
TMTT-2016-12-1409 
 

1

 
Abstract—A new methodology is presented for the efficient 
harmonic-balance simulation of injection-locked oscillators with 
complex multi-valued and disconnected curves. It is illustrated 
through its application to high-order subharmonically injection-
locked oscillators. A graphical technique is applied to analyze the 
oscillator-phase sensitivity with respect to the input signal, 
required for the injection-locked operation. The intricate 
synchronized-solution curves are obtained with the new method, 
which enables a global exploration of all the coexistent periodic 
solutions. These solutions can belong to different curve sections, in 
a multi-valued response, or to disconnected synchronization 
curves. The method is based on the calculation of a series of phase-
dependent outer-tier admittance functions, which provide the 
oscillator response to the injection signal. Coexistent solutions are 
simultaneously obtained through a contour-plot intersection, 
without the need for continuation techniques. The method is 
illustrated through application to an oscillator synchronized to 
low-frequency sinusoidal signal by means of a nonlinear 
transmission line (NLTL). The analysis and design techniques 
have been successfully validated through comparison with 
independent simulations and measurements. 
 

Index Terms— Bifurcation, oscillator, phase-noise, stability, 
synchronization.  

I. INTRODUCTION 

OW phase-noise is a crucial requirement of microwave 
oscillators to avoid demodulation errors in communication 

systems [1]-[4]. A comparison of state-of-the-art phase-locked 
loops [5]-[6] indicates that a lower voltage-controlled oscillator 
(VCO), followed by a frequency multiplier, enables lower 
phase noise than a high frequency VCO. Since efficient 
multipliers are limited to low multiplication factors, the authors 
of [5]-[6] propose the use of high-order subharmonic injection 
locking of an oscillator at the desired carrier frequency. The 
high-order subharmonic synchronization is achieved by 
introducing the low-frequency sinusoidal input signal into a 
pulse-shaping circuit [5]-[6], based on a comparator and a delay 
element. This provides a square pulse that switches the high 
frequency oscillator on and off. In [7], a similar approach is 
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presented, using a nonlinear-transmission line (NLTL) for the 
pulse forming [8]-[11]. As in the case of [5]-[6], the intended 
application of this sub-synchronized operation is its use in low 
phase-noise local oscillators.  

Due to the difficulties in the analysis of the high-order 
subharmonic injection-locked regime, approximate oscillator 
models are used in [5]-[6], [12]-[14], whereas the simulations 
in [7], [15] rely on the Poincaré-map technique [16]-[18]. This 
map is applied to the sequence of steady-state solutions 
obtained through time-domain integration of the differential 
algebraic equation system when varying a particular analysis 
parameter, such as the input power or frequency. However, the 
time integration may be unsuitable in some cases, for instance 
in the presence of distributed elements or when the circuit 
response involves different time scales [16]. Even when 
successful, it will miss coexistent stable steady-state solutions 
that could be relevant to its physical behavior. 

This work addresses the harmonic balance (HB) analysis of 
high-order subharmonically injected oscillators for the first 
time to our knowledge. This HB analysis is well suited for 
circuits containing distributed elements. It is insensitive to the 
stability properties of the steady-state solutions, so it can 
provide the entire solution “path” [19]-[22] versus the analysis 
parameter. However, this complete portrait of the circuit 
response requires the use of complementary continuation 
techniques [23]-[25]. In fact, multivalued sections may be 
obtained when varying the parameter and a complementary 
continuation technique is needed to pass through the infinite-
slope points or turning points. The subsequent application of a 
reliable stability analysis [26]-[29] through the entire solution 
curves should enable a thorough understanding of the physical 
evolution of the circuit solution versus the particular parameter.  

Several continuation methods have been proposed for usage 
in combination with commercial HB [30]-[31]. However, the 
case of subharmonic injection-locking of a high order N is 
particularly demanding. The circuit is in a strongly nonlinear 
state with respect to the input source, since the oscillation 
frequency must get locked to a high harmonic Nin of the input 
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frequency [12]-[14]. This is different from fundamental and 
super-harmonic injection, in which synchronized operation 
bands are obtained from small-signal amplitude of the injection 
source [21], [31]-[32]. Obviously, the analysis will require a 
high number of harmonic terms and there can be a convergence 
failure since, besides the HB system, the solution must fulfill an 
additional oscillation condition. On the other hand, due to the 
high ratio between the oscillation frequency and injection 
frequency there can be synchronization at neighboring N 
values. This may give rise to overlapped synchronization 
regions, which demand a global exploration capability, non-
provided by continuation procedures, which are inherently 
local.  

The paper starts with a detailed investigation of subharmonic 
injection-locking, using both an analytical formulation and 
numerical techniques. The study will provide insight into the 
nonlinear mechanisms leading to this regime, as well as its 
particular characteristics in comparison with the more usual 
fundamental- and harmonic- injection-locking [12]-[14], [32]. 
The analysis of the phase sensitivity with respect to the input 
source will allow an estimation of the input power required to 
achieve the sub-synchronized state. The intricate synchronized-
solution curves will be obtained with a new method, based on 
the calculation of a series of phase-dependent admittance-type 
functions, constituting an outer-tier description of the oscillator 
response to the injection source, which is different from the 
undriven oscillator-admittance function proposed in [33].  

The new method is applicable in combination with a 
commercial HB. The admittance functions are calculated with 
the aid of an auxiliary generator (AG), establishing the circuit 
phase reference [21]-[22]. One of these functions is obtained 
for each phase  of the input source, and the total phase interval 
can be limited to (0, 2π/N) in most cases. For each , all the 
coexistent solutions are simultaneously obtained through a 
contour-plot intersection, with no need of continuation 
techniques. No oscillation conditions are imposed, so no 
optimization is required. Although the original target of the 
method has been the analysis of high-order subharmonically 
injection-locked oscillators, the method is of general 
application to highly nonlinear circuits exhibiting complex and 
disconnected solution curves. 

The method has been tested in challenging prototypes from 
the simulation viewpoint, targeting the highest subharmonic 
order N. The package inductors of the NLTL varactor diodes 
(which would not be present in a MMIC realization) limit the 
input-frequency range with significant multiplication 
capabilities. In view of this fact, two different circuits have been 
analyzed: one suppressing these inductors (and providing the 
most complex curves) and the other one considering these 
parasitic inductors. In the first design, the oscillator operates at 
about 7.6 GHz with sub-synchronization order N = 15 and 
N = 16. Results are validated through comparisons with AG-
based parameter switching and with fully independent 
simulations based on the envelope-transient method [34]-[36]. 
In fact, the most reliable validation of a new analysis method 
would be based on its comparison with well-established 
simulation procedures. In this way, one can be sure that models 

for all the passive and active components are identical, unlike 
the situation encountered when comparing with measurements. 
As stated, with the varactor-package inductors, the harmonic-
generation capabilities of the NLTL significantly decrease, so 
the second oscillator design was carried out at the lower 
frequency 4.38 GHz. In this circuit complete models of all the 
linear and nonlinear components have been taken into account 
and the results have been compared with measurements.   
 The paper is organized as follows. Section II presents the 
general characteristics of subharmonic injection-locking. 
Section III describes the phase sensitivity analysis and its use 
for the estimation of the oscillator sub-synchronization 
capabilities. Section IV addresses the new methodology to trace 
the multi-valued sub-synchronized solution curves. Section V 
presents the experimental results.  

II. SUB-HARMONIC INJECTION LOCKING 

To get analytical insight into the subharmonic injection- 
locking, a cubic-nonlinearity oscillator, with a parallel 
resonator, will be initially considered (Fig. 1). The nonlinear 

current is modeled as 3i av bv  , with a < 0 and b > 0, which 
implies a reduction of the negative conductance with the 
excitation amplitude. The oscillator is assumed to operate at 
about three times the frequency of the injection source, so 
N = 3. Taking into account that the cubic nonlinearity does not 
generate even harmonics, and limiting the analysis to the 
fundamental frequency and the third harmonic term, the sub-
synchronized solution will fulfill the following steady-state 
system: 
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where YL is the linear admittance of the load network, the phase 
origin is taken at the third harmonic component of the node 
voltage, so 3 3| |V V ,  is the input-source phase and the 

phasor V1 has been expressed as: 1 1 | | exp( )V V j . Splitting 

(1) into real and imaginary parts, one obtains: 
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The original free-running oscillation takes place about 3 
and is easily obtained from (2c) and (2d) by doing Ig = 0 in (2a) 
and (2b), which leads to |V1| = 0. The left-hand side of (2c) 
differs from that of a fundamentally injection-locked oscillator 
at the input-source frequency s = 3 in the additional term 

2

13 / 2b V , affecting V3.  Since b > 0 this term will give rise to 

a reduction of the negative conductance with the magnitude 

1V . Therefore, in injection-locked conditions there will be a 

reduction of the amplitude 3V  with respect to its original free-

running value [37]. On the other hand, the left-hand side of (2d) 
is formally identical to that of a fundamentally injection-locked 
oscillator at s = 3. However, in the sub-synchronized case of 
(1), the injection amplitude is not constant but depends on the 

first harmonic voltage as 
3

1 / 4b V  [see (2c) and (2d)] and 

obviously requires nonlinear behavior with respect to the input 
source at s = .  

