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A methodology is presented to predict odd-mode instability in power amplifiers under output 
mismatch effects, as in the case of amplifiers connected to an antenna. This kind of instability 
is often observed in multi-device configurations, due to their symmetry properties. Unlike the 
single-ended situation, there is a cancellation of odd multiples of the oscillation frequency at 
the circuit output, so there is no impact of the load-impedance values at the sideband 
frequencies. The odd-mode instability only depends on the impedance terminations at the 
fundamental frequency and its harmonic terms, and can only be detected within the circuit 
unstable loop, instead of the antenna-connection terminals. The possible unstable modes are 
related with the eigenvectors of an outer-tier conversion-matrix accounting for the symmetry 
properties of the circuit topology. Under sufficient low-pass filtering of the amplifier output 
network, the analysis parameters can be limited to the magnitude and phase of the reflection 
coefficient at the fundamental frequency. This analysis involves a computationally-efficient 
graphical technique to detect potential instabilities and a bifurcation-detection method to 
determine the instability boundaries in the Smith chart. The two main types of instability from 
periodic regime are considered, respectively associated with incommensurable and 
subharmonic oscillations. Results have been validated through pole-zero identification and 
experimental measurements. 
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I. INTRODUCTION 
 

The instability of power amplifiers (PAs) under termination conditions other than 50 , usually 
due to antenna mismatch [1-2], can lead to serious malfunctioning, involving the observation of 
incommensurable oscillations and frequency divisions by two [2]. To guarantee a reliable 
operation in a variety of conditions, some applications impose stable operation even under 
highly reflective loads [3]. This stability analysis must be carried out under unknown values of 

the load impedance, which will be different from 50 . Due to its frequency dependence, this 



impedance will be different at the fundamental frequency fin and its various harmonic 
components, mfin, and sideband frequencies, mfin + f, where m is an integer and f is a perturbation 
frequency, to be swept in the stability analysis [5]. Even and odd mode instabilities can be 
distinguished, which, as described next, require different analysis procedures. 

In the even mode instability, the mismatched-termination impedances at the harmonic 
frequencies mfin and sideband frequencies mfin + f must be taken into account. Due to the low-
pass filtering action of the output network, it will be possible to limit the mismatch effects to 

inf  and the lowest sideband frequencies  f, −fin + f and fin + f, with all the rest of components 

arbitrarily terminated in 50 . Taking this into account, the work [5] relies on the definition of 
a 3 x 3 scattering matrix at the reference plane, where the PA output is connected to the antenna. 
This is done considering three virtual ports, corresponding to the three mismatched sidebands, 
with the rest of harmonics and sideband frequencies constituting an inner tier. Under fulfilment 
of an equivalent of the Rollet’s proviso [7] established in [5], the potential instability can be 
detected at PA-output reference plane, using three large-signal equivalents of the stability factor 

() [6], defined in [5]. These large-signal  factors depend on the reflection coefficient o  at 

inf  , the perturbation frequency f and the input power Pin. 

In the odd-mode stability analysis, the components at mfin + f are inherently cancelled at the PA 
output reference plane. This is due to the 180º phase shift between different amplifier branches, 
which gives rise to a virtual short circuit at mfin + f at the circuit output. There is a cancellation 
of the possible unstable poles with right-hand side (RHS) zeroes [8-10], so the instability cannot 
be detected from the circuit output plane. On the other hand, the impedance terminations at 
mfin + f will not have any impact on the potential instability, which will only depend on the 
terminations at mfin. The stability analysis must be necessarily carried out at the internal circuit 
nodes or loops. This situation is similar to the one described by Freitag [11] in the small-signal 
stability analysis of multi device PAs. However, the analysis in [11] assumes a small-signal 
operation of the amplifier, though, in general, the PA will be in a nonlinear regime [10], [12] 
with respect to the input source at fin. Unlike the linearization with respect to the dc solution 
considered in [11], in the presence of the perturbation at f, the circuit must be linearized about 
the periodic steady-state periodic solution, which will depend on the input power Pin. This 
linearization should be carried out with the conversion-matrix approach [13]-[15].  

In the odd-mode case, despite the cancellation of the sideband frequencies mfin + f at the PA 
output reference plane, the antenna mismatch may lead to instability, due to the impact of the 
impedance terminations at the harmonic frequencies mfin on the periodic steady-state solution 
about which the circuit is linearized with the conversion-matrix approach. Under the assumption 
of a sufficient low-pass filtering action of the output network, the impact on the stability 

properties of the o  termination impedances at frequencies mfin, where |m|>1, can be considered 

negligible, even if all these frequencies, as well as the sideband frequencies mfin + f are duly 

taken into account in the analysis. For simplicity, they are assumed to be terminated in 50 , so 

the mismatch effects are limited to the termination at fin, given by o . In the absence of filtering 

effects, the analyses presented in this work would still be applicable, but would need the 
consideration of all passive termination impedances ,o m  at the harmonic components |m|>1. 



Nevertheless, to protect the PA against mismatch-induced instability, it will be convenient to 
use a low-pass output network to minimize the impact of the termination impedances at |m|>1. 

