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Almudena Suárez Fellow †

November 29, 2016

Abstract—We present an experimental technique to study
bifurcations in periodically-forced nonlinear microwave circuits,
including even physically unstable (periodic) steady-states. The
designer specifies a key node in the circuit being studied (often
associated with an active device) and the method synthesizes a
voltage waveform to match the waveform at the selected node
so that no current flows across the interface. This null condition
is maintained while a parameter, such as bias voltage, is varied
over a specified range. The addition of the external nulling source
is able to stabilize a steady-state that would be unstable in the
original circuit. Various applications are presented.

I. INTRODUCTION

NONLINEAR microwave circuits under periodic excita-

tion can exhibit a variety of non-standard behaviors

including [1]–[3]: multiple steady-states (typically with dif-

ferent stability properties), hysteresis and jump phenomena

with respect to variation of a parameter (such as bias voltage)

[4], [5], sub-harmonic solutions [6], parametric oscillations,

quasi-periodic solutions [7], and finally chaotic solutions [8].

Practicing RF designers have a variety of colorful jargon

names for such behaviors, however the modern language of

dynamical systems theory [8]–[11] allows for a much more

precise description of such phenomena.

Numerical simulation methods such as harmonic halance

[3], [12]–[14] are able to capture all of the operation modes

in the list above with the exception of chaos. Moreover,

a harmonic balance simulation combined with continuation

[15] is able to explore different qualitative and quantitative

behaviors. A continuation parameter is a real number (typically

with a physical interpretation), which is varied systemati-

cally over a specified range to drive the device or circuit

being studied into different states. Typical examples of a

continuation parameter are bias voltage, external temperature,

drive level of a signal generator, or even the position of a

slug of a mechanical slide tuner. The representation of the

steady states versus the continuation parameter, in the form

of a bifurcation diagram [8]–[11], should provide a rather

complete understanding of all the possible behaviors of a

circuit, stability properties, and its boundaries of operation.

In the most interesting cases (discussed later in the paper)

modification of the continuation parameter drives the circuit
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or device under test into qualitatively different states – e.g.,

periodic states with different stability properties.

Numerical simulation combined with parameter continu-

ation is very powerful however in certain practical cases,

an accurate simulation model is not available rendering the

numerical simulation results anywhere from suspect to useless.

The following scenarios illustrate this kind of simulation

shortfall.

1) Researchers continue to investigate new semiconductor

devices that operate at microwave frequencies [16].

Typically, the development of an accurate numerical

model lags behind experimental results. If a circuit based

on a new semiconductor device exhibits some type of

bifurcation behavior before a numerical model for it is

available, then simulation techniques cannot be applied.

2) Interconnect parasitics tend to be well-characterized on

an MMIC [17], however less so on board-level proto-

types. Inadequate modeling of such parasitic elements

can significantly degrade the accuracy of simulation

results, particularly at microwave frequencies. An ex-

perimental scheme for studying bifurcation phenomena

implicitly includes the effect of such parasitics.

3) Designers are sometimes expected to work with com-

ponents (particularly at the system-interconnect level)

for which accurate modeling data are not available. For

legacy components, the data might have been simply

discarded or lost. In a more extreme case, the provider

of a system-level component might consider detailed

modeling data proprietary and not want to reveal them.

Bifurcation behavior of such designs can only be inves-

tigated experimentally.

These considerations underline the limitations of numerical

simulation and the need for an experimental alternative.

This paper proposes an approach to parameter continuation

that does not require any sort of numerical model of the circuit

or device under test. The technique can explore a complete

bifurcation diagram for a circuit or device with respect to

changes in a continuation parameter, including both stable and

unstable states in an experimental setup. The method is non-

invasive in the sense that the resulting bifurcation diagram is

identical to what would be computed with numerical parameter

continuation, assuming an exact simulation model for the

circuit were available.

The experimental results can be used, for example, to extract

parameters for an approximate simulation model to bring it
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into closer agreement with measurements and to provide a

thorough understanding of the effect of particular circuit pa-

rameters on the bifurcation behavior. For a high-power circuit

exhibiting bifurcation behavior, the experimental continuation

technique can be used to approach a high-amplitude state

in a controlled fashion, avoiding a sudden jump in output

power that might damage a device under test. In some cases

[18], hysteresis behavior is desirable and the method can

be used to confirm an implementation. In other cases (in

particular, power amplifiers [4], [5] or some recent MEMS

devices [19]), hysteresis is undesirable and the method can be

used to confirm that it has been eliminated. Other circuits such

as microwave frequency dividers have inherently different re-

gions of operation, delimited by bifurcation phenomena. These

regions [7], [20] depend on one or more circuit parameters

and it is important to identify and quantify them [21]–[23].

Considering such a variety of situations, the method could

also have an application in future measurement equipment as

it would enable a thorough experimental characterization of

the circuit response versus any parameter of interest, including

multi-valued regions.

The paper is organized as follows. Section II presents a brief

summary of simulation methods for parameter continuation.

Section III describes the new parameter continuation method

based on a null-current condition and explains how it is

theoretically able to stabilize an otherwise unstable periodic

steady state. Section IV presents the experimental implemen-

tation of this method. Section V demonstrates the method with

application to a variety of practical circuit examples. Finally,

Section VI summarizes the paper and suggests some directions

for possible future work.

II. SIMULATION METHODS FOR PARAMETER

CONTINUATION

In order to make the paper self-contained, we present here

a very abbreviated description of simulation methods for

parameter continuation combined with a steady-state solver.

More details are available in the various cited references.

We assume the reader is already familiar with a steady-state

simulation method such as harmonic balance (HB) [3], [13]

in which each periodic steady-state waveform of a circuit is

captured with n real numbers (e.g., Fourier coefficients).

A. General idea of parameter continuation

Figure 1 shows an example of parameter continuation

applied to a practical varactor-tuned filter of Figure 12. The

circuit is driven by a sinusoidal voltage source at a fixed

frequency of fREF = 750 MHz and a fixed input amplitude

of +5 dBm. The independent variable in the graphic is the bias

voltage applied to the varactor and the dependent variable is

the magnitude of the fundamental Fourier term of the voltage

waveform across the varactor. For each value of the bias

voltage, the simulation has computed a steady-state solution

with the specified sinusoidal drive. This circuit exhibits a

distinct hysteresis with respect to the bias voltage. In practice,

an experimental monotonic sweep up or sweep down of bias

voltage would result in sudden jumps in output amplitude at

Fig. 1. Solution curve of varactor filter traced by numerical continuation;
The magnitude of the fundamental of the voltage waveform across varactor
is shown versus the bias voltage.

bias values corresponding to the two turning points marked

in the graphic (T1,T2). Between these two turning points,

there is a branch of solutions which are all physically unstable

[12]–[14], [24]. With conventional techniques, this branch of

solutions can be accessed and studied only in simulation as

described in this section. Experimental access to this branch

– which we believe to be novel – will be described later

in the paper. A different experimental approach to studying

bifurcation phenomena has been anticipated recently in the

mechanical engineering community. See e.g., [25], [26] for

example.

Keep in mind that the curve shown in figure 1 is actually

a projection of a smooth curve in a much higher dimensional

space.

The instability of a periodic steady-state solution in the

branch between the turning points can be demonstrated in

simulation with a conventional transient analysis. If such a

steady-state solution is used as the starting point for a transient

simulation, one would observe the solution evolve in time

by moving away from the initial periodic steady-state and

converge to a different periodic steady-state that would be

stable under small perturbation.