 

R C LIg, α, ω  i(v) = av+bv3

YL(ω) 

 
 

Fig. 1. Cubic-nonlinearity oscillator, loaded with a parallel resonator and 
injected with a current source. Element values are C = 0.5025 pF, L = 0.7188 
nH and R = 50 Ohm. The voltage-controlled current is modeled as 

3( ) 0.0432 0.0180i v v v   . 

 
For small Ig, the magnitude of 1V  will be small too and the 

cubic function of V3 in (2c) will provide three solutions in a 
certain  interval, near the original free-running frequency. One 
of these solutions corresponds to small V3, whereas the other 
two solutions have a higher V3 due to the negative conductance 
excess G + a in (2c). On the other hand, for too high Ig, only 
one solution will be possible. The evolution of the 
synchronization curves when increasing Ig, traced in terms of 
the node-voltage amplitude at 3 versus the frequency 3 , is 
shown in Fig. 2(a). For zero input current, one point is obtained, 
agreeing with the free-running oscillation. In addition, there is 
a trivial dc solution, not represented in Fig. 2(a). For Ig = 40 
mA, a closed synchronization curve is obtained and the 
synchronization bandwidth is limited by two infinite-slope 
points. One observes the amplitude reduction with respect to 
free-running conditions predicted by (2). Together with the 
closed curve, there is an open low-amplitude curve, which can 
be considered as an evolution of the trivial dc solution under the 
periodic forcing. For higher Ig, the V3 of the two higher-
amplitude solutions decreases, whereas the V3 of the lower-

amplitude one increases, due to the stronger forcing 
3

1 / 4b V . 

This can be seen in Fig. 2(a). For Ig = 45 mA, the closed curve 
drops in amplitude and the open curve increases slightly. When 
further increasing Ig, the upper and lower solution curves merge 
in a single one, which exhibits turning points. See the curve 
obtained for Ig = 54 mA. As Ig continues to grow, the folding 
disappears and the resonance becomes less pronounced. See the 
curve obtained for Ig = 70 mA. The results of time-domain 

simulations have been superimposed in Fig. 2(a) and lie on the 
stable sections of the solution curves. 
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Fig. 2. Analysis of the parallel-resonance oscillator in Fig. 1. The results 
obtained through time-domain integration have been superimposed. (a) 
Synchronized-solution curves, traced in terms of the oscillation amplitude 
versus the input frequency, for different values of the input current Ig. (b) 
Variation of the input-source phase α versus 3fin for Ig = 45 mA (closed solution 
curve) and Ig = 54 mA (open solution curve). (c) Variation of the oscillation 
amplitude at s = o/3, traced versus Ig. 

 
The variations of the phase shift are analyzed next. Under 

small injection 
3

1 / 4b V  in (2c) and (2d), solutions can be 

obtained for the whole excursion of the sinusoidal functions 
sin(3) and cos(3). Thus, V1 and V3 will repeat with the  
period 120º. As a result, equations (2a) and (2b) are also 
periodic in  with the same period 120º. As discussed below, 
this periodicity will not be possible from certain injection 
amplitude. In Fig. 2(b) the output frequency 3s has been 
represented versus . For Ig = 45 mA, both the amplitude [Fig. 
2(a)] and phase  exhibit two turning points versus 3s, at 
identical values. This is because they belong to the same set of 
state variables evolving as a whole versus the analysis 
parameter s. However, because the sinusoidal functions run 
through the whole interval (-1, 1), the curve  versus s is 
unfolded and repeats itself with the period 120º. 
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However, from certain Ig, and due to the higher magnitude 
3

1 / 4b V , the system nonlinear functions cannot accommodate 

a complete excursion of the sinusoidal terms on the right-side 
of (2c) and (2d), so  cannot go through the full 120º interval 
near the original resonance. In the sub-synchronized case, 
considered here, outside this original resonance, the phase shift 
 varies slowly versus s, due to the small V3, enabling higher 
values of | 3 1/ ( 3 ) |C L  . In the case of a rational 

synchronization m/n, (where m and n are integers) considered 
in [38], there is no possible merging of solution curves, since 
the component at ms/n can only be due to the oscillation 
mechanism. In that case, the synchronized solution curves keep 
their closed shape and the compressed phase shift necessarily 
evolves into a closed curve too.  

Regular closed curves, having only two infinite slope points 
versus the input frequency, are not multi-valued with respect to 
the input phase, this meaning that for each α there is only one 
solution in terms of the variables 1 3, , ,V V    [Fig. 2(b)]. In the 

intermediate Ig interval, where the three magnitudes Ig, V1 and 
V3 are relatively large, more than one periodic solution can be 
obtained for a same α value. This is shown in Fig. 2(b). For 
Ig = 54 mA, two different periodic solutions exist for each  
value within the interval (20º, 24º). In most cases, this is only 
observed after the merging of the higher and lower amplitude 
curves [Fig. 2(a)]. 

 Fig. 2(c) shows the evolution of the oscillation amplitude (at 
3), versus the input current Ig when setting the input frequency 
to exactly s = o/3, where o is the free-running frequency. 
Since, for Ig = 0, the circuit solution agrees with the free-
running one, the curve departs from the free-running amplitude 
Vo. Up to Ig = 54 mA, three coexistent solutions are obtained for 
each Ig value. This is in correspondence with the three solutions 
obtained in Fig. 2(a) for low Ig. At Ig = 54 mA, the curve 
exhibits a turning point (T1), also observed in Fig. 2(a), at 
s = o/3. For higher Ig, the frequencys = o/3 is beyond the 
turning point region in Fig. 2(a), so a single solution is obtained 
in the representation of Fig. 2(c). Comparing Fig. 2(a) and Fig. 
2(c), for relatively low input current, the synchronized solution 
is nearly degenerated to one point, without an actual 
synchronization band. This can be noted in (2c) and (2d) where 
such linearization should be carried out about |V1| = 0 
degenerating into the original free-running point. As shown in 
Fig. 2(c), there is no sub-synchronized amplitude interval below 
Ig  30 mA. In fact, for a synchronized behavior, the total 
current IT3 at 3ω (or equivalently, the total admittance function 
YT3 = IT3/V3 at 3ω) must be sensitive to phase α. As gathered 

from (2d) this is only possible if 
3

1V  has a sufficiently high 

magnitude, otherwise the circuit will always oscillate about o, 
so the circuit will operate in a self-oscillating mixer regime at 
the two fundamental frequencies in and o.  

One major conclusion to be derived from this study is the fact 
that near the original resonance frequency, there is a significant 
compression of the  interval, in comparison with the regular 
closed curve. For intermediate values of the input amplitude, 
several distinct periodic solutions can be obtained for a same  

value. This analysis of the behavior of the sub-synchronized 
solution curves versus the phase  will be helpful to understand 
the simulation method described in Section IV. Finally, for too 
large Ig, the amplitude V3 is too small to enable multi-valued 
regions, and the solution curves are similar to those in ordinary 
resonances.     

III. PHASE SENSITIVITY 

When simply injecting an oscillator at the free-running 

frequency ωo with a sinusoidal signal at the frequency in  and 

high ratio /o in   between the two frequencies, a negligible 

synchronization bandwidth should be expected, even under a 
high input power. This is due to the limited harmonic-
generation capability of the oscillator active device(s). A multi-
harmonic input source (input pulse) will relax the frequency-
multiplication requirements of the device nonlinearities. It is 
also possible to drive the circuit with a sinusoidal low-
frequency source and use a pulse-forming network to drive the 
oscillator circuit, such as the one in [5]-[6]. Here the pulse-
forming network will be implemented with a nonlinear 
transmission line (NLTL) [7]-[11]. NLTLs are composed by a 
number of inductor-varactor cells. Under a suitable design, the 
NLTL can give rise to a collaborative effect of the varactor 
diodes, in a nonlinear regime, which will lead to a high 
harmonic content, usually associated with soliton or shockwave 
formation [8]-[11].  