The practical analysis method presented in this work involves three different stages. In a first-
stage, the possible oscillation modes are identified through the eigenvalue/eigenvector analysis 
of the outer-tier conversion-matrix matrix that describes the active sub-circuit. This is defined 
at the nodes where this active sub-circuit is connected to the power-combining network. The 
eigenvalue/eigenvector analysis is formally identical to the one proposed by Freitag [11]. In a 
second stage, a graphical method is used to detect potential instabilities associated to the various 
operation modes, excited with the aid of auxiliary generators (AGs) [15-16]. In a third stage, the 

fundamental-frequency terminations o  that give rise to instability are determined with a 

bifurcation [15]-[25] detection technique. It is taken into account that at the oscillation 
boundary, the steady-state oscillation condition is fulfilled for amplitude tending to zero [15-
16]. A boundary analysis should be carried out for each of the oscillation modes detected in the 

first stage. The boundary is calculated in terms of the termination o  and traced in the Smith 

chart. Stable and unstable regions are distinguished through pole-zero identification [8]-[10], 
applied to representative points in the distinct regions separated by the boundary.  

The odd-mode instability often involves a subharmonic oscillation due to the influence of the 
input signal at fin on the critical circuit frequencies, which are shifted to the divided-by-two 
frequency fin/2 [18]. Therefore, two cases will be distinguished: an incommensurable oscillation 
at a frequency f and a subharmonic oscillation at fin/2. The PA operates in a large-signal regime, 
so the input power will have a significant impact on the potential instability properties, which 
will be investigated in detail with a graphical technique. The method will be illustrated through 
its application to two power-combining amplifiers at fin = 1.5 GHz, with two and four active 
devices, respectively, which have been manufactured and measured. 

The paper is organized as follows. Section II presents the methodology for the detection of odd-
mode instabilities, illustrated with a basic PA cell of two transistor devices. The impact of input 
power is analyzed in detail. Section III describes the stabilization method. Section IV presents 
the generalization of the potential instability analysis to multi-device PAs. 

 
 
II. DETECTION OF ODD-MODE INSTABILITIES  

 

 
Let a circuit exhibiting symmetries, such as the one in Fig. 1, be considered. For the analysis of 
mismatch effects, and assuming sufficient low-pass filtering effects of the output network, the 

circuit will be terminated in o  at fin and in 50  at mfin, where |m|>1. For instance, in Fig. 1, a 

180º shorted stub at 2fin has been introduced in parallel with the final 50  load (the load that 
will undergo changes under the mismatch effects), which should help reduce the impact of 

mismatch at frequencies with |m|>1. For a given input power Pin and termination o , the circuit 

exhibits the steady-state solution oX , which is the vector of harmonics of the various state 

variables, obtained with harmonic balance (HB).  

For a simple analysis of the impact of the circuit topology on the possible oscillation modes, an 



exemplary outer-tier conversion matrix will be calculated. An admittance matrix is obtained by 
sequentially connecting an AG of voltage type [15-16] at the frequency f, in parallel at the two 
analysis nodes [1 and 2 in Fig. 1(a)]. The AG should operate in small signal and include a 
bandpass filter at fAG = f. To obtain the first (second) matrix row, the AG is connected to node 1 
(2), calculating the ratio between the currents, I1 and I2, entering the active network from node 
1 and node 2, at the particular sideband kfin+f frequency, and the AG voltage. In the case of the 
circuit in Fig. 1, the resulting matrix has the form: 

 

,11 ,12

,12 ,11

( , ) ( , )

( , ) ( , )
a in a in

a in a in

Y f kf f Y f kf f

Y f kf f Y f kf f
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where the subindex “a” stands for “active network”. Due to the circuit symmetry, the form of 
the outer-tier conversion matrix will be the same, no matter the choice of the outer-tier 

sidebands. This matrix topology exhibits the two eigenvectors T[1  1]  and T[1  -1] , as easily 

derived from (1). On the other hand, the form of the admittance matrix describing the passive 
network (Fig. 1) is identical to (1) at all frequencies mfin + f , and therefore exhibits the same 

two eigenvectors T[1  1]  and T[1  -1] . The eigenvector T[1  1]  corresponds to an even mode, with 

the sidebands mfin + f  in phase in the two amplifier branches. The eigenvector T[1  -1]

corresponds to an odd mode, having sidebands with 180º phase shift in the two branches.  

The two modes can be excited by simultaneously connecting the two voltage AGs in parallel at 
the two analysis nodes, at the frequency f, with identical amplitudes VAG [see Fig. 1(a)]. The 

mode T[1  1]  is analyzed by setting equal phase values at the two AGs, AG1 = AG2 = 0º. Under 

this simultaneous excitation, the total admittance at f, at each of the two analysis nodes is given 
by the ratio between each AG current and voltage: YAG1,e = IAG1(f)/VAG, YAG2,e = IAG2(f)/VAG. 
Because the excitation agrees with one of the matrix eigenvectors, the two admittances are 
identical, as demonstrated in [11]. This admittance will be renamed YTe = YAG1,e = YAG2,e. In turn, 

the mode T[1  -1]  is analyzed by using two small-signal AGs with equal amplitude and 180º 

phase shift, AG1 = 0º, AG2 = 180º. Under this simultaneous excitation, the total admittances 

YAG1,o = IAG1(f)/VAG and YAG2,e = IAG2(f)/VAGej are also equal, and will be denoted as YTo. This 
use of multiple AGs to analyze the modes will be most useful in the general case of multi-device 
PAs, as shown in Section IV. 

