parameters
in the constructor of solution space.

3.3. Defining Probabilities. Once the ant colony and the
solution space are instantiated, ants can start tomove. Ants of
different types are randomly distributed through the solution
space at the beginning of the algorithm. Each ant must be
initialized with values for its coordinates in 𝑛, 𝑐pow, and𝜑pow axes. They are used as parameters to build the solution
corresponding to that location in the space.
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Figure 1: Layout and movement of the signalized intersections.

A move of an ant means a change in its position from
one point in the solution space to another, generating a
new solution. However, there are some restrictions: first, the
same ant must not have visited the same position before and
second, that point must be in the neighbour. These points
are obtained either by adding or by subtracting one unit
to exclusively one of the coordinates 𝑛, 𝑐pow, and 𝑔pow
of the current position. The number of movements for any
ant is given as a parameter of the algorithm and referred as
iterations.

In ACO algorithm, the probability that an ant moves to
more than one neighbour point is given by the following
expression:

𝑝𝑘(𝑛,𝑐pow,𝜑pow) = (𝜏𝛼𝑛,𝑐pow,𝜑pow) (𝜂𝛽𝑛,𝑐pow,𝜑pow)
∑ (𝜏𝛼𝑛,𝑐pow,𝜑pow) (𝜂𝛽𝑛,𝑐pow,𝜑pow) , (15)

where 𝜏𝑛,𝑐pow,𝜑pow is the amount of pheromone deposited
in the point (𝑛, 𝑐pow, 𝜑pow) of the solution space,𝛼 ≥ 0 is a parameter that controls the influence of𝜏𝑛,𝑐pow,𝜑pow, 𝜂𝑛,𝑐pow,𝜑pow is the attractiveness of a point in the
space, and 𝛽 ≥ 1 is a parameter to control the influence of𝜂𝑛,𝑐pow,𝜑pow.
3.4. Selection and Evaluation of Paths. The class solution
provides all the functionality needed to get the output value
of the social cost. Ants define this value, depending on their
type (AntD, AntF, and AntE) to obtain the attractiveness of
their neighbour points in the solution space as expressed in
(16), in which 𝑓𝑜 is the objective function that corresponds to
the ant type

𝜂𝑛,𝑐pow,𝜑pow = 𝑓𝑜 (𝑛, 𝑐pow, 𝜑pow) . (16)

3.5. Updating Pheromone. Each time that ants move through
the solution space, they leave a trail of pheromone. It is
accumulated in a three-dimensional floating point array
within the class solution space. This matrix is updated as
follows. For each ant, a trail of pheromone is added to the
same point of the solution space where the ant is located in
the neighbour points:

𝜏𝑛,𝑐pow,𝜑pow = 𝜏𝑛,𝑐pow,𝜑pow + 𝜆 ∗ 𝛿, (17)

where 𝜆 represents the pheromone trail left by an ant and 𝛿 a
value inversely proportional to the distance of the neighbour
point to the original point where the ant was located.

At the end of the iteration, the trail evaporates based on
(16), where 𝜌 is the pheromone evaporation coefficient.

𝜏𝑛,𝑐pow,𝜑pow = (1 − 𝜌) 𝜏𝑛,𝑐pow,𝜑pow. (18)

The ACO process is finished either if the number the
iterations is reached or until the process converges. This
means that all the ants choose the same best path.

4. Numerical Example

A hypothetical linear network with three signalized intersec-
tions adapted from the case presented by Lee and Williams
[20] was used to execute the proposed mathematical model
for transition. Also, the effects of transition timing plans
optimized in stops, delays, and its impact on the social cost
during the transition period were evaluated.

As shown in Figure 1, each approach of the intersections
is configured with a single exclusive left turn lane, 3 full lanes
on the main street, and 1 full lane on side streets. The turning
movement ratios for each intersection are set to 15%, 75%,
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Table 1: Data before the transition in the numerical example.