The instability of the selected periodic steady-state can also

be demonstrated with pole-zero identification [6], [27], [28]

as shown in Figure 2. The figure presents the evolution of

the circuit dominant poles through the right-hand section of

the resonance curve in Figure 1, comprised between 2 V

and the maximum value 5.8 V. The dominant poles are the

ones having the largest real part and, therefore, the strongest

impact on the stability properties, stability margins, transient

behavior etc. For low values of the first-harmonic voltage

amplitude, there are two distinct pairs of complex-conjugate

poles (σ1± 2πf1, σ2± 2πf2) at frequencies (f1 and f2) that

are incommensurate with the input frequency fREF . At the

particular amplitude 3.133 V, one of the pairs of complex-

conjugate poles splits into two independent pairs of poles

at fREF , or, equivalently into two real poles, due to the
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Fig. 2. Stability analysis as poles move through the right-hand side section
of the resonance curve of Figure 1. The analysis is performed with pole-zero
identification [6], [27], [28]. The real part of the dominant poles is represented
versus the first harmonic amplitude of the node voltage.

non- univocal relationship between the Floquet multipliers and

the poles [27], [29]. At the particular amplitude of 3.542 V,

corresponding to the lower infinite-slope point (T1) of the

solution curve, one of the real poles becomes positive and the

solution becomes unstable. As the voltage amplitude increases

further, this real pole continues to grow, then decreases and

takes a zero value at 5.614 V, corresponding to the upper

infinite-slope point (T2). For higher voltage amplitudes all the

poles have negative real parts and the solution is stable. The

section of the curve located between the two points T1 and T2

is an unstable region, due to the existence of a positive real

pole. The rest of the curve is stable.

Numerical continuation [15] can be viewed as a practical

application of the implicit function theorem [30]. Suppose

that the complete steady state of a circuit is represented with

K = n × m real numbers: x ∈ RK . Here, m represents the

number of state variables needed to capture the instantaneous

time-domain behavior of the circuit and n = 2NH + 1 is

the number of real Fourier components needed to adequately

represent a steady-state of each waveform. As a special case,

with n = 3, harmonic balance reduces to the describing-

function technique [31]. The mapping f : RK → RK selects

the subset of the entire space corresponding to valid states, i.e.,

x which maps to 0 ∈ RK . Typically f imposes constraints

such as Kirchoff voltage and current relationships and I/V

characteristics of nonlinear devices.

Suppose furthermore that the circuit is controlled by a

continuation parameter µ ∈ [µ0, µ1]. A new mapping H :
RK+1 → RK is defined such that valid (x, µ) pairs are

still those elements that map to 0 ∈ RK . The supporting

theory [32] shows that for practical purposes the set of points

(x, µ) that map to 0 form a smooth, continuous curve (a

one-dimensional manifold) in the ambient space of dimension

K + 1.

It is tempting to expect a functional relationship between

x and µ. From an engineering standpoint, you turn the µ

“knob” and watch the state, x, track different values of µ in a

continuous fashion. It is also natural to expect the process to

be re-traceable: Move the µ knob in the other direction and

the state, x, re-traces its previous path. However, both of these

intuitions are completely wrong in the presence of a hysteresis.

In order to stay on the zero curve (i.e., those pairs (x, µ) that

represent valid states) it may be necessary to adjust both x
and µ with either components of x or µ possibly increasing

or decreasing locally. In other words, it is not longer valid to

think of µ as the independent parameter with x functionally

dependent on µ. The zero curve still exists and is continuous,

but it exhibits a so-called turning point [15] with respect to

µ. The notation y = (x, µ) ∈ RK+1 puts x and µ on equal

footing and de-emphasizes the idea that x is a function of µ.

The experimental method presented here will be demon-

strated with two different continuation methods: arc-length and

a parameter-switching technique, based on the the use of an

auxiliary generator [7], [14]. The two methods are described

briefly in the following sections. When applied to the varactor

filter example, the two methods provide the identical solution

curve displayed in Figure 1.

B. Arc-length continuation

An elegant mathematical device is to consider x and µ
(hence y) as both depending on arc length r along the zero

curve [15], [33], [34]. The starting point of the curve is a point

y0 = (x0, µ0) = y(0). Subsequent points along the curve are

indicated by increasing the arc length along the curve from this

starting point. No one component of the y vector is required

to increase monotonically (including µ) but arc length along

the curve does increase monotonically by construction.

As mentioned above, the supporting theory shows that the

set {y(r)|r ≥ 0} is a smooth curve in the space RK+1

parameterized by arc length r. Moreover for a point y on

this curve, the Jacobian matrix ∂H
∂y

of dimension K× (K+1)
is full-rank as long as the curve is smooth. The last column

of the matrix represents derivatives of the circuit equations

with respect to the continuation parameter µ. The Jacobian

matrix has a simple and important geometric interpretation.

Consider the Jacobian matrix J = J(y) evaluated at a point

y on the curve. Since this matrix is full-rank, it is possible

[15] to find a unit-length vector v (of dimension K +1) such

that Jv = 0 ∈ RK . This vector is tangent to the zero-curve at

the point y; locally it indicates the direction of increasing arc

length along the curve.

These considerations can be combined to give a basic

algorithm for arc-length continuation:

1) Set µ = µ0 and find a starting point y = y0 on the

zero curve. Typically µ0 is chosen to ensure a unique

solution outside of any hysteresis region

2) Choose an arc-lengh increment δ.

3) Obtain the Jacobian matrix J evaluated at the point y.

4) Find a unit-length vector v in the null-space of J , for

example by performing a QR decomposition on J [35].

5) Compute a predicted point yadvance = y + δv.

6) Consider the hypersphere of radius δ centered on y;

obviously yadvance is on this hypersphere. If δ is not
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too large, the zero curve exits the hypersphere at a point

ynew close to yadvance.

7) Use an iterative computation, such as Newton’s method,

to find the point ynew on both the zero curve and the

hypersphere employing yadvance as a starting point for

the iteration.

This basic step is then repeated, advancing in arc length along

the zero curve, until the target value µ1 is reached. In practice,

as long as the arc length increment δ is not too aggressive, the

algorithm described above will track the zero curve in the form

of a series of closely-spaced points along the curve advancing

in arc length. Since yadvance is close to ynew the final iterative

step above typically converges in a few iterations and exhibits

super-linear convergence. More sophisticated implementations

[33] use an efficient adaptive scheme to propose larger or

smaller values of δ depending on the nature of the zero curve.

C. Parameter switching with an auxiliary generator (AG)

An alternative simulation technique described in [13], [14]

is based on the introduction of an auxiliary generator into

the circuit. In HB simulation, this enables the implementation

of a parameter-switching method in a two-tier procedure.

An early example of this technique appears in [7], [12]. In

HB simulation, the designer selects a forcing node (often

associated with a key active device) and places a sinusoidal

voltage source and ideal transfer function at the AG frequency

[13] in shunt from this node to ground as indicated in Figure

3(a). In the analysis of periodic solutions, the AG imposes the

first harmonic of the Fourier series of the voltage signal at

the node where it is connected. To obtain a hysteresis curve

at the drive frequency, such as the one shown in Figure 1,

the AG frequency must be equal to that of the driving source.

