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Abstract— Distributed synchronization of sensor networks can 

be achieved by coupling the oscillator signals of the sensor nodes. 
Previous works describe the coupling effects in an idealized 
manner, with constant scalar coefficients. Here a realistic analy-
sis of the coupled-system dynamics is presented for the first time 
to our knowledge, taking into account the antenna gains and 
propagation effects on the amplitude and phase values of the 
equivalent current sources, injecting the oscillator elements. The 
new formulation provides the synchronized oscillation frequency 
and amplitude and phase distributions of the coupled system. 
Distinct oscillation modes, with different phase shifts between the 
oscillator elements, are identified, associated with the system 
symmetry. The stability properties of these modes change with 
the distance between the oscillator elements. The possibility to 
impose in-phase operation by tuning of the oscillator elements is 
demonstrated. Good agreement is obtained between simulation 
and measurements. 

 Index Terms— Wireless locking, coupled oscillators, stability. 

I. INTRODUCTION  

A common time scale between the nodes of a sensor net-
work [1] enables applications such as cooperative transmis-
sions, data-fusion of time-sensitive measurements or moving 
object tracking. The synchronization can be obtained through 
the broadcast of a beacon timing signal from a central node. 
However, in fully distributed scenarios, this broadcast will not 
be possible, and the common time scale can only be achieved 
through a distributed synchronization. This can be done 
through exchange of packets carrying time stamps [1], which 
suffer from random delays in the construction and processing 
of the packet. Alternative methods based on the wireless cou-
pling of the oscillators in the sensor nodes [1]-[3] have been 
proposed. In pulse-coupled oscillators, pulsed signals are 
transmitted and the nodes must detect the time of arrival of the 
pulses [1]-[2], which is demanding in terms of frequency 
bandwidth. In analog coupling, each node transmits a signal 
proportional to its local oscillation, with all the nodes trans-
mitting and receiving continuously at the same time [1]-[3].  

Although there are several previous works on wireless cou-
pled oscillators, they rely on ideal models [2]-[3] of both the 
oscillator circuits, described in terms of phase variables only, 
and the coupling action, reduced to constant scalar coeffi-
cients. Here an in-depth investigation of the dynamics of the 
wireless coupled system is carried out, considering realistic 
oscillator models [4]-[7] and a detailed description of the 
coupling effects resulting from the antenna gain and signal 
propagation. These coupling effects are distance and frequen-
cy dependent, and will have a significant impact on the syn-
chronized oscillation frequency, phase distribution and stabil-
ity properties. Distinct oscillation modes, associated with the 

system symmetries, will be theoretically identified and their 
stability properties will be shown to depend on the distance 
between the oscillator elements. 

 
II. WIRELESS-COUPLED OSCILLATOR SYSTEM 

Under weak coupling conditions, the oscillators, assumed to 
be slightly different, can be modeled with the derivatives of 
their admittance function (of zero value at the free-running 
oscillator) about their free-running solutions, calculated 
through finite differences. This is done with the aid of an 
auxiliary generator (AG) in harmonic balance (HB) [4]-[7]. 
For simplicity, a system of three oscillators will be considered 
[Fig. 1(a)], although the formulation can be extended to any 
number M. 

 
Fig. 1 Wireless coupled oscillator system. (a) Schematic. (b) Oscillator design 
based on the FET NE3210S01 (c) Prototype built on Rogers 4003C. The 
connection of the three AGs used for the derivative calculation and in the 
circuit-level analysis is also represented. 

Prior to the coupling, the free-running oscillators exhibit the 
amplitudes and frequencies ,  mo moV  , where  m = 1 to 3. The 

wireless-coupled system is governed by the equations: 
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where   m m moV V V  are the amplitude increments, 

mo     , 2  and 3  are the phase values of the second 

and third elements, 1 0  is the phase origin and 



/mk mo koV V   where  m = 1 to 3. The constant offset fre-

quencies 21 = 2o1o, 23 = 2o3o reduce the sensitivi-
ty to the injection signals and should be minimized by making 
the free-running frequencies as similar as possible. The terms 
due to the propagation effects [Fig. 1(a)] are: 
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where mkL  is the basic propagation loss. For each set of dis-

tances, d12, d23, d13, the system unknowns are mV , 2 , 3  and 

. In the wireless-locking case, the coupling coefficients have 
significant frequency dependence (both in magnitude and 
phase), unlike the usual coupled oscillators [5]-[6]. To investi-
gate the distinct oscillation modes, system (1) will be particu-
larized to equal oscillator elements and equal distances d, 
which provides: 
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where ( , ) vY V Y V Y      and mj
m oV V e  . The modes are 

associated with the eigenvalues and eigenvectors of the cou-
pling circular matrix, after the minus sign, rewritten as:  
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The corresponding eigenvalues have the general form 
[8],[9]:  
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where n =0 to 2, and the respective eigenvectors are: 

( / 3)[1 exp( 2 / 3) exp( 2 2 / 3)]T
n oV V jn j n                 (6)                         

The two distinct eigenvalues are: 