 



 

Fig. 1. Test-bench power amplifier based on a CLY5 transistor (RO4003C: r=3.38, 

h=0.5 mm). (a) Circuit schematic. The AGs, at the respective phases AG1 and AG2, are used 
for the analysis of the modes. The stabilization resistor Rs, connected between the two 

amplifier branches, is also shown. The small-signal current source is introduced to evaluate 
the limit-oscillation conditions at an incommensurable frequency f or a subharmonic 

frequency fin/2. (b) Photograph. 
 

 

In the case of odd-mode instability, the two transistor branches will exhibit 180º phase shift at 
mfin+f, so these sidebands will inherently cancel out at the PA output reference plane. This 
situation in which the stability properties depend on the termination at mfin but are independent 
on the terminations at the sideband frequencies at mfin+f can be interpreted as a failure of the 
proviso established in [5] (an extension of Rollet’s proviso [7] to the sideband-impedance 
problem). This is because the odd-mode instability will be observed even if the sideband 
frequencies are terminated in open or short circuits at the PA output [5]. The antenna mismatch 
will only affect the stability properties through the termination impedances at mfin, which will 

give rise to a change in the steady-state solution oX  about which the circuit is linearized, and, 

therefore, to a change in ToY . However, under the assumption of sufficient low-pass filtering 

effects, the analysis can be limited to the termination at fin, expressed as o . The test-bench is 

illustrated in Fig. 1, where harmonics |m|>1 are arbitrarily terminated in 50 Ohms due to their 
limited influence. 



The prediction of the odd-mode instability will be based on two fundamental properties: (i) when 
a circuit exhibits a steady-state oscillation, all its nodes exhibit a total admittance function 
(current-to-voltage ratio) equal to zero, (ii) at the instability boundary, the steady-state 
oscillation amplitude tends to zero [18]. When linearizing the circuit with respect to the 
perturbation at f (as done in the conversion-matrix approach), we implicitly assume amplitude 
tending to zero at this frequency. Thus, the limit oscillation condition (instability boundary) is 

defined by the condition: 0ToY  . This odd-mode limit oscillation condition can also be 

evaluated through the connection of a small-signal current source between equivalent device 

nodes of the two subcircuits (Fig. 1), doing 1 2/ ( )To testY I V V  . Note that ToY has been redefined 

here. 

Pole-zero identification [8]-[10] would be applicable to detect the odd-mode instabilities under 
mismatch effects. However, the odd-mode excitation must be preserved as otherwise the 

impedance at sideband frequencies would be ill represented with a constant o . Such an analysis 

would require a sweep in the perturbation frequency f (going from 0 to fin, in periodic regimes) 
for each steady-state solution, obtained through a double sweep in the amplitude and phase of 

o . Pole-zero identification should be applied to all the transfer functions resulting from this 

double sweep. The identification interval 0 to fin should be, in general, divided into smaller 
intervals, so this analysis will be computationally demanding. Instead, the aim here will be to 

obtain directly the boundary between stable and unstable values of o , given by the condition 

0ToY  , which should be traced in the in the Smith chart corresponding to o . Actually, the 

fulfilment of 0ToY   will depend on the input power Pin, the termination o  and the oscillation 

characteristics, since there are two major instability mechanisms from a periodic regime at fin 
[15]-[20]. One is the onset of an incommensurable oscillation at the frequency f, or Hopf 
bifurcation, and the other is a division by 2 of the input frequency, leading to a subharmonic 
regime at fin/2, which corresponds to a flip bifurcation.  

For illustration, the analysis will be applied to the PA in Fig. 1. Introducing a stabilization 

resistor, Rs = 170 , in parallel between the two amplifier branches, the circuit is stable for all 

the Pin values under matched conditions (when terminated in a 50  load), as has been verified 
with pole-zero identification [8]-[10]. On the other hand, the amplifier does not exhibit even-
mode instabilities under mismatch effects, as verified with the method in [5]. 

The analysis method relies on the calculation of the Hopf- and flip-bifurcation loci, in terms of 

the magnitude and phase of the reflection coefficient o . This must be complemented with a 

local-stability analysis, such as pole-zero identification [8]-[10] to distinguish between stable 
and unstable regions. It will be sufficient to apply this local stability analysis to representative 
points in the various regions separated by the loci. 

 

 
 

A) Incommensurable oscillation 
 

 



For each Pin, the boundary of incommensurable oscillations, or Hopf bifurcation locus [15]-
[20], will be defined by the two conditions: 

 

( , , ) 0,     

( , , , ) 0
o o o

To o o o

H X

Y X f

 

 




 (2) 

 

where 0H   represents the whole set of harmonic-balance (HB) equations, acting as an inner 
tier, ,o o   are the magnitude and phase of o  and f is incommensurable with fin. The steady-

state solution oX  depends on o  and the limit oscillation condition, YTo = 0, is evaluated with 

the conversion-matrix approach.  

The analysis based on (2) should start with a global exploration of the Smith chart, in order 
to provide a suitable initial value to the optimization/calculation procedure. This is done with a 

simple graphical technique that takes advantage of the bounded nature of o  and o . The 

perturbation frequency f is swept between 0 and fin [8]-[10] and, for each f, a double sweep is 

performed in ,o o  , so as to cover the entire Smith chart. For each triplet f, ,o o  , the total 

admittance YT is calculated as the ratio between the current delivered by the small-signal source 
and the voltage across its terminals YT = Itest/(V1 − V2). A closed curve is obtained for each pair 

of values f, o. To fulfill YTo = 0, there must be changes of sign in both the real and imaginary 

parts of YT under variations of ,o o  , which is easily evaluated through simple inspection.  