To obtain a sub-harmonic solution it must be a sub-multiple

of that frequency. The magnitude and phase of the AG, αAG

and φAG, are unknown variables. A numerical optimization

scheme is then used to find the αAG and φAG that satisfy the

non-perturbation condition:

Y (αAG, φAG) = 0 (1)

where Y (with units of admittance) is the ratio of the AG

current to the AG voltage. The continuation method to trace

the solution curve versus µ is based on parameter switching. In

each section of the solution curve, the variable with the fastest

increment (among µ,αAG, and φAG) is swept [7], [13], [14]

and the other two are calculated to fulfill (1).

An important advantage of the AG technique is that it can be

applied as a layer on top of an existing commercial simulation

tool without a need to change the internal programming.

The AG method was applied to simulate the varactor filter

described above with the commercial tool Agilent ADSTM.

The resulting curve agrees with the one obtained by arc-length

continuation shown in Figure 1.

In measurement a different method is going to be used

which does not require either an ideal voltage source or an

ideal bandpass filter, both of which are difficult to realize in

practice. Instead, the method synthesizes a complete waveform

fREF

Input

Band Pass
transfer function

IAG

Z = 0, f = fAG

Z = ∞, f 6= fAG

fAG, αAG, φAG

AG

Nonlinear
Circuit

(a)

vREF (t)

RS

vP (t)

RP

iNULL

vDUT (t)

µ1µ0

o

µ

Circuit 1Circuit 2

(b)

Fig. 3. (a): HB simulation with addition of an auxiliary generator (AG) and
specification of the ideal transfer function at the AG frequency. (b): Sketch of
a periodically-driven generic circuit (Circuit 1) with the addition of a nulling
source (Circuit 2). The augmented circuit can have different stability properties
than the original circuit.

over one period (or multiple periods in the case of a sub-

harmonic response), which must fulfill a null-current condi-

tion. Its theoretical foundations will be presented in Section

III and its experimental implementation will be presented in

Section IV.

III. PARAMETER CONTINUATION BASED ON A

NULL-CURRENT CONDITION

As stated above, the continuation method proposed here is

to match the complete voltage waveform at the forcing node,

not just its fundamental Fourier component, hence avoiding the

need for a floating filter which is impossible to implement.

Figure 3(b) shows a sketch of a generic circuit inside the

dotted rectangle. It is driven by a periodic waveform vREF (t)
(typically sinusoidal) of frequency fREF . The circuit is also

controlled by a continuation parameter µ ∈ [µ0, µ1] repre-

sented figuratively as a knob in the figure. Consider a node

internal to the circuit with an associated voltage waveform

vDUT (t). If the circuit is linear, then this waveform will

be sinusoidal at the excitation frequency fREF with period

T = TREF = 1/fREF ; only the magnitude and phase with

respect to the excitation source can change. However, in the

case of a nonlinear network (especially one containing reactive

elements), the situation is more complicated allowing for at

least the following possibilities:

• vDUT (t) can be periodic, but no longer sinusoidal

• there may be different waveforms vDUT (t) if the circuit

exhibits multiple steady states (possibly depending on the

value of µ)

• vDUT (t) can be periodic at a sub-harmonic of fREF
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• there can be a quasi-periodic or chaotic waveform at this

node; these cases are outside the scope of this paper.

Suppose it is possible to synthesize a voltage waveform vP (t)
equal to vDUT (t) over an entire period at the frequency fREF ,

or multiple periods in the case of a sub-harmonic response.

The substitution theorem of circuit theory [36] then says

that the synthesized source can be connected in shunt to the

DUT node without disturbing the operation of the circuit.

No current flows across the junction because the voltage

waveforms are identical. Here we are implicitly assuming

that vP is generated by an ideal voltage source. The more

realistic case of non-zero source impedance is treated later in

this section. The experimental equivalent to the to the non-

perturbation condition (1) is that no current flows into or out

of the circuit at the forcing node, even though the voltage vP is

not identically zero. This is termed the null-current condition.

However, even if according to the substitution theorem a

solution exists such that vP (t) = vDUT (t) (null-current con-

dition), this solution might be unstable and, therefore, never

be obtained in measurement. Actually, in our experimental

investigation of bifurcation behavior, we need obtain solutions

that are originally unstable, without altering them. Therefore,

besides fulfilling the null-current condition, the source vP (t)
must be able to stabilize an otherwise unstable periodic steady

state. In the following, some mathematical justication for the

stabilization mechanism is provided. It is important to keep

in mind that a general proof that the experimental method

works is not really possible: the success of the method depends

critically on the designer’s choice of forcing node to which to

connect the nulling source. As an extreme case, connecting the

nulling probe to ground would not accomplish much. Also, the

source impedance associated with vP (t) is important but not

critical, as will be shown in a subsequent numerical example.

The present implementation uses a source impedance of 50

Ω, which has proven to be adequate for the example circuits

presented here. Our experimental experience shows that a large

range of source impedance values is usable.

µ

vREF

RP
iP

vP

Co

RL

1

Circuit 1Circuit 2

Fig. 4. Varactor-based filter used as a testbench for stability analysis; See
photograph in Figure 12.

On the other hand, a critic of the method could claim that

since there is no current flowing through the probe at null,

the presence of the nulling probe should have no influence

whatever on the circuit or device under test. This is incorrect,

as shown by the following analysis.

Figure 4 inside the dotted line shows a schematic of the

varactor tuned filter presented later as a first practical example.

The augmented circuit adds a periodic waveform source vp(t)
with source impedance Rp. The current flowing through this

source is ip(t), which should be zero at a null. Circuit 2 is

obviously different from circuit 1 hence it might well have

different stability properties. However, for the null-current

condition, circuit 1 viewed as a sub-circuit of circuit 2 will

have the same steady-state solution waveforms it would have

when alone.

Assume the circuit without the nulling source is described

by a nodal equation. Note that distributed elements have

not been considered here for simplicity, but the extension to

distributed elements is straightforward and does not affect the

subsequent analysis.

F̄ (X̄) + [jω]Q̄(X̄) + Ḡ = 0 (2)

where:

• X̄ is a vector containing the Fourier components of the

m state variables of the circuit

• F̄ (X̄) is a vector of nonlinear resistances and conduc-

tances

• Q̄(X̄) is a vector of nonlinear charges and fluxes

• Ḡ is a vector Fourier coefficients of independent sources

• [jω] is the block-diagonal frequency-domain differentia-

tor matrix with blocks of the form jkω with harmonic

index k, −NH ≤ k ≤ +NH .

The augmented circuit adds a new independent source vp(t)
with associated output impedance Rp. The waveform of this

source is described by a vector of Fourier coefficients V̄p,

which allows for arbitrary phase shifts with respect to the

circuit driving source.

F̄ (X̄ ′) + [jω]Q̄(X̄ ′) + Ḡ = 0 (3)

X̄ ′

1 −RpĪp = V̄p

Here Īp is a vector of Fourier components of the current

through the nulling source, which should be zero, and X̄ ′

1 the

Fourier coefficients corresponding to the forced node voltage.

The augmented vector X̄ ′ includes the X̄ from (2) and the

additional unknown Īp.

System (3) can be linearized under a small-amplitude per-

turbation giving the so-called variational equation:
[

∂F̄ (X̄ ′)

∂X̄ ′
+ [jω, s]

∂Q̄(X̄ ′)

∂X̄ ′

]

∆X̄ ′ = 0 (4)

∆X̄ ′

1 −Rp∆Īp = 0

in which the complex frequency s is associated with the

perturbation [3]. Here, [jω, s] represents a block-diagonal

matrix in which the individual blocks take the form jkω + s
where k runs over harmonic indices. Because system (4)

is homogeneous, for non-zero perturbation, the augmented

characteristic matrix must be singular with determinant zero.