Signal timing before transition

Intersection Phase 1 2 3 4 5 6 7 8 Cycle length Offset
Movement WBL EBT NBL SBT EBL WBT SBL NBT

1 Optimized green phase (s) 13 20 9 23 13 20 8 24 65 31
Flow rate (veh/s) 177 866 77 361 153 1002 63 440 — —

2 Optimized green phase (s) 11 22 9 23 13 20 9 23 65 0
Flow rate (veh/s) 151 1022 78 362 180 853 63 443 — —

3 Optimized green phase (s) 10 24 9 22 14 20 8 23 65 31
Flow rate (veh/s) 132 1225 82 379 216 743 67 464 — —

Table 2: Data after the transition in the numerical example.

Signal timing after transition

Intersection Phase 1 2 3 4 5 6 7 8 Cycle length Offset
Movement WBL EBT NBL SBT EBL WBT SBL NBT

1 Optimized green phase (s) 29 31 11 44 17 43 13 42 115 69
Flow rate (veh/s) 294 1014 91 633 178 1671 111 517 — —

2 Optimized green phase (s) 23 35 12 45 20 38 13 44 115 0
Flow rate (veh/s) 246 1165 87 603 205 1394 107 493 — —

3 Optimized green phase (s) 21 38 11 45 22 36 12 45 115 69
Flow rate (veh/s) 208 1367 86 601 241 1180 106 491 — —

Table 3: Fuel consumption and gas emission rates according to the driving mode and vehicle type.

Fuel (g/sec) CO (g/sec) GPWCO HC (g/sec) GPWHC Nox (g/sec) GPWNO𝑥 O. rate

Light vehicle
Acceleration 0.5028 0.4972 3 0.6321 12 0.5847 40

1.3Deceleration 0.4342 0.1365 3 0.2488 12 0.4127 40
Idling 0.0714 0.3720 3 0.2343 12 0.0991 40

Heavy vehicle
Acceleration 1.33 0.6969 3 0.6383 12 0.3100 40

1.2Deceleration 1.17 0.6534 3 0.6941 12 0.2628 40
Idling 0.259 0.7065 3 0.2279 12 0.2326 40

and 10% for the left turn, through, and right turnmovements,
respectively.

Tables 1 and 2 show traffic flow and optimized signal
timing before and after the transition, respectively.

The parameters to determine the social cost of the
model proposed are used from the case study presented by
Peñabaena-Niebles et al. [25, 42]. The time cost per person(VT) is $9.432/hour. The vehicle operating cost per gallon of
fuel is $7.25/gal, and the marginal social cost of greenhouse
gas emissions for carbon dioxide (CO2) is $25/tC (which
is taken from a study performed by Fankhauser [43]). The
global warming potential (GWP) for CO, HC, and NO𝑥, the
weighted average of carbon monoxide (CO), hydrocarbon
(HC), and nitrogen oxide (NO𝑥) rates and fuel consumption
rates in each driving and the occupation rates for each type of
vehicle are shown in Table 3.

The ACO procedure described previously was applied to
find the optimal transition. The implementation was made
coding the algorithm using Python 2.7. After setting up the
objective function and the ACO algorithm, two (2) tests were
made to measure the correspondence between algorithm
parameters and objective function key values.

First, the algorithm was applied to determine the impact
of the number of ants used in the values of the social cost.
For this test, the number of ants was ranged between 1 and
100 and the number of iterations was fixed at 30. The test
was run 10 times and the average of the obtained results was
calculated (Figure 2(a)). Subsequently, the impact of number
of iterations in the values of objective functionwasmeasured.
For this, the number of iterations was ranged between 1 and
100 and the number of ants was fixed at 25. The tests were
run 10 times and the results are detailed in Figure 2(b). For
both tests, parameters are set as follows: 𝜆 = 0.85, 𝛿 = 0.2,
and 𝜌 = 0.04. As Figure 2 shows, the model requires for
convergence about 30 ants and 45 iterations.