As shown in Section II, to achieve synchronization in the 
order N, the total admittance function in Nin must be sensitive 
to the input-source phase . Here a HB technique for the 
analysis of the phase sensitivity with respect to the input source 
will be presented. This analysis enables an estimation of the 
sub-synchronization capabilities of a given oscillator design. 
For a particular N, the phase sensitivity is checked with the aid 
of a voltage auxiliary-generator (AG) [21]-[22],[31] , connected 
in parallel at a sensitive location, such as an active-device node 
(Fig. 3). The AG is an independent generator [21]-[22],[31] that 
operates at the frequency ωAG and is connected in series with an 
ideal bandpass filter at ωAG. The AG frequency should agree 
with the synchronized oscillation frequency, and will be 
expressed as ωAG = Nωin. The analysis phase reference will be 
set at the AG voltage, so this voltage is given by AAG. Then, the 
total admittance function at the AG node is the ratio (YAG) 
between the current circulating through the AG (IAG) and the 
AG voltage (AAG), which is calculated with the pure HB system 
as an inner tier.  

To check the sensitivity with respect to the input-source phase 
, AAG and ωAG are set to particular values, near the free-running 
ones. In fact, the AG amplitude (playing the role of the 
oscillation) should be smaller than the free-running amplitude 
Vo, in consistency with the study in Section II. This will be also 
shown in the application example. Taking, as stated, the circuit 
phase origin at the AG voltage, a double sweep is performed in 
the input sinusoidal-signal amplitude Ein and phase , 
calculating the function YAG = IAG/AAG at each sweep point. Note 
that it will be generally sufficient to sweep the input phase α 
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between 0 and 2π/N since the equations at the oscillation 
frequency (AG) tend to be periodic, with the periodicity 2π/N. 
See (2) as an example. Due to the reduced phase interval, this 
sweep is not computationally expensive. To achieve 
synchronization the admittance function YAG must be sensitive 
to the input phase . 

For illustration, the phase-sensitivity analysis will be applied 
to the oscillator in Fig. 3, based on the transistor NE3210S01. 
The design is intended for operation at the output frequency 7.6 
GHz, with an output power higher than 4 dBm When 
terminating the gate terminal in an inductor L = 0.85 nH, and 
using the capacitor values C1 = 2.87 pF, C2 = 0.57 pF, the circuit 
oscillates at fo = 7.59 GHz. Nevertheless, the specified 
frequency 7.6 GHz is expected to be comprised in the 
synchronization band, so no correction of the oscillator design 
has been carried out. The targeted sub-synchronization order is 
N = 15. Thus, the frequency of the sinusoidal input source must 
be about fin = 506 MHz. To achieve this high sub-
synchronization order, an NLTL, providing a first harmonic 
generation stage, will be designed. In a first stage, the varactor 
package inductor, which would not be present in a MMIC 
implementation, will not be considered. This should lead to a 
stronger nonlinear behavior, enabling a thorough evaluation of 
the capabilities of the new analysis method. The results will be 
validated with independent simulations. In a second stage, the 
package inductors will be considered. The associated low-pass 
filtering effects will lead to milder nonlinearities. Under this 
full modeling of the varactor diodes, the results will be 
compared with experimental measurements of the 
manufactured circuit. 

Fig. 3. First design of the subharmonically injection-locked oscillator based on 
the transistor NE3210S01, with ideal models of the varactor diodes, without 
package inductors. Results of the new analysis methodology will be compared 
with independent simulations. 

 
The resulting NLTL is composed by eight L-varactor cells, 

based on the diode SMV1235 and the inductor L =2.2 nH. When 
including the NLTL in the oscillator input network, the free-
running frequency is fo = 7.58 GHz, still expected to be 
comprised in the sub-synchronization band, so no correction of 
the free-running oscillator design has been performed. The 
diagram in Fig. 4(a) shows the variation of the real and 
imaginary part of YAG when setting AAG and fAG to the free-
running values:  AAG = Ao = 1.55 V and fAG = 7.58 GHz and 
performing a double sweep in Ein and α. When increasing Ein 
from zero, the total admittance departs from a zero value, since 
the circuit fulfills the free-running oscillation conditions for 
zero input amplitude (Ein = 0 V). For low Ein, there is little 
sensitivity to the phase α, and the admittance curves are nearly 

overlapped. As the amplitude increases, the real part of YAG 
increases too and the imaginary part does not cross through 
zero, so the oscillation amplitude must be smaller than in free-
running regime, in agreement with the analytical study in 
Section II. Note that in order to get a synchronized solution, 
besides the sensitivity with respect to the input phase, the 
oscillation condition must be fulfilled, given by the zero value 
of the real and imaginary parts of the AG current-to-voltage 

ratio 0,  0r i
AG AGY Y  , which agrees with the total admittance 

function at the analysis node.  

 
Fig. 4. Simulation of the phase-sensitivity analysis, applied to the circuit at 7.6 
GHz in Fig. 3. (a) Variation of the admittance function YAG versus Ein, for a 
constant AG amplitude AAG = 1.55 V and frequency fin = 505 MHz. (b) Lower 
frequency limit of the synchronization band, corresponding to fin = 501 MHz 
and an oscillation amplitude AAG = 0.4 V. (c) Higher frequency limit of the 
synchronization band, corresponding to fin = 511 MHz and an oscillation 
amplitude AAG = 0.69 V. (d) Analysis inside the synchronization band, for fin = 
507 MHz and AAG = 0.39 V. 

 
In the diagrams of Fig. 4(b) to Fig. 4(d), AAG values smaller 

than the free-running amplitude and various input frequencies

inf  have been considered, with the AG frequency fulfilling 

fAG  = 15fin. For completeness, the analysis has been carried out 
in a large Ein range. In all cases, the phase sensitivity increases 
with Ein, then decreases (giving rise to a narrowing of the curve 
family) and increases again. More explicitly, there is a first 
input-amplitude region with high phase sensitivity, about 2 V, 
and a second input-amplitude region with high-sensitivity 
between 4.5 V and 5 V. The interesting zone for our design is 
the first one, since we aim at obtaining subharmonic injection 
locking with the lowest input power. The implications of the 
two zones on the solution curves versus the input power will be 
shown in Section IV, devoted to the accurate calculation of the 
steady-state solutions.  

Note that the fulfillment of the steady-state conditions 

requires the crossing of both r
AGY  and i

AGY through zero, which 

is possible for input amplitudes of about Ein = 2.5 V. This is 
consistent with the fact that the input source must lead the 
NLTL into a regime capable of generating a sufficiently high 
harmonic content. In Fig. 4(b), the real part is tangent to zero 
from above, whereas in Fig. 4(c), it is tangent to zero from 
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below, which are the two limit situations for the fulfillment of 
the oscillation conditions. In view of Fig. 4, synchronization at 
constant Ein = 2.5 V is possible for input frequencies comprised 
between inf = 501 MHz and inf = 511 MHz. As will be shown, 

there is consistency between the synchronization band 
predicted for Ein = 2.5 V through the phase-sensitivity analysis 
of Fig. 4 and the steady-state simulations in Section IV. The 
accuracy limitation in the analysis of Fig. 4 is due to the manual 
setting of the AG amplitude AAG.  

The graphical technique illustrated in Fig. 4 is 
computationally very cheap and efficiently combines AG 
method [21]-[22],[31] to obtain the steady-state synchronized 
solution. To calculate the synchronized solution curves versus 
ωin, using the method described in [21]-[22],[31], one should 
solve the following complex equation:  

                        ( , , ) 0.AG AG inY A                 (3)                         

 Regular closed curves can be traced by simply sweeping  
from 0 to 2π/N. This is because they are not multi-valued in the 
phase variable, as shown in Fig. 2(c). In contrast, multi-valued 
curves in α, usually obtained for intermediate values of input 
amplitude, cannot be traced through this direct phase shift [Fig. 
2(c)]. When using the AG, the curves multi-valued in , can be 
traced by applying parameter switching between , ,AG inA    

[21]-[22],[29], that is, choosing the variable with the fastest 
increment as the sweep parameter. In commercial HB, this can 
only be done manually and without any intuition on the curve 
shape. The particular parameter is swept until convergence 
fails. Then, another parameter in the set , ,AG inA    is taken, re-

starting the simulation under a different set-up. As will be 
shown in Section IV, this continuation technique may be unable 
to provide the complete solution curves of high-order sub-
synchronized oscillators. This is due to the intricate solution 
paths resulting from the strongly nonlinear behavior with 
respect to the input source, in the presence of the pulse-forming 
network, which may include disconnected curves. The latter 
situation would be problematic even in in-house software. The 
analysis method presented in the next section is able to cope 
with this geometrical complexity.  