The poles defining the stability of the steady-state solution of

the augmented system correspond to the values of s that make

the determinant zero.

Through comparison of system (2) and system (3), it is

easy to see that their corresponding variational equations will
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be different, unless Rp tends to infinity. In that situation, the

source vp(t) will be actually disconnected from the circuit.

Therefore, in the general case, the source vp(t) and its associ-

ated resistor Rp will have an impact on the stability properties.

Note that for the ideal case of Rp = 0, the vector X̄ ′

1 would

agree with Vp (in Fourier components), so X̄ ′

1 would no longer

be an unknown of the system.

Here the poles of the augmented circuit will be calculated

numerically using pole-zero identification [27], [28]. Such

a method was applied to the circuit shown in Figure 4 as

implemented in the commercial simulator Agilent ADSTM.

First, the simulator was asked to find a steady-state solution

in the middle of the unstable fold-back region of Figure

1. The particular solution corresponds to the bias voltage

Vb = 5.184 V and has the first harmonic magnitude 5.986 V.

Then the nulling source was attached with a waveform to make

Īp = 0. Poles of the associated Jacobian matrix were tracked

numerically as Rp was allowed to grow. One would expect

that for a sufficiently large value of Rp there should be a loss

of stability for the steady-state solution. Indeed, as shown in

Figure 5, for Rp around 5.2 kΩ (since the independent source

is no longer able to control the circuit’s physical solution), the

dominant real pole becomes positive and remains so for larger

values of Rp indicating unstable behavior.

Fig. 5. Stability analysis of augmented circuit. Evolution of the real part of
the dominant poles is traced versus the impedance Rp of the nulling source.

Because in this case instability is associated with a real pole

passing through zero and does not involve the generation of

any new frequencies, either subharmonic or incommensurate,

additional evidence of the stabilization effect of the nulling

probe can be provided by an alternative numerical experiment.

The first graphic of Figure 1 was generated by a numerical

steady-state simulation combined with numerical arc-length

continuation. A periodic steady-state solution of a nonlinear

circuit containing reactances can be viewed as a DC operating

point of a larger circuit which is still nonlinear, but contains

no reactive elements. Reference [37] gives an example of

such a transformation. Essentially, the circuit is expanded into

sampled time intervals over one period of the driving term

and a derivative with respect to time for the reactive elements

is replaced by a finite-difference approximation implemented

with controlled sources.

Solution Rp = 50 1k 5k 6k 7k (Ω)

K1 + + + + +

K2 + + + - -

K3 + + + + +

Fig. 6. Sign of Jacobian determinants depending on source resistor value.
Stability changes above 5 kΩ are in agreement with the other analysis.

The larger circuit will have a Jacobian matrix associated

with the system of equations that defines its DC operating

point. Existing theory [38] relates the physical stability of a

DC operating point to the determinant of this Jacobian matrix.

For the example of Figure 1, three solutions were obtained for

the same value of µ representing three periodic steady-states

– two stable and one unstable. The Jacobian matrices were

obtained for each of these solutions and indeed – following

the theory – two have a positive determinant and one has a

negative determinant. Observe that the sign of the determinant

of a large matrix can be obtained numerically by performing

a QR decomposition [35], and then taking the sign of the

product of the diagonal elements of the R matrix and the sign

of the determinant of the Q matrix.

Next, the circuit was simulated with the addition of a

nulling probe with source resistance Rp. The waveform of the

nulling source was programmed to match the three periodic

waveforms at the same node in the three steady-state solutions

of the original circuit. Therefore, no current flowed through

the augmenting source in steady state. Finally, the Jacobian

matrices (K1,K2,K3) and their determinants were evaluated

for the three steady-state solutions of the larger augmented

network. As shown in table 6, if Rp is sufficiently small, all

three solutions to the augmented circuit are stable. However,

if Rp is larger than about 5 kΩ, the augmenting source is no

longer able to stabilize the network, in agreement with the

previous analysis.

As has been shown, when increasing Rp, the solution forced

by the source vp(t) becomes unstable at 5.2 kΩ. Actually, for

Rp tending to infinity, the circuit should behave exactly as

the original one, with the response curve shown in Figure 2.

That is, for the particular bias voltage Vb = 5.184 V , it should

exhibit three coexisting solutions with the respective amplitude

values V1 = 2.662 V, V2 = 4.986 V (the one that has been

stabilized) and V3 = 5.7 V. Therefore, when increasing Rp,

the system solutions must evolve from a single one at V2 to

the three original coexisting solutions for Rp → ∞.

The evolution of the steady-state solutions versus Rp, when

forcing the waveform vp(t), has been analyzed using the

AG numerical continuation (described in Section II.B). The

results are shown in Figure 7, where the magnitude of the

node voltage (1) at the fundamental frequency has been traced

versus Rp. For Rp below 1.242 kΩ there is only one solution,

agreeing with vp(t). Note that the first harmonic of this

solution represented in Figure 7 does not vary with Rp since

for this solution there is no current flowing through Rp for

any value. This is why the particular Rp value is not critical.

However, at Rp = 1.242 kΩ, two solutions are generated in

a turning point. These are the solutions that will evolve to

V1 and V3 of the original circuit [not forced by vp(t)] for Rp
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tending to infinity. Observe that these solutions arise only from

a significantly large Rp value.

Fig. 7. Evolution of the steady-state solution of the augmented circuit
containing the nulling probe versus its source impedance; As this impedance
grows to infinity, the circuit solutions tend to the three solutions (V1, V2, V3)
of the un-augmented circuit.

IV. EXPERIMENTAL IMPLEMENTATION OF PARAMETER

CONTINUATION USING THE NULL-CURRENT CONDITION

The scheme for experimental continuation based on sensing

the null-current condition requires the following components

for a circuit driven at a frequency fREF :

1) selection of a suitable forcing node

2) a voltage waveform synthesizer able to construct an

arbitrary waveform vP (t) with the same period as the

excitation and coherent with it (or, a multiple of this

period in the case that a sub-harmonic response is

expected)

3) a mechanism to measure the current flow into the forcing

node, iNULL = iNULL(t)
4) a mechanism to adjust µ under computer control (typi-

cally a digital to analog converter)

5) a numerical control algorithm to adjust vP (t) so as to

drive iNULL to zero over an entire excitation period.

Assuming these components are available, it is relatively

simple to implement a kind of parameter continuation that

maintains the null condition for different values of the con-

tinuation parameter µ. Observe that there is a numerical

computation involved, but it makes no reference to any sort of

numerical model of the circuit being studied. The following

sub-sections describe (A) the experimental apparatus, (B) the

experimental continuation algorithm, (C) the null detector, and

(D) Newton’s method for getting a starting point.

A. Experimental apparatus

This sub-section lists and describes the components of the

experimental scheme shown in Figure 8.

Component #1 is a signal generator (HP8656A) operating

at a fixed frequency of fREF above.