From Figure 2, it was concluded that raising both param-
eters, ants or iterations, would cause a lower value of the
average cost social and delay. However, both results are more
sensitive to the number of iterations. This is because the
iteration count decided how much coverage each ant will
have, thus allowing them to achieve more optimal solutions.
The number of ants affects how much areas of the solution
space will be covered at the start of the algorithm. Thus,
an appropriate set of parameters to the ACO algorithm was
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Table 4: Transition timing plan with ACO procedure.

Step Intersection
Green movement

Cycle length Offset1 2 3 4 5 6 7 8
WBL EBT NBL SBT EBL WBT SBL NBT

Before
1 13 20 9 23 13 20 8 24 65 31
2 11 22 9 23 13 20 9 23 65 0
3 10 24 9 22 14 20 8 23 65 31

1
1 15 21 9 25 13 23 8 26 66 31
2 11 22 9 24 13 20 9 24 66 0
3 11 25 9 26 14 22 8 27 66 31

2
1 15 22 9 27 14 23 8 27 69 32
2 11 22 9 27 13 20 9 27 68 0
3 13 25 9 27 14 24 9 27 69 32

3
1 18 25 10 31 15 29 9 31 73 33
2 13 26 10 30 15 25 9 30 71 0
3 14 28 10 30 17 26 9 30 73 33

4
1 18 25 10 33 15 29 9 33 77 34
2 15 26 10 30 16 25 10 30 74 0
3 16 28 11 32 18 27 10 32 77 34

5
1 22 26 11 32 16 32 10 33 82 35
2 19 29 11 31 17 31 11 31 78 0
3 16 32 11 34 18 31 10 34 82 35

6
1 23 27 11 35 16 35 11 34 89 37
2 19 31 11 34 18 32 11 34 83 0
3 17 33 11 37 19 30 11 38 89 37

7
1 25 30 11 39 16 38 12 39 101 40
2 19 31 11 37 18 32 11 37 92 0
3 21 33 11 40 20 33 12 40 101 40

8
1 26 30 11 42 17 40 12 40 115 44
2 19 31 11 37 18 32 11 37 102 0
3 21 35 11 42 20 34 12 43 115 44

After
1 29 31 11 44 17 43 13 42 115 69
2 23 35 12 45 20 38 13 44 115 0
3 21 38 11 45 22 36 12 45 115 69
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Figure 2: ACO converge using social cost.
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Table 5: Results of simulation for study system.

Social cost Time value cost Vehicle operating cost Gas emission cost Delay
US $ % US $ % US $ % US $ % Sec/veh %

Proposed (ACO) 879.0 — 778.2 — 91.3 — 9.5 — 25.82 —
Immediate 1135.5 33% 1006.6 23% 117.1 22% 11.9 20% 27.19 5%
Two 1114.1 23% 987.7 21% 114.7 20% 11.7 19% 27.02 4%
Three 1141.2 21% 1010.7 23% 118.6 23% 11.9 21% 27.21 5%

Table 6: Results of simulation for gas emissions.

HC Nox CO
g % g % g %

Proposed (ACO) 28,192.8 — 92,012.9 — 6,453.5 —
Immediate 35,439.8 20.4% 114,472.9 19.6% 8,102.3 20.3%
Two 35,038.4 19.5% 113,028.3 18.6% 7,973.7 19.1%
Three 35,778.7 21.4% 115,232.7 20.2% 8,085.7 20.2%

Table 7: Results of simulation for main streets.

Social cost Time value cost Vehicle operating cost Gas emission cost Delay
US $ % US $ % US $ % US $ % Sec/veh %

Proposed (ACO) 538.5 — 476.7 — 56.0 — 5.8 — 15.82 —
Immediate 685.1 21% 607.3 22% 70.6 21% 7.2 19% 16.40 4%
Two 676.5 20% 591.2 19% 77.8 28% 7.5 23% 16.91 6%
Three 819.4 34% 731.0 35% 80.8 31% 7.6 24% 17.71 11%

Table 8: Results of simulation for secondary streets.