IV. CONTOUR-INTERSECTION METHOD 

A. Description of the analysis methodology 

The recent work [33] proposes a new technique for the 
efficient simulation of fundamentally injection-locked 
oscillators, in which neither a parameter switching nor 
optimization is required. The method is based on the calculation 
of the nonlinear admittance function that models the undriven 
oscillator response. This function is used at a later stage to 
obtain the synchronized solution when an input generator at the 
fundamental frequency is connected to the circuit. In a first 
stage, the nonlinear admittance is calculated in the absence of 
this input source, performing a double sweep in the AG 
amplitude and frequency ( ,AG AGA  ). In a second stage, the 

circuit is analyzed in the presence of the injection source, using 
the outer-tier admittance function and, in general, the Norton 
equivalent of the input network. This second analysis stage is 

enabled by the fact that the input source and the oscillation are 
at the same frequency AG in    in the case of a fundamentally 

injection-locked oscillator.  
The situation is more complex in the case of subharmonically 

or super-harmonically injection-locked oscillators since the 
input signal and the oscillation are at different harmonic 
frequencies. This prevents the direct use of the outer-tier 
admittance function, modeling the sole oscillator circuit. In fact, 
for a direct extension of the work [33] to the analysis of a 
subharmonically injection-locked oscillator, one would need 
two different outer-tier admittance functions, one at 

AG inN  , equated to zero, and the other at in , which should 

be combined with the Norton equivalent of the input network. 
This implementation would be cumbersome since two complex 
equations and four state variables would be needed: the input 
frequency in , the amplitude values at the two harmonic 

components in  and AG inN   at the observation node, and 

the phase shift between these two harmonic components. 
Instead, a different method is proposed here, which takes 
advantage of the possibility to limit the analyzed interval of the 
input phases  to (0, 2 / N ). For relatively large N values, this 
interval is limited to a few degrees.  

As shown in Section II and III, the existence, or not, of 
multiple solutions for a given phase  depends on the input-
source amplitude. Under a given constant input-amplitude, and 
for each α, each possible solution will fulfill: 

( , ) 0AG AG AGY A                              (4) 

where the super-index indicates that the admittance function is 
calculated for a particular , with the pure HB system, with as 
many harmonic components as desired, as an inner tier. The 
equation (3) is solved separately from the commercial HB 
software. In fact, this HB software is used to obtain the 

functions AGY , instead of the steady-state solutions. The 

functions AGY  are calculated by using a voltage AG (Fig. 3) and 

performing a double sweep in ,AG AGA   for each  value. At 

each step of the double sweep the admittance function AGY is 

calculated as the ratio between the AG current and voltage, with 
the current usually entering the circuit, to detect the negative 
conductance excess (Fig. 3). Advantage will be taken from the 
continuation inherent in the standard HB sweep, which uses the 
solution for point n as an initial assumption for point n+1. For 
each AG , the amplitude AGA  is swept from small signal to a 

sufficiently large value, covering the expected amplitude range, 
usually limited to a few volts. The number of points considered 
in the three sweeps (in , AAG and AG) are N, M, P, respectively.  

In an external in-house software, two surfaces are then 
created for each , corresponding to the real and imaginary 

parts of AGY . These surfaces are obtained using a 2D meshgrid, 

which requires the number of sweep points in AAG and AG (M 
and P) provided by the function “sweep_size(YAG)” in ADS 
[39]. For each  in the sweep, the two surfaces created 
independently are: 
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,
, , ,

,
, , ,

( , )    (5 )

( , )    (5 )

r
AG mesh AG m AG p

i
AG mesh AG m AG p

Y A a

Y A b








 

where the superindexes r and i indicate real and imaginary parts 
and , ,( , )AG m AG pA   represents each point of the 2D meshgrid, 

containing M  P points. To solve the complex equation (3), it 
will be necessary to interpolate the data. This interpolation is 
carried out using two bi-cubic polynomials in ,int ,int( , )AG AGA  , 

constructed as: 
3 3

, ,
,int , ,int , ,int ,

1 1

3 3
, ,
,int , ,int , ,int ,

1 1

( ) ( )      (6 )

( ) ( ) .    (6 )

r k l k l
AG m p AG AG m AG AG p

l k

i k l k l
AG m p AG AG m AG AG p

l k

Y a A A a

Y b A A b





 

 

 

 

  

  




 

The coefficients ,
,

k l
m pa  and ,

,
k l
m pb  are calculated so as to ensure 

that the functions ,
,int
r

AGY and ,
,int
i

AGY are continuous and so are 

their partial derivatives up to second order in each of the two 
variables ,int ,int( , )AG AGA   (fourth order in total). Not-a-knot end 

conditions [40] are imposed, this meaning that at points with 
coordinates AAG,2 and AAG,M-1 or AG,2 and AG,M-1, partial 
derivatives are continuous up to third order. The Matlab 
function “interp2” [40] has been used for this interpolation. 
This provides the surfaces: 

,
,int ,int ,int

,
,int ,int ,int

( , )       (7 )

( , ).      (7 )

r
AG AG AG

i
AG AG AG

Y A a

Y A b








 

To illustrate the method, in Fig. 5, the subharmonic order 
N =15, Ein = 2.8 V and input phase α = 10º have been 
considered. Fig. 5(a) shows the two interpolated surfaces, 

corresponding to the real and imaginary parts of AGY .  

The intersection of the surface (5a) with the plane 

,intRe 0AGY      will give rise to one or more level curves. The 

same is true for the intersection of surface (5b) with the plane

,intIm 0AGY     . These level curves or contours, respectively 

denoted as rC  and iC  , are calculated setting the level of each 

surface in (7) to a very small value. The value 
, , 12
,int ,int 10r i

AG AGY Y    has been found to provide very accurate 

results. Thus, the zero-level curves or contours for 
, 12
,int 10r

AGY  and , 12
,int 10i

AGY  are calculated as:    

 
 

, 12
,int ,int ,int

, 12
,int ,int ,int

contour , 10

contour , 10 .

r
r AG AG AG

i
i AG AG AG

C A Y

C A Y

 

 









 

 
            (8)    

In our practical calculation the “contour” function in Matlab 
[40] has been used. The contours corresponding to Ein = 2.8 V 
and α = 10º are shown at the bottom of Fig. 5(a) and in Fig. 5(b). 
Once the two contours have been obtained, the synchronized-
solution points are directly given by the intersections of these 
contours. They have been calculated using the Matlab function 
“polyxpoly” [40], which finds the intersection points of two 
lines or polygon edges in a planar, Cartersian system [40]. It 

returns two vectors containing the ,intAGA  and ,intAG  values of 

each point at which the first contour intersects the second. Thus, 
the solution points corresponding to the particular phase value 
α are given by: 

 . . ,int ,int  ,int ,int  , ( , ) ( , )AG s AG s r AG AG i AG AGA C A C A            (9) 

where the subindex s stands for sub-synchronized solution. 
As stated, when obtaining the intersection of the surface with 

the plane ,intRe 0AGY      or ,intIm 0AGY     , this contour may 

not be a single continuous level curve but a collection of them. 
Each of these level curves from the contour of the real part must 
be checked with every level curve of the collection from the 
contour of the imaginary part in order to avoid missing any 
solution point. Solutions can be traced in terms of the Pout, by 
simply exporting the voltage amplitude at the final 50 Ohm load 
in the three-variable sweep.   

 In the particular case of α = 10º, the contour intersection 
provides the five distinct solution points indicated with circles 
in Fig. 5(b). The whole synchronized-solution curve would be 
obtained by assembling all the intersection points resulting 
from the variation of α, as shown in Fig. 5(c), where 24 values 
of α have been considered. Note that the original phase sweep 
considers equally-spaced phase points, though the phase value 
is not uniformly distributed through the synchronized solution 
curves. Thus, after this initial analysis, one may carry out a 
second one with a finer phase sweep in the regions with a lower 
density of solution points. One should remark that no matter the 
number of phase steps considered, all the points obtained from 

the contour intersection r iC C   are valid solutions, since no 

continuation is used. Therefore, a coarse sweep would allow a 
global exploration of the circuit coexistent solutions, which 
may be helpful even in in-house HB software. Finally, in Fig. 
5(d) the phase shift  has been represented versus fin. In 
agreement with the discussion in Section II, it exhibits the same 
turning points as the rest of state variables, i.e., the oscillation 
amplitude at 15fin in Fig. 5(c). Due to the inherent multiplication 
by N = 15, the phase variations are limited to the interval (0º, 
24º).   