Component #2 is a custom-built waveform generator to

synthesize vP (t). The signal from the reference generator

COMB

VNA
Ext Ref

(5)

GPIB

(1)

(8)

fREF

ϕ

ϕ

ϕ

ϕ

X4

X3

X2

GPIB

(2)

(3)

A

D

A

(6)

GPIB µ
DUT

DRIVE

(4)

vP (t)

Vf Vr

X E

iNULL(t)

ϕ

-

B

COMPUTERGPIB (7)

(a)

(b)

Fig. 8. Hardware implementation of the scheme for experimental parameter
continuation; (a): Block diagram; The short dashed line inside the DUT
rectangle is the reference plane for measurement of the null current. (b):
Photograph of experimental setup. See discussion in text for more details of
the numbered elements.

is split into four channels. As shown in the block diagram,

each channel goes through a voltage-controlled analog phase

shifter and a voltage-controlled analog attenuator (e.g.,

Mini-Circuits ZX73-2500). Control voltages for the phase

shifters and attenuators are generated by 12-bit digital-to-

analog converters (DACs) commanded over GPIB. Channels

2,3 and 4 go through, respectively, a frequency doubler, a

frequency tripler and a frequency quadrupler. Each channel

is amplified, bandpass filtered and summed in a four-channel

combiner. The goal is to get independently controllable terms
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for a Fourier synthesis. Careful circuit design, shielding,

elimination of spurs and attention to power supply filtering

were needed to reduce cross-talk. In the final design, the

waveform synthesizer can be commanded (over GPIB) to

turn on only one tone at its maximum amplitude and all

other tones measured at the output of the synthesizer will be

lower in power by at least -60 dB. This level of spurious

response is consistent with, for example, modern digital

AWG implementations such as the Tektronix AWG7000.

A portion of the reference signal is tapped off and fed to

a comb generator using a step-recovery diode [39]. Each

comb component (i.e., fREF , 2fREF , 3fREF and 4fREF )

is bandpass filtered. Specific terms are selected by a relay to

synchronize the vector network analyzer (HP8753C) described

below. This architecture is similar to some recent schemes for

achieving a so-called “nonlinear network analyzer” [40]. The

comb generator side channel provides reference signals at

each of fREF , 2fREF , 3fREF , and 4fREF , which are fixed

in phase and amplitude with respect to the reference signal.

Component #3 is a broad-band, linear power amplifier

(Mini-Circuits ZHL-5W) following the summing combiner.

The specified third-order intercept point is +45 dBm. At null

the amplifier is working into an open circuit. The amplifier

must be able to generate enough voltage swing across an open

circuit to match the voltage waveform at the probe point inside

the DUT. We have not observed any instability with the class-

A amplifier specified above.

Component #4 is a sampling bridge comprising a broad-

band dual directional coupler (NARDA 3022), a hybrid com-

biner, a phase trimmer and an amplitude trimmer. A more

detailed description of this component will be given later.

But briefly, the coupler measures a forward voltage wave Vf

at the forcing node and a reflected voltage wave Vr. As a

point of notation, we write Vf (and Vr) to mean a complete

periodic voltage waveform represented as a vector of complex

Fourier coefficients for each frequency fREF , 2fREF , 3fREF

and 4fREF . Because of the DC blocking capacitor, the DC

term of the Fourier expansion is assumed equal to zero.

The VNA is able to measure such coefficients directly in

(magnitude, phase) form.

The nulling signal is applied to the DUT through a

length of coaxial hardline connected to the output of the

dual directional coupler and tip of this hardline used as

the reference plane for the measurements of the forward

and reflected signals. These two waves are equal at the

open-circuited end of a transmission line, so the difference

Vf−Vr can be used as an indication of the null condition. The

180-degree hybrid coupler is used to form the difference of

the forward and reflected waves. The difference output of the

coupler then represents the null signal. The actual procedure

is a bit more difficult and is described in detail in Section IV-C.

Component #5 is a Hewlett-Packard HP8753C vector

network analyzer that is able to operate in external reference

mode so it can be synchronized with the comb generator

output from the waveform synthesizer at different harmonics

of the fundamental.

Component #6 is a DAC (HP59501B) which generates

µ as a voltage. It has 10 bits of resolution and an output

impedance of less than 1 kΩ.

Component #7 is a controlling computer which

communicates with the other components over GPIB.

Component #8 is the device under test, in this case the

varactor filter.

The use of a dual directional coupler as a null detector

is advantageous because such devices are available over a

multi-octave frequency range. In general, the experimental

continuation apparatus has been designed with a thought

towards later extension to higher frequencies.

B. Experimental continuation algorithm

The hardware described above is used to implement the

basic continuation algorithm described in Section II but limited

to manipulation of a single waveform with four Fourier

coefficients. The controlling computer manipulates a vector

(x, µ) ∈ R9 containing four Fourier coefficients in (cos, sin)
form and the value of the continuation parameter. The com-

puter uploads the value of µ to the DAC and the eight elements

of x to the waveform synthesizer. The algorithm must make

only incremental changes in x or µ to ensure that it does

not drive the circuit into a qualitatively different mode of

operation during the convergence process. A purely numerical

implementation of continuation faces the same limitation.

It then interrogates the VNA at four harmonics to obtain

the magnitude and phase of the null current as a numerical

residual. More precisely, four (magnitude, phase) pairs are

obtained from the VNA and then converted into a vector of

8 real numbers representing (cos, sin) pairs; this vector is the

actual numerical residual. An estimate of the Jacobian matrix

at the present stimulus point is obtained by finite-differencing

[35]. The algorithm then applies Newton’s method to find the

value of (x, µ) needed to achieve a current null. The algorithm

then takes a step along the zero curve advancing in arc length

(which might not mean increasing µ!) and repeats the process.

The present implementation is rather slow because 16 residual

measurements, two for each of 8 columns, are needed to

get a finite-difference approximation to the Jacobian matrix

using central-differences. In principle, it should be possible to

measure the four Fourier components of the null current in

parallel, giving a significant speedup.

An important practical detail concerns the final amplifier

used to apply vP (t) to the device under test. This amplifier

sees a wildly varying load as the numerical process converges

towards a current null, terminating in an open circuit at conver-

gence. The changing load introduces an additional nonlinearity

into the convergence process. This effect can be significantly

reduced at the expense of more output power by inserting an

attenuator between the amplifier and the device under test. As

stated above, we have not observed any amplifier instability

with the present experimental setup.
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The experimental results to be described in Section V

were obtained with the hardware scheme shown in Figure

8. The output of the dual directional coupler (null detector)

terminates in a length of 0.141 inch coaxial hardline. This

section of hardline is used as a probe to deliver the synthesized

waveform to a selected node in the device under test while

also allowing the dual coupler to measure the current flow

across the interface by calibrating out to the end of the length

of coaxial hardline. As indicated in Figure 8(a), the end of

this length of hardline is taken as the reference plane for the

calibration to be described subSection IV-C. For the cavity

resonator of Example 1 to be presented later, the probe was

inserted directly into the cavity through a small port in the side.

The tip of the probe was used to contact the central conductor

of the cavity near the diode. For the microstrip frequency

divider example, the probe was connected to the junction of

lines L1 and L3, and used a small spring-loaded finger to

assure good contact. For the mixer-based divider example, the

probe was inserted into a coaxial sleeve near the bandpass

filter. Some experimentation, both electronic and mechanical,

may be necessary to find a suitable location for, and method

to, connect the nulling probe.

For circuits implemented in microstrip, an effective probing

technique is to penetrate the substrate from the underside of the

board and let the center conductor of the probe touch a point

on the microstrip. A good ground connection with a close-

fitting coaxial sleeve is important. Figure 9 shows the nulling

probe contacting the gate of a transistor for the power amplifier

example presented later. The access hole should be filled with a

mechanically identical but ”cold” plug for unprobed operation.