 
Fig. 2(a) shows the admittance plots versus f, ,o o   corresponding to the circuit in Fig. 1, 

obtained for Pin = 10 dBm . There are no crossings of the negative real semi-axis, so there is no 
oscillation boundary within the Smith chart. Because the PA is always stable in matched 

conditions, the value 0o   is stable and, a result, the whole Smith chart should be stable too. 

The same situation is obtained for other Pin values, so one concludes that the PA in Fig. 1 cannot 
exhibit incommensurable oscillations under mismatch effects.  

In case the presence of an instability boundary is detected, suitable initial values for the 
calculation of this boundary should be close to the origin of the admittance plane (YT = 0). This 
situation may be found in one or several regions of the Smith chart. This initial value (or values) 
should be introduced in system (2), which will provide an initial point of the instability 

boundary: , ,i i i
o o f  . Then the entire Hopf locus will be efficiently traced through continuation 

[18], by sweeping o  from i
o  and solving (2) to obtain: ( ), ( )o o of   . There will be one Hopf 

locus for each Pin.  

   

 

 



 
Fig. 2 Graphical method to obtain initial values, using the total admittance function. (a) 

Results in the case of an incommensurable frequency f , sweeping in f, o, and o at the 
constant input power Pin = 10 dBm. No instability boundary can exist within the unit Smith 

chart. (b) Results in the case of a subharmonic frequency fin/2 and Pin = 10 dBm, sweeping in, 

o, and o. There should be an instability boundary inside the unit Smith chart. 

 
 

B) Frequency division by 2 
 

 
One common case of odd-mode instability is the frequency division by 2, associated with flip 
bifurcations [13]-[20]. This phenomenon occurs when the input signal shifts the circuit natural 

frequency f  to one half of the input frequency: f  fin/2, which is often associated with a 
parametric instability. This evolution involves the splitting of a pair of complex-conjugate poles 
at f (associated with two dimensions of the differential equation system [18]) into two 
independent pairs of complex-conjugate poles at fin/2 (each associated with one dimension). At 
the division threshold, the subharmonic-oscillation amplitude will tend to zero, so the flip 
bifurcations can be detected by setting the frequency of the small-signal current source to fin/2. 
Because this perturbation frequency (fin/2) and the input frequency are commensurable, the 
phase shift between the input source and the current source is a relevant analysis variable [18]. 
For the bifurcation detection, one can set the phase of the current source to zero and consider 

the input-source phase in  as an analysis variable. The mathematical conditions for the flip 

bifurcation are: 

 

( , , , ) 0,        

( , , , ) 0
o o o in

To o o o in

H X

Y X

  

  




 (3) 

 

where 0H   is the whole set of HB equations, acting as an inner tier, and ,o o   are the 

magnitude and phase of o . The steady-state solution oX  depends on o . Unless a modified 

conversion-matrix analysis [21]-[22] is applied, the above analysis must be carried out with HB 
at the fundamental frequency fin/2, due to the frequency commensurability. The initial value(s) 

is obtained through 3 nested sweeps, in the input-source phase in, varied between 0 and 360º, 

and in ,o o  , to cover the full Smith chart. Advantage is taken from the fact that the three sweeps 

are bounded.  



In the case of the PA in Fig. 1, the admittance plots ( , , , )T o o o inY X    provide several crossings 

of the negative real semi-axis [Fig. 2(b)], indicating the fulfillment of the flip-bifurcation 

condition (3) for a continuous set of triplets , ,o o in   . Once an initial point , ,i i i
o o in    has been 

obtained, the entire instability boundary is easily traced through continuation, by sweeping the 

phase o  from i
o , and solving (3) to obtain: ( ), ( )o o in o    . This provides the flip bifurcation 

loci shown in Fig. 3, which constitute the boundary of load-impedance values for which the 
circuit exhibits a sub-harmonic oscillation (flip-bifurcation locus). Each locus in Fig. 3 
corresponds to a different Pin. The stable and unstable regions of this boundary are easily 
distinguished since one should know beforehand the stability properties of the matched 

amplifier, that is, when it is terminated in 50 . Because the amplifier is stable in matched 
conditions, the stable region corresponds to the outside of the flip loci. 

 

 
 

Fig. 3 Instability boundaries, showing also the points fulfilling Re(YTo)<0 and 

|Im(YTo)|  10-3 -1. (a) For Pin = 6 dBm. (b) For Pin = 10 dBm. (d) For Pin = 15 dBm. 

 
 

Processing the data in Fig. 2(b) it has been possible to obtain the o values giving negative 

conductance (Re(YT)<0), with a magnitude of the imaginary part |Im(YT)| below 10-3 -1 at 
different Pin values, represented with squares in Fig. 3(a-c). The unstable region contains a 
subset of the points with negative real part of YT and low magnitude of the imaginary part. Note 
that the negative real part and positive-slope resonance of YT do not constitute a general 
instability condition. However, the limit steady-state oscillation condition in (2) and (3) is 
rigorous and should be fulfilled at any circuit node at the stability boundary.  

As shown in Fig. 4, for low Pin, the flip locus does not enter the Smith chart, so there is 

unconditional stability. From Pin   5 dBm, the locus crosses the Smith chart, so the amplifier is 
potentially unstable under mismatch effects. Due to the natural reduction of the negative 
resistance from certain signal amplitude, one should expect the loci to escape from the Smith 
chart from a certain Pin value.  