Social cost Time value cost Vehicle operating cost Gas emission cost Delay
US $ % US $ % US $ % US $ % Sec/veh %

Proposed (ACO) 340.6 — 301.5 — 35.4 — 3.7 — 10.0 —
Immediate 450.3 24% 399.2 24% 46.4 24% 4.7 22% 10.8 7%
Two 437.6 22% 396.5 24% 36.9 4% 4.2 13% 10.1 1%
Three 321.8 −6% 279.7 −8% 37.8 6% 4.3 15% 9.5 −5%

defined as 25 ants and 60 iterations that allow finding the best
social cost values associated with the transition.

Table 4 shows the transition timing plans following the
ACO procedure under these conditions. The result obtained
is a transition timing plan for nine periods.

To define the effectiveness and environmental impact of
this new approach, a simulation was conducted using AIM-
SUN 8.1 to compare the proposed transition plan proposed
(Tables 6–8) with traditional methods, such as immediate,
two, and three cycles.

Table 5 shows the numerical comparisons of social cost
between transition plans obtained with ACO, immediate,
two, and three cycles methods. The results achieved in the
simulationwith transition plan obtainedwithACOalgorithm
were $US 879 for the total social cost, $US 778.20 for time
costs, $US 91.3 for vehicle operating costs, and $US 9.50 for
the cost of CO, HC, and NO𝑥 emissions.

Improvements around 20% in vehicle operating costs
and gas emission costs indicate the good performance of
the proposed method from an environmental point of view.

Although decreases in delay are around 5%, it is important
to stand out great improvements for the users regarding time
cost of about 20%. This occurs because the model proposed
takes into account the occupancy rate or the number of users
of the system.

In addition, it can be observed in Table 5 that the
proposed method offers the best performance in delay times
in comparison with the other studied methods. The average
control delay per vehicle when the transition occurs in nine
steps was 25.82 seconds/vehicle. The second better method
was two-cycle.

Moreover, Table 6 shows the environmental impact of
each transition method regarding the greenhouse gases and
emissions to the atmosphere. As can be seen, the proposed
method is the best for the environment followed by the two-
cycle method. In general, reductions of about 20% occur
when the proposed method is used over the other methods.

To evaluate the performance of proposed method over
the main and secondary streets, the system was divided
into two subsystems. Tables 7 and 8 present the results
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of the simulation for the principal and secondary streets,
respectively. Table 7 shows that the proposed method gives
the best indicators of the components of the social cost
function. The second best method for the transition is the
method of the two cycles.Themethod of the three cycles is the
only onewith theworst indicators for the social cost function.

Table 8 concludes that, for secondary streets, the method
of three cycles delivers the best results for the social cost,
time value, and delays for this subsystem, above the proposed
method. However, the environmental component obtained
from the proposed method retains its superiority.

5. Conclusions
This study proposed a nonlinear mathematical model to
improve the performance of the transition between signal
timing plans at coordinated intersections using a multi-
objective function that considers the social cost in terms
of delays, fuel consumption, and air emissions. The model
constitutes a new alternative for evaluating the social impact
of transition in signal intersections as it considers the user
and environmental costs as performance measures, allowing
a more accurate estimate of externalities.

AnACOalgorithmwas proposed for designing transition
timing plans that minimize the social cost. The objective
of this procedure was to reduce social cost efficiently by
appropriate changes of offset, cycle length, and green phase
parameters in a complex mathematical problem of the tran-
sition.

The designed model can be included into traffic control
systems for reducing the effects of congestion during the
transition.

Finally, it can be stated that the proposedmethod showed
better performance measures. It obtained improvements
around 20% in the social cost and 5% in the delay. Also,
the proposed method favours the social cost function for
the complete system, giving the best performance for the
principal streets and a good performance for the secondary
ones. It also showed a good performance for the cases under
study based on an environmental point of view.

Future studies can be focused on the validation of the
proposedmethod under saturation conditions and in respon-
sive traffic systems. On the other hand, the effects of the
proposed method have to be evaluated using a great network
to confirm its efficiency regarding the reduction of the social
cost. Similarly, it is important to perform a study to compare
processing times and performance in the social cost function
using different new optimization techniques.