Fig. 9. Probing microstrip circuit (HEMT power amplifier) from underside of
board; It is important to have a good ground connection for the shield of the
probe. For unprobed operation, a plug should be substituted for the nulling
probe.

C. Null Detectors and Calibration

For the first attempt at a null detector, a dual directional

coupler was connected to a Hewlett-Packard HP54121 stro-

boscopic sampling scope. This instrument is able to measure

periodic signals with a bandwidth in excess of 12 GHz and a

dynamic range of approximately 45 dB (8-bit digitization).

Following Figure 3, a waveform vP bucks the waveform

vDUT . In the case that vP (t) = vDUT (t) over an entire period,

no current flows across the interface and the forward and

reflected waves are equal. Hence, the null signal was defined

as E = Vf − Vr. Following the footnote above, Vf and Vr

were each obtained as a vector of four complex numbers by

reading a time-sampled waveform from the HP54121 over

GPIB and performing a Fourier transform. In order to be

consistent with notation in the rest of the paper, this procedure

can be written is a bit more detail as follows. Signals vf (t)
and vr(t) were obtained as (periodic) time-sampled waveforms

from the HP54121, then converted into Vf and Vr by taking

the first four terms of a Fourier expansion (ignoring the DC

term).

In practice, there is some amplitude imbalance and phase

shift between Vf and Vr introduced by the directional coupler

and associated cabling so the actual null signal was defined as

E = Vf −CVr, where C was a diagonal matrix. Components

of C were obtained in a calibration process performed before

attempting a null measurement. For the calibration, the nulling

probe was open-circuited (actually, “unterminated” might be a

better description) and the waveform generator commanded to

produce a strong signal at each of fREF , 2fREF , 3fREF , and

4fREF individually. In other words, only one tone was turned

on at time. Then, the corresponding Fourier coefficients for

V CAL
f and V CAL

r were measured and used to form the ratio

Ck,k = V CAL
r [k]/V CAL

f [k], k = 1, ..., 4. Now, given arbitrary

Vf and Vr, the error signal was defined as Vf −CVr as above.

An enormous improvement was achieved by using a vector

network analyzer as the null detector, along with a passive

subtraction bridge shown as components (4) and (5) in Figure

8(a). Specifically, the HP8753C VNA was configured in so-

called external reference mode to provide the capability of a

modern nonlinear VNA [40]. As shown in the block diagram,

a portion of vREF drove a comb generator to make har-

monic reference channels at f0, 2f0, 3f0, and 4f0. A particular

harmonic reference signal was selected by a relay and used

as the external frequency reference for the VNA. The very

first part of the calibration was to connect the output of the

comb generator to channels A and B of the VNA through a

power splitter. Then, the waveform source was commanded

to generate individual tones near maximum amplitude with

the analog phase shifter for each channel programmed to zero

volts of drive. The value recorded by the VNA for each of the

four Fourier frequencies was stored in the registers of the VNA

as ”magnitude 1, phase 0”. For subsequent measurements,

these register values were recalled as appropriate for each

Fourier frequency. Note that the VNA is not expected to

measure an absolute power or amplitude – everything is

relative to the values obtained from the comb generator and

the numerical methods simply looks for the smallest possible

null. The dual directional coupler was connected as shown to

implement a passive subtraction bridge. The amplitude and

phase of the two channels were balanced so that the passive

subtraction coupler gave a broad-band difference of more than

30 dB between an unterminated and a shorted nulling probe.

As shown in the block diagram of Figure 8(a), a sample of

the nulling waveform was applied to channel A of the VNA

(called X in the diagram) and the output of the subtraction
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bridge (called E = E(X) in the diagram) was applied to

channel B. Similar to the notation for Vf and Vr, X and E
are used here to denote four-dimensional column vectors of

complex numbers as measured by the VNA. The signal E
alone was a crude null signal – in other words, driving the

magnitude of E to zero indicated an approximate null – but it

was possible to improve upon this with a calibration process.

In a calibration phase, the waveform synthesizer was com-

manded to generate strong individual tones at each of four

frequencies and the VNA used to measure the corresponding

component of XCAL and ECAL. A diagonal matrix was

then defined similar to the above discussion with Ck,k =
ECAL[k]/XCAL[k], k = 1, ..., 4. The final error signal was

defined for arbitrary stimulus as E − CX . This scheme

achieved more than 85 dB of dynamic range, defined as

the ratio of error signals from an open (i.e., unterminated)

probe and a shorted probe. Temperature stabilization of the

subtraction bridge (not shown in the photograph) and adequate

warm-up time were needed to maintain this high level of

performance.

The calibration process just described is obviously related to

a classic SOL calibration of a VNA employing a well-modeled

OPEN standard. For our purpose, however, there is no attempt

to make a quantitative measure of the impedance at the tip of

the nulling probe. The numerical method simply tries to drive

the null signal as small as it can. The calibration described

above should be performed with the same physical probe as

will actually be used to connect to the DUT.

D. Starting point for the Newton iteration

Another important consideration for the experimental

method is to get a starting point for the Newton iteration at

µ0 (Step 1 of the algorithm outlined in Section II). Newton’s

method is known to have strongly contractive properties so

it is only necessary to get an approximate starting point

that is within the so-called basin of attraction of Newton’s

method [41]. Often the correct phase and amplitude of only the

strongest Fourier component are sufficient with all the other

components at zero amplitude. In the following discussion,

it is assumed that setting µ = µ0 results in a circuit with a

unique periodic steady-state. Hence, if the initial Newton is

able to converge it has found the correct starting point for the

subsequent continuation study.

One idea is to measure the waveform at the injection node

with an active probe. This is demonstrated in more detail

in a later section. This can give good results if the node is

not excessively high impedance, but again careful calibration

of the phase shifts introduced by the active probe must be

taken into account. An effective scheme is the following:

Measure the waveform at the proposed injection node with

the active probe and the circuit under test running at µ0 and

display this waveform on an RF oscilloscope (i.e., a high-

speed sampling scope such as the HP54121 mentioned earlier).

Note that a spectrum analyzer display is useless because it

does not show phase. Then, connect the active probe to the

nulling probe exactly at the same point on the nulling probe

where it will contact the circuit under test. In other words,

implement a kind of RF SPDT switch. Move the active probe

back and forth from the forcing node of the DUT to the tip

of the hardline used as the reference plane for the nulling

probe. Adjust the magnitudes and phases of the synthesized

Fourier coefficients of vP (t) to match the waveform on the

oscilloscope. Experimental experience shows that this scheme

works well as long as the loading imposed by the active probe

is not too large.

Another suggestion is to work somewhat indirectly. Measure

the output of the circuit under test at its intended output, that

is often designed to work into 50 Ω. Use a high-speed RF

oscilloscope to get a time-domain waveform. Typically the RF

scope would need to be triggered by a sample of vREF . Set

µ = µ0 and connect the nulling probe. Manually adjust the

magnitudes and phases of the various Fourier components of

vP (t) until the waveform on the output node is close to what

it was without the nulling probe. Use the resulting Fourier

coefficients as a starting point for Newton’s method at µ0.

This process is somewhat heuristic, but seems to work.

E. Summary of the measurement process

1) Select a forcing node for the Device Under Test.

2) Define a reference phase for the VNA on each Fourier

frequency by connecting the output of the comb gener-

ator to channels A and B of the VNA through a power

splitter.

3) Calculate the four diagonal entries of the C matrix as

described in the text. Apply a strong individual tone to

the open-ended nulling probe at each Fourier frequency

and compute the ratio E/X .