Because the odd-mode instability only depends on the load value o at fin, all the possible 
implementation of this load should give rise to the same kind of behavior, either stable or 

unstable. This has been validated for two different o values, one at each side of the flip-

bifurcation locus obtained for Pin = 15 dBm (in a solid red line in Fig. 3), indicated as t1 and 



t2 in Fig. 4. They are relatively close to the stability boundary to evaluate the degree of 
accuracy. Fig. 5(a) presents the results of an independent stability analysis based on pole-zero 

identification when t1 and t2 are implemented with an RL series network. Fig. 5(b) presents 

the results of the parallel-RL implementation. Poles of the t1 (t2) load are represented with 

“+” (“x”). With the two different implementations, the load t1 is stable and the load t2 is 
unstable, in agreement with results from (3).  

 

As stated, to protect the PA against mismatch induced instabilities, it is convenient to use a 
low-pass output network, as in the case of the amplifiers considered in this work. In the absence 
of output filtering effects, the same procedure should be applied for each particular set of 
reflection-coefficient values at the harmonic frequencies |m|>1, which would provide a family 

of Hopf and flip loci. Actually, the flip locus obtained above corresponds to the case 0m   for 

|m|>1. For unconditional stability, the PA should be stable in matched conditions and none of 
the loci should enter the Smith chart. If the goal is just to check whether the PA is 
unconditionally stable or not, it will be sufficient to inspect the admittance diagrams obtained 
through consecutive sweeps. To be more precise, for each f (in the case of a Hopf bifurcation 

detection) or in (in the case of flip bifurcation detection) a series of nested sweeps are carried 

out in the magnitude and phase of the reflection coefficients m , where |m|  1. To fulfill 

YTo = 0, there must be changes of sign in both the real and imaginary parts of YT under the 

variations of m , which is easily evaluated through simple inspection.  

 

 

 

 
 

Fig. 4 Evolution of the flip locus obtained with (3) versus Pin. The loci only cross the 
Smith chart in a certain Pin interval. The two reflection-coefficient points (t1 and t2) at 
both sides of the boundary corresponding to Pin = 15 dBm (used for the validation of the 

method) are indicated.  
 



 
 

Fig. 5 Validation of the flip locus corresponding to Pin = 15 dBm with two different 
implementations of t1 and t2 in Fig. 3. (a) RL-series implementation. Poles of the t1 (t2) 

load are represented with “+” (“x”). (b) RL-parallel implementation. Poles of the t1 (t2) load 
are represented with “+” (“x”). 

 
III. AMPLIFIER STABILIZATION 

 
The amplifier in Fig. 1 will be stabilized under mismatch effects with the aid of the resistor Rs, 
connected between the two amplifier branches. Because the target is to stabilize the amplifier 
for all the Pin values, it will be useful to determine the Pin interval with potential instability in 
an efficient manner. In the particular case of Fig. 4, all the loci cross the boundary of the Smith 
chart, so one can expect the locus to be tangent to this chart at the limits of the unstable Pin 
interval. At the boundary of the unit Smith chart, the magnitude of the reflection coefficient is 

1o  . The locus of Pin and o values fulfilling the flip-bifurcation condition under 1o   is 

expressed as: 

( , 1, , , ) 0

( , 1, , , ) 0
o o o in in

To o o o in in

H X P

Y X P

  

  

 

 
 (4) 

 
For Pin values such that the flip locus in (3) crosses the unit Smith chart, there will be at least 

two o fulfilling (4) (Fig. 4). This is shown in Fig. 6, where the phase o at the intersection points 
with the Smith chart [calculated with (4)] has been represented versus Pin. At the boundaries of 

the unstable Pin interval there will only be one o, since the locus is tangent to the Smith chart. 
To stabilize the circuit under mismatch effects, the resistor Rs, connected between the two 

amplifier branches, will be reduced from its original value (170 ), in order to increase the 
damping effects in the odd mode. As expected (Fig. 6) the locus (4) decreases in size with Rs 

and eventually vanishes. For Rs<120 , the amplifier should be stable for all the Pin values. 

 



 
 

Fig. 6. Calculation of the unstable Pin interval using the locus in (4). The limits of this interval 
correspond to the edge points of the locus. The calculation has been performed for different 

values of the stabilization resistor Rs. 

 

The PA has been measured for two Rs values (150  and 100 ) and different positions of a 

triple-stub tuner, used to enable the load variation [Fig. 7(a)]. With Rs = 150 , the circuit is 
stable for the measured loads A and B and exhibits a frequency division by two for the loads C 
and D. See the spectra corresponding to B and C in Fig. 7(b) and 7(c). The low amplitude of the 
subharmonic spectral line is due to the near cancellation of this frequency component at the 
circuit output, due its odd-mode nature. The region of the unstable loads is in very good 

correspondence with the analysis in Fig. 4. With Rs = 100  the circuit is stable for all the load 
values [E, F, G, H are shown in Fig. 7(a)] and all the Pin values, in agreement with Fig. 6.  

 

 

Fig. 7 Measurements for different positions of a triple-stub tuner, connected to the PA output. 
(a) The loads A,B,C,D correspond to tests under Rs = 150 . The loads E,F,G,H correspond to 

tests under Rs = 100 . (b) Spectrum for Rs = 150  and load B (stable). (c) Spectrum for 
Rs = 150  and load C (unstable). 