Fig. 6 shows one sub-synchronized steady-state solution, 
corresponding to fin = 507 MHz. Fig. 6(a) presents the pulsed 
voltage waveform at the NLTL output. Fig. 6(b) presents the 
corresponding spectrum in dBV. We have used dBV for voltage 
measurements since the termination impedance corresponds to 
the complex and amplitude-dependent input impedance of the 
transistor-based sub-circuit. The combined multiplication 
action, due to the NLTL and to the transistor device in an 
oscillatory state can be noted. Without the latter effect, it would 
not be possible to sub-synchronize the oscillator at the high 
order N = 15. However, the NLTL and oscillator are coupled 
through their input/output impedances, so they form a single 
oscillator circuit, sub-synchronized at the order N. Due to this 
coupling, the order N will not necessarily be the result of 
combining the two independent multiplication orders, 
associated with the NLTL and the oscillatory sub-circuit.  
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Fig. 5. Method based on the calculation of the contour-intersections, applied to 
the circuit at 7.6 GHz in Fig. 3. The input amplitude is Ein = 2.8 V and the sub-
synchronization order is N = 15. (a) Surfaces Re(YAG) and Im(YAG) represented 
versus (AAG,AG) for the particular input-phase  =10º. (b) Contours resulting 
from the intersections of the two surfaces with the planes Re(YAG) = 0 and 
Im(YAG) = 0. The solutions coexisting for  =10º correspond to the intersections 
of these contours. (c) Solution curve obtained through the systematic 
application of this procedure for a sequence of  values in the interval (0, 
360º/N = 24º). The curve obtained through AG parameter switching is 
superimposed for validation. The five coexistent solutions obtained in (b) for 
 =10º are indicated with circles. (d) Variation of the phase shift α versus the 
input frequency fin. 
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Fig. 6. Circuit at 7.6 GHz in Fig. 3. NLTL output within the oscillator circuit 
for input amplitude Ein = 2.8 V and frequency fin = 507 MHz. (a) Pulsed 
waveform. (b) Spectrum. 

 

Fig. 7(a) shows the family of synchronized solution curves 
obtained when increasing the input-source amplitude Ein. The 
evolution is qualitatively similar to the one observed in Fig. 
2(a). For Ein = 0, a discrete solution point is obtained, 
corresponding to the free-running oscillation. Coexisting with 
this point, there is a trivial dc solution. For the lower Ein values 
(2.5 V and 2.65 V), a closed synchronization curve arises below 
the free-running point, which coexists with an open and low-
amplitude one. The closed curve decreases in amplitude with 
Ein, whereas the open curve increases, so they merge at a certain 
Ein value, only detectable as a co-dimension two bifurcation 
[17]. For Ein = 2.8 V the merging point has been surpassed, and 
a single open solution curve is obtained. For Ein = 2.95 V, the 
method detects two solution curves. The open curve 
corresponding to the subharmonic order N = 15. The closed 
curve on the left side corresponds to a synchronization at the 
order N = 16, since the spectral line with the highest output 
power is 16in. Despite this change of order, the analysis based 
on the phase-dependent admittance functions was able to detect 
this neighboring lower frequency synchronization interval with 
no need to change the integer N in the AG frequency, which 
was maintained at 15AG in  . For previous Ein values, the 

curves of the N = 16 family are too distant in frequency, so they 
do not appear in Fig. 7.     

The entire solution curves, including the closed ones, have 
been obtained with the new method. Not even the closed curves 
could be completed with either phase sweep or parameter 
switching, due to an extremely high sensitivity to the phase 
variable in some curve sections. It is relevant to note that, as 
stated, for Ein = 2.95 V the solution is composed by two 
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disconnected curves. The contour intersection providing the six 
solutions coexisting for   = 2º are shown in Fig. 7(b). These 
solutions are indicated with circles in Fig. 7(a). Note that they 
belong to the two disconnected curves resulting from Ein = 2.95 
V. 
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Fig. 7. Simulations of the circuit at 7.6 GHz in Fig. 3. (a) Synchronized-solution 
curves versus the fin for different input amplitudes at the ratio N = 15. Stable 
and unstable sections are indicated. The free-running solution (not represented) 
is given by Ao = 1.55 V and fin = 505 MHz. (b) Contours resulting from the 
intersections of the two surfaces with the planes Re(YAG) = 0 and Im(YAG) = 0 
for Ein = 2.95 V and   = 2º. The six coexisting solutions are indicated with 
circles in (a) and belong to different sections of the two disconnected curves. 
The results obtained through envelope-domain simulations have been 
superimposed in (a). 

 
Fig. 8 shows the evolution of the amplitude at the harmonic 

N = 15 traced versus the input amplitude Ein, at the constant 
input frequency fin = 505 MHz. The resulting curve is consistent 
with the decrease plus increase of the phase sensitivity with 
respect to the input amplitude, detected in the analysis of Fig. 
4. There is one maximum at Ein = 2 V and a positive slope 
section, starting from 3.75 V. On the other hand, the multi-
valued nature of this curve for the lower Ein interval is in 
agreement with the initial coexistence of a closed curve plus a 
low amplitude curve in Fig. 7, later evolving to a single curve. 
The behavior is similar to the one obtained in Fig. 2(c). 
However, the input frequency here is different from the free-
running one, so the turning point T1 does not reach Ein = 0 V. 
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Fig. 8. Circuit at 7.6 GHz in Fig. 3. Evolution of the amplitude at the harmonic 
N = 15 traced versus the input amplitude Ein at the constant input frequency fin 
= 505 MHz. The results of the contour-plot intersection are compared with those 
obtained through AG parameter switching. 

B. Comparison with independent simulation techniques 

Regarding the validation of the new method with 
independent simulation techniques, the multi-valued curve in 
Fig. 5(c) agrees with the one obtained through parameter 
switching, which has been superimposed in Fig. 5(c). One 
should point out that tracing the curve in Fig. 5(c) with 
parameter switching has involved three manual parameter 
switches. In the flat region of the curve, fin is swept until 
convergence failure. In turn, the left and right sides of the curve 
are obtained by sweeping AAG downwards. The full solution 
path has been composed by joining the three curve sections. 
Nevertheless, this procedure could not be applied in other cases 
reported in the next sub-section, since no convergence was 
found in wide regions of the solution curves, despite changing 
the sweep parameter. This is attributed to the strong 
nonlinearity of the circuit containing a first pulse-forming stage, 
as well as the need for a high number of harmonic terms  

The purpose has also been to validate the new method with 
fully independent simulations, not relying on the use of any 
AGs. However, the time-domain simulations diverged with all 
the integration algorithms provided by the commercial 
software. Instead, the results have been validated with the 
envelope-transient method [34]-[36]. However, this method 
requires a good initial guess, otherwise it converges towards a 
non-oscillatory solution. The initial guess will be given by a 
synchronized solution point obtained with the AG at a particular 
input frequency. The AG is connected to the circuit at the initial 
time only, which is implemented with a time-dependent 
resistor, in series with AG. This resistor has a zero value at the 
initial time and infinite (i.e., 1018) afterwards [36]. The results 
of the first analysis point, at the frequency in,1 are stored in a 
file in the commercial HB software. This file is used as an initial 
guess for the next point of the sweep. Through the entire sweep, 
the final solution obtained at in,k is used as an initial guess for 
the next value in,k+1 and overwritten with the solution obtained 
at in,k+1. No AG is used in this procedure (except for the initial 
guess at in,1), so the curve obtained in this way [Fig. 7(a)] 
constitutes a fully independent simulation of the synchronized 
solution curve. In Fig. 7(a), the magnitude to the harmonic 
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component Nfin, once the steady-state is reached, has been 
traced versus fin for all the Ein values considered. As can be seen, 
the curve sections obtained with envelope transient fully 
overlap with the curves resulting from the contour-intersection 
method, which validates the accuracy of the method. However, 
the envelope transient fails to converge near the turning points 
due to an ill-conditioning of the Jacobian matrix. It is also 
unable to pass through these turning points and provide 
solutions coexisting for the same frequency values. 