4) Set µ = µ0 and obtain a reasonable estimate of

the waveform at the chosen forcing node. Various ap-

proaches to this step have been discussed.

5) Using this estimate get Newton’s method to converge

to a waveform that accurately drives the null current to

zero over an entire period at the driving frequency (or

sub-multiple in the case of a sub-harmonic response). In

other words, drive the numerical residual vector defined

in the text as close to zero in all components as is

possible.

6) Begin the arc-length continuation process advancing

in arc-length while maintaining the numerical residual

vector as close to zero as possible. Stop when the

continuation parameter µ ≥ µ1 (its final value).

V. MEASUREMENT RESULTS AND EXPERIMENTAL

INVESTIGATION OF VARIOUS BIFURCATION PHENOMENA

The experimental approach will be demonstrated on a series

of example circuits. Presented first is a technique to measure

a (periodic) waveform at a very high impedance node in a

specific circuit. Simply touching the node with a conventional

active probe seriously perturbs the circuit. The null-current

technique, however, is able to make an accurate measurement.

Next, we present a series of circuits exhibiting two funda-

mentally different types of bifurcation behavior under periodic

drive: hysteresis and sub-harmonic response. We emphasize

again that the experimental results shown here have been
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obtained without any reference to a numerical model and that

many of the examples contain a physically unstable region

of the corresponding bifurcation diagram that would not be

observable experimentally prior to the development of our

method. The appendix shows photographs of the actual circuit

implementations discussed in this section.

A. Measuring waveforms

The experimental scheme described here can be applied as

a general measurement technique for circuits that may or may

not display any sort of bifurcation behavior. Suppose it is

desired to measure the voltage waveform at a sensitive node in

an RF circuit. The standard approach to such a measurement

is to use a high-impedance active probe, such as the Hewlett-

Packard HP54701A or the Tektronix P6046. However, this

class of probe has several practical limitations. The reactive

loading imposed by an active probe is on the order of 1

pF which may be excessive for some applications. Moreover,

many active probes start to clip for a waveform swing of more

than 10 V, preventing their application to RF power circuits.

The use of a nulling probe to infer a voltage waveform

is illustrated in Figure 10. This figure shows an attempt to

measure the voltage waveform at node 1 in the circuit of Figure

4. This node is very high impedance, at least 5 kΩ at the

fundamental frequency. For example, touching this node with

a fingertip causes the circuit to completely shut down. Figure

10 shows the output of the circuit across the 50 Ω load RL

as measured with an HP54121 sampling scope. The timebase

of the sampling scope is set for one period at the frequency

fREF (750 MHz in this case). There are actually three traces

superimposed here – one trace is for the circuit completely

unloaded, one for the circuit loaded by a nulled probe and one

for the circuit loaded with the HP54701A active probe. Clearly,

the loading imposed by the active probe is perturbing the

circuit. In the case where the output waveform is not disturbed,

we infer that the measured waveform is correct. The trace of

Fig. 10. Output waveforms of cavity resonator influenced by probing a high-
impedance node (three waveforms superimposed); The nulled probe can be
slid in and out of the cavity only changing the output from trace 1 to trace 2.

Figure 11 shows Newton’s method converging to a null for a

synthesized waveform connected to node 1, the waveform to

||9.940883e-02||

||6.633292e-02||

||2.647810e-02||

||4.777259e-03||

||1.295721e-03||

||4.870037e-04||

Newton exits successfully

-0.038 -0.682 0.062 0.170 0.041 0.205 0.021 -0.023

Fig. 11. Trace of program output; Upon convergence, the method has
calculated Fourier coefficients for the first four harmonics of the nulling
waveform ((sin, cos) pairs). There is no DC term because the probe includes
a DC block.

be measured. The two-norm of the residual (the null current)

drops by more than two orders of magnitude (> 46 dB) in a

total of 5 iterations. The final program output is a vector of

Fourier coefficients ((sin, cos) pairs) for the waveform needed

to achieve a current null. The program computes 4 Fourier

coefficients requiring 8 real numbers: [a1, b1, ..., a4, b4]
T for

fref , 2fref , 3fref , 4fref ; i.e. the waveform,

vP (t) =
k=4
∑

k=1

ak sin(2kπfREF t) + bk cos(2kπfREF t)

needed to drive the interface current to null. Note that there

is no DC term because the probe signal goes through a DC

block.

Upon convergence, it is possible to slide the probe in and out

of the cavity – contacting or not contacting the high-impedance

node – with almost no observable effect on the output, as

shown by the first two traces in Figure 10. The null is not

perfect, as shown by the slight difference between traces 1

and 2. Presumably because there is some 5th harmonic energy

present in the circuit that is not accounted for in the nulling

process.

Finally, a calibration process is used to derive the desired

waveform measured directly at the tip of the probe with no

loading. Let Vf , Vr denote the forward and reflected voltages

at the probe tip. At null, Vf = Vr. Let Uf , Ur denote the

voltages measured at the output ports of the dual coupler. For

example, an instrument such as the HP54121 can measure an

absolute voltage value across 50 Ω. These quantities can be

related by a matrix of complex numbers:
[

Uf

Ur

]

=

[

A α
β B

] [

Vf

Vr

]

in which A,B are the main coupling terms and α, β are

second-order terms representing the imperfect directivity of

the coupler. There will be one such matrix for each Fourier

term. After measuring (Uf , Ur) for each harmonic term, the

corresponding matrix is inverted to give the Fourier expansion

of the voltage at the probe tip.

Similar to the discussion of the calibration process in

Section IV, the calibration performed here is not a complete

traditional SOL cal. We make two assumptions:

1) The dual directional coupler is a linear system for

each of the four Fourier frequencies with no cross-talk

(reasonable unless it is grossly over-driven).

2) The measured waveforms vf (t) and vr(t) (represented

by Vf and Vr) upon reaching null are identical to
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what would be measured with the same output from

the waveform source, but the tip of the nulling probe

disconnected from the DUT (i.e., the condition under

which the calibration was performed).

If these conditions are satisfied, then a single set of 2 × 2
complex matrices described above (one for each Fourier

frequency) are adequate to re-construct the waveform at the

reference plane.

Our present implementation is able to synthesize and null

four Fourier terms. Higher harmonic terms would be missed

by the probe leading to a kind of tracking error. Unlike a

conventional active probe however, the nulling probe tends to

present the least loading to the strongest harmonic component

because the method is able to get a solid null for the stronger

terms.

B. Hysteresis behavior

1) Example 1: Varactor loaded resonator: Figure 12 shows

a photo of a resonant cavity loaded with a varactor diode. At

Fig. 12. Varactor tuned bandpass filter. Drive is introduced by the SMA
connector tapped-down on the central rod. Output is taken from the high-
impedance end with a small capacitive tap-off.

moderate drive levels (less than about +5 dBm), the device

operates as a voltage-tuned bandpass filter, over a range of

700 to 800 MHz with a 3 dB bandwidth of 20 MHz. However,

at a larger drive level, the circuit exhibits multiple steady-

state solutions as described above. Output coupling is with

a small capacitive tap-off. Figure 13 shows an experimental

continuation study for this circuit, with the varactor bias as

the continuation parameter, obtained with the experimental

nulling probe with fixed input drive of +5 dBm. As in the

simulation results already discussed, the independent variable

in the graphic is the bias voltage and the dependent variable

is the magnitude of the fundamental component of the voltage

waveform across the varactor.