Variables

𝑖: The intersection𝑗: The transition step𝑛: The total number of transition steps𝑚: Phase or movements by lane groups
V: Type of vehicle𝑒: Type of emission (gas)
VT: Value of time ($US/hour)
ORV: Average vehicle occupancy or occupation

rate by type of vehicle V

𝐷𝑖𝑗𝑚V: Total delay of intersection 𝑖 at the transition
step 𝑗 for movement𝑚 by type of vehicle V (s)𝑔𝑖𝑗𝑚: Effective green time of intersection 𝑖 at the
transition step 𝑗 for movement or phase𝑚 (s)𝐶𝑖𝑗: Cycle length intersection 𝑖 at the transition
step 𝑗 (s)

OCV: Operating costs by type of vehicle V
($US/gal)

FC𝑖𝑗𝑚V: Fuel consumption of intersection 𝑖 at the
transition step 𝑗 for movement by type of
vehicle V (gal)

ECG𝑒: Environmental costs of the gas emission 𝑒
($US/mg)

GE𝑖𝑗𝑚V𝑒: Gas emission 𝑒 in the intersection 𝑖 at the
transition step 𝑗 for movement𝑚 by type of
vehicle V𝑞𝑖𝑗𝑚V: Actual or projected demand flow rate of
intersection 𝑖 at the transition step 𝑗 for
movement𝑚 by type of vehicle V (veh/h)𝑇𝑓: Duration of analysis period (h)𝐶𝑐𝑗: Common cycle length, at the transition step𝑗 (s)(Δ𝐶)𝑐𝑗: Change the common cycle length at the
transition step𝑗 (s)𝐶𝑖𝑜: Cycle length of intersection 𝑖 at the step 𝑜
(before transition period) (s)𝐶𝑖𝑓: Cycle length of intersection 𝑖 at the step𝑛 + 1 = 𝑓 (after transition period) (s)(Δ𝜑)𝑖𝑗: Change the offset of intersection 𝑖 at the
transition step 𝑗 (s)𝜑𝑖𝑗: Offset of intersection 𝑖 at the transition step 𝑗
(s)𝜑𝑖𝑜: Offset of intersection 𝑖 at the step 𝑜 (before
transition period) (s)𝜑𝑖𝑓: Offset of intersection 𝑖 at the step 𝑛 + 1 = 𝑓
(after transition period) (s)(Δ𝑔)𝑖𝑗𝑚: Change the effective green time (split) of
intersection 𝑖 at the transition step 𝑗 for
movement𝑚 (s)𝑔𝑖𝑜𝑚: Effective green time of intersection 𝑖 at the
step 𝑜 (before transition period) for
movement𝑚 (s)𝑔𝑖𝑓𝑚: Effective green time of intersection 𝑖 at the
step 𝑛 + 1 = 𝑓 (after transition period) for
movement𝑚 (s)𝑦𝑖𝑗𝑚: Yellow time of intersection 𝑖 at the transition
step 𝑗 for movement𝑚 (s)𝑟𝑖𝑗𝑚: All red time of intersection 𝑖 at the transition
step 𝑗 for movement𝑚 (s).
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[29] R. Akçelik, “Progress in fuel consumption modelling for urban
traffic management,” 1983.

[30] H. C. Frey, N.M. Rouphail, A.Unal, and J. D. Colyar, “Emissions
reduction through better traffic management: An empirical
evaluation based upon on-road measurements,” 2001.

[31] S. S. Rao and S. Rao, Engineering optimization: theory and
practice, John Wiley & Sons, 2009.

[32] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimiza-
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los semáforos, 2015, http://www.tesisenred.net/bitstream/handle/
10803/334972/TesisRPN.pdf?sequence=1.

[43] S. Fankhauser, “Social costs of greenhouse gas emissions: An
expected value approach,” Energy, vol. 15, no. 2, pp. 158–184,
1994.

http://www.tesisenred.net/bitstream/handle/10803/334972/TesisRPN.pdf?sequence=1
http://www.tesisenred.net/bitstream/handle/10803/334972/TesisRPN.pdf?sequence=1


Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