Unlike other methodologies, the neighborhood of a turning 
point has no impact on the contour-intersection method. This is 
explained in the following. The case of the ordinary harmonic-
balance (HB) system, without any auxiliary generator, will be 
considered first. The Jacobian matrix of this system becomes 
singular at any parameter value corresponding to a turning 
point, since at this point the solution exhibits an infinite slope 
versus the parameter. However, the introduction of an auxiliary 
generator into the circuit suppresses the system singularity. As 
stated in [19], the AG modifies the topology of the circuit and 
the Jacobian matrix is no longer singular at the turning points. 
This is because the AG eliminates one of the state variables 
contributing to the singularity of the HB Jacobian matrix. 
Indeed, the voltage component Vn at the AG frequency, at the 
node n where this generator is connected, disappears as a 
variable, since its value is determined by the AG, which is an 

independent voltage source: 0j
n AGV A e . Therefore, the sweep 

of the AG-related values [in phase (), amplitude (AAG) and 
frequency (AG)] that is used to calculate the collection of 
functions ( , )AG AG AGY A   should not give rise to any 

convergence problems. In fact, during these sweeps the circuit 
is not optimized but behaves in a totally forced manner. The 
actual solution curve(s) are obtained at a later stage from the 

functions ( , )AG AG AGY A  , by means of the described contour-

intersection method.  
A different situation is faced when optimizing/calculating of 

the auxiliary generator values in order to fulfill the non-
perturbation condition YAG = 0, as done in previous works [21]-
[22],[29]. This constitutes an outer tier equation, to be fulfilled 
with the pure HB system as an inner tier. Then, at the turning 
points, one will have: 

det[ ] det 0

r r
AG AG

AG

i i
AG AG

AG

Y Y

A
JY

Y Y

A





  
    
  
 
  

                  (10) 

which is easily derived from the conditions / in      

and /AG inA     . As a result, when optimizing in order to 

fulfill YAG = 0, it will be necessary to switch the analysis 
parameter to either AAG or .  

In contrast with the previous case, the method based on the 
intersection of the contour plots 

,int ,intRe 0, Im 0r AG i AGC Y C Y              does not exhibit 

any geometrical difficulties about the turning point. When 
passing through a turning point of the solution curve versus the 
parameter, the evolving intersection point simply changes its 
sense of variation with respect to this parameter, in agreement 

with the condition , / 0AG s    . When varying  

continuously, the two contour plots in (8), whose intersections 
provide the steady-state solutions, also evolve in a continuous 
manner. This is shown in Fig. 9, which presents the evolution 
of the two contours and their intersection points near T2 in Fig. 
5(c). When passing through a turning point of the solution curve 
versus the parameter (such as T2), the evolving intersection 
point simply changes its sense of variation with respect to the 
parameter, in agreement with the condition , / 0AG s    .  
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Fig. 9. Evolution of the contour plots near the turning point T2, in (8) versus the 
input phase . The actual sub-synchronized solutions correspond to the 
intersections of these contour plots, represented with circles.  

 
By setting the oscillator capacitors to C1’ = 2 pF, C2’ = 0.92 

pF, and keeping the input frequency in the same interval 
considered in Fig. 7, one obtains the synchronized-solution 
curves in Fig. 10. Curve sections obtained through parameter 
switching (when convergence is achieved) are superimposed 
for validation. For Pin = 16.45 dBm, one obtains a closed curve 
with a distorted “eight” shape, together with the usual low-
amplitude curve, in which the self-oscillation is not excited. The 
eight-shaped is constituted by two sections, one corresponding 
to the subharmonic order N = 15 and the other corresponding to 
N = 16. This is gathered from the frequency range of each 
section and the inspection of output spectrum. In the upper-
frequency section, the highest spectral line is 15in whereas in 
the lower-frequency section, the highest spectral line is 16in. 
At Pin = 16.85 dBm, the former closed curve has split into two 
distinct curves. The one on the right side is closed and quite 
irregular, and the one on the left side is open as a result of the 
merging with the low amplitude curve (the one that coexisted 
with the closed one for the smaller Pin values). The narrowing 
in the upper section of the closed curve, obtained for Pin = 16.45 
dBm, has evolved into a loop in the newly formed open curve. 
This quick evolution of the solution curves when varying the 
input power has been found to be a distinct feature of high-order 
subharmonic injection locking. Note that even when using an 
in-house HB simulator with powerful continuation methods, the 
isolated curve on the right, obtained for Pin = 16.85 dBm, would 
have been missed. The new methodology succeeds in reaching 
this solution because it is not constrained by the local quality 
inherent to continuation methods.  
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Fig. 10. Circuit in Fig. 3 at 8.05 GHz, with the oscillator capacitors C1’ = 2 pF, 
C2’ = 0.92 pF. Synchronized-solution curves versus fin for different Pin values 
at N = 16. Curve sections obtained through parameter switching (when 
convergence is achieved) are superimposed for validation. Stable and unstable 
sections resulting from the analysis described in Section IV.C are indicated. The 
free-running solution (not represented) is given by Vo = 1.33 V, fo = 503 MHz. 
(a) Pin = 16.45 dBm. (b) Pin =16.85 dBm. 

 

One must emphasize that it will not always be possible to 
trace the multi-valued solution curves through the previous 
technique [21]-[22],[31] based on AG parameter switching in 
commercial HB, due to increasing error in the optimization goal 

AGY  and/or unexpected jumps between curve sections. Unlike 

previous methods [19]-[22],[31], in the new one the circuit is 
analyzed in a fully forced manner, without any additional 
oscillation condition, which significantly relaxes the analysis 
complexity. The HB software is only used to calculate the 
surfaces (5a) and (5b) which are interpolated at a later stage. 
Unlike methodologies based on continuation techniques, the 
new method is not local, in the sense that it enables a global 
exploration of all the coexistent solutions for given . This 
capability could be of interest even for in-house software with 
sophisticated continuation methods, since it is able to detect 
solutions in disconnected curves. The fact that the 
synchronization frequency interval is inherently limited in 
injection-locked circuits, and so are the usual amplitude 
variations in microwave circuits, will enable a moderate 
computational cost, further reduced by the data processing.  

To summarize, the accuracy of the new method has been 
validated with AG-based parameter switching and fully-
independent envelope-transient simulations. The results are 
overlapped in the curve sections where these methods 
succeeded to converge. However, there are sections of the 
curves where the two mentioned methods were unable to 
provide any solutions.  

C. Stability analysis 

After obtaining the AG values that constitute valid solutions 
(since they fulfill YAG = 0), one can supply these values to the 
AG in the HB simulator, which will directly force these 
solutions with no need of an optimization procedure. This way 
it will be possible to apply a complementary stability analysis 
[22], [29], enabling a distinction between physical and 
unphysical sections of the solution curves. 

In general terms, the stability boundaries of injection-locked 
oscillators are determined by the generation of an invariant 
closed curve at a saddle node of the Poincaré map, occurring at 
turning point of the synchronized solution curve, or by a direct 
Hopf bifurcation [16]-[17],[22],[41]. Usually the turning-point 
desynchronization is obtained at the lower input power. In the 
two cases there is a transition from periodic to autonomous 
quasi-periodic regime. This transition is discontinuous in the 
case of the turning-point desynchronization (since the invariant 
closed curve is generated from the saddle-node manifolds) and 
continuous in the case of the Hopf bifurcation, at which 
unlocked oscillation amplitude tends to zero value. For higher 
input-power values one can also obtain turning points 
associated to hysteresis and jumps. Other forms of global 
bifurcations, such as the saddle connections in the Poincaré map 
also exist but are typically obtained in small parameter regions 
[16]-[17],[41]. 

The stability of the synchronized solution curves will be 
analyzed here through pole-zero identification [26]-[28]. This 
requires the calculation of a closed-loop transfer function at the 
perturbation frequency , incommensurable with in. This 
function is obtained by introducing a small-signal current 
source Is at , in parallel at a sensitive circuit node, such as a 
device terminal. The closed-loop transfer function is given by 
the ratio between the voltage at the connection node Vs and Is: 
Z()=Vs/Is. This complex function is fitted with a quotient of 
polynomials externally to the harmonic-balance software [26]-
[28]. 

A problem specific to the high-order subharmonic injection 
locking is the selection of the identification frequency band, due 
to the significant difference between the oscillation frequency 
o and the input frequency in. In fact, the accuracy of the pole-
zero increases when considering narrower identification 
bandwidths [28], in which the transfer function can be fitted 
with a smaller number of zeroes and poles. One should take into 
account that for a harmonic order tending to infinite, the poles 
of a periodic solution have been demonstrated to agree with the 
Floquet exponents k of this solution [27], [42]. These 
exponents are non-univocally related with the Floquet 
multipliers mk through exp[( ) ]k k in inm nj T   , where n is an 
integer number. Therefore, all the poles k innj   will be 
associated with a same Floquet multiplier mk. As a result, there 
should be a “repetition” of the poles at multiples of in. For 
illustration, a particular pair of complex-conjugate poles of the 
form:  ± ja will be considered. Without loss of generality, it 
is assumed that 0 < a < in/2. Then, a whole set of poles 
associated with the same pair of complex-conjugate multipliers 
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exp[( ) ]k a in inm j nj T     will also exist, given by  ± j(nin ̶ 
a),  ± j(nin +a).  