The experimental scheme was able to trace a complete

bifurcation diagram including the unstable branch. The ex-

perimental results were taken as a the gold standard and an

optimization process performed to modify the circuit parame-

ters of the simulation, achieving reasonable agreement. Exact

agreement is not to be expected because of various parasitic

reactances that are very difficult to characterize.

Fig. 13. Experimental (o) and simulated (-) bifurcation diagrams for varactor
filter of Figure 12; The magnitude of the fundamental of the varactor
waveform is traced versus the bias value. An optimization process was used to
bring the simulation results into approximate agreement with the experimental
results.

Suppose the experimental technique is advanced in arc

length until it moves into the fold-back section (between the

two turning points) and then the probe is disconnected. The

circuit will jump to one of the stable periodic steady-states. An

early paper by Perlman [42] makes reference to a “bi-stable”

region of operation associated with essentially the same circuit

used for parametric amplification.

2) Example 2: HEMT power amplifier exhibiting hysteresis:

The circuit of Figure 14 is a modification of a practical L-

band amplifier presented in [43]. The new design uses a

different output network and has been re-tuned to a fun-

damental frequency of 750 MHz. Gate bias VGS is critical

and is introduced via a broad-band bias-T. The modified

circuit still exhibits a bifurcation similar to what is reported

in the citation. Components C1 and L1 form a conventional

input matching network. However, as discussed in the cited

work, under certain bias conditions, L1 can form a nonlinear

resonance with the input capacitance of the HEMT leading to

the bifurcation behavior.

µ
L1

C1

RP

vP (t)

RL

vOUT (t)

RS

750 MHz

Fig. 14. PA circuit using a CGH35030 HEMT. In this implementation, the
untuned drain load is a simple resistor. Bias is not shown and the unmarked
capacitors are DC blocks.

Figure 15 shows experimental results for the circuit (at

VGS = −3.77 V) clearly exhibiting hysteresis with respect

to input drive level. The results agree qualitatively with the
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cited work, but an exact comparison is not possible because

the circuits are different.

Fig. 15. Experimental results for HEMT PA. Output amplitude is traced
versus input drive level even through the unstable “fold-back” region. The
results agree qualitatively with the cited work.

C. Sub-harmonic behavior

The experimental results in this section were obtained with

a periodic drive at the frequency 1500 MHz, but generating

output at 750 MHz. The nulling waveform needed a compo-

nent at both frequencies.

1) Mixer-based frequency divider: Figure 16 shows a so-

called regenerative frequency divider. This circuit was used

many years ago to perform frequency division before high-

speed digital dividers became widely available [44], but has

been studied more recently [45] because of desirable phase-

noise properties. The input port of the mixer is driven by

a sinusoid at the frequency 2fREF . Assume (somehow) that

the local oscillator drive is available at the frequency fREF .

The mixer will generate a sum and difference, giving 3fREF

and fREF . The filter eliminates the 3fREF image term and

the fREF signal is amplified and used regeneratively as the

local oscillator drive for the mixer. There must be sufficient

input signal at 2fREF to make the loop gain greater than

unity, at which point the circuit starts dividing. Figure 16(b)

shows an experimental bifurcation diagram for the divider. The

independent axis is the drive level at the frequency 2fREF =

1500 MHz. The dependent axis is the magnitude of the output

signal at the divided frequency. Observe that there is a sudden

turn on behavior, which is typical of a flip bifurcation In this

circuit, there is actually hysteresis with respect to the drive

level, indicating specifically a sub-critical flip bifurcation [9].

By comparison, example 3 shown next is also a sub-harmonic

frequency divider that displays super-critical flip behavior.

2) Frequency divider based on tuned lines: This example

is another sub-harmonic divider implemented with microstrip

and a varactor diode. With reference to Figure 17(a), mi-

crostrip lines L3 and L4 are designed to act as a so-called

trap at the frequency 2fREF and so prevent drive current from

flowing to the load, RL. Symmetrically, lines L1 and L2 form

a trap (high impedance) at fREF , so that the sub-harmonic

A1 A2

vOUT

µ

1500 MHz(2fREF )

(a)

(b)

(c)

Fig. 16. Mixer-based frequency divider. (a) Schematic (A1 provides a broad-
band termination for the mixer output). (b) Experimental tracing showing a
sub-critical flip bifurcation with an unstable region. (c) Photograph.

current generated by the varactor diode is not loaded by the

input circuitry. Reactances X1 and X2 are chosen to achieve

series resonance at 2fREF and fREF , respectively. See [46]

for further details of the operation of this circuit. Note that

bias circuitry is not shown.

Figure 17(b) shows experimental results. The independent

variable is drive level as determined by the bias applied to

the voltage-controlled attenuator and the dependent variable

is the magnitude of the fundamental component of the output

signal (at the divided frequency fREF ). Note that this circuit

does not turn off as abruptly as the previous implementation,

presumably because the quality factor of the microstrip lines

is nowhere near as large as that of the resonant cavity used to

implement the bandpass filter of Figure 16. In the language of

dynamical systems, this example exhibits a super-critical flip
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L1 L3

X2

RL

vOUT

L2 L4µ X1

1500 MHz(2fREF )

(a)

(b)

(c)

Fig. 17. Frequency divider implemented in microstrip. (a) Circuit. (b)
Experimental results obtained with nulling probe but remaining stable. (c)
Photograph. The circuitry in the rear is used to generate sinusoidal drive at
2fREF with amplitude determined by the continuation parameter, µ. Note
the tip of the probe contacting the junction of lines L1 and L3.

bifurcation [9].

VI. CONCLUSION AND SUGGESTIONS FOR POSSIBLE

FUTURE WORK

The paper has two main conclusions.

1) A periodic voltage waveform applied to an appropriately

selected node in a circuit under test and adjusted so that

no current flows into the circuit over an entire period (the

null-current condition) can be used to stabilize a periodic

steady state that is unstable without the addition of the

nulled waveform source. However, stabilization is lost

if the source impedance of the waveform is too large.

2) Th process described in point 1 has actually been

implemented in a working experimental setup and can be

applied without any reference to a numerical simulation

model. A sensitive measurement of the null-current

condition is possible using a passive subtraction bridge

connected to a VNA. The application of the method to

several practical examples has been discussed.

An immediate extension of the ideas presented here would

be to move to a higher fundamental frequency, perhaps even

milimeter waves. Theoretically, the scheme presented here

could be extended to any frequency range in which a multi-

octave dual directional coupler could be realized. The direct-

synthesis scheme used to generate the waveform vP (t) should

extend to higher frequencies.

For the examples presented here, a single nulling probe

is adequate to explore all the steady states of the circuit

depending on the value of the continuation parameter. There is

absolutely no reason to assume that this is always the case. It is

an open theoretical question to characterize circuits for which

this is the case or to explore circuits that require more than

one nulling probe (e.g., two probes in quadrature) to explore

all steady states.

As mentioned above, the speed limitation of the present

implementation is the finite-difference approximation to the

Jacobian matrix needed for numerical convergence to a current

null. Computational experience shows that this matrix is

(block) diagonally strong. A matrix element can be interpreted

as a ratio of null current to a stimulus voltage, having units

of impedance. Is it possible to obtain at least the diagonal

elements of the Jacobian matrix using a network analyzer

directly, rather than with finite differencing? Can the off-

diagonal terms of the Jacobian matrix be interpreted (and

measured) in terms of the modern theory of X-parameters

[47]?
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