 

IV. GENERAL METHODOLOGY FOR THE PREDICTION OF 
POTENTIAL ODD-MODE INSTABILITIES 

 

The methodology in Section II can be generalized to multi-device PAs, exhibiting symmetries. 
According to [11], in general, there are N possible modes when N devices are combined. The 
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method to detect mismatch-induced instabilities should consider all of the possible modes, 
detected through the eigenvalue/eigenvector analysis [11] of the outer-tier conversion matrix 
describing the active subcircuit. Each of them should be tested for the two cases of 
inconmensurable and subharmonic oscillations. 

For instance, the PA in Fig, 8 is a two-stage extension of the one in Fig. 1, containing four 

transistor devices. Under matched conditions (50  termination), with the stabilization resistor 

Rs = 100  connected as shown in Fig. 9(a), this PA exhibits unstable behavior in a certain Pin 
interval, as observed when applying pole-zero identification [8]-[10]. Fig. 9 shows the evolution 
of the real part of the dominant poles versus Pin. For low Pin there is a pair of dominant complex-
conjugate poles at a frequency f, which is incommensurable with the drive frequency fin. The 
poles are initially located on the left-hand side of the complex plane (LHS), but, as Pin increases, 
they approach the imaginary axis and cross this axis to the right-hand side (RHS) at 

1 2.55 dBminP  . At 2 10.9 dBminP  , the same pair of complex-conjugate poles crosses to the 

LHS and the amplifier becomes stable. Thus, the matched amplifier is unstable in the input 
power interval (2.55 dBm, 10.9 dBm). To illustrate the possibilities of the new methodology, 
instead of a two stage procedure, with a first stage devoted to the stabilization of the matched 
PA and a second one devoted to its stabilization under mismatch effects, a global stabilization 

process will be applied, considering all passive terminations o at fin.  

 

 

Fig. 8 PA based on four active devices, operating at fin = 1.5 GHz. (a) Schematic. The AGs 
used for the potential instability analysis and operating at the frequency fAG, are also shown. 
Their phases, AG1,AG2,AG3 and AG4 depend on the particular odd mode to be analyzed, as 

described in the main text. (b) Photograph.  

 



 

Fig. 9 Stability analysis of the PA terminated in a standard 50  load, with a stabilization 
resistor Rs = 100 , connected as shown in Fig. 8. The real part of the dominant poles has 

been represented versus Pin. The frequency f of these poles is incommensurable with the input 
frequency fin. The PA is unstable in the interval comprised between Pin1 =2.55 dBm and 

Pin2 = 10.9 dBm.  

 

The method described in Section II to obtain an outer-tier conversion matrix approach can be 
generalized to PAs containing any number of active devices. A small-signal voltage AG at the 
perturbation frequency f is sequentially connected in parallel at each of the device nodes. Then, 
the elements of each row of the admittance-type matrix are given by the ratio between the current 
entering each device at the particular sideband kfin+f and the AG voltage. In the particular case 
of four active devices, considered in Fig. 8, the matrix is expressible as: 
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Note that the matrix structure is independent of the two sidebands chosen for the outer-tier 
analysis. The matrix describing the passive output network at kfin+f will have an identical form. 
Thus, the possible oscillation modes can be derived from the eigenvectors of the active and 
passive matrixes. The matrix (5) (as well as the matrix describing the passive output networks) 
has the following eigenvectors: 
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The two last eigenvectors imply different amplitudes in the two sub-amplifiers. In practice, due 
the symmetry of the circuit topology, one can expect identical oscillation amplitudes in all the 
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equivalent circuit nodes. The eigenvectors in (6) indicate four possible situations, in terms of 
the phase shifts (0 and 180º) between equivalent nodes of the four circuit branches. 

Once the possible modes have been determined with the method described above, the potential 
instability analysis will be based on an actual excitation of these modes through the 
simultaneous connection of as many voltage AGs as the number of active devices. These AGs 
will be connected in parallel between equivalent nodes of these devices and ground, as shown 
in Fig. 8(a). Note that the study can equally be carried out using current sources in parallel, since 
the analysis targets the instability boundary, at which the oscillation amplitude tends to zero, so 
the circuit behaves in linear condition with respect to these auxiliary sources.   

The analysis of the possible odd-mode instabilities will consist of two different stages, 
depending on the desired level of insight into the potential instability mechanism: (i) a graphical 
method to detect the potential-instability problem and (ii) a calculation of the stability 

boundaries in the Smith chart corresponding to o. The cases of an incommensurable oscillation 
and a subharmonic oscillation will be distinguished. For each, all the possible odd-mode 
instabilities, detected with the outer-tier conversion matrix approach, will be checked. 

 

A) Incommensurable oscillation 
 
For the prediction of an odd-mode incommensurable oscillation, the frequency of the AGs 
(fAG = f) must be incommensurable with the input-drive frequency fin.  

 

1) Mode T[1  -1  1  -1]  

To analyse the potential instability in the odd mode T[1  -1  1  -1]  four AGs, at fAG = f, with the 

respective phase distributions: (0º, 180º, 0º, 180º), are connected in parallel at the device output 
terminals [Fig. 8(a)]. For each Pin value, a triple sweep is performed, in the frequency f, from 0 

to fin, and in the amplitude and phase of o. Advantage is taken from the fact that the three 

sweeps are bounded. For each frequency f and magnitude o, a closed curve is obtained when 

sweeping o. Fig. 10 presents the results of the triple sweeps corresponding to the mode 
T[1  -1  1  -1] for different values of the stabilization resistor Rs in Fig. 8(a).  