0 1 22 ,      j jAe Ae                                     (7) 

which, taking (6) into account, correspond to solutions with 0º 
and 120º phase shift between the oscillator elements, respec-
tively. When exciting the oscillator nodes with a voltage vec-

tor agreeing with the eigenvector nV , all the oscillator nodes 

will “see” the same admittance function , n , when looking 

into the coupling network. Thus, the oscillation condition 
corresponding to the 0º mode is: 
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where expressions of A and  in (2) have been replaced and 

a t rG G G . The oscillation condition for the 120º mode is: 
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Results of the general system (1) with equidistant nodes will 
approach (8) and (9) as the oscillator designs become more 
similar. Solving for  in the two cases: 
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Comparing the two expressions, the coupling strength is 
weaker for 120º and the frequency increments have opposite 
signs in the two modes. The magnitude of o decreases 
with d, due to a weaker coupling. For a sufficiently large d, 
the oscillators will tend to their original free-running frequen-
cy and hence to a non-synchronized regime.  However, for a 
large d, the oscillators could be kept synchronized increasing 
the antenna gains. The method has been applied to an oscilla-
tor system based on the FET NE3210S01 [Fig. 1(b)] at 2.4 
GHz. Fig. 2 shows the variation of  versus d predicted with 
(10). Only the solution with 0º exhibits turning points, which 
is consistent with the stronger coupling for this oscillation 
mode. Results are compared with costly circuit-level HB sim-
ulations using three AGs. However, the HB simulations are 
unable to complete the solution curves.  

Fig. 2 Variation of the oscillation frequency versus the distance d for the two 
oscillation modes. Measurements are superimposed. 

 

For simplicity, a wireless coupled oscillators system of 
N = 3 oscillators have been considered. However, the same 
analysis procedure can be applied for a generalized system of 
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N oscillators, in a ring topology, just increasing the dimension 
of system (3) to N and calculating the corresponding eigenval-
ues and eigenvectors associated to the N x N coupling circular 
matrix. Note that the extended system is formally identical to 
(3). 

III. STABILITY ANALYSIS 

The stability analysis is applied to the general system (1), 
since the symmetric configuration is a particular case of (1). A 
small perturbation is introduced, which gives rise to the time 
varying increments ( ), ( )m mV t t  in the synchronized oscilla-

tor amplitude and phase of the form
[ ( )]exp[ ( )]mo m m mV V t j t     . The expression for the 

perturbation frequency is the same derived in [10]-[11], which 
can be obtained from the time derivative of the complex enve-
lope of the voltage at the observation node  ( ) expm mV t j , 

taking the original complex waveform as common factor: 
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Considering ( ) 0mV t   in (11) the complex frequency in-

crement s can be expressed as ( ) / ( )m mo mj V t V t    . 

In matrix form, the perturbed coupled system is: 
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where A,ij are terms directly obtained from the frequency 
differentiation of the coupling coefficients in (2), and 

Skm = Amk sin(k−m−mk), Ckm = Amk cos(k−m−mk). Fig. 3 
compares the poles resulting from (12) with those obtained 
with a costly pole-zero identification at circuit level [12], for 
the 0º and 120º modes. The real part of the poles is traced 
versus d. In applications requiring an in-phase operation, one 
should choose d values for which only the 0º mode is stable. 
Due to the element tolerances, the oscillator admittance func-
tions will not be identical, so the solution will deviate from the 
in-phase one. However, and provided that the oscillator dis-
crepancies are not too big, it will be possible to impose the in-
phase solution, through oscillator tuning. Setting the phase 
variables to zero in (1) and introducing the tuning voltages 

1 3,    in the two outermost oscillators, one obtains:                 
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where very similar free-running frequencies and equidistant 
oscillators are assumed. Solving (13) in the unknowns

1 3, , ,kV       , one obtains the 0º mode. However, a mode 
with phase shifts about 120º will also coexist, as shown later. 
The stability of the solution obtained for d = 0.42 m has been 
analyzed with (12) and with pole-zero identification at circuit 
level [Fig. 4(a)]. The poles are shown in Fig. 4(b). The meas-
ured waveforms, after slight tuning of the gate bias, are shown 
in Fig. 5(a) and (b), for d = 0.4 m and d = 0.35 m, respective-
ly. Because the oscillators are not very different, the two 
modes vary versus d in a manner similar to Fig. 2, where 
measurements are superimposed. At d = 0.38 m the two 
modes are stable, which has been confirmed experimentally 
[Fig. 5(c)]. In agreement with the theoretical predictions, the 
0º mode has a higher synchronization frequency than the 120º 
mode. Note that there are relatively large d intervals in which 
only one of the two modes is stable.   

 
Fig. 3 Comparison of the poles resulting from (12)  and the ones obtained 
with pole-zero identification [11]. (a) and (c) In-phase mode. (b) and (d) 120°.  
 
 

 
Fig. 4 Stability analysis for d = 0.42 m after using (13) to obtain 0º phase 
shift. Results obtained with (12) are compared with pole-zero identification. 
(a) 0º mode. (b) 120º mode.  
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Fig. 5 Experimental results at gate node. (a) and (b) Voltage waveforms for 
d = 0.4 m and d = 0.35 m, respectively. (c) Measured spectra for d= 0.38 m. 

IV.  CONCLUSION 

An investigation of wireless coupled oscillator systems for 
distributed synchronization of local oscillators has been pre-
sented. It is based on a realistic description of the oscillator 
elements and the propagation-dependent coupling effects. The 
distinct oscillation modes due to the system symmetry have 
been identified. Very good agreement has been obtained with 
costly circuit-level simulations and measurements.  
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