 In view of the above relationship between the poles and the 
Floquet multipliers, one should ideally obtain the same stability 
information when identifying Z() in any frequency band 
[(n−1/2)in, (n+1/2)in]. In practice, some bands can be more 
sensitive than other, and one should expect a higher sensitivity 
in sub-bands around the original oscillation frequency. 
Nevertheless, in the oscillator considered here, the same 
stability information was obtained about Nin and in the lower 
sub-band (0, in). 

As stated, the AG is used to force each solution (in the set 
obtained through the contour-plot intersections) in the 
commercial HB software. Then, the conversion matrix 
approach is applied for the calculation of the closed-loop 
transfer function Z(), analyzed with pole-zero identification. 
This analysis is illustrated through its application to the most 
interesting case in Fig. 7, corresponding to the input amplitude 
Ein = 2.95 V. For convenience, the two solution curves obtained 
for this Ein value have been retraced in Fig. 11(a). 

 The first solution considered corresponds to 
Nfin = 15fin =7.286 GHz (fin = 485.7 MHz), in the upper section 
of the main (open) curve. Fig. 11(b) shows the transfer function 
Z() evaluated in the perturbation-frequency interval /2π = 
f (15fin−fin/2, 15fin+fin/2). As expected, the frequency response 
exhibits certain degree of symmetry about 15fin. Due the fast 
frequency variations of Z(), the identification must be carried 
out considering smaller frequency intervals [27]-[28]. One of 
the intervals is about 15fin and the other captures the most 
pronounced resonance on the left side. The identification of Fig. 
11(b) about 15 fin provides two pairs of complex-conjugate 

poles 1 1(2 15 2 )inj f f      at small offset frequency 1f  

from 15fin, located on the left-hand side of the complex plane 
(LHS). The identification about the left resonance provides the 

complex conjugate poles 2 2(2 15 2 )inj f f     at 2f = 162 

MHz located on the right-hand side (RHS). When reducing fin 
along the upper section of the main solution curve in Fig. 11(a), 
we obtain the pole evolution shown in Fig. 11(c). As the turning 

point T4 is approached, 1f  decreases. Just before T4, the poles 

1 1(2 15 2 )inj f f      merge and split into two independent 

pairs of poles 1 ' (2 15 )inj f   and 1 '' (2 15 )inj f   

(equivalent to two independent real poles) and, at T4, one of the 
pairs [ 1 '' (2 15 )inj f  ] crosses to the RHS. Both the merging 

and crossing to the RHS occur in a very quick evolution. The 
pole crossing to the RHS is confirmed by the pole plot of Fig. 
11(d), just after T4. The same pair of poles 1 '' (2 15 )inj f   

crosses to the LHS after T3 [Fig. 11(e)]. 
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Fig. 11. Stability analysis of the circuit at 7.6 GHz in Fig. 3. (a) Solution curve 
at Ein = 2.95 V and sub-synchronization order N = 15. (b) Transfer function 
Z() calculated by connecting a current source Is in parallel at the drain 
terminal. (c) Evolution of poles when decreasing the input frequency T4. (d)  
Pole locus for fin = 482.5 MHz, between T4 and T3. (e) Pole locus for fin = 487.7 
MHz, after T3. 

 
Attention is now paid to the other dominant poles at 

2 2(2 15 2 )inj f f     . The upper section of the main curve 

is stable from H to T5. However, when reducing fin, the poles at 

2f cross to the RHS at the direct Hopf bifurcation H, obtained 

before reaching T4. This Hopf bifurcation leads to a quasi-
periodic regime at fin and the unlocked oscillation frequency. 

The poles at 2f  remain in the RHS through the entire left 

section of the main curve, so the turning point T4 has no 
physical effect. In fact, the pair of poles 1 '' (2 15 )inj f 
crosses again to the LHS at T3.  

From the quasi-periodic regime that originates at H, the 
circuit immediately evolves to a locked solution at 16fin, which 
is attained at the right turning point (T2) of the closed curve on 
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the left. This turning point is a synchronization point [29], in 
consistency with the fact that the closed curve is stable between 
the two turning points T1 and T2 and there is no coexistent stable 
section in the open curve in the same frequency interval. On the 
other hand, the right side of the main solution curve does not 
exhibit any Hopf bifurcations, so the upper section of the open 
curve remains stable up to T5.  

 The results of the above stability analysis are consistent with 
the envelope-transient simulations, superimposed in Fig. 7. 
However, the envelope-transient analysis is only indicative 
[22], as it will fail if the solution involves frequencies not 
accounted for in the variable representation (as a Fourier series, 
with time-varying harmonic terms). Because the target of Fig. 
7 is the comparison with independent analysis method, the 
information on the stable synchronization bands obtained for 
different Pin is given in Table I. The results of the stability 
analysis through pole-zero identification are indicated in Fig. 
10.  

 

Table I First design. Synchronization bandwidths N = 15 

Ein f1 f2 BW 

2.5 V 7.517 GHz 7.674 GHz 157 MHz 

2.65 V 7.458 GHz 7.699 GHz 241 MHz 

2.8 V 7.425 GHz 7.728 GHz 303 MHz 

2.95 V 7.296 GHz 7.750 GHz 454 MHz 

V. EXPERIMENTAL RESULTS 

To validate the new analysis method with experimental 
results, it is necessary to take into account the package inductor 
of the varactor diodes, which would not be present in a MMIC 
realization. In fact, the package inductance has been found to 
be the most limiting effect in the performance of the NLTL-
driven subharmonically injection-locked oscillator. Fig. 12(a) 
shows the measured output-power spectrum of the NLTL, when 
characterized isolated from the circuit, and driven with the input 
power Pin = 17 dBm. Seven significant harmonic components 
can be identified. Simulation results are also shown in Fig. 
12(b). As stated, to achieve sub-synchronization an additional 
multiplication effect, due to the transistor device in the 
oscillatory regime, will be required. The two multiplication 
actions are not independent since, due to the mutual coupling 
between the NLTL and the transistor stage, the circuit operates 
as a single oscillator. In view of the degradation of the NLTL 
frequency-multiplication capabilities, we have redesigned the 
oscillator, so as to obtain an oscillation frequency about 4.3 
GHz. The input frequency has also been slightly reduced to 
achieve the sub-synchronization order to N = 11, instead of 
N = 10.  

Fig. 13(a) shows a detailed schematic of the second design 
operating at 4.3 GHz, also based on the FET transistor 
NE3210S01. It has been built on Rogers 4003C substrate 
(r = 3.38, H = 30 mils), using TE connectivity 3640 series 
inductors and ATC 600S Series capacitors. The dc bias feeding 
networks have been implemented with radial stubs. The 
photograph is shown in Fig. 13(b). 
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Fig. 12. Output spectrum of the NLTL. (a) Measured. (b) Simulated. The 
package inductor of the varactor diodes has been taken into account in the 
simulations. 
 

 
Fig. 13. Second design of the subharmonically injection-locked oscillator based 
on the transistor NE3210S01 and operating at 4.38 GHz. The results of the new 
analysis methodology are compared with experimental measurements. (a) 
Detailed circuit schematic. (b) Photograph of the Rogers prototype. 

 
The synchronized solution curves, when considering the 

package inductor, are shown in Fig. 14(a). Each curve has been 
automatically obtained with the new contour-intersection 
method. The low pass filtering effects associated with the 
package inductor give rise to a reduction of the oscillation 
frequency. At Pin = 18.38 dBm and 18.46 dBm, a closed curve 
and a disconnected open curve are obtained. One should note 
that the open curve obtained for 18.46 dBm exhibits two turning 
points, which evidences the complexity of the solutions, even 
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in the presence of the parasitic inductors. The measured 
synchronization bands for similar input power values are shown 
in Fig. 14(b). To match the synchronization band, it was 
necessary to use a lower drain-bias voltage Vdrain = 0.75 V [43]. 
This is attributed to inaccuracies in the transistor model, as well 
as the big dispersion between device units, gathered from the 
cut-off voltage and saturated drain-current values in the 
datasheet [44]. When increasing Vdrain, the synchronized-
solution curves shift to lower frequencies and the output power 
decreases. Fig. 14(c) shows the measured synchronization 
bands at Vdrain = 1.7 V. Measurements and simulations are in 
good qualitative agreement. Table II presents a summary of the 
measurement results for Vdrain = 0.75 V, in terms of 
synchronization band and output power at the middle frequency 
of the band fmid. In comparison with the results of the first 
oscillator in Fig. 3, there is a significant reduction of the 
synchronization band, which is attributed to the degradation of 
the NLTL performance when using packaged inductors.  
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Fig. 14. Oscillator in Fig. 13, with complete varactor models, including the 
package inductor. (a) Synchronization curves obtained with the new analysis 
method for different Pin values. (b) Experimental measurements for Vdrain = 0.75 
V. (c) Experimental measurements for Vdrain = 1.7 V. 
 