Fig. 10(a) shows the admittance plots with Rs = 100 . For each Pin and each f, a closed curve 
is obtained. For Pin = -10 dBm, the zero-amplitude steady-state oscillation condition 

( , , , ) 0To o o oY X f    can never be fulfilled, as derived from a simple inspection of the plots. 

The entire Smith chart will either correspond to stable or unstable behavior, since there is no 
instability boundary within this chart. From the pole-zero identification of Fig. 9, for Pin = -10 

dBm, the amplifier terminated in 50  is stable. Therefore, the entire unit Smith chart is stable 
and the PA is unconditionally stable under mismatch effects. The closed curves become larger 
for Pin = 0 dBm, and some of them enclose the center of the complex plane [Fig. 10(a)]. As a 

result, a continuous set of triplets f, o, o will fulfil the limit oscillation condition 0ToY  , so 

there should be a stability boundary inside the o Smith chart for this Pin value. The same 
situation is obtained for other power values comprised between Pin = 0 dBm and Pin = 10 dBm.  



Using the described graphical method, in combination with a stability analysis of the matched 
PA, based on pole-zero identification [8]-[10], it will be straight forward to stabilize the PA 
under mismatch effects for all the Pin values. Fig. 10(b) shows the same admittance plots in the 
presence of a stabilization resistor of Rs = 91 Ohm, which nearly corresponds to a tangency 

condition. Fig. 10(c) and Fig. 10(d) show the admittance plots corresponding to Rs = 82 and 

Rs = 75  without any possible fulfillment of the limit oscillation condition YTo = 0. Provided 

that the matched PA (under a 50  termination) is stable for all the Pin values with Rs < 82 , it 
will also be unconditionally stable under mismatch effects. The results of the pole zero 

identification for Rs = 75  are shown in Fig. 11. For all the Pin values, the poles are located on 
the LHS, so the amplifier must be unconditionally stable under mismatch effects. This result 
will be experimentally confirmed in subsection c).  

 

 
Fig. 10 Graphical prediction of the odd-mode instability T[1  -1  1  -1] at an incommensurable 

frequency f , under mismatch effects. It is based on triple sweeps in the perturbation frequency f 
and the reflection coefficient magnitude o and phase o, performed for each Pin value. (a) 

Stabilization resistor Rs = 100 . A stability boundary exists within the Smith chart. (b) Rs = 91 
. Tangency situation. (c) Rs = 82 . There is no instability boundary within the Smith chart. 

(d) Rs = 75 . There is no instability boundary within the Smith chart. 
 

Departing from an initial point obtained with the plots in Fig. 10, and by means of a continuation 

method, it is possible to trace the stability boundaries in the o Smith chart. For the stabilization 

resistor Rs = 100  , this provides the loci shown in Fig. 12, which delimit the termination loads 

o that would give rise to unstable behaviour. The impact of Pin on the potential instability 
boundary can be noticed. There is a significant variation of the shape and size of the boundaries 
when modifying Pin.  
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Fig.11 Pole zero identification of the matched amplifier (terminated in 50 ), with a 

stabilization resistor Rs = 82 . This analysis complements the one based on the admittance 
diagrams in Fig. 10. Combining the results of the two analyses, it is predicted that the amplifier 

will be unconditionally stable under mismatch effects for Rs < 82 . 
 

Stable and unstable regions can be distinguished with the aid of the pole-zero identification in 
Fig, 9, applied to the matched amplifier. For instance, for Pin = 1 dBm, the stable region 

corresponds to the outside of the boundary, since we know that the matched 50  termination 
is stable and should belong to the stable region. The boundary crosses the origin of the Smith 
chart at Pin = 2.55 dBm and Pin = 10.9dBm, which agree with the input power values at which 
the matched PA undergoes Hopf bifurcations in the pole-zero analysis of Fig. 9.  
The accuracy of the stability boundaries in Fig. 12 has been validated with pole-zero 
identification, considering the two fundamental-frequency loads, A and B, one at each side of 
the boundary corresponding to Pin = 10 dBm. For A, the poles are on the LHS (Fig. 13), in 
agreement with the stable behaviour predicted by the boundary. For B, the poles are on the LHS, 
also in agreement with the boundary.  
 

2) Mode T[1  1  -1  -1]  

To predict potential instabilities in the mode T[1   1  -1  -1] , four AGs, with the respective phase 

values (0º, 0º, 180º, 180º), and operating at the incommensurable frequency f, are connected at 
the device output terminals. Though not shown here, all the resulting admittance plots fulfil 
Re(YT)>0 for all the Pin values. Thus, there cannot be any instability boundaries inside the Smith 
chart. Under this odd-mode excitation, the matched PA is stable for all the Pin values, as verified 
with pole-zero identification. Taking both results into account, one concludes that the PA does 
not exhibit this kind of instability.  
 