 
 

Table II Measurement of synchronization bandwidths Vdrain = 0.75 
V 

Pin f1 f2 BW Pout at fmid 

18.5 dBm 4.365 GHz 4.374 GHz 9 MHz -3 dBm 

18.8 dBm 4.367 GHz 4.384 GHz 17 MHz -3.1 dBm 

19 dBm 4.369 GHz 4.4 GHz 31 MHz -4 dBm 

19.5 dBm 4.361 GHz 4.408 GHz 47 MHz -4.1 dBm 

 

Fig. 15 presents the measured pulsed waveform at the gate 
node, after the NLTL action, and at the circuit output for Vdrain = 
0.75 V, with a clear synchronized behavior, at the original. 
These waveforms have been obtained using a DSO90804A 
Digital Storage Oscilloscope. The pulse waveforms at the end 
of the NLTL were measured using the Agilent 1169A 
differential probes, which enable to test differential and single-
ended signals up to 12 GHz.  

 

 
Fig. 15. Measured pulsed waveform at the gate node, after the NLTL action, 
and at the circuit output, evidencing the synchronized behavior. 
 

Fig. 16 compares the simulated and experimental output 
spectrum of the subharmonically injection-locked oscillator. It 
has been measured with an Agilent PSA Series Spectrum 
Analyzer E4446A, connecting the output node of the circuit to 
the instrument through a cable of length l = 124 cm. The noise 
floor in the measurement seems to be low, or lower than in Fig. 
12(a), due to the adjustmet in the mixing level of the instrument. 
to avoid reaching its IF overloading (mixing level = Input level 
– Attenuation < -8 dBm). Note than in measured spectra of Fig. 
12(a) and Fig. 16 (b)] the reference level is different and so the 
mixing level. The spectrum in Fig 16(b) has been measured 
setting a 15 GHz frequency span, a reference level of 0 dBm 
and a logarithmic scale of 10 dB/div. This output spectrum 
evidences the action of the active-device nonlinearity, since the 
NLTL alone is not able to provide any harmonic component 
near the oscillation frequency [Fig. 12(a)]. There are some 
discrepancies in the power values at the spectral lines, which 
are attributed to modeling inaccuracies. The spurious content 
about the main spectral line at 4.38 GHz can be efficiently 
removed by using another injection-locked oscillator [5]-[6]. 
This oscillator [5]-[6] locks onto any harmonic of the pulsed 
oscillations included in its tuning range, through a harmonic 
selection by means of a tuning voltage.  
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Fig. 16. Oscillator in Fig. 13. Output spectra with Pin = 18.5 dBm and fin = 400 
MHz. (a) Simulation. (b) Measurement. 

 
The stability of the solution curves in Fig. 14(a) has been 

analyzed with pole-zero identification [26]-[28]. The analysis 
is illustrated through its application to the left section of the 
curve obtained for Pin = 18.63 dBm. Fig. 17(a) shows the 
evolution of the dominant poles when taking the output power 
Pout as the parameter. The analysis departs from Pout = -1.31 
dBm. At this power value there is a dominant pair of complex-
conjugate poles at 11fin+f, located on the LHS. As 
Pout decreases, f becomes smaller and reaches zero at Pout 
= - 2.4 dBm, where the original pair of incommensurable 
complex-conjugate poles splits into two independent pairs of 
poles at 1 ' (2 11 )inj f   and 1 '' (2 11 )inj f   (equivalent to 

two independent real poles). At T2 [Fig. 14(a)], obtained for Pout 
= - 2.5 dBm, one of the pairs [ 1 ' (2 15 )inj f  ] crosses to the 

RHS. When further reducing Pout, the second pair 

1 '' (2 11 )inj f   crosses to the RHS at Pout = -2.70 dBm, 

corresponding to the turning point T1 [Fig. 14(a)]. The right 
section of the curve, for frequencies higher than the one 
corresponding to Pout = -1.31 dBm was found to be stable in 
simulation, unlike what is observed in the measurements.  
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Fig. 17. Oscillator in Fig. 13. (a) Evolution of poles through T2 and T1 of the 
synchronization curve at Pin = 18.63 dBm. (b) Evolution of poles at fin = 399.5 
MHz when increasing the input power. (c) Measured spectrum at 11fin with fin 
= 399.5 MHz before the extinction of the unlocked oscillation. 

 
In the experiment, the circuit becomes unlocked at 

15fin = 4.374 GHz, where an incommensurable oscillation 
grows from zero amplitude [29], corresponding to a direct Hopf 
bifurcation. This Hopf bifurcation is not obtained in simulation 
for Pin = 18.63 dBm, but for lower input power. To demonstrate 
this, we have considered a constant input frequency fin = 399.5 
MHz and increased Pin from zero. Thus, the circuit departs from 
free-running conditions and one obtains a pair of complex-
conjugate poles at the oscillation frequency [Fig. 17(b)]. When 
increasing Pin, the poles shift to the left and cross the imaginary 
axis at about Pin = 18.59 dBm, in a very quick evolution. 
Performing the same Pin variations experimentally, at 
fin = 399.5 MHz, the circuit stabilizes at Pin = 18.7 dBm, higher 
than the result obtained in simulation. Fig. 17(c) shows the 
measured spectrum just before the extinction of the unlocked 
oscillation. Since there is significant spacing between the 
spectral lines, the oscillation extinction is due to an inverse 
Hopf bifurcation, in agreement with the analysis results. In our 
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simulations of Fig. 14(a), the input power has surpassed the one 
required for the stabilization of the periodic solution.  

The phase noise has been measured with the Direct Spectrum 
Technique, using the phase noise measurement personality in 
an Agilent PSA Spectrum Analyzer E4446A (option 226). The 
circuit was connected into the spectrum analyzer tuned to the 
carrier frequency, directly measuring the power spectral density 
of the oscillator in terms of single sideband phase noise L(f) in 
dBc/Hz versus log offset frequency. Fig. 18 compares the 
measured phase noise spectra of the input generator (HP 
8648C) and the subharmonically injection-locked oscillator. 
The locked oscillator basically follows the phase-noise of the 
input source (increased in 20log11 dB). The phase-noise 
spectrum is also compared with the one obtained with the 
original implementation of the oscillator, without an NLTL, 
terminated in a grounded inductor at the gate port, of value L = 
0.85 nH. Despite the presence of a high number of varactor 
diodes in the NLTL driven oscillator, its phase noise is rather 
low in the whole interval of offset frequencies from the 
oscillator carrier. It is only higher than the one corresponding 
to the original free-running oscillator (without the NLTL) about 
10 MHz offset from the carrier. This is attributed to the 
relatively high noise floor of the input generator, since the 
expected difference 20logN is approximately maintained even 
at this high frequency offset.    
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Fig. 18. Oscillator in Fig. 13. Measured phase noise spectra of the original free-
running oscillator (without NLTL), the input generator (HP 8648C) and the 
NLTL-driven subharmonically injection-locked oscillator. 

VI. CONCLUSION 

A new methodology for the analysis of high order 
subharmonically injection-locked oscillators has been 
presented. Unlike previous methodologies, it is not local and 
therefore it is able to provide disconnected sections of solution 
curves and even disconnected curves. The method is based on 
a straightforward calculation of a collection of admittance 
functions versus the input-generator phase, using an auxiliary 
generator in standard harmonic balance. No continuation 
methods are required, except the ordinary continuation 
employed in any harmonic balance sweep. All the solutions 
coexisting for a given value of the input-generator phase are 
directly obtained from the intersections of two contours, 
respectively defined by the intersections of the surfaces 
associated with the real and imaginary parts of the admittance- 
function with the zero-value planes. This way it is possible to 
obtain very distant solutions, belonging to different curve 

sections and different curves. It is to note that the method is 
fully extensive to the analysis of frequency dividers, by 
calculating the surfaces in terms of the auxiliary generator 
phase. The new methodology is compatible with any harmonic 
balance software, including those in which no oscillator 
analysis method is available. To demonstrate the capabilities of 
the method, a subharmonic injection locked oscillator, using an 
NLTL for a first frequency-multiplication stage, has been 
analyzed in depth. The results have been validated with the 
previous AG parameter-switching method, with envelope-
transient simulations and with measurements.  
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