B) Subharmonic oscillation 
 

The potential subharmonic oscillation (at fin/2) in each of the two odd-modes T[1   -1  1  -1]  and 
T[1   1  -1  -1]  has been tested with the graphical method. Four AGs with the respective phase 

distributions: (0º, 180º, 0º, 180º) and (0º, 0º, 180º, 180º) have been connected in parallel at the 
device output terminals [Fig. 8(a)]. The AG frequencies are fAG = fin/2. For each of the two AG 

phase distributions, a triple sweep is performed: in the input-source phase in, from 0º to 360º, 



and in the amplitude and phase of o. This provides a closed curve for each pair of values in, 

o. Results obtained for different Pin values are shown in Fig. 13, where the geometrical effect 
of the double phase periodicity can be noted. With none of the two excitations there is a crossing 
through the negative real semi-axis of the admittance diagram, so there should be no stability 
boundary in the Smith chart for any Pin value. This information should be complemented with 
the one obtained through application of pole-zero identification to the matched amplifier. There 
are no poles on the RHS at the subharmonic frequency for any Pin, so the center of the Smith 
chart is stable. Since there is no instability boundary in the Smith chart for any Pin, one concludes 
that the amplifier is unconditionally stable versus subharmonic instabilities.   
 

 

Fig. 12 Evolution of the instability boundary under incommnesurable oscillations in the odd 

mode T[1   -1  1  -1]  under variations in the input power Pin. (a) Stability boundaries in the o 

Smith chart. Stable and unstable regions are distinguished with a complementary stability 

analysis of the matched amplifier (terminated in 50 ) versus Pin. This analysis is shown in 
Fig. 9. (b) Validation of the stability predictions obtained with the boundary corresponding to 
Pin = 10 dBm, through pole-zero identifiction. Two different load have been tested, A and B, 

indicated in (a). The boundary accurately predicts the stability properties. 



 
Fig. 13 Prediction of subharmonic instabilities (at fin/2) under mismatch effects by using a total 
admittance diagram. Different values of input power Pin have been considered. (a) Odd-mode 

T[1   -1  1  -1] , with AG excitation at the phases (0º, 180º, 0º, 180º). (b) Odd-mode T[1   1  -1  -1]  

with AG excitation at the phases (0º, 0º, 180º, 180º). For each of the two AG phase 

distributions, a triple sweep is performed: in the input-source phase in, from 0º to 360º, and in 

the amplitude and phase of o. 

 

 

C) Experimental results 
 

The amplifier has been manufactured and measured. Its output was connected to a triple-stub 
tuner. Under variations of the triple stub tuner, subharmonic instabilities were only observed 
through synchronization mechanisms, once the circuit was in a steady-state oscillatory regime. 
This is a secondary phenomenon, which takes place when the autonomous frequency of the 
quasi-periodic regime becomes commensurable with the input-drive frequency [18]. From a 
periodic regime at fin, only transitions to a self-oscillating mixer regime at fin and f 
(incommensurable with fin) were experimentally observed under variations of the tuner, in 
agreement with the simulation results. Fig. 14 shows the results obtained for the stabilization 

resistor Rs =100  and Pin = 10 dBm. The theoretical stability boundary is represented in Fig. 
14(a), together with the measured load impedance variations obtained for several positions of 



the triple-stub tuner. Unstable behaviour was obtained inside the instability boundary, as in the 
case of the loads A and D. As an example, with the spectrum obtained with the load A is shown 
in Fig, 14(b). Note that the spectrum in Fig. 8(b) corresponds to the fully established 
autonomous quasi-periodic regime, exhibiting the oscillation frequency fa. In this regime, only 
the spectral lines mfin+kfa, with k odd are 180º out of phase. Spectral lines with k even are in 
phase and are combined by the output network. All the lines comprised between dc and fin are 
more than 30 dB below the one at fin. The spectral line at 1.85 GHz, exhibiting high power, 
agrees with the second harmonic of one of the autonomously-generated line at 0.925 GHz. 
Stable behaviour was obtained outside the boundary, as in the case of the loads B and C. As an 
example, the spectrum obtained with the load B is shown in Fig, 14(c). When using the resistor 

value Rs =75 , no unstable behaviour was obtained for any Pin up to the maximum value (20 
dBm), considered in our theoretical analysis.  

 

 
Fig. 14 Experimental measurement of the PA with four active devices in Fig. 8. (a) Validation 

of the instability boundary under incommnesurable oscillations in the odd mode T[1   -1  1  -1] , 

corresponding to the input power Pin = 10 dBm. (b) Unstable behavior for the experimental load 
A. (c) Stable behavior for the experimental load B. 

 
V. CONCLUSION 
A method has been presented to predict odd-mode instabilities in power amplifiers under output 
mismatch effects. The various possible modes are related with the symmetry properties of the 
matrix describing the active network, calculated with a two-tier conversion matrix-approach. In 
the case of odd-mode instability, the antenna impedance influences the stability properties only 
through its value at the fundamental and harmonic frequencies. Under sufficient low-pass 
filtering effects, the antenna mismatch analysis can be limited to the fundamental frequency. The 
prediction of odd-mode instabilities consists of two different stages, depending on the desired 
level of insight into the potential instability mechanism. The first stage is a graphical method 
based on admittance diagrams, which must be combined with an ordinary stability analysis of 

the matched PA (terminated in 50 ) versus the input power. This enables an efficient detection 
of potential instabilities. The second stage is a calculation of the stability boundaries in the Smith 
chart corresponding to the termination at the fundamental frequency. The two analyses must be 
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carried out for all the possible odd-mode oscillations and should distinguish the cases of 
incommensurable and subharmonic oscillations. The method has been applied to two different 
PA, containing two and four active devices, respectively, which have been manufactured and 
measured. Very good agreement has been obtained with the simulation results.  
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